2019版高考复习理数:第十章第三节直接证明与间接证明

合集下载

2019高中数学高考真题分类:考点31-直接证明与间接证明

2019高中数学高考真题分类:考点31-直接证明与间接证明

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点31 直接证明与间接证明1.(2018·北京高考理科·T20)已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +…的最小值记为B n ,d n =A n -B n .(1)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值;(2)设d 为非负整数,证明:d n =-d(n=1,2,3…)的充分必要条件为{a n }为公差为d 的等差数列; (3)证明:若a 1=2,d n =1(n=1,2,3…),则{a n }的项只能是1或2,且有无穷多项为1 【解题指南】(1)根据{d n }的定义求.(2)充分性:先证明{a n }是不减数列,再利用定义求d n ; 必要性:先证明{a n }是不减数列,再利用定义证明等差. (3)可通过取特殊值和反证法进行证明.【解析】(1)111211d A B =-=-=,222211d A B =-=-=,333413d A B =-=-=,444413d A B =-=-=。

(2) 充分性:若{}n a 为公差为d 的等差数列,则1(1)n a a n d =+-. 因为d 是非负整数,所以{}n a 是常数列或递增数列.1(1)n n A a a n d ==+-所以,11n n B a a n d +==+, n n n d A B d =-=-所以(n=1,2,3,…).必要性:若(1,2,3,)n d d n =-=,假设k a 是第一个使得10n n a a --<的项,则1221k k k a a a a a --≤≤≤≤>,1,k k k k A a B a -=≤所以,110k k k k k k k d A B a B a a --=-=-≥->所以,这与0n d d =-≤矛盾.所以{}n a 是不减数列.1n n n n n d A B a a d +=-=-=-所以,即1n n a a d +-=, {}n a 所以是公差为d 的等差数列.(3)①首先{}n a 中的项不能是0,否则1102d a =-=,与已知矛盾. ②{}n a 中的项不能超过2,用反证法证明如下:若{}n a 中有超过2的项,设k a 是第一个大于2的项,{}n a 中一定存在项为1,否则与1n d =矛盾.当n k ≥时,2n a ≥,否则与1k d =矛盾.因此存在最大的i 在2到k-1之间,使得1i a =, 此时2220i i i i d A B B =-=-≤-=,矛盾. 综上{}n a 中没有超过2的项.综合①②,{}n a 中的项只能是1或2. 下面证明1有无数个,用反证法证明如下:若k a 为最后一个1,则220k k k d A B =-=-=,矛盾. 因此1有无数个.2.(2018·北京高考文科·T20)给定数列a 1,a 2,…,a n 。

2019届高考数学(浙江版)一轮配套讲义:13直接证明与间接证明

2019届高考数学(浙江版)一轮配套讲义:13直接证明与间接证明

第十三章直接证明与间接证明考纲解读考点考纲内容要求浙江省五年高考统计2013 2014 2015 2016 2017 19(2),417(1),71. 认识直接证明的两种基分分20,15 分22(2),(3 1. 直接证明本方法 : 剖析法和综合法 . 20(1),6 20(1),7认识18(1),7 20( 文 ),1 ),与间接证明 2. 认识间接证明的一种基分分分 5 分约 10分本方法 : 反证法 . 21(2),820,15 分分2. 数学概括认识数学概括法的原理 , 能22(1), 用数学概括法证明一些简认识法约 5 分单的数学命题 .剖析解读 1. 直接证明与间接证明、数学概括法是高考的考察内容, 综合法是“由因导果” , 而剖析法例是“执果索因” , 它们是截然相反的两种证明方法. 剖析法便于我们去找寻思路 , 而综合法便于过程的表达 , 两种方法各有千秋 , 在解决详细的问题中, 综合运用 , 成效会更好 .2. 数学概括法常与数列、不等式等知识综合在一同, 常常综合性比较强, 对学生的思想要求比较高 .3. 综合法与剖析法因其在解决问题中的巨大作用而获得命题者的喜爱, 估计 2019 年高考试题中 , 直接证明、间接证明与导数综合出题的可能性较大.五年高考考点一直接证明与间接证明1.(2017课标全国Ⅱ理,7,5分)甲、乙、丙、丁四位同学一同去处老师咨询成语比赛的成绩四人中有 2 位优异 ,2 位优异 , 我此刻给甲看乙、丙的成绩 , 给乙看丙的成绩, 给丁看甲的成绩说 : 我仍是不知道我的成绩. 依据以上信息, 则 () .老师说:你们 . 看后甲对大家A.乙能够知道四人的成绩B.丁能够知道四人的成绩C.乙、丁能够知道对方的成绩D.乙、丁能够知道自己的成绩答案 D2.(2016 北京 ,8,5 分) 袋中装有偶数个球 , 此中红球、黑球各占一半 . 甲、乙、丙是三个空盒 . 每次从袋中随意拿出两个球 , 将此中一个球放入甲盒 , 假如这个球是红球 , 就将另一个球放入乙盒 , 不然就放入丙盒 . 重复上述过程 , 直到袋中全部球都被放入盒中, 则 ()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球同样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球同样多答案 B3.(2017北京文,14,5分)某学习小组由学生和教师构成, 人员构成同时知足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数 ;(iii)教师人数的两倍多于男学生人数 .①若教师人数为4, 则女学生人数的最大值为;②该小组人数的最小值为.答案①6②124.(2017北京理,20,13分)设{a n}和{b n}是两个等差数列, 记c n=max{b1-a 1n,b 2-a 2n,,b n-a n n}(n=1,2,3, ),此中 max{x 1,x 2, ,x s} 表示 x1,x 2, ,x s这 s 个数中最大的数.(1) 若 a n =n,b n =2n-1, 求 c 1,c 2,c 3 的值 , 并证明 {c n } 是等差数列 ;(2) 证明 : 或许对随意正数 M,存在正整数 m,当 n ≥m 时, >M;或许存在正整数 m,使得 c m ,c m+1,c m+2, 是等差数 列 .分析 此题考察等差数列 , 不等式 , 合情推理等知识 , 考察综合剖析 , 概括抽象 , 推理论证能力 . (1)c 1=b 1-a 1=1-1=0,c 2 =max{b 1-2a 1,b 2-2a 2}=max{1-2 × 1,3-2 × 2}=-1,c 3 =max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3 × 1,3-3 × 2,5-3 × 3}=-2.当 n ≥ 3 时 ,(b k+1 -na k+1 )-(b k-na )=(b -b )-n(a k+1-a )=2-n<0,kk+1kk所以 b k -na k 对于 k ∈ N * 单一递减 .-a n}=b -a n=1-n.所以 c =max{b -a n,b -an, ,bn1122 n n11所以对随意 n ≥ 1,c n =1-n, 于是 c n+1-c n =-1,所以 {c} 是等差数列 .n(2) 设数列 {a n } 和 {b n } 的公差分别为 d 1,d 2, 则 b k -na k =b 1+(k-1)d 2-[a 1+(k-1)d 1 ]n=b 1-a 1n+(d 2-nd 1)(k-1).所以 c =n①当 d 1>0 时,取正整数 m> , 则当 n ≥ m 时,nd 1 >d , 所以 c =b -a n.2n 11此时 ,c m ,c m+1,c m+2, 是等差数列 .②当 d =0 时, 对随意 n ≥ 1,1c n =b 1-a 1n+(n-1)max{d 2,0}=b 1-a 1+(n-1)(max{d2,0}-a 1).此时 ,c,c ,c , ,c, 是等差数列 .1 23n③当 d 1<0 时,当 n> 时, 有 nd 1<d 2.所以 ==n(-d 1)+d 1-a 1+d 2+≥ n(-d 1)+d 1-a 1+d 2-|b 1-d 2|.对随意正数 M,取正整数 m>max,故当n ≥ m 时 ,>M.5.(2016江苏 ,20,16 分 )记 U={1,2,,100}.对数列 {a n }(n ∈N *)和U 的子集T,若 T=? ,定义S T =0;若T={t1,t2,,tk },定义S T =+ + +. 比如 :T={1,3,66}时 ,S T =a 1+a 3+a 66. 现设 {a n }(n∈ N *)是公比为3 的等比数列 , 且当 T={2,4} 时 ,S T =30.(1) 求数列 {a n } 的通项公式 ;(2) 对随意正整数 k(1 ≤ k ≤ 100), 若 T? {1,2,,k}, 求证 :S T <a k+1 ; (3) 设 C? U,D? U,S C ≥ S D , 求证 :S C +S C ∩ D ≥ 2S D .分析 (1) 由已知得 a n =a 1· 3n-1 ,n ∈ N * . 于是当 T={2,4} 时 ,S T =a 2+a 4=3a 1+27a 1=30a 1.又 S =30, 故 30a1 =30, 即 a =1.T1所以数列 {a n } 的通项公式为 n-1,n *a n =3 ∈ N .(2) 因为 T? {1,2, ,k},a n =3n-1 >0,n ∈N * ,k-1kk所以 S ≤ a +a + +a =1+3+ +3 = (3 -1)<3 .T 12k所以 ,S T <a k+1.(3) 下边分三种状况证明.①若 D 是 C的子集 , 则 S C+S C∩D=S C+S D≥ S D+S D=2S D.②若 C 是 D的子集 , 则 S C+S C∩D=S C+S C=2S C≥ 2S D.③若 D不是 C的子集 , 且 C不是 D的子集 .令 E=C∩ ?U D,F=D∩ ?U C, 则 E≠ ? ,F ≠ ? ,E ∩F=? . 于是 S C=S E+S C∩D,S D=S F+S C∩D, 从而由 S C≥ S D得 S E≥ S F .设 k 为 E 中的最大数 ,l 为 F 中的最大数 , 则 k≥1,l ≥ 1,k ≠ l.由 (2)Ek+1.于是 3l-1 l F E k+1 k, 所以 l-1<k, 即 l ≤ k. 又 k≠ l, 故 l ≤ k-1. 知 ,S <a =a ≤ S ≤ S <a =3从而F12 l l-1= ≤= ≤, S ≤ a +a + +a =1+3+ +3故 S E≥ 2S F+1, 所以 S C-S C∩D≥ 2(S D-SC∩D)+1, 即 S C+S C∩D≥2S D+1.综合①②③得 ,S C+S C∩D≥ 2S D.6.(2015 北京 ,20,13 分 ) 已知数列 {a } 知足 :a ∈ N ,a ≤ 36, 且 a = (n=1,2,). 记会合 M={a |nn 1 *1 n+1 n ∈N*}.(1)若 a1=6, 写出会合 M的全部元素 ;(2)若会合 M存在一个元素是 3 的倍数 , 证明 :M 的全部元素都是 3 的倍数 ;(3)求会合 M的元素个数的最大值 .分析(1)6,12,24.(2)证明 : 因为会合 M存在一个元素是 3 的倍数 , 所以不如设 a k是 3 的倍数 .由 a n+1= 可概括证明对随意 n≥ k,a n是 3 的倍数 .假如 k=1, 则 M的全部元素都是3的倍数.假如 k>1, 因为 a k=2a k-1或 a k=2a k-1 -36,所以 2a k-1是 3 的倍数 , 于是 a k-1 是3的倍数.近似可得 ,a k-2 , ,a 1都是 3 的倍数 .从而对随意 n≥ 1,a n是 3 的倍数 , 所以 M的全部元素都是 3 的倍数 .综上 , 若会合 M存在一个元素是 3 的倍数 , 则 M的全部元素都是3的倍数.(3) 由 a1≤ 36,a n= 可概括证明 a n≤36(n=2,3,).因为 a 是正整数 ,a = 所以 a 是2的倍数,1 2 2从而当 n≥3 时 ,a n是 4 的倍数 .假如 a1是 3 的倍数 , 由 (2) 知对全部正整数n,a n是 3 的倍数 ,所以当 n≥3 时 ,a n∈ {12,24,36},这时 M的元素个数不超出 5.假如 a1不是 3 的倍数 , 由 (2) 知对全部正整数n,a n不是 3 的倍数 ,所以当 n≥3 时 ,a n∈ {4,8,16,20,28,32},这时 M的元素个数不超出 8.当 a =1 时 ,M={1,2,4,8,16,20,28,32} 有8个元素.1综上可知 , 会合 M的元素个数的最大值为 8.7.(2014 江苏 ,23,10 分 ) 已知函数 f 0(x)= (x>0), 设 f n(x) 为 f n-1 (x) 的导数 ,n ∈ N* .(1) 求 2f 1 + f 2 的值 ;(2) 证明 : 对随意的n∈ N* , 等式= 都建立 .分析(1) 由已知 , 得 f 1(x)=f' 0(x)= '= - , 于是f (x)=f' (x)= '- '=- - + , 所以 f1 =- ,f2=-+.2 1故 2f 1 + f 2 =-1.(2) 证明 : 由已知 , 得 xf 0(x)=sinx, 等式两边分别对x 求导 , 得 f 0(x)+xf' 0(x)=cosx, 即 f 0(x)+xf 1(x)=cosx=sin , 近似可得2f (x)+xf (x)=-sinx=sin(x+ π ),1 23f (x)+xf (x)=-cosx=sin ,2 34f (x)+xf (x)=sinx=sin(x+2 π ).3 4下边用数学概括法证明等式nf n-1(x)+xfn对全部的*都建立 .(x)=sin n∈ N(i)当 n=1 时 , 由上可知等式建立 .(ii) 假定当 n=k 时等式建立 , 即 kf k-1 (x)+xf k(x)=sin. 因为[kfk-1 (x)+xfk(x)]'=kf'k-1(x)+fk(x)+xf'k(x)=(k+1) · f (x)+xf (x), '=cos ·'=sik k+1n ,所以(k+1)f k (x)+xf k+1 .(x)=sin所以当 n=k+1 时 , 等式也建立 .综合 (i)(ii) 可知等式 nf n-1 (x)+xf n (x)=sin*对全部的 n∈ N 都建立 .令 x= , 可得 nf n-1 + f n =sin (n ∈ N* ). 所以= (n ∈ N* ).教师用书专用 (8)8.(2013 江苏 ,19,16na, 公差为 d 的等差数列(d ≠0),Sn n,n ∈分 ) 设{a } 是首项为是其前 n 项的和 . 记 b =(1)若 c=0, 且 b1,b 2,b 4成等比数列 , 证明 :S nk=n2S k(k,n ∈ N* );(2)若 {b n} 是等差数列 , 证明 :c=0.nd.证明由题意得 ,S =na+(1) 由 c=0, 得 b n= =a+ d.又因为 b ,b ,b 成等比数列 , 所以=b b , 即=a 2 4 , 化简得 d -2ad=0.1 2 1 4因为 d≠ 0, 所以 d=2a.所以 , 对于全部的* m2m∈ N , 有 S =ma.从而对于全部的k,n ∈ N* , 有 S nk=(nk) 2a=n2k2a=n2S k.(2) 设数列 {b } 的公差是 d , 则 b =b +(n-1)d, 即=b +(n-1)d*的表达式 , 整理得 , 对于全部,n ∈ N , 代入 Sn1n1111n* 3 2 111的 n ∈ N , 有n + n +cd n=c(d -b ).令 A=d 1- d,B=b 1-d 1-a+ d,D=c(d 1-b 1), 则对于全部的 n ∈ N * , 有32An +Bn +cd 1n=D.(*)在 (*) 式中分别取 n=1,2,3,4, 得A+B+cd 1=8A+4B+2cd 1=27A+9B+3cd 1=64A+16B+4cd 1,从而有由②③得 A=0,cd 1=-5B, 代入方程① , 得 B=0, 从而 cd 1=0.即 d 1- d=0,b 1-d 1-a+ d=0,cd 1=0.若 d 1=0, 则由 d 1- d=0, 得 d=0,与题设矛盾 , 所以 d 1≠ 0. 又因为 cd 1=0, 所以 c=0.考点二 数学概括法1.(2017 浙江 ,22,15 分 ) 已知数列 {x } 知足 :x =1,x =x +ln(1+x*)(n ∈ N ).n1nn+1n+1证明 : 当 n ∈ N * 时 ,(1)0<x<x ;n+1n(2)2x-x ≤;n+1n(3) ≤x n ≤.分析 此题主要考察数列的观点、递推关系与单一性基础知识, 不等式及其应用 , 同时考察推理论证能力、 剖析问题和解决问题的能力 . (1) 用数学概括法证明 :x n >0. 当 n=1 时 ,x 1=1>0. ≤ 0, 则 0<x =x +ln(1+x ) ≤ 0, 矛盾 , 故 x>0. 假定 n=k 时,x k >0, 那么 n=k+1 时, 若 xk k+1k+1k+1 k+1所以 x n >0(n ∈ N * ). 所以 x n =x n+1+ln(1+xn+1)>x n+1.所以 0<x n+1<x n (n ∈ N * ). (2) 由 x n =x n+1+ln(1+x n+1) 得 ,x x -4x+2x =-2xn+1 +(x n+1 +2)ln(1+x).n n+1n+1nn+1记函数 f(x)=x 2-2x+(x+2)ln(1+x)(x ≥ 0),f'(x)=+ln(1+x)>0(x>0).函数 f(x) 在 [0,+ ∞ ) 上单一递加 , 所以 f(x) ≥ f(0)=0, 所以-2x n+1+(x n+1+2)ln(1+xn+1)=f(xn+1)≥ 0,故 2x n+1-x n ≤(n ∈ N * ).(3) 因为 x n =x n+1+ln(1+x n+1) ≤ x n+1+x n+1=2x n+1, 所以 x n ≥ .由≥ 2x n+1-x n得- ≥ 2 >0,所以 - ≥ 2 ≥ ≥ 2n-1 =2n-2 ,故 x n≤.综上, ≤ x n≤(n ∈ N* ).2.(2015 江苏 ,23,10 分 ) 已知会合 X={1,2,3},Y n={1,2,3,,n}(n ∈ N* ), 设 S n={(a,b)|a 整除 b 或 b 整除 a,a ∈X,b ∈ Y n}. 令 f(n) 表示会合 S n所含元素的个数 .(1) 写出 f(6) 的值 ;(2) 当 n≥ 6 时 , 写出 f(n)的表达式,并用数学概括法证明.分析(1)f(6)=13.(2)当 n≥ 6 时 ,f(n)=(t ∈ N* ).下边用数学概括法证明:①当 n=6 时,f(6)=6+2++ =13, 结论建立 ;②假定 n=k(k ≥ 6) 时结论建立 , 那么 n=k+1 时 ,S k+1在 S k的基础上新增添的元素在(1,k+1),(2,k+1),(3,k+1)中产生 , 分以下情况议论:1) 若 k+1=6t, 则 k=6(t-1)+5,此时有f(k+1)=f(k)+3=k+2+++3=(k+1)+2++,结论建立 ;2) 若 k+1=6t+1, 则 k=6t, 此时有f(k+1)=f(k)+1=k+2+ + +1=(k+1)+2++,结论建立 ;3)若 k+1=6t+2, 则 k=6t+1, 此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论建立 ;4)若 k+1=6t+3, 则 k=6t+2, 此时有f(k+1)=f(k)+2=k+2+ ++2=(k+1)+2++,结论建立 ;5) 若 k+1=6t+4, 则 k=6t+3, 此时有 f(k+1)=f(k)+2=k+2+ + +2=(k+1)+2++,结论建立 ;6) 若 k+1=6t+5, 则 k=6t+4, 此时有 f(k+1)=f(k)+1 =k+2+ + +1=(k+1)+2++ ,结论建立 .综上所述 , 结论对知足 n ≥ 6 的自然数 n 均建立 .3.(2014 安徽 ,21,13 分 ) 设实数 c>0, 整数 p>1,n ∈ N * . (1) 证明 : 当 x>-1 且 x ≠ 0 时 ,(1+x) p>1+px;(2) 数列 {a n } 知足 a 1> ,a n+1= a n +. 证明 :a n >a n+1> .证明 (1) 用数学概括法证明 :①当 p=2 时,(1+x) 2=1+2x+x 2>1+2x, 原不等式建立 .②假定 p=k(k ≥ 2,k ∈ N * ) 时 , 不等式 (1+x) k >1+kx 建立 .当 p=k+1 时,(1+x) k+1=(1+x)(1+x) k >(1+x)(1+kx)=1+(k+1)x+kx 2>1+(k+1)x.所以 p=k+1 时 , 原不等式也建立 . p综合①②可得 , 当 x>-1,x ≠ 0 时, 对全部整数 p>1, 不等式 (1+x)均建立 .>1+px (2) 证法一 : 先用数学概括法证明 a n > .①当 n=1 时, 由题设 a >知 a > 建立 .1n②假定 n=k(k ≥ 1,k ∈ N * ) 时 , 不等式 a k > 建立 .由 a n+1= nn*a + 易知 a >0,n ∈ N .当 n=k+1 时, = + =1+ .由 a k > >0 得 -1<- <<0.由 (1) 中的结论得=>1+p ·= .所以>c, 即 a k+1 > .所以 n=k+1 时 , 不等式 a n >也建立 .综合①②可得 , 对全部正整数 n, 不等式 a n > 均建立 .再由=1+可得<1, 即 a n+1<a n .综上所述 ,a >a>*n+1 ,n ∈ N.n证法二 : 设 f(x)=x+ x 1-p ,x ≥ , 则 x p ≥c, 而且f'(x)= + (1-p)x-p= >0,x> .由此可得 ,f(x) 在 [ ,+ ∞ ) 上单一递加 .因此 , 当 x> 时 ,f(x)>f()= ,①当 n=1 时, 由 a 1>>0, 即 >c 可知a 2 = a 1+ =a 1 <a 1, 而且 a 2=f(a 1)>, 从而 a 1>a 2> .故当 n=1 时, 不等式 a n >a n+1>建立 .*不等式 a k >a k+1> 建立, 则 当 n=k+1 时,f(ak )>f(ak+1)>f( ), 即有 a>a > .k+1k+2所以 n=k+1 时 , 原不等式也建立 .综合①②可得 , 对全部正整数 n, 不等式 a >a > 均建立 .nn+14.(2014 陕西 ,21,14 分 ) 设函数 f(x)=ln(1+x),g(x)=xf'(x),x≥ 0, 此中 f'(x)是 f(x) 的导函数 .(1) 令 g (x)=g(x),g(x)=g(gn (x)),n ∈N , 求 g (x) 的表达式 ;1n+1+n(2) 若 f(x) ≥ ag(x) 恒建立 , 务实数 a 的取值范围 ; (3) 设 n ∈ N +, 比较 g(1)+g(2)+ +g(n) 与 n-f(n)的大小 , 并加以证明 .分析由题设得 ,g(x)=(x ≥ 0).(1) 由已知得 ,g 1(x)= ,g 2(x)=g(g 1(x))= = ,g 3 (x)=, , 可得 g n (x)=.下边用数学概括法证明 .①当 n=1 时,g 1(x)=, 结论建立 .②假定 n=k 时结论建立 , 即 g k (x)=.那么 , 当 n=k+1 时 ,g k+1 (x)=g(g k (x))== = ,即结论建立 .由①②可知 , 结论对 n ∈ N +建立 . (2) 已知 f(x) ≥ ag(x) 恒建立 , 即 ln(1+x) ≥ 恒建立 .设 φ (x)=ln(1+x)-(x ≥ 0),即φ '(x)=-=,当 a≤ 1 时 , φ '(x) ≥0( 仅当 x=0,a=1 时等号建立 ), ∴φ (x) 在 [0,+ ∞ ) 上单一递加 , 又φ (0)=0,∴ φ (x) ≥0 在 [0,+ ∞ ) 上恒建立 ,∴ a≤ 1 时 ,ln(1+x)≥恒建立(仅当x=0时等号建立).当 a>1 时 , 对 x∈ (0,a-1] 有φ '(x)<0,∴ φ (x) 在 (0,a-1]上单一递减,∴ φ (a-1)<φ (0)=0.即 a>1 时 , 存在 x>0, 使φ (x)<0, 故知 ln(1+x)≥不恒建立, 综上可知 ,a 的取值范围是(- ∞ ,1].(3) 由题设知g(1)+g(2)++g(n)= + + +,n-f(n)=n-ln(n+1),比较结果为g(1)+g(2)++g(n)>n-ln(n+1).证明以下 :证法一 : 上述不等式等价于+ + +<ln(n+1),在 (2) 中取 a=1, 可得 ln(1+x)>,x>0.令 x= ,n ∈ N+,则<ln.下边用数学概括法证明.①当 n=1 时, <ln2, 结论建立 .②假定当n=k 时结论建立 , 即 + + +<ln(k+1).那么 , 当 n=k+1 时 ,+ + ++<ln(k+1)+<ln(k+1)+ln=ln(k+2),即结论建立 .由①②可知 , 结论对 n∈ N+建立 .证法二 : 上述不等式等价于+ + +<ln(n+1),在 (2) 中取 a=1, 可得 ln(1+x)>,x>0.令 x= ,n ∈ N+, 则 ln>.故有 ln2-ln1>,ln3-ln2>,ln(n+1)-lnn>,上述各式相加可得ln(n+1)> + + + .结论得证 .教师用书专用 (5)5.(2014 重庆 ,22,12 分 ) 设 a =1,an+1 =+b(n ∈ N ).1*(1) 若 b=1, 求 a 2,a 3 及数列 {a n } 的通项公式 ;*(2) 若 b=-1, 问 : 能否存在实数c 使得 a <c<a建立 ?证明你的结论 .对全部 n ∈ N2n2n+1分析 (1) 解法一 :a 2=2,a 3= +1.由题设条件知 n+1 2 =(a n -1) 2 +1,(a -1)从而 {(a n -1) 2} 是首项为 0, 公差为 1 的等差数列 ,n2n*故 (a -1)=n-1, 即 a =+1(n ∈ N ).解法二 :a 2=2,a 3= +1,可写为 a 1=+1,a 2=+1,a 3=+1.所以猜想 n+1.a =下用数学概括法证明上式 : 当 n=1 时结论明显建立 .假定 n=k 时结论建立 , 即 a k = +1, 则 a k+1 =+1=+1=+1.这就是说 , 当 n=k+1 时结论建立 . 所以 a n = +1(n ∈ N * ).(2) 解法一 : 设 f(x)=-1, 则 a n+1=f(a n ).令 c=f(c), 即 c=-1, 解得 c= . 下边用数学概括法证明命题a 2n <c<a 2n+1<1.当 n=1 时 ,a 2=f(1)=0,a 3=f(0)= -1, 所以 a 2< <a 3<1,结论建立 .假定 n=k 时结论建立 , 即 a 2k <c<a 2k+1<1. 易知 f(x) 在 (- ∞,1] 上为减函数 , 从而 c=f(c)>f(a 2k+1)>f(1)=a 2, 即 1>c>a 2k+2>a 2.再由 f(x) 在 (- ∞,1] 上为减函数得 c=f(c)<f(a 2k+223<1. 2k+3所以 a 2(k+1)2(k+1)+1)<f(a )=a故 c<a <1,<c<a<1.这就是说 , 当 n=k+1 时结论建立 .综上 , 切合条件的 c 存在 , 此中一个值为 c= .解法二 : 设 f(x)=-1, 则 a n+1=f(a n ).*先证 :0 ≤ a ≤1(n ∈ N ). ①n当 n=1 时 , 结论明显建立 .假定 n=k 时结论建立 , 即 0≤a k ≤1. 易知 f(x) 在 (- ∞ ,1] 上为减函数 , 从而 0=f(1) ≤ f(a k ) ≤ f(0)=-1<1.即 0≤ a k+1≤ 1. 这就是说 , 当 n=k+1 时结论建立 . 故①建立 .再证 :a2n <a(n ∈ N ).②2n+1*当 n=1 时 ,a 2=f(1)=0,a3=f(a 2)=f(0)=-1, 有 a 2<a 3, 即 n=1 时②建立 .假定 n=k 时, 结论建立 , 即 a<a .2k2k+1由①及 f(x) 在 (- ∞ ,1] 上为减函数 , 得a =f(a2k )>f(a2k+1 )=a 2k+2,2k+1a =f(a 2k+1 )<f(a2k+2 )=a2(k+1)+1 .2(k+1)这就是说 , 当 n=k+1 时②建立 . 所以②对全部 n ∈N * 建立 .由②得 a 2n <-1,即 (a 2n +1) 2< -2a 2n +2,所以 a 2n < . ③又由①②及 f(x) 在 (- ∞ ,1] 上为减函数得 f(a 2n )>f(a 2n+1 ), 即 a 2n+1>a 2n+2,所以 a 2n+1>-1, 解得 a 2n+1> . ④综上 , 由②③④知存在 c= 2n2n+1*使 a <c<a对全部 n ∈ N 建立 .三年模拟A 组 2016— 2018 年模拟·基础题组考点一 直接证明与间接证明1.(2016 广东惠州第一次调研 ,12) 定义映照 f:A → B, 此中 A={(m,n)|m,n ∈R},B=R, 已知对全部的有序正整数对 (m,n) 知足以下条件 : ① f(m,1)=1; ②若 n>m,则 f(m,n)=0; ③ f(m+1,n)=n[f(m,n)+f(m,n-1)], 则 f(2,2)= . 答案 2 2.(2018 浙江萧山九中 12 月月考 ,20) 设函数 f(x)=lnx+a-1, 曲线 y=f(x) 在点 (1,f(1))处的切线与直线y= x+1 平行 . (1) 求 a 的值 ;(2) 证明 : 当 x>1 时 ,f(x)< (x-1).分析 (1) ∵ f'(x)= +, ∴ f'(1)=1+= ,(5 分)∴ a=1.(6 分 )(2) 证明 : 设 g(x)=lnx+ -1- (x-1)=lnx+- x+ ,(8 分)则 g'(x)=+-==,(12分)当 x>1 时 , 有 g'(x)<0, 所以 g(x) 在区间 (1,+ ∞ ) 上是减函数 ,∴ g(x)<g(1)=0, 即 f(x)< (x-1).(15 分 )3.(2017 浙江测试卷 ,20) 设函数 f(x)=x2+,x ∈[0,1].证明 :(1)f(x) ≥ x 2- x+1;(2)<f(x) ≤.证明 (1) 记 g(x)=f(x)-x2+ -1= + -1,则 g'(x)=- + >0,x ∈(0,1),∴g(x) 在区间 (0,1) 上单一递加 ,又 g(0)=0, ∴ g(x)=f(x)-x 2-1+ ≥0,2∴ f(x) ≥ x - x+1.(2)f'(x)=2x- , 记h(x)=2x- ,由h(0)=- <0,h(1)=2- >0, 知存在x0∈(0,1), 使得h(x 0)=0, ∵h(x) 在 [0,1] 上是增函数 ,∴f(x) 在区间 (0,x 0) 上单一递减 , 在区间 (x 0,1) 上单一递加 ,又 f(0)=1,f(1)= , 所以 f(x) ≤,另一方面 , 由 (1) 适当 x≠时 ,f(x)2+1= + > , 且 f > , ≥ x -故<f(x) ≤.考点二数学概括法4.(2016 黑龙江哈尔滨三中模拟,10) 用数学概括法证明不等式“1+ + + +<n(n ∈ N* ,n ≥ 2) ”建即刻 , 由 n=k(k ≥2) 时不等式建立 , 推证 n=k+1 时 , 左侧应增添的项的个数是 ( )A.2 k-1B.2 k-1C.2 kD.2 k+1答案 C5.(2018 浙江 9+1 高中结盟期中 ,22) 已知数列 {a n} 知足 :a 1= ,p>1,a n+1=.(1) 证明 :a >a >1;nn+1(2) 证明 : <a < ;n+1(3) 证明 : ×<ln(a 1 a2a n)< ×.证明(1) 先用数学概括法证明a n>1.①当 n=1 时, ∵ p>1, ∴ a1= >1;②假定当 n=k 时 ,a k>1, 此时易证得lna k -a k +1<0 恒建立 , 即 lna k<a k-1 恒建立 , 则当 n=k+1 时 ,a k+1=>=1. 由①②可知a n>1.再证 a n>a n+1.a n+1-a n= -a n = ,令 f(x)=x-1-xlnx,x>1, 则 f'(x)=-lnx<0, 所以f(x) 在 (1,+ ∞ ) 上单一递减 , 所以f(x)<f(1)=0,所以<0, 即 a >a .n n+1所以 a n>a n+1>1.(5 分 )(2) 要证<a n+1< , 只要证< <, 只要证此中 a n>1,先证 2a n lna n- +1<0,令 f(x)=2xlnx-x 2+1,x>1, 只要证 f(x)<0.因为 f'(x)=2lnx+2-2x<2(x-1)+2-2x=0,所以 f(x) 在 (1,+ ∞ ) 上单一递减 , 所以 f(x)<f(1)=0. 再证 (a n+1)lna n-2a n+2>0,令 g(x)=(x+1)lnx-2x+2,x>1, 只要证 g(x)>0,g'(x)=lnx+ -2=lnx+ -1,令 h(x)=lnx+ -1,x>1, 则 h'(x)= - = >0,所以 h(x) 在 (1,+ ∞ ) 上单一递加 , 所以 h(x)>h(1)=0, 从而 g'(x)>0,所以g(x)在(1,+∞ )上单一递加,所以 g(x)>g(1)=0,综上可得<a n+1< .(10 分 )(3) 由 (2) 知, 一方面 ,a -1< (n ≥ 2), 则 a -1<(a1 -1) = ·(n ≥ 2),n=1 时 ,a -1=·,n n 1 因为 lnx<x-1(x>1), 所以 lna <a -1 ≤ ·,n n所以 ln(a 1a2a n)=lna 1+lna 2 + +lna n<= ×= ×;另一方面 , > ,则> ×= ·(n ≥ 2),n=1 时 , ==·.因为 lnx>1- (x>1), 所以 lna n>1- ≥·,所以 ln(a a a )=lna +lna + +lna > + + +1 2 n 1 2 n= ×.综上 , ×<ln(a a a )< ×.(15 分 )1 2 nB 组2016— 2018 年模拟·提高题组一、选择题1.(2016 福建厦门一中期中 ,12) 若数列 {a n } 知足 : 存在正整数 T, 对于随意正整数 n 都有 a n+T =a n 建立 , 则称数列 {a n } 为周期数列 , 周期为 T. 已知数列 {a n } 知足 a 1=m(m>0),a n+1= 则以下结论中错误的选项是 ()A. 若 a 3=4, 则 m 能够取 3 个不一样的值B. 若 m= , 则数列 {a } 是周期为 3 的数列nC. 随意的 T ∈ N * 且 T ≥2, 存在 m>1,使得 {a n } 是周期为 T 的数列D. 存在 m ∈Q 且 m ≥ 2, 使得数列 {a } 是周期数列n答案 D二、解答题n+1-a n )+a n +nln2=0(n ∈ N * ).2.(2018 浙江要点中学 12 月联考 ,22) 已知数列 {a n } 知足 :a 1=0,ln(a(1) 求 a ;3(2) 证明 :ln(2-2 1-n ) ≤ a n ≤ 1-2 1-n ; (3) 能否存在正实数 c, 使得对随意的 n ∈N * , 都有 a n ≤1-c? 并说明原因 . 分析(1) 由已知得 a n+1=a n +,又 a 1=0, 所以 a 2= ,a 3= +.(2 分 )(2) 证明 : 因为 a n+1>a n ,a 1=0, 所以 a n ≥ 0, 则 a n+1=a n +≤ a n +e -nln2 =a n +2-n ,所以 a n ≤ a n-1 +2-(n-1) ≤a n-2 +2-(n-2) +2-(n-1) ≤ ≤ a 1+2-1 + +2-(n-2) +2-(n-1) =1-2 1-n .(5 分 )令 f(n)=+21-n -2,则f(n+1)-f(n)=(-n-(n-1)-2]=- -2 -n--n= [-n+2 -2)-[+2=-2-1]-2 >-2 -n=0,所以 {f(n)} 是递加数列 , 所以 f(n) ≥ f(1)=0, 即+21-n -2 ≥ 0, 所以 a n ≥ ln(2-2 1-n ). 综上 ,ln(2-21-n) ≤ a n ≤1-2 1-n .(8 分 )(3) 由 (2) 得 a n+1=a n +≤ a n +=a n + ,(10 分 )所以 a ≤ an-1 +≤an-2 ++≤ ≤ a ++ ++=+ ++.(12 分)n1因为 =≤(n ≥ 3),所以当 n ≥4 时 ,a n ≤ + + + += + +< .由 (1) 知 : 当 n=1,2,3 时 ,a n < ,综上 : 对随意的 n ∈ N * , 都有 a n < , 所以存在 c= .(15 分 )3.(2017 浙江镇海中学模拟 (5 月 ),22) 已知在数列 {a } 中 ,a = ,a= -2a n +2,n ∈N , 其前 n 项和为 S .n1n+1*n(1) 求证 :1<a n+1 n<a <2;(2) 求证 : ≤ a n≤;(3) n求证 :n<S <n+2.证明(1) 先用数学概括法证明1<a n<2.①当 n=1 时,1<a 1= <2,②假定当n=k 时 ,1<a k<2.则当 n=k+1 时 ,a k+1= -2a k+2=(a k-1) 2+1, 又 a k∈ (1,2),所以a k+1∈ (1,2).由①②知1<a n<2,n ∈ N*恒建立 .a n+1-a n= -3a n+2=(a n-1)(a n-2)<0.所以 1<a n+1<a n<2 建立 .(2)a 1= = ,a 2= > , 当 n≥ 3 时 , <1, 又 1<a n<2, 所以 a n≥. 由 a n+1= -2a n+2 得 2-a n+1=2a n- ,即= < ,所以-1< ,所以-1< = ,所以 a < *(n ≥ 2,n ∈ N ),n1 = n≤*当 n=1 时 ,a , 所以 a (n ∈ N ).所以≤ a n≤.(3) 由 1<a n<2 得 S n>n.由 a n≤=1+ <1+ ,得S n< + + + =n+ =n+2 <n+2, 故n<S n<n+2.4.(2017 浙江温州三模(4 月 ),20) 设函数f(x)=4x 3+ ,x ∈ [0,1], 证明 : (1)f(x) ≥ 1-2x+3x 2;(2) <f(x) ≤.证明(1) 令函数 g(x)=(1+x) 2 (1-2x+3x2-4x 3),x∈ [0,1],(23则 g'(x)=-20(1+x)x≤0(等号建立当且仅当x=0),(4分)分 )故 g(x) 在 [0,1] 上单一递减 , 于是 g(x) ≤g(0)=1,即当 x∈ [0,1]时,(1+x)2(1-2x+3x2-4x3)≤ 1,2亦即 f(x) ≥ 1-2x+3x ;(6分)(2) 一方面 , 由 (1) 知 , 当 x∈ [0,1]时,f(x)≥ 1-2x+3x2=3+ ≥ , 但上述两处的等号不可以同时建立,故 f(x)> .(10 分 )另一方面 ,f'(x)=12x 2- = ,(12 分 )明显函数 h(x)=6x 2(1+x) 3-1 在 [0,1] 上单一递加 , 而 h(0)=-1<0,h(1)=47>0, 故 h(x) 在 (0,1) 内存在独一的零0点 x ,即 f'(x0)=0,且当x∈(0,x0)时,f'(x)<0;当x∈ (x0,1)时,f'(x)>0,故 f(x) 在 (0,x 0) 内单一递减 , 在 (x 0,1) 内单一递加 ,(14 分 )所以在 [0,1]上,f(x)≤ max{f(0),f(1)}=max=.综上 , <f(x)≤.(15分)5.(2017 浙江台州期末质量评估,22) 已知数列 {a } 知足 :a = ,a = *+a (n ∈ N ).n 1 n+1 n(1)求证 :a n+1>a n;(2)求证 :a 2017<1;(3)若 a n>1, 求正整数 n 的最小值 .分析(1) 证明:由a n+1-a n= ≥0, 得a n+1≥ a n.因为a1= , 所以a n≥, 所以a n+1-a n= >0,所以a n+1>a n.(2) 证明 : 由已知得= = - ,所以= - .则= - ,= -,*=- (n ≥ 2,n ∈N),累加可得- =++ +(n ≥ 2,n ∈ N* ).由 (1) 得 =a1<a2<a3< <a2016 ,所以- = + + + <2016×=1.所以 a2017<1.(3) 由 (2) 得 =a1<a2<a3< <a2017<1,所以- = + + + >2017×=1.所以 a 2017 2018 n+1 n<1<a , 又因为 a >a ,所以 n 的最小值为2018.C 组2016— 2018 年模拟·方法题组方法 1反证法的解题策略1. 等差数列 {a n} 的前 n 项和为 S n,a 1=1+ ,S 3=9+3.(1)求数列 {a n} 的通项 a n与前 n 项和 S n;(2) 设 b n= (n ∈ N* ), 求证 : 数列 {b n} 中随意不一样的三项都不行能成为等比数列.分析(1) 因为∴ d=2,故 a n=2n-1+,S n=n(n+).(2) 证明 : 由(1) 得 b n= =n+.假定数列 {b n} 中存在三项b p、 b q、b r (p 、 q、 r 互不相等 ) 成等比数列 , 则=b p b r , 即 (q+ ) 2=(p+ )(r+), ∴ (q 2-pr)+(2q-p-r)=0.∵p、 q、 r ∈ N* , ∴∴=pr, 即 (p-r)2=0,∴p=r,与p≠r矛盾.∴数列 {b n} 中随意不一样的三项都不行能成为等比数列.方法 2数学概括法的解题策略2. 设数列 {a n} 的前 n 项和为 S n, 且方程 x2-a n x-a n=0 有一根为S n-1,n ∈ N* .(1)求 a1,a 2;(2)求数列 {a n} 的通项 .分析 (1) 当 n=1 时 ,x 2-a 1x-a 1=0 有一根为 S1 -1=a 1-1,于是 (a -1) 2 =0, 解得 a = .-a (a -1)-a1 1 1 1 1当 n=2 时 ,x 2-a 2x-a 2=0 有一根为 S2-1=a 2- ,于是-a 2-a 2=0, 解得 a2= .(2) 由题意得 (S n-1) 2-a n(S n-1)-a n=0,即 -2S n+1-a n S n=0.当 n≥ 2 时 ,a n=S n-S n-1 , 代入上式得S n-1 S n-2S n+1=0, ①由 (1) 知 S1=a1= ,S 2=a1+a2= + = .由①可得S3= . 由此猜想S n=,n=1,2,3,.下边用数学概括法证明这个结论.(i)当 n=1 时结论建立 .(ii) 假定 n=k(k ≥ 1) 时结论建立 , 即 S k=,当 n=k+1 时, 由①得 S k+1 =, 即 S k+1=,故 n=k+1 时结论也建立 .由 (i)(ii) 可知 S n= 对全部正整数n 都建立 .于是当 n≥2 时 ,a n=S n-S n-1 =- = ,又 n=1 时 ,a = = 知足上式 , 所以 {a } 的通项公式为 a = ,n=1,2,3,.1 n n。

【高三理数一轮】11.4 直接证明与间接证明

【高三理数一轮】11.4 直接证明与间接证明

11.4 直接证明与间接证明[知识梳理]1.直接证明2.间接证明间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.[诊断自测]1.概念思辨(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(2)证明不等式2+7<3+6最适合的方法是分析法.( )(3)反证法是指将结论和条件同时否定,推出矛盾.( )(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )答案(1)×(2)√(3)×(4)√2.教材衍化(1)(选修A2-2P90例5)用反证法证明某命题时,对结论“自然数a,b,c中恰有一个是偶数”正确的反设为( )A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数答案 B解析a,b,c中恰有一个偶数说明有且仅有一个是偶数,其否定有a,b,c 均为奇数或a,b,c中至少有两个偶数.故选B.(2)(选修A2-2P89T2)设a>b>0,m=a-b,n=a-b,则m,n的大小关系是________.答案m<n解析解法一:(取特殊值法)取a=2,b=1,得m<n.解法二:(作差法)由已知得m>0,n>0,则m2-n2=a+b-2ab-a+b=2b-2ab=2b2-2ab<0,∴m2<n2,∴m<n.3.小题热身(1)若a>0,b>0,且a+b=4,则下列不等式中恒成立的是( )A.1ab>12B.1a+1b≤1C.ab≥2D.1a2+b2≤18答案 D解析∵a2+b2≥2ab,∴2(a2+b2)≥(a+b)2=16.∴a2+b2≥8,∴1a2+b2≤18.故选D.(2)设a,b是两个实数,给出下列条件:①a+b>2;②a2+b2>2.其中能推出:“a,b中至少有一个大于1”的条件是________.(填序号)答案①解析取a=-2,b=-1,则a2+b2>2,从而②推不出.①能够推出,即若a+b>2,则a,b中至少有一个大于1.旗开得胜用反证法证明如下:假设a ≤1,且b ≤1,则a +b ≤2与a +b >2矛盾. 因此假设不成立,所以a ,b 中至少有一个大于1.题型1 分析法的应用 典例 已知a >0,证明:a 2+1a2-2≥a +1a-2.本题证明时需要用分析法,在推导过程中用到平方法.证明 要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2≥⎝ ⎛⎭⎪⎫a +1a -(2-2).因为a >0,所以⎝ ⎛⎭⎪⎫a +1a -(2-2)>0,所以只需证⎝⎛⎭⎪⎫a 2+1a 22≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a -(2-2)2, 即2(2-2)⎝ ⎛⎭⎪⎫a +1a ≥8-42,。

2019版高考数学一轮复习 第十章 算法、复数、推理与证明 第三节 直接证明与间接证明实用

2019版高考数学一轮复习 第十章 算法、复数、推理与证明 第三节 直接证明与间接证明实用

(2)证明:由(1)可知 Sn=n2, 要证原不等式成立,只需证n-1 12+n+1 12>n22, 只需证[(n+1)2+(n-1)2]n2>2(n2-1)2. 只需证(n2+1)n2>(n2-1)2. 只需证 3n2>1. 而 3n2>1 在 n≥1 时恒成立, 从而不等式Sn1-1+Sn1+1>S2n(n≥2,n∈N*)恒成立.
[证明] 要证 a2+a12- 2≥a+1a-2,
只需证
a2+a12≥a+1a-(2- 2).
因为 a>0,所以a+1a-(2- 2)>0,
所以只需证
a2+a122≥a+1a-2-

22,

即 2(2- 2)a+1a≥8-4 2,只需证 a+1a≥2.
(2)已知条件明确,并且容易通过分析和应用条件逐步逼 近结论的题型.
[例 1] (2018·武汉模拟)已知函数 f(x)=(λx+1)ln x-x+1. (1)若 λ=0,求 f(x)的最大值; (2)若曲线 y=f(x)在点(1,f(1))处的切线与直线 x+y+1=0 垂直,证明:xf-x1>0. [解] (1)f(x)的定义域为(0,+∞). 当 λ=0 时,f(x)=ln x-x+1. 则 f′(x)=1x-1,令 f′(x)=0,解得 x=1. 当 0<x<1 时,f′(x)>0,故 f(x)在(0,1)上是增函数; 当 x>1 时,f′(x)<0,故 f(x)在(1,+∞)上是减函数. 故 f(x)在 x=1 处取得最大值 f(1)=0.
些 数 学 定 义 、 公 理 、寻求使它成立的充分条件,
定理等,经过一系 直至最后,把要证明的结论
列的推理论证,最 归结为判定一个明显成立的
后 推 导 出 所 要 证 明 条件(已知条件、定理、定义、

数学证明的常见题型与应用

数学证明的常见题型与应用

数学证明的常见题型与应用数学证明作为数学学科的核心内容之一,在学习数学时经常会碰到。

数学证明旨在通过逻辑推理和严密论证,将一个数学命题或结论从已知条件推导出来,使之成为数学中不可否认的真理。

本文将介绍数学证明的常见题型以及在实际应用中的意义和用途。

一、直接证明法1. 定理:如果一个多边形的内角和为180度,则该多边形是凸多边形。

证明:设多边形的边数为n,根据几何图形的性质可知,n个顶点的内角和为 (n-2) × 180 度。

因此,当 n>2 时,该多边形的内角和一定大于180度,故该多边形是凸多边形。

证毕。

二、间接证明法1. 定理:根号2是无理数。

证明:假设根号2是有理数,即可以表示为 p/q (p、q为正整数,且p/q为最简分数)。

则有 (p/q)^2 = 2,即 p^2/q^2 = 2。

将该等式两边平方可得 p^2 = 2q^2。

由此可知,p^2是偶数,那么p也必然是偶数(偶数的平方仍为偶数)。

设 p = 2k,则可得到 (2k)^2 = 2q^2,化简得2k^2 = q^2。

从而可知,q^2 是偶数,那么 q 也必然是偶数。

这与我们一开始的假设矛盾,因为在假设中,我们假设 p/q 是最简分数。

所以根号2必定是无理数。

证毕。

三、数学归纳法1. 定理:1 + 2 + 3 + ... + n = n(n+1)/2,对于所有正整数 n 成立。

证明:首先,当 n = 1 时,左边等式为 1,右边等式为 1 × (1+1) / 2= 1。

显然相等,此时等式成立。

假设当 n = k 时,等式成立,即 1 + 2 + 3 + ... + k = k(k+1)/2。

则考虑 n = k+1 的情况,有 1 + 2 + 3 + ... + k + (k+1) = (k(k+1)/2) +(k+1) = (k+1)(k+2)/2。

根据归纳法原理,等式对于所有正整数 n 成立。

证毕。

四、反证法1. 定理:根号2是无理数。

数学中的证明方法和技巧

数学中的证明方法和技巧

数学中的证明方法和技巧数学作为一门严谨的学科,证明是其核心和灵魂。

无论是基础数学还是高等数学,在数学的世界里,证明是推动数学发展和解决问题的关键方法。

本文将探讨数学中常见的证明方法和一些应用技巧,帮助读者更好地理解和运用数学证明。

一、直接证明法直接证明法是最常见也是最直观的证明方法之一。

它通过一系列逻辑推理来证明一个数学命题。

步骤如下:1. 假设给定的前提条件(假设x是奇数);2. 推导出结论(推导出x的平方也是奇数);3. 根据推导过程中的逻辑关系,展示每一步的合理性(通过元素的特性,奇数的平方仍然是奇数);4. 结合前提条件和推导过程,得出结论(根据步骤2和步骤3可得出结论)。

二、间接证明法(反证法)间接证明法,也称为反证法,通过假设反命题,证明其导致矛盾,从而得出所要证明的正命题成立。

步骤如下:1. 假设所要证明的命题的反命题为真;2. 对反命题进行逻辑推理,得出矛盾的结论;3. 根据矛盾结论,推出原命题为真;4. 得出结论,所要证明的命题成立。

三、归纳法归纳法是数学证明中常用的一种方法,尤其适合用于证明某个命题在所有自然数上成立。

步骤如下:1. 基础步骤:证明当n为某个特定数时,命题成立(如n=1时);2. 归纳假设:假设当n=k时命题成立;3. 归纳步骤:证明当n=k+1时命题也成立;4. 根据归纳步骤,推出结论:由步骤2和步骤3可得出结论,命题对所有自然数成立。

四、递推法递推法是一种通过建立递推关系,不断由已知结果推出未知结果的方法。

递推法通常用于数列和递归问题的证明。

步骤如下:1. 确定初始条件:给出初始条件,如数列的前几项已知;2. 建立递推关系:找出数列中相邻项之间的关系,建立递推公式;3. 假设命题成立:假设当前项满足递推公式时,后一项也满足;4. 基于递推关系推出结论:根据递推公式,由当前项推导出后一项;5. 通过数学归纳法证明:使用数学归纳法证明递推公式成立;6. 得出结论,命题成立。

高考数学总复习考点知识专题讲解34---直接证明与间接证明

高考数学总复习考点知识专题讲解34---直接证明与间接证明

以上三式相加得 43a1+1+3b1+1+3c+1 1≥9-3(a+b+c)=6, ∴3a1+1+3b1+1+3c+1 1≥32, 当且仅当a=b=c=13时取“=”.
角度2:分析法 【例1-2】 (1)已知a≥b>0,求证:2a3-b3≥2ab2- a2b. (2)已知a>0,求证: a2+a12- 2≥a+12-2.
[证明] (1)要证明2a3-b3≥2ab2-a2b,
只需证2a3-b3-2ab2+a2b≥0, 即证2a(a2-b2)+b(a2-b2)≥0, 即证(a+b)(a-b)(2a+b)≥0. ∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0, 从而(a+b)(a-b)(2a+b)≥0成立, ∴2a3-b3≥2ab2-a2b.
[证明] ①当n=1时,左边=12-22=-3,右边=- 3,等式成立.
②假设n=k(k≥1,k∈N*)时,等式成立,即12-22+32 -42+…+(2k-1)2-(2k)2=-k(2k+1).
当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+ (2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=- k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],
1.分析法与综合法的应用特点 对较复杂的问题,常常先从结论进行分析,寻求结论 与条件的关系,找到解题思路,再运用综合法证明;或两 种方法交叉使用. 2.反证法证明的应用特点 要假设结论错误,并用假设的命题进行推理,如果没 有用假设命题推理而推出矛盾结果,其推理过程是错误 的.
3.数学归纳法的应用特点 归纳假设就是已知条件,在推证n=k+1时,可以通过 凑、拆、配项等方法,但必须用上归纳假设.

2019高中数学总复习课件:直接证明与间接证明 共41页

2019高中数学总复习课件:直接证明与间接证明 共41页
3
因为a、b∈R,所以a2+b2≥2ab;
c、b∈R,所以c2+b2≥2cb;
a、c∈R,所以a2+c2≥2ac;
将以上三个不等式相加得
2(a2+b2+c2)≥2(ab+bc+ca),

即a2+b2+c2≥ab+bc+ca.

在①的两边同时加上a2+b2+c2,
得3(a2+b2+c2)≥(a+b+c)2,
24
③恒成立.
易错点:因忽视均值不等式成立的前 提条件而产生错误.
2.设a>0,b>0,则下列不等式中不一定成 立的是( D )
a
A. b

b a
≥2
B.ln(ab+1)≥0
C.a2+b2+2≥2a+2b
D.a3+b3≥2ab2
选项A由基本不等式易知正确;选 项B由对数函数性质易知正确;
选项C由基本不等式得: a2+1+b2+1≥2a+2b,命题成立.选项D通过排除 易知命题错误.
即证明 1 2(ta n x 1ta n x 2)ta nx 1 2x 2,
只需证明 1(sinx1sinx2)tanx1x2,
2cosx1 cosx2
2
只需证明
sin(x1x2)sin(x1x2) , 2cosx1cosx2 1cos(x1x2)
由于x1,x2∈(0,
π 2
a b,
b
c
由比例性质有:
a
a
b

b
b

高中数学中的数学证明方法详细总结与演绎

高中数学中的数学证明方法详细总结与演绎

高中数学中的数学证明方法详细总结与演绎数学作为一门精密的科学,其证明方法的运用和掌握是学习数学的核心能力之一。

在高中数学中,学生们常常需要运用不同的证明方法来解决问题,这不仅帮助他们深入理解数学概念和定理,还培养了他们的逻辑思维和推理能力。

本文将详细总结和演绎高中数学中常见的数学证明方法,帮助读者更好地掌握这些方法并应用于数学问题的解决。

一、直接证明法直接证明法是最常见的证明方法之一,它通过逻辑推理直接证明一个命题。

该方法通常分为两步:首先是列出前提条件,然后根据这些前提条件推导出结论。

例如,要证明直角三角形中斜边的平方等于两直角边的平方和,可以假设直角三角形的两个直角边分别为a和b,斜边为c,在此基础上利用勾股定理进行推导,最终得出c²=a²+b²,从而证明了所要证明的结论。

二、间接证明法间接证明法是通过假设命题不成立,推导出矛盾的结果来证明一个命题。

该方法通常有两个步骤:第一步是假设所要证明的结论不成立,第二步则是根据这个假设推导出一个矛盾的结果。

例如,要证明无理数根号2是一个无理数,可以采用间接证明法。

假设根号2是一个有理数,即可以表示为两个整数的比值。

然后利用有理数的定义进行推导,将根号2表示为两个整数的比值,并得出一个矛盾的结果,即根号2不是一个有理数,从而间接证明了根号2是一个无理数。

三、归纳法归纳法通常用于证明关于正整数的命题,在高中数学中应用较为广泛。

归纳法分为两个步骤:首先证明当n=1时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题仍然成立。

例如,要证明等差数列的通项公式,可以使用归纳法。

首先证明当n=1时等差数列的通项公式成立,即a₁=a₁。

然后假设当n=k时等差数列的通项公式成立,即aₖ=a₁+(k-1)d。

再证明当n=k+1时等差数列的通项公式仍然成立,即aₖ₊₁=a₁+kd。

通过归纳法就可以证明等差数列的通项公式对于任意正整数n都成立。

数学:直接证法与间接证法-反证法

数学:直接证法与间接证法-反证法
简单。
应用场景
存在性问题
当需要证明某事物存在时,反证法可以通过假设该事物不存在, 然后推导出矛盾,从而证明该事物的存在。
唯一性问题
当需要证明某事物是唯一的时,反证法可以通过假设存在多个该事 物,然后推导出矛盾,从而证明该事物的唯一性。
不等式问题
对于一些难以直接证明的不等式问题,反证法可以通过假设不等式 不成立,然后推导出矛盾,从而证明不等式的正确性。
特点
直接证法是一种直接的、逻辑严 密的证明方法,它通过直接的推 理过程,逐步推导出结论,不需 要引入其他假设或反证。
直接证法的应用
代数证明
在代数中,很多定理和性质都是 通过直接证法来证明的,例如整 数的四则运算法则、不等式的性
质等。
几何证明
在几何中,很多定理和性质也是通 过直接证法来证明的,例如勾股定 理、平行线的性质等。
数学证明的多样性与创新性
数学证明的方法多种多样,不仅限于直接证法和间接证法。随着数学理论的发展,新的证 明方法和技巧不断涌现。未来研究可以探索更多具有创新性的证明方法,以解决更多复杂 的数学问题。
对未来研究的展望
01 02
深入研究不同证明方法的内在联系
为了更好地理解和应用各种证明方法,未来的研究可以深入探讨它们之 间的内在联系和相互影响。这有助于发现新的证明技巧和方法,提高数 学证明的效率和准确性。
探索反证法的哲学基础
反证法作为一种重要的间接证明方法,其哲学基础值得深入探讨。研究 反证法的逻辑结构和适用范围,有助于更好地理解其应用范围和局限性。
03
促进数学与其他学科的交叉研究
数学证明的方法不仅限于数学领域,也可以应用于其他学科。未来的研
究可以促进数学与其他学科的交叉研究,探索ห้องสมุดไป่ตู้明方法在不同领域的应

《直接证明与间接证明》教案正式版

《直接证明与间接证明》教案正式版

《直接证明与间接证明》教案教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程:一、复习准备:1. 已知 “若12,a a R +∈,且121a a +=,则12114a a +≥”,试请此结论推广猜想. (答案:若12,.......n a a a R +∈,且12....1n a a a +++=,则12111....n a a a +++≥ 2n ) 2. 已知,,a b c R +∈,1a b c ++=,求证:1119a b c++≥. 先完成证明 → 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题:① 出示例1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) >6abc .分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理) → 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果.③ 练习:已知a ,b ,c 是全不相等的正实数,求证3b c a a c b a b c a b c+-+-+-++>. ④ 出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形. 分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系?→ 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习:① ,A B 为锐角,且tan tan 3tan 3A B A B ++=,求证:60A B +=o . (提示:算tan()A B +)② 已知,a b c >> 求证:114.a b b c a c+≥--- 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P 52 练习 1题)(两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)2. ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c+=++++.3. 作业:教材P 54 A 组 1题.第二课时 2.2.1 综合法和分析法(二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 提问:基本不等式的形式?2. 讨论:如何证明基本不等式(0,0)2a b ab a b +≥>>. (讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)二、讲授新课:1. 教学例题:① 出示例1:求证3526+>+.讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件?→ 板演证明过程 (注意格式)→ 再讨论:能用综合法证明吗? → 比较:两种证法② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示:要点:逆推证法;执果索因. ③ 练习:设x > 0,y > 0,证明不等式:11223332()()x y x y +>+.先讨论方法 → 分别运用分析法、综合法证明.④ 出示例4:见教材P 48. 讨论:如何寻找证明思路?(从结论出发,逐步反推)⑤ 出示例5:见教材P 49. 讨论:如何寻找证明思路?(从结论与已知出发,逐步探求)2. 练习:证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.提示:设截面周长为l ,则周长为l 的圆的半径为2l π,截面积为2()2l ππ,周长为l 的正方形边长为4l ,截面积为2()4l ,问题只需证:2()2l ππ> 2()4l . 3. 小结:分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ⋅⋅⋅,直到所有的已知P 都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. (框图示意)三、巩固练习:1. 设a , b , c 是的△ABC 三边,S 是三角形的面积,求证:222443c a b ab S --+≥.略证:正弦、余弦定理代入得:2cos 423sin ab C ab ab C -+≥,即证:2cos C C -≥cos 2C C +≤,即证:sin()16C π+≤(成立).2. 作业:教材P 52 练习 2、3题.第三课时 2.2.2 反证法教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)2. 提出问题: 平面几何中,我们知道这样一个命题:“过在同一直线上的三点A 、B 、C 不能作圆”. 讨论如何证明这个命题?3. 给出证法:先假设可以作一个⊙O 过A 、B 、C 三点,则O 在AB 的中垂线l 上,O 又在B C 的中垂线m 上, 即O 是l 与m 的交点。

高中数学——直接证明与间接证明共38页文档

高中数学——直接证明与间接证明共38页文档
55、 为 中 华 之 崛起而 读书。 ——周 恩来
高中数学——直接证明与间接证明
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ——乔 特

高三数学直接证明与间接证明共22页文档

高三数学直接证明与间接证明共22页文档

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
高三数学直接证明与间接证明
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

【助力高考】2019年高考数学专题复习第72讲《直接证明与间接证明》(含详细答案和教师用书)

【助力高考】2019年高考数学专题复习第72讲《直接证明与间接证明》(含详细答案和教师用书)

♦♦♦学生用书(后跟详细参考答案和教师用书)♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第十三章 推理与证明、算法、复数第72讲 直接证明与间接证明★★★核心知识回顾★★★知识点一、直接证明 (1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. ②框图表示:P ⇒Q 1―→Q 1⇒Q 2―→Q 2⇒Q 3―→…―→Q n ⇒Q(其中P 表示已知条件、已有的定义、公理、定理等,Q 表示所要证明的结论). ③思维过程:由因导果. (2)分析法①定义:一般地,从 出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q ⇐P 1―→P 1⇐P 2―→P 2⇐P 3―→…―→得到一个明显成立的条件 (其中Q 表示要证明的结论). ③思维过程:执果索因. 知识点二、间接证明反证法:一般地,假设原命题 (即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明 的证明方法.★★★高考典例剖析★★★考点一、综合法的应用 例1:(2018·武汉月考)若a ,b ,c 是不全相等的正数,求证: lga +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0.由于a ,b ,c 是不全相等的正数,∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a 2>abc >0成立.上式两边同时取常用对数,得 lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg abc ,∴lga +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .1.(2018·绥化模拟)设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( )A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于22.(2018·大庆质检)如果a a +b b >a b +b a 成立,则a ,b 应满足的条件是__________________________. 题型二 分析法的应用例2: (2018·长沙模拟)已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.3.已知函数f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 4.已知a >0,证明:a 2+1a 2- 2 ≥a +1a-2.题型三 反证法的应用 命题点1 证明否定性命题例3: (2018·株州月考)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n ,则 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n , ∴S n =a 1(1-q n )1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾. ∴假设不成立,故{a n +1}不是等比数列. 命题点2 证明存在性命题例4: 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1. (1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD , ∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD . 命题点3 证明唯一性命题例5: (2018·宜昌模拟)已知M 是由满足下列条件的函数构成的集合:对任意f (x )∈M ,①方程f (x )-x =0有实数根;②函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x 4是不是集合M 中的元素,并说明理由;(2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根.(1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根0; ②f ′(x )=12+cos x4,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素.(2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β), 满足f (β)-f (α)=(β-α)f ′(c ).因为f (α)=α,f (β)=β,且α≠β,所以f ′(c )=1. 与已知0<f ′(x )<1矛盾. 又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.5.若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.6.(2018·衡阳调研)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.★★★知能达标演练★★★一、选择题1.若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定2.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,则a x +cy 等于( )A .1B .2C .4D .63.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1bD.b a >a b4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要作的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根5.(2018·岳阳调研)已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( ) A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0D .(a -b )(a -c )<07.(2017·郑州模拟)设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则( )A .P >QB .P <QC .P ≤QD .P ≥Q8.①已知p 3+q 3=2,证明:p +q ≤2.用反证法证明时,可假设p +q ≥2;②若a ,b ∈R ,|a |+|b |<1,求证:方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( ) A .①与②的假设都错误 B .①的假设正确;②的假设错误 C .①与②的假设都正确D .①的假设错误;②的假设正确9.若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |10.(2018·济宁模拟)设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1. 其中能推出:“a ,b 中至少有一个大于1”的条件是( ) A .②③ B .①②③ C .③ D .③④⑤二、填空题11.(2017·德州一模)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是__________三角形.12.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________.13.(2018·邢台调研)6+7与22+5的大小关系为______________.14.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________________________________________________________________________. 15.(2017·武汉联考)已知直线l ⊥平面α,直线m ⊂平面β,有下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β. 其中正确命题的序号是________.16.(2018·长春模拟)若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.三、解答题17.(2017·黄冈模拟)设数列{a n }的前n 项和为S n ,且(3-m )S n +2ma n =m +3(n ∈N *).其中m 为常数,且m ≠-3且m ≠0. (1)求证:{a n }是等比数列;(2)若数列{a n }的公比q =f (m ),数列{b n }满足b 1=a 1,b n =32f (b n -1)(n ∈N *,n ≥2),求证:⎩⎨⎧⎭⎬⎫1b n 为等差数列.18.(2017·北京)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数. (1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c nn >M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.19.设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy .20.(2018·中山模拟)已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列.21.(2017·江苏)对于给定的正整数k ,若数列{a n }满足a n -k +a n -k +1+…+a n -1+a n +1+…+ a n +k -1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”. (1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.♦♦♦详细参考答案♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第十三章 推理与证明、算法、复数第72讲 直接证明与间接证明★★★核心知识回顾★★★知识点一、直接证明 (1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. ②框图表示:P ⇒Q 1―→Q 1⇒Q 2―→Q 2⇒Q 3―→…―→Q n ⇒Q(其中P 表示已知条件、已有的定义、公理、定理等,Q 表示所要证明的结论). ③思维过程:由因导果. (2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q ⇐P 1―→P 1⇐P 2―→P 2⇐P 3―→…―→得到一个明显成立的条件 (其中Q 表示要证明的结论). ③思维过程:执果索因. 知识点二、间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.★★★高考典例剖析★★★考点一、综合法的应用 ♦♦♦跟踪训练♦♦♦ 1.答案 D解析 ∵a >0,b >0,c >0, ∴⎝⎛⎭⎫a +1b +⎝⎛⎭⎫b +1c +⎝⎛⎭⎫c +1a =⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b +⎝⎛⎭⎫c +1c ≥6,当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 2.答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b . 题型二 分析法的应用 ♦♦♦跟踪训练♦♦♦3.证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22,即证明1212(32)(32)2x x x x -+-≥1223x x +-2·x 1+x 22,因此只要证明12332x x +-(x 1+x 2)≥1223x x+-(x 1+x 2),即证明12332x x +≥1223x x+,因此只要证明12332x x +由于当x 1,x 2∈R 时,13x>0,23x>0,由基本不等式知12332x x +x 1=x 2时,等号成立.故原结论成立. 4.证明 要证a 2+1a 2-2≥ a +1a-2,只需证a 2+1a2 ≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 2 2≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42, 只需证a +1a≥2.因为a >0,a +1a ≥2显然成立(当a =1a=1时等号成立),所以要证的不等式成立. 题型三 反证法的应用♦♦♦跟踪训练♦♦♦5.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ] 上的“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧ h (a )=b ,h (b )=a ,即⎩⎨⎧ 1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.6.解析 (1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1),所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分](2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分]设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1, 所以AC 与OB 不垂直.[10分]所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.[12分]★★★知能达标演练★★★一、选择题1.答案 A解析 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .2.答案 B解析 由题意,得x =a +b 2,y =b +c 2,b 2=ac , ∴xy =(a +b )(b +c )4, a x +c y =ay +cx xy =a ·b +c 2+c ·a +b 2xy=a (b +c )+c (a +b )2xy =ab +bc +2ac 2xy=ab +bc +ac +b 22xy =(a +b )(b +c )2xy=(a +b )(b +c )2×(a +b )(b +c )4=2. 3.答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,②由①②得a 2>ab >b 2.4.答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故选A.5.答案 A解析 因为a +b 2≥ab ≥2ab a +b,又f (x )=⎝⎛⎭⎫12x 在R 上是单调减函数,故f ⎝⎛⎭⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎫2ab a +b . 6.答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐(a +c )2-ac <3a 2⇐a 2+2ac +c 2-ac -3a 2<0⇐-2a 2+ac +c 2<0⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.7.答案 A解析 因为2x +2-x ≥22x ·2-x =2(当且仅当x =0时等号成立),而x >0,所以P >2;又(sin x +cos x )2=1+sin 2x ,而sin 2x ≤1,所以Q ≤2.于是P >Q .故选A.8.答案 D解析 对于①,结论的否定是p +q >2,故①中的假设错误;对于②,其假设正确,故选D.9.答案 D解析 ∵1a <1b<0,∴0>a >b . ∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.10.答案 C解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.二、填空题11.答案 钝角解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1.sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾. 所以假设不成立.假设△A 2B 2C 2是直角三角形,不妨设A 2=π2,则cos A 1=sin A 2=1,A 1=0,矛盾.所以△A 2B 2C 2是钝角三角形.12.答案 a ,b 都不能被5整除13.答案 6+7>22+ 5解析 要比较6+7与22+5的大小,只需比较(6+7)2与(22+5)2的大小,只需比较6+7+242与8+5+410的大小, 只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5.14.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n, 则c n 随n 的增大而减小,∴c n +1<c n .15.答案 ①③解析 ① ⎭⎪⎬⎪⎫l ⊥αα∥β⇒l ⊥β, 又∵m ⊂β,∴l ⊥m ,①正确;②⎭⎪⎬⎪⎫l ⊥αα⊥β⇒l ∥β或l ⊂β,∴l ,m 平行、相交、异面都有可能,故②错误;③ ⎭⎪⎬⎪⎫l ∥m l ⊥α⇒m ⊥α, 又m ⊂β,∴β⊥α,故③正确;④ ⎭⎪⎬⎪⎫l ⊥αl ⊥m ⇒m ⊂α或m ∥α. 又m ⊂β,∴α,β可能相交或平行,故④错误.16.答案 ⎝⎛⎭⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足题干要求的p 的取值范围为⎝⎛⎭⎫-3,32. 三、解答题17.证明 (1)由(3-m )S n +2ma n =m +3,得(3-m )S n +1+2ma n +1=m +3.两式相减,得(3+m )a n +1=2ma n ,m ≠-3且m ≠0,∴a n +1a n =2m m +3,∴{a n }是等比数列. (2)∵(3-m )S n +2ma n =m +3,∴(3-m )a 1+2ma 1=m +3,∴a 1=1.b 1=a 1=1,q =f (m )=2m m +3, ∴当n ∈N *且n ≥2时,b n =32f (b n -1)=32·2b n -1b n -1+3, 得b n b n -1+3b n =3b n -1,即1b n -1b n -1=13. ∴⎩⎨⎧⎭⎬⎫1b n 是首项为1,公差为13的等差数列. 18.(1)解 c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2.当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0,所以b k -na k 在k ∈N *上单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n .所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1,所以{c n }是等差数列.(2)证明 设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n=b 1-a 1n +(d 2-nd 1)(k -1).所以c n =⎩⎪⎨⎪⎧b 1-a 1n +(n -1)(d 2-nd 1),d 2>nd 1,b 1-a 1n ,d 2≤nd 1. ①当d 1>0时,取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2, 因此,c n =b 1-a 1n ,此时,c m ,c m +1,c m +2,…是等差数列.②当d 1=0时,对任意n ≥1,c n =b 1-a 1n +(n -1)max{d 2,0}=b 1-a 1+(n -1)(max{d 2,0}-a 1).此时,c 1,c 2,c 3,…,c n ,…是等差数列.③当d 1<0时,当n >d 2d 1时,有nd 1<d 2, 所以c n n =b 1-a 1n +(n -1)(d 2-nd 1)n=n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|.对任意正数M ,取正整数m >max ⎩⎨⎧⎭⎬⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1, 故当n ≥m 时,c n n>M . 19.证明 由于x ≥1,y ≥1,所以要证明x +y +1xy ≤1x +1y+xy ,只需证xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立.20.(1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1.又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n , 所以{a n }是首项为1,公比为12的等比数列, 所以a n =12n -1. (2)证明 假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r , 所以2·2r -q =2r -p +1.(*) 又因为p <q <r ,所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立,矛盾.所以假设不成立,原命题得证.21.证明 (1)因为{a n }是等差数列,设其公差为d ,则a n =a 1+(n -1)d ,从而,当n ≥4时,a n -k +a n +k =a 1+(n -k -1)d +a 1+(n +k -1)d=2a 1+2(n -1)d =2a n ,k =1,2,3,所以a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n ,因此等差数列{a n }是“P (3)数列”.(2)数列{a n }既是“P (2)数列”,又是“P (3)数列”,因此,当n ≥3时,a n -2+a n -1+a n +1+a n +2=4a n ,①当n ≥4时,a n -3+a n -2+a n -1+a n +1+a n +2+a n +3=6a n .②由①知,a n -3+a n -2=4a n -1-(a n +a n +1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′. 在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.♦♦♦教师用书♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造高考高分!【助力高考】2019年高考备战数学专题复习精品资料第十三章 推理与证明、算法、复数 第72讲 直接证明与间接证明★★★核心知识回顾★★★知识点一、直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P ⇒Q 1―→Q 1⇒Q 2―→Q 2⇒Q 3―→…―→Q n ⇒Q(其中P 表示已知条件、已有的定义、公理、定理等,Q 表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q ⇐P 1―→P 1⇐P 2―→P 2⇐P 3―→…―→得到一个明显成立的条件 (其中Q 表示要证明的结论).③思维过程:执果索因.知识点二、间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.★★★高考典例剖析★★★考点一、综合法的应用例1:(2018·武汉月考)若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数,∴上述三个不等式中等号不能同时成立,∴a +b 2·b +c 2·c +a 2>abc >0成立. 上式两边同时取常用对数,得lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg abc ,∴lga +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .1.(2018·绥化模拟)设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a( ) A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2 答案 D解析 ∵a >0,b >0,c >0,∴⎝⎛⎭⎫a +1b +⎝⎛⎭⎫b +1c +⎝⎛⎭⎫c +1a =⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b +⎝⎛⎭⎫c +1c ≥6, 当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.2.(2018·大庆质检)如果a a +b b >a b +b a 成立,则a ,b 应满足的条件是__________________________.答案 a ≥0,b ≥0且a ≠b解析 ∵a a +b b -(a b +b a )=a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .题型二 分析法的应用例2: (2018·长沙模拟)已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证明12(tan x 1+tan x 2)>tan x 1+x 22, 只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2). 由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2,即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.3.已知函数f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝⎛⎭⎫x 1+x 22.证明 要证明f (x 1)+f (x 2)2≥f ⎝⎛⎭⎫x 1+x 22,即证明1212(32)(32)2x x x x -+-≥1223x x +-2·x 1+x 22,因此只要证明12332x x +-(x 1+x 2)≥1223x x +-(x 1+x 2), 即证明12332x x +≥1223x x +,因此只要证明12332x x + 由于当x 1,x 2∈R 时,13x >0,23x>0,由基本不等式知12332x x +x 1=x 2时,等号成立.故原结论成立.4.已知a >0,证明:a 2+1a 2- 2 ≥a +1a -2. 证明 要证a 2+1a 2-2≥ a +1a -2, 只需证a 2+1a2 ≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 2 2≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42, 只需证a +1a≥2. 因为a >0,a +1a ≥2显然成立(当a =1a=1时等号成立),所以要证的不等式成立. 题型三 反证法的应用命题点1 证明否定性命题例3: (2018·株州月考)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列.(1)解 设{a n }的前n 项和为S n ,则当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n )1-q, ∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1. (2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *,(a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.命题点2 证明存在性命题例4: 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .命题点3 证明唯一性命题例5: (2018·宜昌模拟)已知M 是由满足下列条件的函数构成的集合:对任意f (x )∈M ,①方程f (x )-x =0有实数根;②函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x 4是不是集合M 中的元素,并说明理由; (2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根.(1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根0;②f ′(x )=12+cos x 4,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素. (2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β),满足f (β)-f (α)=(β-α)f ′(c ).因为f (α)=α,f (β)=β,且α≠β,所以f ′(c )=1.与已知0<f ′(x )<1矛盾.又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.5.若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ] 上的“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧ h (a )=b ,h (b )=a ,即⎩⎨⎧ 1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.6.(2018·衡阳调研)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.解析 (1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1),所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分](2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分]设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m 1+4k 2.所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k, 因为k ·⎝⎛⎭⎫-14k =-14≠-1, 所以AC 与OB 不垂直.[10分]所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.[12分]★★★知能达标演练★★★一、选择题1.若P =a +6+a +7,Q =a +8+a +5(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定答案 A解析 P 2=2a +13+2a 2+13a +42,Q 2=2a +13+2a 2+13a +40,∴P 2>Q 2,又∵P >0,Q >0,∴P >Q .2.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,则a x +c y等于( )A .1B .2C .4D .6答案 B解析 由题意,得x =a +b 2,y =b +c 2,b 2=ac , ∴xy =(a +b )(b +c )4,a x +c y =ay +cx xy =a ·b +c 2+c ·a +b 2xy=a (b +c )+c (a +b )2xy =ab +bc +2ac 2xy=ab +bc +ac +b 22xy =(a +b )(b +c )2xy=(a +b )(b +c )2×(a +b )(b +c )4=2. 3.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( )A .ac 2<bc 2B .a 2>ab >b 2 C.1a <1bD.b a >a b答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,②由①②得a 2>ab >b 2.4.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要作的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故选A.5.(2018·岳阳调研)已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A 答案 A解析 因为a +b 2≥ab ≥2ab a +b, 又f (x )=⎝⎛⎭⎫12x 在R 上是单调减函数,故f ⎝⎛⎭⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎫2ab a +b . 6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐(a +c )2-ac <3a 2⇐a 2+2ac +c 2-ac -3a 2<0⇐-2a 2+ac +c 2<0⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.7.(2017·郑州模拟)设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则( ) A .P >QB .P <QC .P ≤QD .P ≥Q答案 A 解析 因为2x +2-x ≥22x ·2-x =2(当且仅当x =0时等号成立),而x >0,所以P >2;又(sin x +cos x )2=1+sin 2x ,而sin 2x ≤1,所以Q ≤2.于是P >Q .故选A.8.①已知p 3+q 3=2,证明:p +q ≤2.用反证法证明时,可假设p +q ≥2;②若a ,b ∈R ,|a |+|b |<1,求证:方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①的假设正确;②的假设错误C .①与②的假设都正确D .①的假设错误;②的假设正确答案 D解析 对于①,结论的否定是p +q >2,故①中的假设错误;对于②,其假设正确,故选D.9.若1a <1b<0,则下列结论不正确的是( ) A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |答案 D解析 ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.10.(2018·济宁模拟)设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤答案 C解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,下面用反证法证明:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.二、填空题11.(2017·德州一模)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 2B 2C 2是__________三角形.答案 钝角解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形. 由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1.sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾. 所以假设不成立.假设△A 2B 2C 2是直角三角形,不妨设A 2=π2,则cos A 1=sin A 2=1,A 1=0,矛盾.所以△A 2B 2C 2是钝角三角形.12.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是__________________.答案 a ,b 都不能被5整除13.(2018·邢台调研)6+7与22+5的大小关系为______________.答案 6+7>22+ 5解析 要比较6+7与22+5的大小,只需比较(6+7)2与(22+5)2的大小,只需比较6+7+242与8+5+410的大小, 只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+ 5.14.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________________________________________________________________________. 答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n , 则c n 随n 的增大而减小,∴c n +1<c n .15.(2017·武汉联考)已知直线l ⊥平面α,直线m ⊂平面β,有下列命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β.其中正确命题的序号是________.答案 ①③解析 ① ⎭⎪⎬⎪⎫l ⊥αα∥β⇒l ⊥β, 又∵m ⊂β,∴l ⊥m ,①正确;② ⎭⎪⎬⎪⎫l ⊥αα⊥β⇒l ∥β或l ⊂β, ∴l ,m 平行、相交、异面都有可能,故②错误;③ ⎭⎪⎬⎪⎫l ∥m l ⊥α⇒m ⊥α, 又m ⊂β,∴β⊥α,故③正确;④ ⎭⎪⎬⎪⎫l ⊥αl ⊥m ⇒m ⊂α或m ∥α. 又m ⊂β,∴α,β可能相交或平行,故④错误.16.(2018·长春模拟)若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足题干要求的p 的取值范围为⎝⎛⎭⎫-3,32. 三、解答题17.(2017·黄冈模拟)设数列{a n }的前n 项和为S n ,且(3-m )S n +2ma n =m +3(n ∈N *).其中m 为常数,且m ≠-3且m ≠0.(1)求证:{a n }是等比数列;(2)若数列{a n }的公比q =f (m ),数列{b n }满足b 1=a 1,b n =32f (b n -1)(n ∈N *,n ≥2),求证:⎩⎨⎧⎭⎬⎫1b n 为等差数列.证明 (1)由(3-m )S n +2ma n =m +3,得(3-m )S n +1+2ma n +1=m +3.两式相减,得(3+m )a n +1=2ma n ,m ≠-3且m ≠0,∴a n +1a n =2m m +3,∴{a n }是等比数列. (2)∵(3-m )S n +2ma n =m +3,∴(3-m )a 1+2ma 1=m +3,∴a 1=1.b 1=a 1=1,q =f (m )=2m m +3, ∴当n ∈N *且n ≥2时,b n =32f (b n -1)=32·2b n -1b n -1+3,得b n b n -1+3b n =3b n -1,即1b n -1b n -1=13. ∴⎩⎨⎧⎭⎬⎫1b n 是首项为1,公差为13的等差数列. 18.(2017·北京)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c n n>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.(1)解 c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2.当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0,所以b k -na k 在k ∈N *上单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n .所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1,所以{c n }是等差数列.(2)证明 设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n=b 1-a 1n +(d 2-nd 1)(k -1).所以c n =⎩⎪⎨⎪⎧b 1-a 1n +(n -1)(d 2-nd 1),d 2>nd 1,b 1-a 1n ,d 2≤nd 1. ①当d 1>0时,取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2, 因此,c n =b 1-a 1n ,此时,c m ,c m +1,c m +2,…是等差数列.②当d 1=0时,对任意n ≥1,c n =b 1-a 1n +(n -1)max{d 2,0}=b 1-a 1+(n -1)(max{d 2,0}-a 1).此时,c 1,c 2,c 3,…,c n ,…是等差数列.③当d 1<0时,当n >d 2d 1时,有nd 1<d 2, 所以c n n =b 1-a 1n +(n -1)(d 2-nd 1)n=n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|.对任意正数M ,取正整数m >max ⎩⎨⎧⎭⎬⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1, 故当n ≥m 时,c n n>M . 19.设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy . 证明 由于x ≥1,y ≥1,所以要证明x +y +1xy ≤1x +1y+xy , 只需证xy (x +y )+1≤y +x +(xy )2.将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1).因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立.20.(2018·中山模拟)已知数列{a n }的前n 项和为S n ,且满足a n +S n =2.(1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列.(1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1.又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n , 所以{a n }是首项为1,公比为12的等比数列,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档