广东广州市天河区普通高中2018届高考数学一轮复习精选试题:统计(解答题) Word版含答案

合集下载

广东广州市天河区普通高中毕业班2018届高考数学一轮复习模拟试题 11 含答案 精品

广东广州市天河区普通高中毕业班2018届高考数学一轮复习模拟试题 11 含答案 精品

一轮复习数学模拟试题11第Ⅰ卷 选择题(共60分)一.选择题:(本大题共12小题,每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的.)1.若函数()f x A ,函数()lg(1)g x x =-,[2,11]x ∈的值域为B ,则A B 为A (,1]-∞B (,1)-∞C [0,1]D [0,1)2.已知等比数列}{n a 的公比为正数,且23952a a a =,21a =,则1a =() A.21 B. 22 C. 2 D.23.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形, 俯视图是半径为1的半圆,则该几何体的体积是( )B 12π 4.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,95函数()cos 22sin f x x x =+的最小值和最大值分别为( )A 3,1-B 2,2-C 33,2- D 32,2-6已知12,F F 是椭圆221169x y +=的两个焦点,经过点2F 的直线交椭圆于点,A B ,若||5AB =,则11||||AF BF +等于( )A 11B 10C 9D 16 7 设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )A 充分不必要条件B 必要不充分条件正视图俯视图侧视图第8题C 充要条件D 既不充分也不必要条件8 右图给出的是计算111124620++++的值的一个程序框图,其中判断框内应填入的条件是( )A 10i >B 10i <C 20i >D 20i <9.对于复数,,,a b c d ,若集合{,,,}S a b c d =具有性质“对任意,x y S ∈,必有xy S ∈”,则当2211a b c b =⎧⎪=⎨⎪=⎩时,b c d ++等于( )A .1B .-1C .0D .i10已知向量(,),(1,2),(,)a m n b c k t ===,且//,,||10a b b c a c ⊥+=,则mt 的取值范围是( )A (,1]-∞B (0,1]C [1,1]-D (1,1)- 11.已知函数()()x f x y x R e=∈满足'()()f x f x >,则(1)f 与(0)ef 大小关系是( ) A (1)(0)f ef < B (1)(0)f ef > C (1)(0)f ef = D 不能确定 12.已知函数()y f x =是定义在R 上的增函数,函数(1)y f x =-的图像关于点(1,0)对称。

2018-2018广东高考数学一轮复习解答题-范文word版 (6页)

2018-2018广东高考数学一轮复习解答题-范文word版 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018广东高考数学一轮复习解答题高考来临之际送你一颗心,考前要松心,保持乐观。

下面小编为大家整理的广东高考数学一轮复习解答题,希望大家喜欢。

广东高考数学一轮复习解答题1.袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率.命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12>n,即n2-7n+12>0.解得n<3或n>4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且m≠n)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.2.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于 x的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为“方程x2+2ax+b2=0有实根”.当a>0,b>0时,方程x2+2ax+b2=0有实根的充要条件为a≥B.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.3.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩 (满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.。

广东广州市2018届高三数学一轮复习模拟试题精选:统计 Word版含答案

广东广州市2018届高三数学一轮复习模拟试题精选:统计 Word版含答案

统计一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A .y ∧=1.23x +4B .y ∧=1.23x+5C .y ∧=1.23x+0.08D .y ∧=0.08x+1.23 【答案】C2.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生。

为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生( ) A .30人,30人,30人 B .30人,45人,15人 C .20人,30人,10人D .30人,50人,10人【答案】B3.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工的身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( ) A .7 B .9 C .18 D .36 【答案】C4.已知回归直线的斜率的估计值是1.23,样本点的中心为()4,5,则回归直线方程是( )A .ˆ 1.234yx =+ B . ˆ 1.235yx =+ C .ˆ 1.230.08yx =+ D .ˆ0.08 1.23yx =+ 【答案】C5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由2K =))()()(()(2d b c a d c b a bc ad n ++++-,得2K =50605060)20203040(1102⨯⨯⨯⨯-⨯⨯7.8≈。

附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” 【答案】C6.某医疗研究所为了检验新开发的流感疫苗对甲型H1N1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设H 0:“这种疫苗不能起到预防甲型H1N1流感的作用”,并计算出2( 6.635)0.01P χ≥≈,则下列说法正确的( ) A .这种疫苗能起到预防甲型H1N1流感的有效率为1%B .若某人未使用该疫苗,则他在半年中有99%的可能性得甲型H1N1C .有1%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用”D .有99%的把握认为“这种疫苗能起到预防甲型H1N1流感的作用” 【答案】D7.某校五四演讲比赛中,七位评委为一选手打出的分数如下:去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A .2,92B . 8.2,92C . 2,93D . 8.2,93【答案】B8.给出下列四个命题,其中正确的一个是( )A .在线性回归模型中,相关指数2R =0.80,说明预报变量对解释变量的贡献率是80% B .在独立性检验时,两个变量的2×2列表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大C .相关指数2R 用来刻画回归效果,2R 越小,则残差平方和越大,模型的拟合效果越好 D .随机误差e 就是残差,它满足0)(=e E【答案】A9.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为2:3:5,现用分层抽样的方法抽出样本容量为80的样本,那么应当从A 型产品中抽出的件数为( ) A . 16 B . 24 C . 40 D . 160 【答案】A10.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是( )A .36B .40C .48D .50【答案】C11.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[)20,45岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是( )A .31.6岁B .32.6岁C .33.6岁D .36.6岁【答案】C12.假设两个分类变量X 与Y ,它们的取值分别为{x 1,x 2},{y 1,y 2},其2×2列联表如图所示:对于以下数据,对同一样本能说明X 与Y 有关的可能性最大的一组为( ) A .a=5,b=4,c=3,d=2 B .a=5,b=3,c=2,d=4 C .a=5,b=2,c=4,d=3D .a=2,b=3,c=5,d=4【答案】B二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若一条回归直线的斜率的估计值是2.5,且样本点的中心为(4,5),则该回归直线的方程是 。

2018最新试题资料-2018届高考数学一轮数列复习精选试题(广州市天河区含答案)

2018最新试题资料-2018届高考数学一轮数列复习精选试题(广州市天河区含答案)

2018届高考数学一轮数列复习精选试题(广州市天河区含
答案)
5 c 数列02
解答题(本大题共6个小题,共70分,解答应写出字说明,证明过程或演算步骤)
1.函数f(x)定义在[0,1]上,满足且f(1)=1,在每个区间=1,2,…)上, =f(x) 的图象都是平行于x轴的直线的一部分(Ⅰ)求f(0)及的值,并归纳出 )的表达式;
(Ⅱ)设直线轴及=f(x)的图象围成的矩形的面积为 , 求a1,a2及的值
【答案】(Ⅰ) 由f(0)=2f(0), 得f(0)=0
由及f(1)=1, 得
同理,
归纳得
(Ⅱ) 当时,
所以是首项为 ,比为的等比数列
所以
2.已知等差数列满足;又数列满足+…+ ,其中是首项为1,比为的等比数列的前项和。

(I)求的表达式;
(Ⅱ)若,试问数列中是否存在整数,使得对任意的正整数都有成立?并证明你的结论。

广东省广州天河区普通高中2018届高考数学一轮复习模拟试题(Word版 含答案)05

广东省广州天河区普通高中2018届高考数学一轮复习模拟试题(Word版 含答案)05

一轮复习数学模拟试题05一、选择题(本大题共12题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有( ) 个A. 4B. 5C. 6D. 7 2.设复数i i x -+=11(i 是虚数单位),则=++++2010201020102220101201002010x C x C x C C ( ) A.i 10042B.i 10052 C.10052- D.10042- 3. 设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ). A.454.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则角A 的大小为( )5.一个几何体的三视图如右图所示,其中主视图中△ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的左视图的面积为( )6.已知正三棱底面边长为4,高为3,在正三棱锥内任取一点C.()8)A.有最小值9 B.有最大值9 C.有最小值-9 D.有最大值-99. 身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有()A. 24种B. 28种C. 36种D. 48种10. 过椭圆右焦点F的直线L交椭圆于A、B两点,交y轴于P点。

)A. C.11.).)A. 18 B.17 C.-18 D. 195分,共20分,请把答案填在答题纸相应位置)13值等于,则正数__________.15.函区上不单调...,取值范围;16、下面四个命题:象;x=1处的切线平行于直线y=x,f(x)的单调递增区间;③正方体的内切球与其外接球的表面积之比为1∶3;④“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不必要条件。

广东省广州市天河区普通高中18届高考数学一轮复习模拟试题041801160216

广东省广州市天河区普通高中18届高考数学一轮复习模拟试题041801160216

一轮复习数学模拟试题04一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集R ,若集合}1|12|{},3|2||{>-=≤-=x x B x x A ,则)(B A C R 为 ( ) A .}51|{≤<x x B .}51|{>-≤x x x 或C .}51|{>≤x x x 或D .}51|{≤≤-x x(2)复数ii z -+=1)2(2(i 是虚数单位)在复平面上对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限(3)在长为10㎝的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm 2与49 cm 2之间的概率为 ( )A .51B .52 C .54 D .103 (4)设等比数列{}n a 的公比为q ,前n 项和为n S ,若1n S +,n S ,2n S +成等差数列,则公 比q 为 ( ) A .2-=qB .1=qC .12=-=q q 或D .12-==q q 或(5)已知i 与j 为互相垂直的单位向量,2a i j =- ,b i j λ=+ 且a 与b的夹角为锐角,则实数λ的取值范围是( )A .1(,)2-∞B .1(,)2+∞C .22(2,)(,)33-+∞D .1(,2)(2,)2-∞--(6)设f (x )是R 上的奇函数, 且在(0, +∞)上递增, 若f (21)=0, f (log 4x )>0, 那么x 的 取值范围是( ) A.21<x <1 B.x >2 C. x >2或21<x <1 D.21<x <1或1<x <2 (7)一起,则不同的站法有( )A .240种B .192种C .96种D .48 (8)如果执行下面的程序框图,那么输出的S = ( ). A.2450 B.2500 C.2550 D.2652(9)球面上有三个点A 、B 、C. A 和B ,A 和C 间的球面距离等于大圆周长的16. B 和C 间的球面距离等于大圆周长的14.如果球的半径是R ,那么球心到截面ABC 的距离等于( ) A.12RR D. 13R(10)已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x , 且目标函数y x z +=2的最大值为7,最小值为1,则=++acb a ( ) A.1 B.1- C.2D. 2-(11)下列命题:①若)(x f 是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,)2,4(ππθ∈,则 ).(cos )(sin θθf f > ②若锐角α、.2,sin cos πβαβαβ<+>则满足③若.)()(,12cos2)(2恒成立对则R x x f x f xx f ∈=+-=π④要得到函数.42sin ,)42sin(个单位的图象向右平移只需将的图象ππx y x y =-= 其中真命题的个数有( )A .1B .2C .3D .4(12)设函数xbax x g x x f +==)(,ln )(,它们的图象在x 轴上的公共点处有公切线,则当1>x 时,)(x f 与)(x g 的大小关系是 ( )A.)()(x g x f >B.)()(x g x f <C.)()(x g x f =D.)(x f 与)(x g 的大小不确定 二、填空题:本大题共4小题,每小题5分。

广东广州市天河区普通高中2018届高考数学一轮复习精选试题:算法初步与框图(解答题) Word版含答案 (5)

广东广州市天河区普通高中2018届高考数学一轮复习精选试题:算法初步与框图(解答题) Word版含答案 (5)

推理与证明02解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)1.已知1,1≤≤y x ,用分析法证明:xy y x +≤+1.【答案】要证xy y x +≤+1,即证()()221xy y x +≤+,即证22221y x y x +≤+,即证()()01122≤--y x , 因为1,1≤≤y x ,所以01,0122≥-≤-y x ,所以()()01122≤--y x ,不等式得证.2.求证:2222,2,2y ax bx c y bx cx a y cx ax b =++=++=++(,,a b c 是互不相等的实数),三条抛物线至少有一条与x 轴有两个交点.【答案】假设这三条抛物线全部与x 轴只有一个交点或没有交点,则有 ⎪⎩⎪⎨⎧≤-=≤-=≤-=044044044232221bc a Δab c Δac b Δ 三式相加,得a 2+b 2+c 2-ab -ac -bc ≤0⇒(a -b )2+(b -c )2+(c -a )2≤0.∴a=b=c 与已知a ,b ,c 是互不相等的实数矛盾,∴这三条抛物线至少有一条与x 轴有两个交点.3.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家、祖冲之的儿子祖暅首先提出来的. 祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等. 可以用诗句“两个胖子一般高,平行地面刀刀切,刀刀切出等面积,两人必然同样胖”形象表示其内涵. 利用祖暅原理可以推导几何体的体积公式,关键是要构造一个参照体.试用祖暅原理推导球的体积公式.【答案】我们先推导半球的体积. 为了计算半径为R 的半球的体积,我们先观察V 圆锥、V 半球、V 圆柱这三个量(等底等高)之间的不等关系,可以发现V 圆锥<V 半球<V 圆柱,即3313R V R ππ<<半球,根据这一不等关系,我们可以猜测323V R π=半球,并且由猜测可发现V V V =-半球圆柱圆锥. 下面进一步验证了猜想的可靠性. 关键是要构造一个参照体,这样的参照体我们可以用圆柱内挖去一个圆锥构造出,如右图所示. 下面利用祖暅原理证明猜想.证明:用平行于平面α的任意一个平面去截这两个几何体,截面分别为圆面和圆环面. 如果截平面与平面α的距离为l ,那么圆面半径r =半径为R ,小圆半径为r.因此222()S r R l ππ==-圆,2222()S R l R l πππ=-=-环, ∴ S S =圆环. 根据祖暅原理,这两个几何体的体积相等,即2231233V R R R R R πππ=-=半球, 所以343V R π=球.4<0>,0>,故只需证明22<.只需证1020+<5.只需证2125<. 因为2125<显然成立,<5.已知函数)1(,12)(>+-+=a x x a x f x ,用反证法证明:方程0)(=x f 没有负实数根.【答案】假设存在x 0<0(x 0≠-1),满足f(x 0)=0,则0x a =-0021x x -+,且0<0x a <1, 所以0<-0021x x -+<1,即12<x 0<2. 与假设x 0<0矛盾,故方程f(x)=0没有负数根.6.用适当方法证明:如果,0,0>>b a 那么b a ab b a +≥+。

广东广州市天河区2018届高考数学复习精选试题:统计(解答题)

广东广州市天河区2018届高考数学复习精选试题:统计(解答题)

统计02解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)1.对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(Ⅰ)求出表中,M p 及图中a 的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10, 15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25, 30)内的概率.【答案】(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,100.25M =,所以40M =.因为频数之和为40,所以1024240m +++=,4m =,40.1040m p M === 因为a 是对应分组[15,20)的频率与组距的商,所以240.12405a ==⨯ (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25, 所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人 (Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人, 设在区间[20,25]内的人为1224{,,,}a a a a ,在区间[25,30)内的人为12{,}b b . 则任选2人共有1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b 2234(,),(,)a b a a ,3132414212(,),(,),(,),(,),(,)a b a b a b a b b b 15种情况,而两人都在[25,30)内只能是12{,}b b 一种, 所以所求概率为11411515P =-=2.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,, 还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.【答案】(1) 列联表补充如下:(2)∵2250(2015105)8.3337.87930202525K ⨯⨯-⨯=≈>⨯⨯⨯ ∴有99.5%的把握认为喜爱打篮球与性别有关.(3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,, 132(),A B C ,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,,。

广东省广州市天河区普通高中2018届高考数学一轮复习模拟试题06

广东省广州市天河区普通高中2018届高考数学一轮复习模拟试题06

一轮复习数学模拟试题06第Ⅰ卷 选择题(共60分)一.选择题:(本大题共12小题,每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的.)1.已知集合{}{}22log (2),,A x y x x x R B x y x R ==-++∈==∈,则A B ⋂=( )()[]()(].1,21,2A -- B. C.-1,1 D.-1,12.已知等比数列}{n a 的公比为正数,且23952a a a =,21a =,则1a = ( )A.21B. 22C. 2D.23.已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y ++-= B .22(1)(1)2x y -++= C .22(1)(1)2x y -+-= D .22(1)(1)2x y +++=4.如图是某几何体的三视图,其中正视图是腰长为2俯视图是半径为1的半圆,则该几何体的体积是( ) A .3 B .12π C . 3 D. 65.函数()sin()(0,0)f x A x A ωϕω=+>>则(1)(2)(3)(2011)f f f f ++++的值等于( )..1A +6.某班班会准备从甲、乙等7名学生中选派4当甲、乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为( )..360A B.520 C.600 D.7207.定义方程'()()f x f x =的实数根0x 叫做函数()f x 的“新驻点”。

若函数3(),()ln(1),()1g x x h x x x x ϕ==+=-的新驻点分别为,,αβγ,则,,αβγ的大小关系是( )..A αβγβαγγαββγα>>>>>>>> B. C. D.正视图侧视图第8题8.右图给出的是计算111124620++++的值的一个程序框图, 其中判断框内应填入的条件是( )A . 10i >B .10i < C. 20i > D.20i <9.已知ABC ∆中,():():()1:2:3,AB BC BC CA CA AB ∙∙∙=则ABC ∆的形状为( ) A .钝角三角形 B 等边三角形 C 直角三角形 D 非等腰锐角三角形 10.已知函数()f x 与()g x 满足: (2)(2),f x f x +=-(1)(1),g x g x +=-且()f x 在区间[)2,+∞上为减函数,令()()()h x f x g x =∙,则下列不等式正确的是( )..(2)(4)(2)(4)(0)(4)(0)(4)A h h h h h h h h -≥-≤>< B. C. D.11.已知圆的方程224x y +=,若抛物线过定点(0,1),(0,1)A B -且以圆的切线为准线,则抛物线焦点的轨迹方程是( )22222222..1(0)1(0)1(0)1(0)34433443x y x y x y x y A y y x x +=≠+=≠+=≠+=≠ B. C. D.12.若点O 和点(2,0)F -分别为双曲线2221(0)x y a a-=>的中心和焦点,点P 为双曲线右支上的任意一点,则OP FP ∙的取值范围是( )A .)3⎡-+∞⎣ B.)3⎡++∞⎣ C.7,4⎡⎫-+∞⎪⎢⎣⎭ D.7,4⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若命题:p “存在实数x,使2(1)10x a x +-+<”是假命题,则实数a 的取值范围是 .14.已知{}n a 是由非负整数组成的数列,满足*1220,3,2,(,3)n n a a a a n N n -===+∈≥,则数列{}n a 的通项公式为15.已知21(0)()1(0)x x f x x ⎧+≤=⎨>⎩ ,则满足不等式2(1)(2)f x f x -<的x 的取值范围是16.在平面直角坐标系中,点集{}22(,)1,A x y x y =+≤{(,)4,0,B x y x y =≤≥}340x y -≥,则点集{}12121122(,),,(,),(,)Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积是三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数12cos (),(2)cos 4z b C a c i z a c B i =++=-+,且12z z =,其中,,A B C 是ABC ∆的内角,,,a b c 是角,,A B C 所对的边。

广州市天河区毕业班2018届高考数学一轮复习模拟试题(9)--有答案

广州市天河区毕业班2018届高考数学一轮复习模拟试题(9)--有答案



2 3
n

3i
.(1)求
OAn

OBn
的坐标;
20090520
(2)若四边形 An Bn Bn1An1 的面积是 an ,求 an n N* 的表达式;
A
B
位向量分别
足下 列两个
OB1 3i 且
(3)对于(Ⅱ)中的 an ,是否存在最小的自然数 M,对一切 n N* 都有 an < M 成立?若存在,求 M;若
SACD
SBAD
168 ,∴ SABD
5
SBCD

3. 2
18 解:(Ⅰ)先后 2 次抛掷一枚骰子,将得到的点数分别记为 a, b ,事件总数为 6 6 36 .
∵函数 F (x) 有且只有一个零点函数 f (x) x a 与函数 g(x) x b 有且只有一个交点 所以 b a ,
一轮复习数学模拟试题 09
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目 要求的,) 1.对于集合 M、N 定义: M N { x | x M且x N }, M N (M N ) ( N M ) ,
设 M { y | y x 2 3x, x R}, N { y | y 2 x , x R} ,则 M N ( )
∴函数 F (x) 有且只有一个零点的概率是 15 5 36 12
(Ⅱ)先后 2 次抛掷一枚骰子,将得到的点数分别记为 a, b ,事件总数为 6 6 36 .
∵三角形的一边长为 5 ∴当 a 1时, b 5 , (1,5,5) , 1种 ; 当 a 2 时, b 5 , (2,5,5) , 1 种; 当

广东广州市天河区普通高中毕业班2018届高考数学一轮复习模拟试题: 09 Word版含答案

广东广州市天河区普通高中毕业班2018届高考数学一轮复习模拟试题: 09 Word版含答案

一轮复习数学模拟试题09一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,)1.对于集合NM、定义:)()(},|{M MNNMNMNxMxxN-⋃-=+∉∈=-且,设},2|{},,3|{2RxyyNRxxxyyM x∈-==∈-==,则=+NM( )A.(-49,0) B.[-49,0) C.(-∞,-49)∪[0,+∞) D.(-∞,-49]∪(0,+∞)2,已知:αβαββαtan)tan(,0cos5)2cos(3+=++则的值为( )A.±4B.4C.-4D.13.关于for循环说法错误的是()A.在for循环中,循环表达式也称为循环体B.在for循环中,步长为1,可以省略不写,若为其它值,则不可省略C.使用for循环时必须知道终值才可以进行D.for循环中end控制结束一次循环,开始一次新循环,4.如图,样本数为9的四组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是第一组第二组第三组第四组A.B.C.D.5.已知*,2)(,2),2()2(,)(Nnxfxxfxfxf x∈=≤≤--=+若时当且为偶函数,==2007),(anfa n则()A.2007 B.21C.2 D.-26.在△OAB中,ODbOBaOA,,==是AB边上的高,若ABADλ=,则实数λ等于A.()2baaba--⋅B.()2babaa--∙C.()baaba--∙D.()babaa--∙7.已知aba,0,0>>、b的等差中项是βαβα++=+=则且,1,1,21bbaa的最小值是 ( ) A.3 B.4 C.5 D.68.从抛物线x y 42=上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线的焦点为F ,则△MPF 的面积为 ( )A .5B .10C .20D .159.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形。

广东广州市天河区普通高中毕业班2018届高考数学一轮复习模拟试题: 01 Word版含答案

广东广州市天河区普通高中毕业班2018届高考数学一轮复习模拟试题: 01 Word版含答案

一轮复习数学模拟试题01一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合M=⎭⎬⎫⎩⎨⎧=+149|22y x x ,N=⎭⎬⎫⎩⎨⎧=+123|y x y ,则=N M ( )A .∅B .)}0,2(),0,3{(C .[]3,3-D .{}2,32.函数20.5(231)y log x x =-+的单调递减区间是 ( )A .3[,]4-∞B .3[,)4+∞C .1(,)2-∞D .(1,)+∞3.有下列四个命题,其中真命题有:( )①“若0x y +=,则x .y 互为相反数”的逆命题 ②“全等三角形的面积相等”的否命题 ③“若1q ≤,则220x x q ++=有实根”的逆命题 ④“不等边三角形的三个内角相等”的逆否命题,其中真命题的序号为:A . ①③B .②③C .①②D .③④4.如下图,已知()32()0,f x ax bx cx d a =+++≠记()243,b ac ∆=-则当5则函数()()5log ,0y f x x x =->的零点个数是( )A .3B .4C .5D .66.若多项式102x x +=10109910)1()1()1(++++⋅⋅⋅+++x a x a x a a ,则=9a ( )A .9B .10C .9-D .10-7.对一位运动员的心脏跳动检测了8次,得到如下表所示的数据:检测次数 1 2 3 4 5 6 7 8 检测数据i a (次/分钟) 3940424243454647上述数据的统计分析中,一部分计算见如右图所示的程序框图(其中a 是这 8个数据的平均数),则输出的的值是( ) A .6 B .7 C .8 D .568.设A={}5,4,3,2,1,B={}8,7,6,从集合A 到集合B 的映射中,满足)5()4()3()2()1(f f f f f ≤≤≤≤的映射有( )A .27个B .9个C .21个D .12个9.设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数y=xa 的图像上存在区域D 上的点,则a 的取值范围是 ( )A .(]3,1B .[]3,2C .(]2,1D .[)+∞,310.设][x 表示不超过x 的最大整数(如2]2[=,1]45[=),对于给定的*N n ∈,定义)1][()1()1][()1(+--+--=x x x x x n n n C x n ,),1[+∞∈x ,则当)3,23[∈x 时,函数xC 8的值域是( )]28,316.[A )56,316.[B )56,28[)328,4.(⋃C ]28,328(]316,4.(⋃D11.由曲线2y x =和直线()20,1,,0,1x x y t t ===∈所围成的图形(阴影部分)的面积的最小值为( ) A .23 B .13 C .12 D .1412.已知函数),2[)(+∞-的定义域为x f ,且1)2()4(=-=f f , )()(x f x f 为'的导函数,函数)(x f y '=的图象如图所示.则平面区域⎪⎩⎪⎨⎧<+≥≥1)2(00b a f b a 所围成的面积是( ) A. 2 B.4 C.5 D.8二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知随机变量ξ服从正态分布)1(,8413.0)3(),,2(2≤=≤ξξδP p N 则= 。

广东广州市天河区普通高中2018届高考数学一轮复习精选试题:算法初步与框图(解答题) Word版含答案 (2)

广东广州市天河区普通高中2018届高考数学一轮复习精选试题:算法初步与框图(解答题) Word版含答案 (2)

算法初步与框图01一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.把十进制73化成四进制后,其末位数字是( )A .0B .1C .2D .3 【答案】B2.用秦九韶算法计算多项式123456)(2345+++++=x x x x x x f 当x =5的值时,乘法运算和加法运算的次数分别( )A .10,5B .5,5C .5,6D .15,6 【答案】B3.算法的三种基本结构是( )A . 顺序结构 条件结构 循环结构B . 顺序结构 模块结构 条件结构C . 顺序结构 循环结构 模块结构D . 模块结构 条件结构 循环结构 【答案】A4.将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是( )【答案】B5.执行下面的程序框图,如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .5040【答案】B6.下列程序运行的结果是( )A . 1, 2 ,3B . 2, 3, 1C . 2, 3, 2D . 3, 2, 1【答案】C7.用秦九韶算法计算多项式2345()1510105f x x x x x x =+++++在2x =-时的值时,3v 的值为( )A . 1B . 2C . 3D . 4 【答案】B8.算法的有穷性是指( )A . 算法必须包含输出B .算法中每个操作步骤都是可执行的C . 算法的步骤必须有限D .以上说法均不正确【答案】C9.四进制数201(4)表示的十进制数的是( )A .31B .32C .33D .34 【答案】C10.计算机执行下面的程序,输出的结果是( )a=1b=3a=a+bb=b *a输出 a ,bEndA .1,3B .4,9C .4,12D .4,8【答案】C11.计算机中常用十六进制,采用数字0~9和字母A ~F 共16个计数符号与十进制得对应关系如下表:例如用十六进制表示有D+E =1B ,则A ×B=( )A . 6EB . 7C C . 5FD . B0【答案】A12.运行如图所示的程序流程图,则输出I 的值是( )A . 5B .6C .7D . 8【答案】C二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.根据条件把流程图补充完整,求11000→内所有奇数的和;(1) 处填(2) 处填【答案】(1)s s i =+(2)2i i =+14.840与1764的最大公约数是 _____【答案】8415.下列程序执行后输出的结果是S= . i=1S=0WHILE i<=50S=S+ii=i+1WENDPRINT SEND【答案】127516.下图程序运行结果是.【答案】21。

【高三数学试题精选】2018届高考数学一轮三角函数复习精选试题(广州市天河区含答案)

【高三数学试题精选】2018届高考数学一轮三角函数复习精选试题(广州市天河区含答案)
(Ⅱ)在锐角△ABc中,若,求△AB c的面积.
【答案】(1)
(2)
5
在△ABc中,,
所以∠BAc=380,所以甲船应沿南偏西70方向行驶
答甲船应沿南偏西70方向,用075h能尽快追上乙船
4.已知向量,函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)已Ⅰ)
因为,所以
5.化简
【答案】原式=
6.已知函数
(I)化简函数f(x)的解析式,并求函数f(x)的最小正周期;
在△ABc中,Ac=28t,Bc=20t,AB=9,∠ABc=1200,
根据余弦定理得,Ac2=AB2+Bc2-2AB Bccs∠ABc
即(28t)2=(20t)2+(20t)2-2×9×20tcs1200,
整理得,128 t2-60t-27=0,(4t-3)(32t+9)=0,
解得或(舍)所以Ac=21,Bc=15,
2018届高考数学一轮三角函数复习精选试题(广州市天河区含答案)
5三角函数02
解答题(本大题共6个小题,共70分,解答应写出字说明,证明过程或演算步骤)
1.已知角的终边经过点.
(1)求的值;
【答案】由角的终边过点知,
,,
(1)
=,
(2)=…11分
=。
2.已知函数
(Ⅰ)求函数的值域;
(Ⅱ)在△中,角所对的边分别为,若,且,求的值
【答案】(1)
∵,


∴函数的值域为
(2),
∴,而,∴
在中,,,
∴,得
解得
∵,∴
3.如图所示,甲船在A处,乙船在A处的南偏东45°方向,距A有9n ile并以20n ile/h的速度沿南偏西15°方向航行,若甲船以28n ile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?

【中小学资料】广东省广州市2018届高考数学一轮复习模拟试题精选 专题 计数原理

【中小学资料】广东省广州市2018届高考数学一轮复习模拟试题精选 专题 计数原理

计数原理一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .48个B .36个C .24个D .18个 【答案】B2.在()103x -的展开式中,6x 的系数为( )A .610C 27- B .410C 27 C .610C 9-D .410C 9【答案】D3.若直角坐标平面内A 、B 两点满足条件:①点A 、B 都在f(x)的图象上;②点A 、B 关于原点对称,则对称点对(A ,B)是函数的一个“姊妹点对”(点对(A ,B)与(B ,A )可看作一个“姊妹点对”). 已知函数 f(x)=⎪⎩⎪⎨⎧≥<+02022x e x xx x,则f(x)的“姊妹点对”有( )个A .1B .3C .2D .4【答案】C4.101x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为( )A .第5项B .第6项C .第5项或第6项D .不存在【答案】B5.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33B.34C.35D.36 【答案】A 6.若n展开式中存在常数项,则n 的最小值为( ) A .5 B .6 C .7 D .8 【答案】A7.某飞机显示屏上的每个指示灯均以红光或蓝光来表示不同的信号,已知一排有8个指示灯.若每次显示其中的4个,并且恰有3个相邻,则可显示的不同信号共有 ( ) A .80种 B .160种 C .320种 D .640种 【答案】C8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( ) A .48 B .18 C .24 D .36 【答案】D9.我们把可表示为两个连续正奇数的平方差的正整数称为“和谐数”,则在集合{}2013,,3,2,1 中,共有“和谐数”的个数是( ) A .502 B .503 C .251 D .252 【答案】C10.某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有( ) A .120种 B .48种 C .36种 D .18种 【答案】C11.已知点),(y x P ,其中{}2,1∈x ,{}4,3,1∈y ,则在同一直角坐标系中所确定的不同点的个数是( )A .6B .12C .8D .5 【答案】A12.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有( ) A .120种 B .96种 C .60种 D .48种 【答案】C二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若()44104x a x a a 3x 2+⋅⋅⋅++=+,则()()2312420a a a a a +-++的值为 .【答案】114.6名运动员比赛前将外衣放在休息室,比赛后都回到休息室取衣服,由于灯光暗淡,有一部分队员拿错了外衣,其中只有2人拿到自己的外衣,且另外的4人拿到别人的外衣情况个数为 . 【答案】13515.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为 . 【答案】576种16.2012年3月10日是第七届世界肾脏日,某社区服务站将5位志愿者分成3组,其中两组各2人,另一组1人,分别去三个不同的社区宣传这届肾脏日的主题:“保护肾脏,拯救心脏”,不同的分配方案有 种.(用数字作答) 【答案】90三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知n n x x f )1()(+=,n ∈N *.(1) 若)(3)(2)()(654x f x f x f x g ++=,求)(x g 中含2x 项的系数;(2) 若n p 是)(x f n 展开式中所有无理项的系数和,数列}{n a 是各项都大于1的数组成的数列,试用数学归纳法证明:n p )1(21+n a a a ≥(1+1a )(1+2a )…(1+n a ). 【答案】(1) g(x)中含x 2项的系数为C 44+2C 45+3C 46=1+10+45=56.(2) 证明:由题意,p n =2n -1.① 当n =1时,p 1(a 1+1)=a 1+1,成立;② 假设当n =k 时,p k (a 1a 2…a k +1)≥(1+a 1)(1+a 2)…(1+a k )成立, 当n =k +1时,(1+a 1)(1+a 2)…(1+a k )(1+a k +1)≤2k -1(a 1a 2…a k +1)(1+a k +1) =2k -1(a 1a 2…a k a k +1+a 1a 2…a k +a k +1+1).(*)∵ a k >1,a 1a 2…a k (a k +1-1)≥a k +1-1,即a 1a 2…a k a k +1+1≥a 1a 2…a k +a k +1,代入(*)式得(1+a 1)(1+a 2)…(1+a k )(1+a k +1)≤2k(a 1a 2…a k a k +1+1)成立.综合①②可知,p n (a 1a 2…a n +1)≥(1+a 1)(1+a 2)…(1+a n )对任意n ∈N *成立.18.有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?【答案】设2名会下象棋但不会下围棋的同学组成集合A ,3名会下围棋但不会下象棋的同学组成集合B ,4名既会下围棋又会下象棋的同学组成集合C ,则选派2名参赛同学的方法可以分为以下4类: 第一类:A 中选1人参加象棋比赛,B 中选1人参加围棋比赛,方法数为61312=⋅C C 种;第二类:C 中选1人参加象棋比赛,B 中选1人参加围棋比赛,方法数为121314=⋅C C 种;第三类:C 中选1人参加围棋比赛,A 中选1人参加象棋比赛,方法数为81214=⋅C C 种; 第四类:C 中选2人分别参加两项比赛,方法数为1224=A 种;由分类加法计数原理,选派方法数共有:6+12+8+12=38种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计02
解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
1.对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中,M p 及图中a 的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10, 15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25, 30)内的概率.
【答案】(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,10
0.25M =,所以40M =. 因为频数之和为40,所以1024240m +++=,4m =,4
0.1040m p M ===
因为a 是对应分组[15,20)的频率与组距的商,所以24
0.12405
a ==⨯
(Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25, 所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人
(Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人,
设在区间[20,25]内的人为1224{,,,}a a a a ,在区间[25,30)内的人为12{,}b b .
则任选2人共有
1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b 2234(,),(,)a b a a ,
3132414212(,),(,),(,),(,),(,)
a b a b a b a b b b 15种情况,
而两人都在[25,30)内只能是12{,}b b 一种, 所以所求概率为114
11515P =-=
2.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为3
5
. (1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,, 还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.
【答案】(1) 列联表补充如下:
(2)∵2
2
50(2015105)8.3337.87930202525
K ⨯⨯-⨯=
≈>⨯⨯⨯ ∴有99.5%的把握认为喜爱打篮球与性别有关.
(3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:
111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,
132(),A B C ,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,,231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,,332()A B C ,,, 322331()()A B C A B C ,,,,,,411412421()()()A B C A B C A B C ,,,,,,,,, 422431432()()()A B C A B C A B C ,,,,,,,,, 511512521()()()A B C A B C A B C ,,,,,,,,, 522531532()()()A B C A B C A B C ,,,,,,,,,
基本事件的总数为30,
用M 表示“11B C ,不全被选中”这一事件,则其对立事件M 表示“11B C ,全被选中”
这一事件,由于M 由111211311()()()A B C A B C A B C ,,,
,,,,,, 411511(,,),(,,)A B C A B C 5个基本事件组成,所以51
()306
P M =
=,由对立事件的概率公式得15()1()166
P M P M =-=-
=.
3.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据
.
(1)画出表中数据的散点图;
(2)求出y 对x 的线性回归方程;
(3)若广告费为9万元,则销售收入约为多少万元?
【答案】 (1)散点图如图:
(2)观察散点图可知各点大致分布在一条直线附近,列出下列表格,以备计算a 、b .于是5x 2
=
,69
y 2
=
,代入公式得: 112233442
22221234x y x y x y x y 4xy b x x x x 4x +++-=+++-2569
4184732255304()2
-⨯⨯
==-⨯, 69735
a y bx 2.252
=-=-⨯=-
故y 与x 的线性回归方程为73y x 25=-,其中回归系数为73
5

它的意义是:广告支出每增加1万元,销售收入y 平均增加73
5
万元. (3)当x=9万元时,73
y 92129.45
=⨯-=(万元).
4.为适应新课改,切实减轻学生负担,提高学生综合素质,某市某学校高三年级文科生300人在数学选修4-4、4-5、4-7选课方面进行改革,由学生自由选择2门(不可多选或少选),选课情况如下表:
(1)为了解学生情况,现采用分层抽样方法抽取了三科作业共50本,统计发现4-5有18本,试根据这一数据求出,a b 的值。

(2)为方便开课,学校要求110,110a b ≥>,计算a b >的概率。

【答案】 (1)由每生选2科知共有600人次选课,所以按分层抽样得:
100
18
60050+=a , 所以a=116,从而b=114 (2)因为a+b=230
a ≥110,
b >110,所以(a,b )的取值有: (110,120)(111,119)(112,118)(113,117) (114,116)(115,115)(116,114)(117,113) (118,112)(119,111)共10种; 其中a >b 的情况有(116,114)(117,113)(118,112)(119,111)共4种; 所以a >b 的概率为:52
104==
p
5.将容量为100的样本拆分为10组,若前7组频率之和为0.79,而剩下的三组的频数成等比数列,其公比为整数且不为1,求剩下的三组中频数最大的一组的频率. 【答案】设三组数分别为2
,,(,,1)a aq aq a q N q *
∈>,则
2221(1)21a aq aq a q q ++=⇒++=,又因为213q q ++>,所以2
21
71a q q
=
<++
q 是整数 a ∴是21的正约数,故1a =或3a =,
当1a =时,2
121(4)(5)04q q q q q ++=⇒-+=⇒=,5q =-舍去!频数最大的一组是
216aq =,频数最大的一组的频率是0.16.
6.为了某班学生喜爱打篮球是否与性别有关,对本班50人进行问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人,抽到不爱打篮球的学生的概率为
5
2. (1)请将上面的列联表补充完整;
(2)是否有把握在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关; 请说明理由.
附参考公式:)d b )(c a )(d c )(b a ()bc ad (n K 2
2
++++-=
【答案】∵已知在全部50人中随机抽取1人,抽到不爱打篮球的学生的概率为5
2, ∴不爱打篮球的学生共有本质区别50×5
2
=20人 (1)列联表补充如下:
(2)∵,879.7333.825
252030)
5101520(50K
2
2
>≈⨯⨯⨯⨯-⨯=
∴有把握在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关.。

相关文档
最新文档