概率论与数理统计(9.4 多元线性回归)
概率论与数理统计目录
概率论与数理统计目录一、随机事件及其概率1.1 随机事件的基本概念定义与分类事件的运算1.2 概率的定义与性质概率的公理化定义概率的基本性质1.3 古典概型与几何概型古典概型的计算几何概型的计算1.4 条件概率与独立性条件概率事件的独立性1.5 全概率公式与贝叶斯公式全概率公式贝叶斯公式及其应用二、随机变量及其分布2.1 随机变量的概念随机变量的定义随机变量的分类2.2 离散型随机变量及其分布常见的离散型分布分布律与分布函数2.3 连续型随机变量及其分布常见的连续型分布概率密度函数与分布函数2.4 随机变量函数的分布离散型随机变量函数的分布连续型随机变量函数的分布三、多维随机变量及其分布3.1 多维随机变量的概念联合分布函数边缘分布3.2 多维离散型随机变量联合分布律边缘分布律3.3 多维连续型随机变量联合概率密度函数边缘概率密度函数3.4 条件分布离散型条件分布连续型条件分布3.5 随机变量的独立性独立性的定义独立性的判定与性质四、数字特征4.1 数学期望数学期望的定义与性质数学期望的计算4.2 方差方差的定义与性质方差的计算4.3 协方差与相关系数协方差的定义与性质相关系数的定义与性质4.4 矩与协矩阵矩的定义与计算协矩阵的定义与计算五、大数定律与中心极限定理5.1 大数定律切比雪夫大数定律伯努利大数定律5.2 中心极限定理林德贝格-莱维中心极限定理德莫佛尔-拉普拉斯中心极限定理六、数理统计的基本概念6.1 总体与样本总体的定义与性质样本的定义与性质6.2 统计量与抽样分布统计量的定义与性质常见的抽样分布七、参数估计与假设检验7.1 参数估计点估计区间估计7.2 假设检验假设检验的基本概念单侧检验与双侧检验正态总体的假设检验八、回归分析与方差分析8.1 回归分析一元线性回归多元线性回归回归模型的检验与预测8.2 方差分析单因素方差分析双因素方差分析方差分析的应用。
概率论与数理统计公式整理
概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
概率论与数理统计(回归分析)
调整R方值 考虑到自变量数量的R方值,用 于比较不同模型之间的拟合优度。 调整R方值越接近于1,说明模型 拟合优度越好。
残差图 通过观察残差与实际观测值之间 的关系,判断模型是否符合线性 关系、是否存在异方差性等。
05
逻辑回归分析
逻辑回归模型
01
逻辑回归模型是一种用于解决 二分类问题的统计方法,基于 逻辑函数将线性回归的预测值 转换为概率形式。
多元非线性回归模型
在多个自变量X1, X2, ..., Xp的条件下,预测因变量Y的非线性数 学模型。模型形式为Y = f(β0, β1*X1, β2*X2, ... , βp*Xp),其
中f表示非线性函数。
多元逻辑回归模型
用于预测分类结果的多元回归模型,适用于因变量Y为二分 类或多分类的情况。
多重共线性问题
非线性回归模型是指因变量和自 变量之间的关系不是线性的,需 要通过变换或参数调整来拟合数 据。
形式
非线性回归模型通常采用指数函 数对数函数、多项式函数等形 式来表达。
适用范围
非线性回归模型适用于因变量和 自变量之间存在非线性关系的情 况,例如生物医学、经济学、社 会学等领域。
常用非线性回归模型
指数回归模型
线性回归模型假设因变量和自变 量之间存在一种线性关系,即当 一个自变量增加或减少时,因变 量也会以一种恒定的方式增加或 减少。
最小二乘法
01
02
03
最小二乘法是一种数学 优化技术,用于估计线
性回归模型的参数。
最小二乘法的目标是找 到一组参数,使得因变 量的观测值与预测值之
间的平方和最小。
最小二乘法的数学公式为: β=(XTX)^(-1)XTY,其中 X是自变量的数据矩阵,Y 是因变量的数据向量,β
考研数学一大纲重点梳理概率论与数理统计部分
考研数学一大纲重点梳理概率论与数理统计部分概率论和数理统计是考研数学一科目中的重要部分,本文将针对概率论与数理统计这一大纲进行重点梳理。
首先,我们将介绍概率论的基本概念和理论,然后详细讨论数理统计的相关内容。
一、概率论的基本概念和理论1. 概率的基本概念概率是研究随机现象的定量描述,用来描述事件发生的可能性大小。
概率可以用数值表示,范围在0到1之间,其中0代表不可能事件,1代表必然事件。
2. 概率的运算规则概率的运算规则包括加法规则和乘法规则。
加法规则适用于互斥事件,乘法规则适用于独立事件。
3. 随机变量和概率分布随机变量是用来描述随机现象的变量,可以分为离散随机变量和连续随机变量。
概率分布描述了随机变量的取值与概率之间的关系,常见的概率分布包括二项分布、泊松分布和正态分布等。
4. 期望和方差期望是随机变量的平均值,用来描述随机变量的集中趋势;方差是随机变量与期望之间的差异程度,用来描述随机变量的离散程度。
二、数理统计的相关内容1. 抽样与抽样分布抽样是指从总体中选取一部分个体进行观察和研究的过程,抽样分布是指样本统计量的概率分布。
常见的抽样分布包括正态分布、t分布和F分布等。
2. 参数估计参数估计是利用样本数据来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。
点估计是用单个数值来估计参数的值,区间估计是用一个区间来估计参数的值。
3. 假设检验假设检验是根据样本提供的信息,对总体的某个参数是否满足某种假设进行判断。
假设检验可以分为单侧检验和双侧检验,常见的假设检验方法包括z检验和t检验等。
4. 方差分析方差分析是用来比较两个或多个总体间均值差异是否显著的统计方法。
方差分析可以分为单因素方差分析和多因素方差分析,常用的方法包括单因素方差分析和双因素方差分析等。
5. 回归分析回归分析是用来研究自变量与因变量之间的关系的方法。
简单线性回归是一种自变量和因变量之间存在线性关系的回归分析方法,多元线性回归是多个自变量和一个因变量之间的回归分析方法。
概率论与数理统计知识点总结(详细)[整理]
概率论与数理统计知识点总结(详细)[整理]概率论与数理统计(Probability and Mathematics Statistics)是一门基础性学科,广泛应用于统计学、管理科学、数学、计算机科学、社会学、地理学等领域。
它建立在概率论、数理逻辑、微积分以及线性代数的基础上,把统计与数学有机地结合起来,以高效的数学建模对不确定的实际事件分析、推断、做出预测,从而达到指导管理决策的目的。
概率论是概率论与数理统计的重要组成部分,研究概率事件的拓扑结构,以及随机变量的分布规律和抽样特征,用于表示评价系统不确定性及极端情况的几率分析,并且发展出概率密度函数、累积分布函数等数学工具来描述不确定性的变化趋势。
数理统计包括描述性统计和推断性统计两个主要部分。
其中,描述性统计是利用统计指标来描述从待研究对象获取的样本实际数据;推断性统计是利用概率推断理论对样本数据进行分析,以此来得出可推断出总体相应参数和特性的结论。
它所依据的基本概念有抽样统计和统计推断,数理统计关键技术有抽样调查方案的设计、统计量的估计、差异和相关分析等。
数理统计的重要技术有抽样调查方案的设计,它将抽样技术结合统计思想,以达到把握系统性质的目的;统计量的估计,它是用以衡量总体特征的参数估计,它不仅仅只是给出数据量,而且可以推断出总体特征;差异分析,通过它可以看出变量之间的差异情况,从而得出不同水平所代表的总体特征;相关分析,它是一种估计变量之间的相关系数,主要的指标有多元线性回归分析、卡方分析等。
概率论与数理统计在社会中已经得到广泛的应用,主要表现在以下几个方面:在财务分析中,可以根据现实数学模型和概率论分析技术,构建合适的经济风险模型,实现优化的资源配置;在互联网流量分析中,可以根据用户行为分析来挖掘用户特征,指导电子商务推广;在决策分析中,可以利用决策树和数据挖掘技术,建立逻辑模型,形成系统性决策,从而指导业务发展;在信息系统测试中,可以根据质量参数估计系统各项技术指标,为用户提供高质量的信息服务。
多元线性回归模型的估计与解释
多元线性回归模型的估计与解释多元线性回归是一种广泛应用于统计学和机器学习领域的预测模型。
与简单线性回归模型相比,多元线性回归模型允许我们将多个自变量引入到模型中,以更准确地解释因变量的变化。
一、多元线性回归模型的基本原理多元线性回归模型的基本原理是建立一个包含多个自变量的线性方程,通过对样本数据进行参数估计,求解出各个自变量的系数,从而得到一个可以预测因变量的模型。
其数学表达形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、...、Xn为自变量,β0、β1、β2、...、βn为模型的系数,ε为误差项。
二、多元线性回归模型的估计方法1. 最小二乘法估计最小二乘法是最常用的多元线性回归模型估计方法。
它通过使残差平方和最小化来确定模型的系数。
残差即观测值与预测值之间的差异,最小二乘法通过找到使残差平方和最小的系数组合来拟合数据。
2. 矩阵求解方法多元线性回归模型也可以通过矩阵求解方法进行参数估计。
将自变量和因变量分别构成矩阵,利用矩阵运算,可以直接求解出模型的系数。
三、多元线性回归模型的解释多元线性回归模型可以通过系数估计来解释自变量与因变量之间的关系。
系数的符号表示了自变量对因变量的影响方向,而系数的大小则表示了自变量对因变量的影响程度。
此外,多元线性回归模型还可以通过假设检验来验证模型的显著性。
假设检验包括对模型整体的显著性检验和对各个自变量的显著性检验。
对于整体的显著性检验,一般采用F检验或R方检验。
F检验通过比较回归平方和和残差平方和的比值来判断模型是否显著。
对于各个自变量的显著性检验,一般采用t检验,通过检验系数的置信区间与预先设定的显著性水平进行比较,来判断自变量的系数是否显著不为零。
通过解释模型的系数和做假设检验,我们可以对多元线性回归模型进行全面的解释和评估。
四、多元线性回归模型的应用多元线性回归模型在实际应用中具有广泛的应用价值。
统计学、概率论和数理统计的区别和联系
统计学、概率论和数理统计的区别和联系今天我们就来说说统计学、概率论和数理统计为什么要说他们呢,因为这⼏个字眼⼤家肯定是已经⽆数次地碰到过了,但他们究竟代表了什么,以及他们之间的区别与联系,相信⼤家平时肯定是没怎么关注过,⽽是更多的混为⼀谈。
然⽽今天,随着⼤数据与数据科学的热⽕朝天,这⼏个词重新被⼤家给予了⾼度关注,特别是统计学。
原因也很⾃然:分析思维是数据科学的核⼼思维⽅式,⽽分析思维就是关于计算与统计的思维。
统计思维⽣长的⼟壤就是概率论和数理统计。
1、统计学⾸先说说统计学,关于这个词其实是个历史遗留问题。
因为从统计学的发展历史来看,最早的统计学和国家经济学有密切的关系。
统计学的英⽂是“statistic”,其实它是源于意⼤利⽂的“stato”,意思是“国家”、“情况”,也就是后来英语⾥的state(国家),在⼗七、⼗⼋世纪,统计学很多时候都是以经济学的姿态出现的。
根据维基百科:By the 18th century, the term 'statistics' designated the systematic collection of demographic and economic data by states. For at least two millennia, thesedata were mainly tabulations of human and material resources that might betaxed or put to military use.统计学最开始来源于经济学和政治学。
17世纪的经济学家William Petty和他的《政治算术》⼀书揭开了统计学的起源(维基百科):The birth of statistics is often dated to 1662, when John Graunt, along with William Petty, developed early human statistical and census methods that provided a framework for modern demography. He produced the first life table, giving probabilities of survival to each age. Hisbook Natural and Political Observations Made upon the Bills of Mortality usedanalysis of the mortality rolls to make the first statistically basedestimation of the population of London.所以从⼀开始,统计学就跟经济学、政治学密不可分的。
多元线性回归模型原理
多元线性回归模型原理Y=β0+β1*X1+β2*X2+...+βn*Xn+ε其中,Y表示因变量,X1、X2、..、Xn表示自变量,β0、β1、β2、..、βn表示模型的参数,ε表示误差项。
通过对数据进行拟合,即最小化误差平方和,可以估计出模型的参数。
多元线性回归模型的原理是基于最小二乘法,即通过最小化残差平方和来估计参数的值。
残差是指模型预测值与真实值之间的差异,最小二乘法的目标是找到一组参数,使得所有数据点的残差平方和最小。
通过求解最小二乘估计,可以得到模型的参数估计值。
为了评估模型的拟合程度,可以使用各种统计指标,例如R方值、调整R方值、标准误差等。
R方值表示模型解释因变量方差的比例,取值范围在0到1之间,值越接近1表示模型对数据的拟合程度越好。
调整R方值考虑了模型中自变量的个数和样本量之间的关系,可以更准确地评估模型的拟合程度。
标准误差表示模型预测值与真实值之间的标准差,可以用于评估模型的预测精度。
在建立多元线性回归模型之前,需要进行一些前提条件的检查,例如线性关系、多重共线性、异方差性和自变量的独立性。
线性关系假设要求自变量与因变量之间存在线性关系,可以通过散点图、相关系数等方法来检验。
多重共线性指的是自变量之间存在高度相关性,会导致参数估计的不稳定性,可以使用方差膨胀因子等指标来检测。
异方差性指的是残差的方差不恒定,可以通过残差图、方差齐性检验等方法来检验。
自变量的独立性要求自变量之间不存在严重的相关性,可以使用相关系数矩阵等方法来检验。
当满足前提条件之后,可以使用最小二乘法来估计模型的参数。
最小二乘法可以通过不同的方法来求解,例如解析解和数值优化方法。
解析解通过最小化误差平方和的一阶导数为零来求解参数的闭式解。
数值优化方法通过迭代来求解参数的数值估计。
除了最小二乘法,还有其他方法可以用于估计多元线性回归模型的参数,例如岭回归和lasso回归等。
岭回归和lasso回归是一种正则化方法,可以对模型进行约束,可以有效地避免过拟合问题。
概率论与数理统计公式
概率论与数理统计公式以下是概率论与数理统计中常见的公式整理:1.基本概率公式:P(A) = n(A) / n(S),其中A 为事件,n(A) 为事件A 发生的基数,n(S) 为样本空间的基数。
2.条件概率公式:P(A|B) = P(A∩B) / P(B),其中A 和B 为两个事件,P(A∩B) 表示事件A 和事件B 同时发生的概率,P(B) 表示事件B 发生的概率。
3.全概率公式:P(A) = ΣP(A|Bi) * P(Bi),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率。
4.贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi) / ΣP(A|Bj) * P(Bj),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率,P(A|Bj) 表示在事件Bj 发生的条件下,事件A 发生的概率。
5.随机变量的期望值:E(X) = Σxi * P(xi),其中X 为随机变量,xi 为随机变量X 取的第i 个值,P(xi) 表示X 取xi 的概率。
6.随机变量的方差:Var(X) = E((X - E(X))^2),其中X 为随机变量,E(X) 表示X 的期望值。
7.正态分布的概率密度函数:f(x) = (1 / (σ* √(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为正态分布的均值,σ为正态分布的标准差。
8.标准正态分布的概率密度函数:f(x) = (1 / √(2π)) * e^(-x^2 / 2),其中x 为标准正态分布的随机变量。
9.两个随机变量的协方差:Cov(X,Y) = E((X - E(X)) * (Y - E(Y))),其中X 和Y 为两个随机变量,E(X) 和E(Y) 分别表示X 和Y 的期望值。
数理统计多元线性回归方程
1. 描述 y 的平均值或期望值如何依赖于 x1, x1 ,…,xp的方程称为多元线性回归方程
2. 多元线性回归方程的形式为
E( y ) = b0+ b1 x1 + b2 x2 +…+ bp xp
b1,b2,,bp称为偏回归系数 bi 表示假定其他变量不变,当 xi 每变
动一个单位时,y 的平均平均变动值
1. 由于增加自变量将影响到因变量中被估计的 回归方程所解释的变异性的数量,为避免高 估这一影响,需要用自变量的数目去修正R2 的值
2. 用n表示观察值的数目,p表示自变量的数目 ,修正的多元判定系数的计算公式可表示为
9 - 12
三峡大学理学院 于林
数理统计
回归方程的显著性检验
(线性关系的检验 )
1. 总体回归参数 b0 , b1 , b2 ,, b p 是未知的,利用样
本数据去估计 2. 用样本统计量 bˆ0 , bˆ1 , bˆ2 ,, bˆ p 代替回归方程中的
未知参数 b0 , b1 , b2 ,, b p即得到估计的回归方程
yˆ bˆ0 bˆ1x1 bˆ2x2 bˆ p xp
9 - 13
三峡大学理学院 于林
数理统计
回归方程的显著性检验
(步骤)
1. 提出假设
H0:b1b2bp=0 线性关系不显著 H1:b1,b2,,bp至少有一个不等于0
2. 计算检验统计量F
3. 确定显著性水平和分子自由度p、分母自由度np-1找出临界值F
4. 作出决策:若FF ,拒绝H0;若F<F,接受H0
废品率与生产率的关系
生产率(周/单位) 1000 2000 3000 3500 4000 4500 5000
多元线性回归模型
多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。
它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。
本文旨在介绍多元线性回归模型的原理、假设条件和应用。
一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。
多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。
二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。
最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。
具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。
三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。
主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。
在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。
四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。
在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。
多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。
五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。
然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。
多元线性回归的名词解释
多元线性回归的名词解释多元线性回归是一种经济学和统计学中常用的方法,用于分析多个自变量与一个连续因变量之间的关系。
在这种回归分析中,解释变量(自变量)可以是连续或分类变量,而被解释变量(因变量)通常是连续变量。
本文将对多元线性回归的关键名词进行解释,以帮助读者更好地理解和应用该方法。
一、回归分析回归分析是研究两个或多个变量之间关系的统计方法。
在多元线性回归中,我们可以使用多个自变量来预测一个连续的因变量。
回归分析可以帮助我们了解各个自变量对因变量的贡献程度,以及它们之间的相互作用。
二、线性回归线性回归是一种回归分析的方法,假设自变量和因变量之间存在线性关系。
这意味着在多元线性回归中,我们假设因变量是自变量的线性组合,具体表现为一个多元线性方程。
通过最小化预测值和实际观测值之间的误差平方和,我们可以估计出各个自变量的系数,并对因变量进行预测。
三、自变量和因变量在多元线性回归中,自变量是我们用来解释或预测因变量的变量。
自变量可以是连续变量,如年龄、收入等,也可以是分类变量,如性别、教育程度等。
因变量是我们希望预测或解释的变量,通常是一个连续变量,如房屋价格、销售额等。
四、最小二乘法最小二乘法是多元线性回归中参数估计的常用方法。
该方法通过最小化预测值与实际观测值之间的误差平方和来确定各个自变量的系数。
通过求解估计方程,我们可以得到最佳的系数估计,从而建立起自变量与因变量之间的线性关系。
五、多重共线性多重共线性是多元线性回归中一个重要的问题。
当自变量之间存在高度相关性时,可能会导致估计的系数不稳定或不精确。
为了检测和解决多重共线性问题,我们可以计算自变量之间的相关系数矩阵,并使用方差膨胀因子(VIF)来评估自变量之间的共线性程度。
六、拟合优度拟合优度是衡量多元线性回归模型拟合优良程度的指标。
拟合优度可以用于评估模型对观测值的解释能力。
常见的拟合优度指标包括决定系数(R²),它可以解释因变量的变异程度中可归因于自变量的比例。
概率论与数理统计知识点总结
概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
概率论与数理统计(浙江大学_第四版--盛骤)——概率论部分(1)
第三章 多维随机变量及其分布
• 3.1 二维随机变量
• 3.2 边缘分布
• 3.3 条件分布
3
• 3.4 相互独立的随机变量
第四章
随机变量的数字特征
– 12.1 平稳随机过程的概念 – 12.2 各态历经性 – 12.3 相关函数的性质 – 12.4 平稳过程的功率谱密度
6
概率论
第一章概率论的基本概念
7
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
8
§1 随机试验
确定性现象
自然界与社会生活中的两类现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次试验中实际上几乎 是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由怀疑假设的正确性, 从而推断接待站不是每天都接待来访者,即认为其接待时间是有规定的。
11
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且仅当源自所包含的一个样本点发生称事件A发 生。
例:观察89路公交车浙大站候车人数,S={0,1,2,…};
记 A={至少有10人候车}={10,11,12,…}S, A为随机事件,A可能发生,也可能不发生。
如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ为不可能事件,Φ不包含 任何样本点。
概率论与数理统计基本概念
伯努利试验
伯努利试验是一种具有两个可能结 果的随机试验,其中成功的概率为 p,失败的概率为q=1-p。
二项分布
二项分布是描述在n次伯努利试验中 成功的次数的离散概率分布,记为 B(n,p)。
连续随机变量及其分布
01
02
03
连续随机变量
连续随机变量是在不可数 样本空间上的随机变量, 其取值是连续的。
条件概率与独立性
条件概率
01
在事件B发生的条件下,事件A发生的概率,记为
$P(A|B)$。
独立性
02
两个事件A和B独立时,有$P(A cap B) = P(A) times
P(B)$。
全概率公式
03
对于任意事件A,有$P(A) = sum_{i=1}^{n} P(B_i)
times P(A|B_i)$,其中$B_i$是两两互斥的事件。
02
随机变量及其分布
随机变量的定义
01
随机变量
在概率论中,随机变量是一个定 义在样本空间上的变量,其取值 具有随机性。
02
03
确定性事件
随机事件
在概率论中,确定性事件是指概 率等于1的事件。
在概率论中,随机事件是指概率 介于0和1之间的事件。
离散随机变量及其分布
离散随机变量
离散随机变量是在可数样本空间 上的随机变量,其取值是离散的。
区间估计
根据样本数据推断总体参数的可能取值范围,如置信 区间、预测区间等。
贝叶斯估计
基于先验信息和样本数据,对总体参数进行概率性推 断。
假设检验
01
假设设立
根据研究目的设立原假设和备择假 设。
p值
根据检验统计量计算p值,用于评估 证据的强度。
概率论与数理统计知识点总结(免费超详细版)
概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。
对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。
关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。
在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。
2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。
典型的概率分布包括正态分布、泊松分布和二项分布。
此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。
3.参数估计参数估计是根据样本数据估计总体参数的统计方法。
它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。
4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。
其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。
5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。
卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。
6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。
它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。
结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。
了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。
概率论和数理统计方面的知识点在实际应用中有着重要作用。
概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
上页
下页
返回
引进矩阵记号
Y
y1
y2
,X
M
1
1 M
x11 x21 M
L L M
x1p
x2 p M
,
0
1
M
,e
1
2
,
M
yn
1 xn1 L xnp
p
n
则模型可表示成矩阵的形式:
Y X e , i ~ N (0, 2 ) , e ~ N (0, 2En ) ,
即得正规方程组的解为 9.9
0.575 0.55
1.15
于是得到回归方程为Yˆ 9.9 0.575x1 0.55x2 1.15x3 .
2020年6月18日星期四
9
目录
上页
下页
返回
二、β的最小二乘估计
多项式回归模型的一般形式为
Y 0 1x 2x2 L pxp , ~ N (0, 2 ) , 其中 0 , 1,L , p , 2 是与 x 无关的未知参数.若令
0 , 1,L , p 为 待 定 系 数 . 称 数 据 xi1, xi2,L , xip , yi ,
i 1, 2,L , n 为容量为 n 的一个子样观测值(Sub-sample observations).特殊地,取 p 1,则模型就是一元线 性回归模型.
2020年6月18日星期四
4
11
目录
上页
下页
返回
习题A
2020年6月18日星期四
12
目录
上页
下页
返回
《概率论与数理统计》
*****大学理学院数学系
伯努利(Bernoulli) 柯尔莫哥洛夫(Kolmogorov)
2020年6月18日星期四
1
目录
上页
下页
返回
9.4 多元线性回归
一、多元线性回归模型 二、β的最小二乘估计 三、多项式回归模型
2020年6月18日星期四
2
目录
上页
下页
返回
一、多元线性回归模型
设变量Y 与变量 X1, X 2 ,L , X p 之间有如下关系: Y 0 1X1 L p X p ,
其中 0 , 1,L , p 为未知参数,设随机误差 ~ N (0, 2 ) , 2 未知.
假设我们对Y , X1, X 2 ,L , X p 进行了 n 次观测,得到 n 组观测值
11
7.6
10.3
9.2
Y
10.2 8.4
,
11.1
192..86
0
1
2 3
2020年6月18日星期四
8
目录
上页
下页
返回
经计算
8 0 0 0
1/8 0 0 0
X T
X
0
8
0
0
,
0 0 8 0
XT X
1
0
1/8
0
0
0 0 1/8 0
0
0
0
8
0 0 0 1/ 8
x1 x, x2 x2,L , xp xp , 则多项式回归模型就转化元线性回归模型
Y 0 1x1 L p xp , ~ N (0, 2 ) .
接下来的求解过程与检验过程与多元线性回归完全相 似,在此不详细论述.
2020年6月18日星期四
10
目录
上页
下页
返回
内容小结
2020年6月18日星期四
其中 En 是 n 阶单位矩阵.
2020年6月18日星期四
5
目录
上页
下页
返回
二、β的最小二乘估计
残差平方和为
n
p
Q( ) ( yi j xij )2 (Y X )T (Y X )
i 1
j0
正规方程组(normal equations)
n
p
( yi j xij )xit 0 , t 0,1, 2,L , p .
i 1
j0
写成矩阵的形式:
解为
XTY XT X .
ˆ X T X 1 X TY .
2020年6月18日星期四
6
目录
上页
下页
返回
【例 15】 某种化工产品的得率 Y 与反应温度 x1 、反应 时间 x2 及某反应物浓度 x3 有关.今得实验结果如下表所 示,其中 x1, x2, x3 均为二水平且均以编码形式表达.设 f (x1, x2 , x3 ) 0 1x1 2 x2 3x3 ,求 Y 的多元回归方 程.
xi1, xi2 ,L , xip , yi , i 1, 2,L , n . 它们满足关系式
yi 0 1xi1 L p xip i , i 1, 2,L , n .
2020年6月18日星期四
3
目录
上页
下页
返回
这里 i 相互独立,i ~ N (0, 2 ) .称该模型为多元线性
回归模型(multiple linear regression model),其中
x1
-1
-1
-
-1
1
1
1
1
x2
-1
-1
1
1
-1
-1
1
1
x3
-1
1
-1
1
-1
1
-1
1
得率 7.6
10.3
9.2
10.2
8.4
11.1
9.8
12.6
2020年6月18日星期四
7
目录
上页
下页
返回
解 因为
1 1 1 1
1 1 1
1
1 1 1 1
X
1 1
1 1
1 1
1
1
,
1 1 1 1
11
1 1
1 1