5、6班高二期中考试(数学理)

合集下载

高二数学期中(理科)参考答案

高二数学期中(理科)参考答案

2013-2014学年第一学段模块检测 高二数学(理科)参考答案一、选择题ACBAD BCDCA AB 二、填空题13.14.1315.-3. 16. 33 三、解答题17.解:由题意得,414(1)201a q S q-==-- ① ………………3分818(1)16401a q S q -==--,② ………………………………6分 由①②得:841821q q-=-, ……………………8分 3q ∴=±, ……………………………………9分∵公比0q <,∴3q =- …………………………10分将3q =-代入①式得41[1(3)]201(3)a --=---,解得11a =. ……11分 则111(3)n n n a a q--==- ……………………………………12分18.解: (I) 因为a =3,b ,∠B =2∠A .所以在△ABC 中,由正弦定理得3sin A =……………………2分所以2sin cos sin A A A =……………………4分故cos A =……………………………………6分 (II)(法1)余弦定理得2222cos a c b b c A =+-⋅⋅………8分又3,a b A ===∴2249c c +-=,…………………9分解得:3c =或5c =.……………………………10分 当3c =时,A C =,此时可得4A π=,△ABC 是以角B 为直角的等腰直角三角形.而此时222a cb +≠所以矛盾.则5c =. …………………12分 (法2)由 (I)知cos 3A =,则角A 为锐角, 所以sin 3A ==. ………………………7分 又因为∠B =2∠A , 所以 21cos 2cos 13B A =-=.则B 为锐角. 所以sin 3B ==. ……………9分 在△ABC 中,sin sin()sin cos cos sin 9C A B A B A B =+=+=. ………10分 所以 sin 5sin a Cc A==. ……………………………………12分19. 解:(Ⅰ)由题意知a>0且1,b 是方程ax 2-3x +2=0的根, …………2分则3121b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩,………………………………4分解得12a b =⎧⎨=⎩. …………………………………………5分(Ⅱ)不等式可化为x 2-2(m+1)x +4m>0即(x -2m)(x -2)>0 …………6分当2m>2,即m>1时,不等式的解集为{x |x <2, 或x >2m}, …………8分 当2m=2, 即m=1时,不等式的解集为{x |x ≠2}, ………9分当2m<2,即m<1时,不等式的解集为{x |x <2m, 或x >2},………………11分综上,当m >1时,不等式的解集为{x |x <2, 或x >2m};当m=1时,不等式的解集为{x |x ≠2}; 当m<1时,不等式的解集为{x |x <2m, 或x 2>}.…………12分 20. 解:(Ⅰ)由题知2213(22)5a a a +=⋅,…………………………1分 又110a =,2131,2a a d a a d =+=+,则 2(222)105(102)d d +=⨯+…………………………3分 解得:41d d ==-或, …………………………4分当4d =时,10(1)446n a n n =+-⨯=+,…………………………5分当1d =-时,10(1)(1)11.n a n n =+-⨯-=-…………………………6分 (Ⅱ)由(Ⅰ)知,当0d<时, |||11|.n n b a n ==-由110n -≥得11n ≤,,11,12n n na nb a n ≤⎧∴=⎨-≥⎩,…………………………8分设数列{}n a 的前n 项和是n S .当11n ≤时, 2(1011)2122n n n n n n T S +--===…………………………9分 当12n ≥时,1112131111()()n n n T S a a a S S S =-+++=--=112n S S -=221111122⨯-⨯-2212n n -=2212202n n -+.…………………11分2221,11,22122012.2n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪≥⎪⎩,…………………12分21. 解:(Ⅰ)依题意,该车前n 年的维修保养费是(1)0.20.2(0.10.1)2n n n n n -+⋅=+,………………2分 则f (n ) =14.4+ (0.10.1)n n ++0.9n ,………………4分20.114.4n n =++ . ………………6分 (Ⅱ)设该车的年平均费用为S 万元,则有2()0.114.4f n n n S n n++==, …………………8分14.41110n n=++≥ 3.4=, …………………10分 仅当14.410n n =,即 n = 12 时,等号成立. …………………………11分答:汽车使用12年报废为宜. ………………………………12分 22.解:(Ⅰ)当1n =时,1111a S a λ==-,显然1λ≠,则111a λ=-,………1分 当2n ≥时,11(1)(1)n n n n n a S S a a λλ--=-=--- 则11n n a a λλ-=-,又0λ≠,……………………2分{}n a ∴是等比数列. 则11()11n n a λλλ-=--,…………………………3分 则2213a a a =,又223a a =,1111a λ==-,则2λ=.12n n a -∴=.…………………4分因为1n n n b a b +=+,所以111221211nn n n n n n n b a b a a b a a a b -------=+=++==++++23321221(2)22n n n n --+=++++=≥ .当1n =时,上式仍然成立.所以 21.2n n b +=. ……6分(Ⅱ) 22log (21)log 2,n nn c b n ∴=-==12.n n n a c n -∴= ……………………………………7分则01211222322n nT n -=⋅+⋅+⋅++⋅ ①12312122232(1)22n n n T n n -∴=⋅+⋅+⋅++-⋅+⋅ ,②………8分①-②得231122222n n n T n --=+++++-⋅122(1)2112nn n n n -=-⋅=-⋅--,……………………9分 (1)21n n T n ∴=-⋅+……………………10分(Ⅲ)()()()111122221121(21)212n n nnn n nn n na d ab ----×===+++++ . ()11121122()212121(21)n n n n n ---=?-++++, ……………12分所以12nn P c c c =+++211111112()22121212121n n -=-+-++-+++++22112121n n n -=-=++. …14分。

江西省萍乡市2024-2025学年高二上学期期中考试数学试卷

江西省萍乡市2024-2025学年高二上学期期中考试数学试卷

A. 2
2
B. 3 2
C. 10 5
D. 15 5
8.已知 O 为坐标原点,双曲线 C:
x2 a2
-
y2 b2
= 1(a
> 0,b
> 0) 的左、右焦点分别是 F1,F2,离
心率为 6 ,点 P ( x1, y1 ) 是 C 的右支上异于顶点的一点,过 F2 作 ÐF1PF2 的平分线的垂线,
2
垂足是 M,| MO |=
线 l 恰有 2 条,则 p 的取值范围为( )
A. 0 < p < 1
B. 0 < p < 2
C. p > 1
D. p > 2
5.已知椭圆 T
:
x2 a2
+
y2 b2
= 1(a
>b
>
0) 的右焦点为 F
,过 F
且斜率为 1 的直线 l 与T
交于
A, B
试卷第11 页,共33 页
两点,若线段 AB 的中点 M 在直线 x + 2 y = 0 上,则T 的离心率为( )
5
6
7
8
答案 A
B
D
A
D
B
C
A
题号 11
12
答案 ABD BC
1.A 【分析】先解出集合 M,再由子集关系求解集合 N 即可.
【详解】由 ln x < 0 得 0 < x < 1,所以 M = {x 0 < x < 1} ,
因为 M Í N ,所以 a < ex 对 "x Î(0,1) 恒成立,
所以 a £ 1 .

高二下学期期中考试理科数学试卷含答案(共5套)

高二下学期期中考试理科数学试卷含答案(共5套)

高二下学期理科数学期中考试卷第I 卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}(){}2|560,|ln 1A x x x B x y x =--≤==-,则AB 等于( )A .[]1,6-B .(]1,6C .[)1,-+∞D .[]2,3 2.复数201811z i i=++在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 已知命题p :存在实数α,β,sin()sin sin αβαβ+=+;命题q :2log 2log 2a a +≥(0a >且1a ≠). 则下列命题为真命题的是( )A .p q ∨B .p q ∧C .()p q ⌝∧D .()p q ⌝∨ 4.已知平面向量,a b 满足3a =, 23b =,且a b +与a 垂直,则a 与b 的夹角为( )A.6π B. 3πC. 23πD. 56π5.设a R ∈,则“1a =”是“直线1l :240ax y +-=与直线2l :()120x a y +++=平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.设实数y x ,满足约束条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x ,则y x z -=2的最大值为( )A .3-B .2-C .1D .27.执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框 中,应填入( ) A .?n k < B .?n k > C .?n k ≥ D .?n k ≤8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .121B .49C .92D .39.某城市关系要好的A , B , C , D 四个家庭各有两个小孩共8人,分别乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A 户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有( )A. 48种B. 36种C. 24种D. 18种 10.已知点D C B A ,,,在同一个球的球面上,2==BC AB ,2=AC ,若四面体ABCD 的体积为332,球心O 恰好在棱DA 上,则这个球的表面积为( )A . π16B .π8 C. π4 D .425π11.P 为双曲线()2222:1,0x y C a b a b-=>上一点, 12,F F 分别为C 的左、右焦点, 212PF F F ⊥,若12PF F ∆的外接圆半径是其内切圆半径的2.5倍,则C 的离心率为( )A .2或3B .2或3C .2D .212.已知函数()f x 是定义在()0,+∞的可导函数,()'f x 为其导函数,当0x >且1x ≠ 时,()()2'01f x xf x x +>-,若曲线()y f x =在1x =处的切线的斜率为1-,则()1f =( )A. 12-B. 0C. 12D. 1第II 卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.2-=⎰**** .14.5(2)(1)x x +-展开式中含3x 项的系数为 **** .(用数字表示) 15.若sin 2cos 24παα⎛⎫-= ⎪⎝⎭,且,2παπ⎛⎫∈ ⎪⎝⎭,则cos2α= **** . 16.对任一实数序列),,,(321 a a a A =,定义新序列),,,(342312 a a a a a a A ---=∆,它的第n 项为n n a a -+1,假设序列)(A ∆∆的所有项都是1,且02212==a a ,则=2a **** .三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且满足()cos 2cos b C a c B =-. (1)求角B 的大小;(2)若b =,求ABC ∆面积的最大值.18.(本小题满分12分)某工厂为了对新研发的产品进行合理定价,将该产品按实现拟定的价格进行试销,得到一组检测数据),(i i y x (6,,2,1 =i )如下表所示:已知变量,x y 具有线性负相关关系,且3961=∑=i ix,48061=∑=i i y ,现有甲、乙、丙三位同学通过计算求得其回归直线方程为:甲:544+=x y ;乙:1064+-=x y ;丙:1052.4+-=x y ,其中有且仅有一位同学的计算是正确的.(1)试判断谁的计算结果正确?并求出,a b 的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取2个,求至少有一个检测数据为“理想数据”的概率.19.(本小题满分12分)已知数列{}n a 满足13a =, 121n n a a n +=-+,数列{}n b 满足12b =, 1n n n b b a n +=+-. (1)证明:{}n a n -是等比数列; (2)数列{}n c 满足()()111n n n n a nc b b +-=++,求数列{}n c 的前n 项的和n T .20.(本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为菱形,,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且//BD 平面AMHN . (1)证明: MN PC ⊥;(2)当H 为PC 的中点, 3PA PC AB ==, PA 与平面ABCD 所成的角为60︒,求二面角P AM N --的余弦值.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>经过点)22,1(P ,且离心率为22. (1)求椭圆C 的方程;(2)设21,F F 分别为椭圆C 的左、右焦点,不经过1F 的直线l 与椭圆C 交于两个不同的点B A ,,如果直线1AF 、l 、1BF 的斜率依次成等差数列,求焦点2F 到直线l 的距离d 的取值范围.22.(本小题满分12分)设函数e R a a x a e x f x,),ln(2)(∈+--=为自然对数的底数.(1)若0>a ,且函数)(x f 在区间),0[+∞内单调递增,求实数a 的取值范围; (2)若320<<a ,判断函数)(x f 的零点个数并证明.高二下学期理科数学期中考试参考答案及评分标准13、2π; 14、10 ; 15、8; 16、100. 11、【解析】由于12PF F ∆为直角三角形,故外心在斜边中线上.由于22b PF a =,所以212b PF a a =+,故外接圆半径为21122b PF a a=+.设内切圆半径为r ,根据三角形的面积公式,有2221122222b b b c c a r a a a ⎛⎫⋅⋅=+++⋅ ⎪⎝⎭,解得2b r ac =+,故两圆半径比为22:2.52b b a a a c ⎛⎫+= ⎪+⎝⎭,化简得()()()1230e e e +--=,解得2e =或3e =.12、【解析】曲线()y f x =在1x =处的切线的斜率为1-,所以()'11f =- ,当0x >且1x ≠时,()()2'01f x xf x x +>-,可得1x >时, ()()2'0,f x xf x +>01x <<时, ()()2'0f x xf x +<,令()()()2,0,,g x x f x x =∈+∞ ()()()()()2'2'2'g x xf x x f x x f x xf x ⎡⎤∴=+=+⎣⎦,可得1x >时,()'0,g x >01x <<时,()'0g x <,可得函数()g x 在1x =处取得极值, ()()()'121'10,g f f ∴=+=, ()()111'122f f ∴=-⨯=,故选C.17、【解析】 (1)由()cos 2cos b C a c B =-,得()sin cos 2sin sin cos B C A C B ⋅=-⋅sin()2sin cos sin B C A B A ∴+=⋅=,又sin 0A ≠, 1cos 2B ∴=, 又0B π<<, 3B π∴=. (2)由余弦定理得2222cos b a c ac B =+-,∴2212a c ac =+-,∵222a c ac +≥,∴12ac ≤,当且仅当a c ==∴11sin 12222ABC S ac B ∆=≤⨯⨯=即ABC ∆面积的最大值为.……………………10分18、解:(1)∵变量y x ,具有线性负相关关系, ∴甲是错误的. 又∵3961=∑=i ix,48061=∑=i i y ,∴80,5.6==y x ,满足方程1064+-=x y ,故乙是正确的.由3961=∑=i ix,48061=∑=i i y ,得8=a ,90=b . ……………………6分(2)由计算得不是“理想数据”有3个,即(5,84),(7,80),(9,68),从6个检测数据中随机抽取2个,共有2615C =种不同的情形,其中这两个检测数据都不是“理想数据”有233C =中情形,故至少有一个检测数据为“理想数据”的概率为:341155P =-=.……………………12分19、【解析】(1)121n n a a n +=-+()()112n n a n a n +∴-+=-,又因为112a -=,所以{}n a n -是首项为2,公比为2的等比数列. …………………4分 (2)由(1)得()11122n n n a n a --=-⋅=,又1n n n b b a n +=+-12n n n b b +∴-=()()()()121112*********n n n n n n n n b b b b b b b b n -----∴=-+-+-+=++++=≥12b =满足上式. 2nn b ∴=()()()()1112111121212121n n n n n n n n n a n c b b +++-===-++++++12231111111111212121212121321n n n n T ++⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭………12分20、【解析】(1)证明:连结AC 交BD 于点O ,连结PO .因为ABCD 为菱形,所以BD AC ⊥,且O 为AC 、BD 的中点,因为PD PB =,所以PO BD ⊥,因为AC PO O =且AC PO ⊂、平面PAC ,所以BD ⊥平面PAC ,因为PC ⊂平面PAC ,所以BD PC ⊥.因为//BD 平面AMHN , BD ⊂平面PBD ,且平面AMHN平面PBD MN =,所以//BD MN ,所以MN PC ⊥. ………………4分 (2)由(1)知BD AC ⊥且PO BD ⊥, 因为PA PC =,且O 为AC 的中点, 所以PO AC ⊥,所以PO ⊥平面ABCD , 所以PA 与平面ABCD 所成的角为PAO ∠, 所以,所以13,22AO PA PO PA ==, 因为3PA AB =,所以36BO PA =. 如图,分别以OA , OB , OP 为,,x y z 轴,建立所示空间直角坐标系, 设6PA =,则()()()()0,0,0,3,0,0,0,3,0,3,0,0O A B C -,()0,3,0,D -()3330,0,33,,0,22P H ⎛⎫- ⎪ ⎪⎝⎭ 所以()9330,23,0,,0,,22DB AH ⎛⎫==- ⎪ ⎪⎝⎭ ()()3,3,0,3,0,33AB AP =-=-.记平面AMHN 的法向量为()1111,,n x y z =,则11111230933022n DB y n AH x z ⎧⋅==⎪⎨⋅=-+=⎪⎩, 令11x =,则110,3y z ==,所以()11,0,3n =,记平面PAB 的法向量为()2222,,n x y z =,则2222223303330n AB x y n AP x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令23x =,则223,1y z ==,所以()23,3,1n =,记二面角P AM N --的大小为θ,θ为锐角 则1212122339cos cos ,13213n n n n n n θ⋅====⋅⋅ 所以二面角P AM N --的余弦值为3913.……………………12分21、解析:(1)由题意,知22111,22a b c a⎧+=⎪⎪⎨⎪=⎪⎩考虑到222a b c =+,解得222,1.a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程为2212x y +=. ……………………3分 (2)设直线l 的方程为y kx m =+,代入椭圆方程2212x y +=, 整理得222(12)42(1)0k x kmx m +++-=.由222(4)8(12)(1)0km k m ∆=-+->,得2221k m >-. ①设11(,)A x y ,22(,)B x y ,则122412kmx x k+=-+,21222(1)12m x x k -=+. 因为(1,0)F -,所以1111AF y k x =+,1221AF y k x =+. 因为1212211y yk x x =+++,且11y kx m =+,22y kx m =+, 所以12()(2)0m k x x -++=.因为直线AB :y kx m =+不过焦点(1,0)F -,所以0m k -≠, 所以1220x x ++=,从而242014km k -+=+,即12m k k=+. ② 由①②得2212()12k k k>+-,化简得||2k > ③ 焦点2(1,0)F 到直线l :y kx m =+的距离211|2|2k d ++===.令t =||2k >t ∈.于是23132()2t d t t t+==+.考虑到函数13()()2f t t t=+在上单调递减,则(1)f d f <<2d <<.所以d的取值范围为2). ……………………12分22、解:(1)∵函数()x f 在区间[)∞+,0内单调递增, ∴01)('≥+-=ax e x f x在区间[)∞+,0内恒成立. 即x ea x-≥-在区间[)∞+,0内恒成立. 记()x ex g x-=-,则01)('<--=-x e x g 恒成立,∴()x g 在区间[)∞+,0内单调递减, ∴()()10=≤g x g ,∴1≥a ,即实数a 的取值范围为[)∞+,1.…………………4分 (2)∵320<<a ,ax e x f x+-=1)(', 记)(')(x f x h =,则()01)('2>++=a x e x h x, 知)('x f 在区间()+∞-,a 内单调递增. 又∵011)0('<-=a f ,1'(1)01f e a=->+, ∴)('x f 在区间()+∞-,a 内存在唯一的零点0x , 即01)('000=+-=ax ex f x , 于是ax ex +=01,()a x x +-=00ln . 当0x x a <<-时,)(,0)('x f x f <单调递减; 当0x x >时,)(,0)('x f x f >单调递增.∴()())ln(200min 0a x a ex f x f x +--==a a ax a x x a a x 3231210000-≥-+++=+-+=,当且仅当10=+a x 时,取等号. 由320<<a ,得032>-a , ∴()()00min >=x f x f ,即函数()x f 没有零点. …………12分高二(下)理科数学期中考试试卷一、单选题(共12题;共60分)1.()()121-1x +=⎰A. 212+π B. 214+πC. 12+πD. 21+π2.如图,在矩形ABCD 中,2AB =,1AD =,以A 为顶点且过点C 的抛物线的一部分在矩形内.若在矩形ABCD 内随机地投一点,则此点落在阴影部分内的概率为()A.12 B. 23 C. 35D. 34 3.设复数z 满足()11z i i +=-,则z =() A. 2i -- B. 1i -- C. 2i -+ D. 1i -+4.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为[42ππ,),则点P横坐标的取值范围为()A. 12⎛⎤-∞ ⎥⎝⎦, B. []10-,C. []01, D. 12⎡⎫-+∞⎪⎢⎣⎭, 5.已知函数,在区间(0,1)内任取两个实数,,且,若不等式恒成立,则实数的取值范围是A. (15,B. [15,C. (,6) D. (,66.若,则下列不等式恒成立的是 ( )A.B.C. D.7.函数f(x)=x 3+ax 2+bx +a 2在x=1处的极值为10,则数对(a,b )为( )A. (-3,3)B. (-11,4)C. (4,-11)D.(-3,3)或(4,-11) 8.已知对于任意恒成立,则实数a 的最大值为( )A. 0B. 1C.D.9.函数f(x)= 的大致图象是()A. B.C. D.10.已知函数,其导函数的图象如图,则函数的极小值为()A. cB. a+b+cC. 8a+4b+cD. 3a+2b11.设函数的导函数为,且,,则下列不等式成立的是()A. B.C. D.12.若函数在内无极值,则实数的取值范围是()A. B. C. D.二、填空题(共4题;共20分)13.若,则= ________14.球的直径为,当其内接正四棱柱的体积最大时的高为________.15.已知函数在上为减函数,则实数的取值范围是________.16.若函数在上有最小值,则实数的取值范围为________.三、解答题(共6题;共70分)17.已知.(满分10分) (1)若时,求曲线在点处的切线方程;(2)若,求函数的单调区间.18.已知函数,.(满分10分)(1)若,判断函数是否存在极值,若存在,求出极值;若不存在,说明理由;(2)设函数,若至少存在一个,使得成立,求实数的取值范围.19.已知三棱锥A BCD -如图所示,其中90BAD BDC ∠=∠=︒,ADB DBC ∠=∠,面ABD 垂直面CBD.(满分14分)(1)证明:AB DC ⊥;(2)若E 为线段BC 的中点,且1AD =,tan 6CAD ∠=,求二面角B AD E --的余弦值.20.已知椭圆C1的方程为+ =1,双曲线C2的左、右焦点分别是C1的左、右顶点,而以双曲线C2的左、右顶点分别是椭圆C1的左、右焦点.(满分12分)(1)求双曲线C2的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C2相交于不同的两点E、F,若△OEF的面积为2 ,求直线l的方程.21.已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.(满分12分)22.已知函数f(x)=(a﹣)x2+lnx(a为实数).(满分12分)(1)当a=0时,求函数f(x)在区间[ ,e]上的最大值和最小值;(2)若对任意的x∈(1,+∞),g(x)=f(x)﹣2ax<0恒成立,求实数a的取值范围.19、(满分14分)20. (满分12分)21、(满分12分)答案解析部分1,B 2,B 3,A 4,D 5,B 6,C 7,C8.【答案】C【解析】【解答】依题意得令,则,当时,,当时,,所以函数先增后减,最小值为,所以.故答案为:C.9.【答案】C【解析】【解答】解:∵f(x)= ,当x=0时,f(0)=﹣3,故排除AB当x= 时,f()=0,故排除D,故选:C10.【答案】C【解析】【解答】由导函数的图象可知,在处取得极小值,.f(2)=8a+4b+c故答案为:C。

学年下学期高二数学期中考试理科试题

学年下学期高二数学期中考试理科试题

学年下学期高二数学期中考试理科试题Modified by JACK on the afternoon of December 26, 20202016-2017学年下学期高二数学期中考试试题(理科)以下公式或数据供参考: ⒈1221;ni ii nii x y nx ya y bxb xnx==-⋅=-=-∑∑.⒉对于正态总体2(,)N μσ取值的概率:在区间(,)μσμσ-+、(2,2)μσμσ-+、(3,3)μσμσ-+内取值的概率分别是68.3%,95.4%,99.7%.3、参考公式4、))()()(()(22d b c a d c b a n K bc ad ++++=- n=a+b+c+d一、选择题:本大题共12小题,每小题5分,共60分.1.已知函数()3sin 2cos f x x x x =+-的图象在点()()00,A x f x 处的切线斜率为3,则0tan x 的值是( )A .12B .12-.2、 某学习小组男女生共8人,现从男生中选2人,女生中选1人,分别去做3种 不同的工作,共有90种不同的选法,则男女生人数为( )A : 2,6B :3,5C :5,3D :6,23、为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是( )(A) 1l 与2l 重合 (B) 1l 与2l 一定平行 (C) 1l 与2l 相交于点(,)x y (D) 无法判断1l 和2l 是否相交4、设()52501252x a a x a x a x -=++,那么024135a a a a a a ++++的值为( )A : -122121 B :-6160C :-244241D :-1 5、若()......x a a x a x a x -=++++929012915,那么......a a a a ++++0129的值是 ( )B.94C. 95D. 966、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A. 32 B. 31 C. 1 D. 07、有一台X型号的自动机床在一个小时内不需要工人照看的概率为0.8,有四台这种型号的机床独立的工作,则在一小时内至多两台机床需要工人照看的概率为( )A :B :C :D :8、已知函数()f x ,()g x 满足()11f =,()11f '=,()12g =,()11g '=,则函数()()()2f x F xg x =的图象在1x =处的切线方程为( ) A .3450x y -+= B .3450x y --= C. 4350x y --= D .4350x y -+=9、如图,在杨辉三角形中,斜线l 的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,记此数列的前n 项之和为n S ,则21S 的值为( )A .66B .153C .295D .36110、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种11、某厂生产的零件外直径ξ~N (10,),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为和,则可认为( )A .上午生产情况正常,下午生产情况异常B .上午生产情况异常,下午生产情况正常C .上、下午生产情况均正常D .上、下午生产情况均异常12、甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是32,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于( ) A.2027B.49C.827D.1627二、填空题(本大题共4小题,每小题5分,共20分) 13、已知函数()()221f x x xf '=+,则()1f ' .14、在求两个变量x 和y 的线性回归方程过程中,计算得51i i x =∑=25, 51i i y =∑=250,521ii x=∑=145, 51i i i x y =∑=1380,则该回归方程是 .15、某城市的交通道路如图,从城市的东南角A 不经过十字道路维修处C ,最近的走法种数有_________________。

2021-2022学年度高二第二学期期中考试(理科)数学试题

2021-2022学年度高二第二学期期中考试(理科)数学试题

2021-2022学年度⾼⼆第⼆学期期中考试(理科)数学试题2021-2022学年最新⾼⼆第⼆学期期中考试数学试卷(理)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。

第Ⅰ卷1⾄2页,第Ⅱ卷3⾄4页。

全卷满分150分。

考试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。

第Ⅰ卷1⾄2页,第Ⅱ卷3⾄4页。

2. 答题前,考⽣务必将⾃⼰的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上⽆效。

第Ⅰ卷⼀、选择题:该题共12个⼩题,每个⼩题有且只有⼀个选项是正确的,每题5分,共60分。

1.曲线y=11x x -+在点(0,⼀1)处的切线与两坐标轴围成的封闭图形的⾯积为() A .41 B .-12 C .43 D .182.)('x f 是)(x f 的导函数,)('x f 的图象如右图所⽰,则)(x f 的图象只可能是()A .B .C .D .3.332除以9的余数是()A .8B .4C .2D .14.将⼀个四棱锥的每个顶点染上⼀种颜⾊,并使同⼀条棱上的两个端点异⾊,若只有4种颜⾊可供使⽤,则不同的染⾊⽅法总数有( )A.48种B.72种C.96种D.108种 5.某班班会准备从甲、⼄等7名学⽣中选派4名学⽣发⾔,要求甲、⼄两⼈⾄少有⼀⼈参加,当甲⼄同时参加时,他们两⼈的发⾔不能相邻,那么不同的发⾔顺序的种数为()A .360B .520C .600D .7206.某次联欢会要安排3个歌舞类节⽬,2个⼩品类节⽬和1个相声类节⽬的演出顺序,则同类节⽬不相邻的排法种数是()A .72B .120C .144D .1687.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p ,则P(-1<ξ<0)等于( ) A. 12p B .1-p C .1-2p D. 12-p 8.从1,2,3,…,9这9个数中任取5个不同的数,则这5个数的中位数是5的概率等于()5524 (7979)A B C D 9.已知与之间的⼀组数据:则与的线性回归⽅程必过点A .(2,2)B .(1,2)C .(1.5,0)D .(1.5,5)10.下⾯说法:①如果⼀组数据的众数是5,那么这组数据中出现次数最多的数是5;②如果⼀组数据的平均数是0,那么这组数据的中位数为0;③如果⼀组数据1,2,x ,4的中位数是3,那么x=4;④如果⼀组数据的平均数是正数,那么这组数据都是正数.其中错误的个数是()A .1B .2C .3D .411.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数⼀元⼆次⽅程02=++q px x 的两个根,那么p q ,的值分别是()A.45p q ==,B.43p q =-=,C.45p q =-=,D.43p q ==,12. 实数x 、y 满⾜3x 2+2y 2=6x ,则x 2+y 2的最⼤值为() A 、27 B 、4 C 、29 D 、5 第Ⅱ卷⼆、填空题:该题共4个⼩题,每题5分,共20分,请将答案规范书写在答题卡的相应位置。

高二第二学期期中考试理科数学试卷含答案

高二第二学期期中考试理科数学试卷含答案

高二(下)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集是实数集R ,2{|2730}A x x x =-+≤,2{|0}B x x a =+<,若()R C A B B =,则实数a 的取值范围是( )A .1(,)4-+∞ B .1(,]4-∞- C .1[,)4-+∞ D .1(,)4-∞- 2.设复数122iz i-=-(其中i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知a ,b 都是实数,则“4a b +≥”是“224a b +≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分不必要条件 D . 既不充分也不必要条件 4.设1sin cos 2x x +=-(其中(0,)x π∈),则cos 2x 的值为( )A B .5.已知l 、m 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A .若l m ,l α,则m α B .若αβ⊥,l α,则l β⊥ C.若l β⊥,αβ⊥,则l α D .若l m ⊥,l α⊥,且m β⊥,则αβ⊥6.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .36128π+B .128π C.36 D .3664π+7.某程序框图如图所示,若输入的100N =,该程序运行后输出的结果为( )A .50B .1012 C.51 D .10328.某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为( ) A .8 B .16 C.24 D .609.定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,(2)3f -=-,数列{}n a ,满足11a =-,且2n n S a n =+(其中n S 为{}n a 的前n 项和),则56()()f a f a +=( ) A .-2 B .3 C.-3 D .210.如图为函数()f x =01x <<)的图象,其在点(,())M t f t 处的切线为l ,l 与y 轴和直线1y =分别交于点P 、Q ,点(0,1)N ,若PQN ∆的面积为b 时的点M 恰好有两个,则b 的取值范围为( )A .110,427⎡⎤⎢⎥⎣⎦B .110(,]227 C.110(,]227 D .18(,)427 11.设点P 是椭圆22221x y a b+=(0a b >>)上一点,1F ,2F 分别是椭圆的左、右焦点,l 为12PF F ∆的内心,若11122IPF IPF IF F S S S ∆∆∆+=,则该椭圆的离心率是( )A .12 B.2C.2 D .14 12.在直三棱柱111A B C ABC -中,2BAC π∠=,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的取值范围为( ) A.,1)5 B.5C.(5 D.[5第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分 13.设4(1)x -的展开式中2x 的系数为A ,则A = .14.设a ,b 为两非零向量,且满足||||2a b +=,222a b a b ⋅=⋅,则两向量a ,b 的夹角的最小值为 .15.已知正数x ,y 满足1910x y x y+++=,则x y +的最大值为 . 16.设点(,)M x y 的坐标满足不等式组001x y x y ≥⎧⎪≤⎨⎪-≤⎩,点(,)m n 在点(,)M x y 所在的平面区域内,若点(,)N m n m n +-所在的平面区域的面积为S ,则S 的值为 .三、解答题 :共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在ABC ∆中,角A 、B 、C 的所对边的长分别为a 、b 、c,且a =3b =,sin 2sin C A =. (I )求c 的值; (II )求sin(2)3A π-的值.18. 设函数()kx f x x e =⋅(0k ≠)(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 的单调区间.19. 已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (I )求n a 及n S ; (II )令211n n b a =-(*n N ∈),求数列{}n b 的前n 项和n T .20. 如图(1)在等腰ABC ∆中,D ,E ,F 分别是AB ,AC 和BC 边的中点,120ACB ∠=︒,现将ABC ∆沿CD 翻折成直二面角A DC B --.(如图(2))(I )试判断直线AB 与平面DEF 的位置关系,并说明理由; (II )求二面角E DF C --的余弦值;(III )在线段BC 是否存在一点P ,但AP DE ⊥?证明你的结论.21. 已知焦点在x 轴上的椭圆C 过点(0,1),且离心率为2,Q 为椭圆C 的左顶点. (I )求椭圆C 的标准方程;(II )已知过点5(,0)6-的直线l 与椭圆C 交于A ,B 两点. (i )若直线l 垂直于x 轴,求AQB ∠的大小;(ii )若直线l 与x 轴不垂直,是否存在直线l 使得QAB ∆为等腰三角形?如果存在,求出直线l 的方程;如果不存在,请说明理由.22. 已知函数2()ln()f x x ax =(0a >)(1)若2'()f x x ≤对任意的0x >恒成立,求实数a 的取值范围; (2)当1a =时,设函数()()f x g x x =,若1x ,21(,1)x e∈,121x x +<,求证41212()x x x x <+.试卷答案一、选择题1-5:CDAAD 6-10:AACBD 11、12:AA 二、填空题 13.6 14.3π15.8 16.1 三、解答题17.解:(I )∵a =sin 2sin C A =,∴根据正弦定理sin sin c a C A =得:sin 2sin Cc a a A===(II )∵a =3b =,c =∴由余弦定理得:222cos 2c b a A bc +-==, 又A 为三角形的内角,∴sin 5A ==, ∴4sin 22sin cos 5A A A ==,223cos 2cos sin 5A A A =-=,则4sin(2)sin 2coscos 2sin33310A A A πππ--=-=. 18.解:(1)'()(1)kx kx kxf x e kxe kx e =+=+(x R ∈),且'(0)1f =,∴切线斜率为1, 又(0)0f =,∴曲线()y f x =在点(0,(0))f 处的切线方程为0x y -=.(2)'()(1)kxf x kx e =+(x k ∈),令'()0f x =,得1x k=-, ○1若0k >,当1(,)x k ∈-∞-时,'()0f x <,()f x 单调递减;当1(,)x k ∈-+∞时,'()0f x >, ()f x 单调递增.○2若0k <,当1(,)x k ∈-∞-时,'()0f x >,()f x 单调递增;当1(,)x k∈-+∞时,'()0f x <, ()f x 单调递减.综上所述,0k >时,()f x 的单调递减区间为1(,)k -∞-,单调递增区间为1(,)k-+∞; 0k <时,()f x 的单调递增区间为1(,)k -∞-,单调递减区间为1(,)k-+∞19.解:(I )设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所有有112721026a d a d +=⎧⎨+=⎩,解得13a =,2d =,所有32(1)21n a n n =+-=+;2(1)3222n n n S n n n -=+⨯=+. (II )由(I )知21n a n =+,所以221111111()1(21)14(1)41n n b a n n n n n ===⋅=--+-++, 所以数列{}n b 的前n 项和11111111(1)(1)42231414(1)n n T n n n n =-+-++-=-=+++, 即数列{}n b 的前n 项和4(1)n nT n =+.20.解:(I )如图1在ABC ∆中,由E ,F 分别是AC ,AB 中点,得EF AB ,又AB ⊄平面DEF ,EF ⊂平面EDF ,∴AB 平面DEF .(II )∵AD CD ⊥,BD CD ⊥,∴ADB ∠是二面角A CD B --的平面角,∴AD BD ⊥, ∴AD ⊥平面BCD , 取CD 的点M ,使EMAD ,∴EM ⊥平面BCD ,过M 作MN DF⊥于点N ,连接EN ,则EN DF ⊥, ∴MNE ∠是二面角E DF C --的平面角.设CD a =,则2AC BC a ==,AD DB ==, 在DFC ∆中,设底边DF 上的高为h 由Rt EMN ∆中,122EM AD ==,124MN h ==,∴tan 2MNE ∠= 从而cos 5MNE ∠=(III )在线段BC 上不存在点P ,使AP DE ⊥,证明如下:在图2中,作AG DE ⊥,交DE 于G 交CD 于Q 由已知得120AED ∠=︒,于是点G 在DE 的延长线上,从而Q 在DC 的延长线上,过Q 作PQ CD ⊥交BC 于P , ∴PA ⊥平面ACD ,∴PQ DE ⊥,∴DE ⊥平面APQ ,∴AP DE ⊥. 但P 在BC 的延长线上.图1图221.解:(I )设椭圆C 的标准方程为22221x y a b+=(0a b >>),且222a b c =+.由题意,椭圆C 过点(0,1)1b =,c a =. 所以24a =.所以,椭圆C 的标准方程为2214x y +=. (II )由(I )得(2,0)Q -.设11(,)A x y ,22(,)B x y .(i )当直线l 垂直于x 轴时,直线l 的方程为65x =-. 由226514x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,解得6545x y ⎧=-⎪⎪⎨⎪=±⎪⎩即64(,)55A -,64(,)55B --(不妨设点A 在x 轴上方). 则直线AQ 的斜率1,直线BQ 的斜率1-.因为直线AQ 的斜率与直线BQ 的斜率的乘积为1-,所以AQ BQ ⊥,所以2AQB π∠=.(ii )当直线l 与x 轴不垂直时,由题意可设直线AB 的方程为6()5y k x =+(0k ≠)由226()514y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:2222(25100)2401441000k x k x k +++-=. 因为点6(,0)5-在椭圆C 的内部,显然0∆>.212221222402510014410025100k x x k k x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩因为11(2,)QA x y =+,22(2,)QB x y =+,116()5y k x =+,226()5y k x =+, 所以22212121212636(2)(2)(1)(2)()4525QA QB x x y y k x x k x x k ⋅=+++=++++++ 2222222144100624036(1)(2)()402510052510025k k k k k k k -=+⨯++-++=++ ∴QA QB ⊥.所以QAB ∆为直角三角形.假设存在直线l 使得QAB ∆为等腰三角形,则||||QA QB =. 取AB 的中点M ,连接QM ,则QM AB ⊥. 记点6(,0)5-为N .另一方面,点M 的横坐标2224520M k x k =-+,所以点M 的纵坐标26520M ky k=-+. 所以22222222101666660132(,)(,)0520520520520(520)k k k k QM QN k k k k k ++⋅=⋅=≠+++++所以QM 与NM 不垂直,矛盾.所以当直线l 与x 轴不垂直时,不存在直线l 使得QAB ∆为等腰三角形.22.解:(1)'()2ln()f x x ax x =+ 2'()2ln()f x x ax x x =+≤,及2ln()1ax x +≤在0x >上恒成立 设()2ln()1u x ax x =+-,2'()10u x x=-=,2x =,2x >时,单调减,2x <单调增,所以2x =时,()u x 有最大值(2)u(2)0u ≤,2ln 212a +≤,所以02a <≤(2)当1a =时,()()ln f x g x x x x ==,'()1ln 0g x x =+=,1x e=, 所以在1(,)e +∞上()g x 是增函数,1(0,)e 上是减函数因为11211x x x e<<+<,所以121212111()()ln()()ln g x x x x x x g x x x +=++>=即121121ln ln()x x x x x x +<+ 同理122122ln ln()x x x x x x +<+ 所以1212121212122121ln ln ()ln()(2)ln()x x x x x xx x x x x x x x x x +++<++=+++ 又因为122124x x x x ++≥,当且仅当“12x x =”时,取等号11 又1x ,21(,1)x e ∈,121x x +<,12ln()0x x +< 所以12121221(2)ln()4ln()x x x x x x x x +++≤+ 所以1212ln ln 4ln()x x x x +<+ 所以:41212()x x x x <+。

高二上学期期中考试数学试题(带答案)

高二上学期期中考试数学试题(带答案)

高二上学期期中考试数学试题(带答案)高二上学期期中考试数学试题(带答案)注:题号后(A)表示1-7班必做,(B)表示8班必做。

)完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.设$a,b,c\in R$,且$a>b$,则()A.$ac>bc$B.$\frac{1}{a}<\frac{1}{b}$C.$a^2>b^2$D.$a^3>b^3$2.已知数列$\{a_n\}$是公差为2的等差数列,且$a_1,a_2,a_5$成等比数列,则$a_2=$()A.$-2$B.$-3$C.$2$D.$3$3.已知集合$A=\{x\in R|x^2-4x-12<0\},B=\{x\in R|x<2\}$,则$A\cap B=$()A.$\{x|x<6\}$B.$\{x|-2<x<2\}$C.$\{x|x>-2\}$D.$\{x|2\leq x<6\}$4.若变量$x,y$满足约束条件$\begin{cases}x+y\leq 4\\x\geq 1\end{cases}$,则$z=2x+y$的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和55.已知等比数列$\{a_n\}$的前三项依次为$a-1,a+1,a+4$,则$a_n=$A.$4\cdot (\frac{3}{2})^{n-1}$B.$4\cdot (\frac{2}{3})^{n-1}$C.$4\cdot (\frac{3}{2})^{n-2}$D.$4\cdot (\frac{2}{3})^{n-2}$6.在$\triangle ABC$中,边$a,b,c$的对角分别为$A,B,C$,且$\sin^2 A+\sin^2 C-\sin A\sin C=\sin^2 B$。

高二数学(理)期中联考试题及答案

高二数学(理)期中联考试题及答案

高二期中联考 数学(理) 试 题本试题卷共2页, 共22小题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.答题时请按要求用笔.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在稿纸试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 第Ⅰ卷(60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 命题“若21x =,则1x =”的逆否命题为( )A .若1x ≠,则11x x ≠≠-或B .若1x =,则11x x ==-或C .若1x ≠,则11x x ≠≠-且D .若1x =,则11x x ≠≠-且 2. 已知参加某次考试的10万名理科考生的数学成绩ξ近似地服从正态分布(70,25)N ,估算这些考生中数学成绩落在(75,80]内的人数为( ) (附:2~(,)Z N μσ,则()0.6826,(22)0.9544P Z P Z μσμσμσμσ-<≤+=-<≤+=)A .4560B .13590C . 27180D . 311740 3.对任意的实数x ,若[]x 表示不超过x 的最大整数,则“1x y -<”是“[][]x y =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.292)x展开式中含1x的项是( ) A .第8项 B .第9项 C .第10项 D .第11项 5.CPI 是居民消费价格指数(consumer price index)的简称.居民消费价格指数,是一个反映居民家庭一般所购买的消费品价格水平变动情况的宏观经济指标.右图是根据统计局发布的2018年1月—7月的CPI 同比增长与环比增长涨跌幅数据绘制的折线图.(注:2018 年2月与2017年2月相比较,叫同比;2018年2 月与2018年1月相比较,叫环比)根据该折线图,则下列结论错误的是( ) A .2018年1月—7月CPI 有涨有跌B .2018年2月—7月CPI 涨跌波动不大,变化比较平稳C .2018年1月—7月分别与2017年1月一7月相比较,1月CPI 涨幅最大D .2018年1月—7月分别与2017年1月一7月相比较,CPI 有涨有跌6. 已知双曲线22221x y a b -=-的离心率为135,则它的渐近线为( )A .513y x =±B .135y x =±C .125y x =±D .512y x =± 7. 为了了解奥运五环及其内部所占面积与单独五个圆环及其内部面积之和的比值P ,某同学设计了如右图所示的数学模型,通过随机模拟的方法,在长为8,宽为5的矩形内随机取了N 个点,经统计落入五环及其内部的点的个数为n ,若圆环的半径为1,则比值P 的近似值为( )A .325n N π B .32n N π C .8nNπ D .532nNπ8.注:2K 的观测值()()()()()()()n ad bc a b a c k n a b c d a c b d a c b d a b c d-==--++++++++. 对于同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组是( )A .45,15a c ==B .40,20a c ==C . 35,25a c ==D .30,30a c ==9.如图,在平行六面体1111ABCD A B C D -中,底面是边长为2的正方形,若1160A AB A AD ∠=∠=,且13A A =,则1A C 的长为( )A B .D10.已知点A (1,2)在抛物线2:2C y px =,过焦点F C 相交于,P Q两点,且,P Q 两点在准线上的投影分别为,M N 两点,则三角形MFN 的面积MFN S ∆=( )A .83 B .163C .11.用五种不同颜色(颜色可以不全用完)给三棱柱ABC DEF -的六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色种数有( ) A .840 B .1200 C . 1800 D .192012.历史上,许多人研究过圆锥的截口曲线.如图,在圆锥中,母线与旋转轴夹角为30,现有一截面与圆锥的一条母线垂直,与旋转轴的交点O 到圆锥顶点M 的距离为1,对于所得截口曲线给出如下命题: ①曲线形状为椭圆;②点O 为该曲线上任意两点最长距离的三等分点;③该曲线上任意两点间的最长距离为32其中正确命题的序号为 ( )A .①②④B .①②③④C .①②③D .①④第Ⅱ卷(90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.总体由编号为01,02,,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为___________.14.已知向量(1,2,1)a =-,(2,2,0)b =-,则a 在b 方向上的投影为________.15.右图中的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的平均数为17,乙组数据的中位数为17,则x y +的值为___________.16.在平面直角坐标系xOy 中,点(1,0)A ,动点M 满足以MA 为直径的圆与y 轴相切,过A作直线(1)250x m y m +-+-=的垂线,垂足为B ,则MA MB +的最小值为___________. 三、 解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知命题P :实数p 使得二项分布ξ~(5,)B p 满足(3)(4)P P ξξ=>=成立;命题Q :实数p 使得方程22132x y p p+=-表示焦点在x 轴上的椭圆.若P Q ∧为假命题,P Q ∨为真命题,求实数p 的取值范围.18.(本小题满分12分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (Ⅰ)求tan C 的值;(Ⅱ)若ABC ∆的面积为3,求b 的值.19.(本小题满分12分)已知等差数列{}n a 中,82=a ,前10项和10185S =.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若从数列{}n a 中依次取出第 ,,,,,n 2842项,按原来的顺序排列成一个新的数列,试求新数列的前n 项和n A .20.(本小题满分12分)某农科所发现,一种作物的年收获量s (单位:kg )与它“相近”作物的株数n 具有相关关系(所谓两株作物“相近”是指它们的直线距离不超过1m ),并分别记录了相近作物的株数为1,2,3,5,6,7时,该作物的年收获量的相关数据如下:(Ⅰ)根据研究发现,该作物的年收获量s 可能和它“相近”作物的株数n 有以下两种回归方程:2;s bn a s bn a =+=+①②,利用统计知识,结合相关系数r 比较使用哪种回归方程更合适;(Ⅱ)农科所在如右图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每个小正方形的面积为1,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以(......Ⅰ.)中选择的回归方程计算所得数据为依据..................) 参考公式:线性回归方程为y bx a =+,其中121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-,相关系数()()niix x y y r --=∑;2.65≈,61()()664iii w w s s =--=-∑43≈,其中2i i w n =.21.(本小题满分12分)如图,四棱锥P ABCD -中,平面PAC ⊥底面ABCD ,且P 在底面正投影点在线段AC 上,122BC CD AC ===,3ACB ACDπ∠=∠=. (Ⅰ)证明:AP BD ⊥;(Ⅱ)若AP =AP 与BC A BP C --的余弦值.22.(本小题满分12分)已知椭圆2222:1(0)x y M a b a b+=>>的左焦点为1(1,0)F -,过点1F 的直线l 交椭圆于A B 、两点,O 为坐标原点.(Ⅰ)若l 的斜率为1,P 为AB 的中点,且OP 的斜率为34-,求椭圆M 的方程; (Ⅱ)连结AO 并延长,交椭圆于点C ,若椭圆的长半轴长a 是大于1的给定常数,求ABC ∆的面积的最大值()S a .高二联考数学试题(理科)参考答案及评分标准二、填空题13. 01 14. 15. 10 16.3 三、解答题17. 对于命题P :由(3)(4)P P ξξ=>=知,3324455(1)(1)C p p C p p ->-且(0,1)p ∈,得2(0,)3p ∈. ……2分对于命题Q :由3(2)032p p p p->⎧⎨>-⎩得1(,2)2p ∈. ……4分P Q ∧为假命题,P Q ∨为真命题,则,P Q 一真一假, ……5分若P 真Q 假,则2(0,)3p ∈且1(,][2,)2p ∈-∞+∞,得1(0,]2p ∈. ……7分若Q 真P 假,则1(,2)2p ∈且2(,0][,)3p ∈-∞+∞,得2[,2)3p ∈. ……9分综上可知,满足条件的实数p 的取值范围是1(0,]22[,2)3. ……10分18.(Ⅰ)由22212b ac -=及正弦定理得2211sin sin 22B C -=,∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos2sin 22sin cos B C C C -==,由sin 0C ¹解得tan 2C =; ……6分(Ⅱ)由tan 2C =,(0,)C π∈得sin 5C =,cos 5C =,又∵sin sin()sin()4B A C C π=+=+,∴sin B =,由正弦定理得c =,又∵4A π=,1sin 32bc A =,∴bc =,故3b =. ……12分19.(Ⅰ)由题意得,解得,所以.……6分 (Ⅱ),……8分则==……12分20.(Ⅰ)1(123567)46n =+++++= 16s =(60+55+53+46+45+41)50= ………1分 61()()(3)10(2)5(1)31(4)2(5)3(9)84iii n n s s =--=-⨯+-⨯+-⨯+⨯-+⨯-+⨯-=-∑622222221()(3)(2)(1)12328ii n n =-=-+-+-+++=∑622222221()1053(4)(5)(9)256ii s s =-=+++-+-+-=∑………3分17.950.9937588r ∴==-≈-=-,2830.96586r ==-≈- ………5分知12r r >,回归方程①更合适,(Ⅱ)由(Ⅰ)84328b -==-,则503462a s bn =-=+⨯= 故所求的线性回归方程为362s n =-+ ………7分结合图形可知当2,3,4n =时,与之相对应56,53,50s = ………8分41(56)(2)164P s P n =====,81(53)(3)162P s P n =====41(50)(4)164P s P n =====……10分∴()56535053424E s =⨯+⨯+⨯=(kg ) ………12分21.(Ⅰ)如图,连接BD 交AC 于O ∵BC CD =,AC 平分BCD ∠∴AC BD ⊥. ………2分∵平面PAC ⊥底面ABCD ,平面PAC 底面=ABCD AC , ∴BD ⊥平面PAC ∵AP ⊂平面PAC ∴AP BD ⊥. ………4分 (Ⅱ)作PE AC ⊥于E ,则PE ⊥底面ABCD ∴PE BD ⊥ ………5分以O 为坐标原点,,,OB OC EP 的方向分别为,,x y z 轴 的正方向,建立如图所示的空间直角坐标系O xyz -cos13OC CD π==,而4AC = 则3AO AC OC =-=又sin3OD CD π==故(0,3,0)A -,B ,(0,1,0)C ,(D ………6分设(0,,)(0)P y z z > 由5AP =22(3)5y z ++= ①而(0,3,)AP y z =+ (BC =-由cos ,AP BC <>=5= ② 由①②可知及P 投影位置可知1,1y z =-= ∴(0,1,1)P - ………8分∴(3,3,0)AB =,(1,1)BP =-,(BC =设平面ABP 的法向量为1111(,,)n x y z =由1100n AB n BP ⎧=⎪⎨=⎪⎩即11111300y y z ⎧+=⎪⎨-+=⎪⎩取11y =-得1(3,1,2)n =- ………10分 同理可得BCP 的一个法向量为2(3,3,6)n = ………11分∴121212cos ,42243n n n n n n <>=== 故钝二面角A BP C --的余弦值为4-………12分22.(Ⅰ)设112200(,),(,),(,)A x y B x y P x y ,则2211221x y a b +=,2222221x y a b+=,21211y y x x -=-. 由此可得2122121221()1()b x x y y a y y x x +-=-=-+-; ………2分因为1202x x x +=,1202y y y +=,0034y x =-,所以2234b a = ………3分 又由左焦点为(1,0)-,故221a b -=,因此224,3a b ==.所以M 的方程为22143x y += ………5分 (Ⅱ)因为椭圆M 的半焦距1c =,所以221a b -=,设1122(,),(,)A x y B x y ,直线l 的方程为1x my =-,由方程组222211x y a b x my ⎧+=⎪⎨⎪=-⎩消去x 得:2222222()2(1)0a b m y b my b a +-+-=,2122222,b m y y a b m ∴+=+22412222222(1)b a b y y a b m a b m --==++,且0∆>恒成立,………7分 连结OB ,由OA OC =知2ABCAOBS S=,112ABCSOF y y ∴=⋅-=, ………9分t =,则222222222222221(1),1(1)1ABC ab t ab t ab m t t S a b t b t b t t=-≥∴===+-++, ①若11b ≥,即1a <≤,则212b t b t+≥=,当且仅当1t b =,即m =时,max ()()ABC S a S ∆==; ……… 10分②若101b <<,即a >21()f t b t t=+,则1t ≥时,()f t 在[1,)+∞上单调递增,所以22min [()](1)1f t f b a ==+=,当且仅当1t =,即0m =时,2max 2(1)()()ABC a S a S a∆-==;综上可知:2()2(1),a S a a a a ⎧<≤⎪=⎨->⎪⎩ (12)分。

高二数学期中考试试题及答案

高二数学期中考试试题及答案

高二数学期中考试试题及答案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高二数学期中考试试题及答案高二数学期中考试试题及答案参考高二是承上启下的一年,是成绩分化的分水岭,成绩都是往往形成两极分化:行则扶摇直上,不行则每况愈下。

高二下学期期中考试数学(理)答案

高二下学期期中考试数学(理)答案

答案和解析1.【答案】B【解析】解:∵A={x|0<x<2},B={x|x2≥1}={x|x≥1或x≤-1},∴∁R B={x|-1<x<1},∴A∩(∁R B)={x|0<x<1}.故选:B.根据补集、交集的定义即可求出.本题考查了集合的化简与运算问题,是基础题目.2.【答案】D【解析】解:∵(2a+i)(1+i)=(2a-1)+(2a+1)i在复平面内所对应的点在虚轴上,∴2a-1=0,即a=.故选:D.利用复数代数形式的乘除运算化简,再由实部为0求得a值.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.【答案】B【解析】解:设“从正方形ABCD中任取一点P,则点P落在该圆中“为事件A,由几何概型中的面积型可得:P(A)===,故选:B.由几何概型中的面积型及圆、正方形的面积公式得:P(A)===,得解.本题考查了几何概型中的面积型及圆、正方形的面积公式,属中档题.4.【答案】A【解析】解:函数f(-x)=-xcos(-x)-(-x)3=-xcosx+x3=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除C,D,f()=cos-()3=-()3<0,排除B,故选:A.判断函数的奇偶性和图象的对称性,利用特殊值进行排除即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的关系以及特殊值,结合排除法是解决本题的关键.5.【答案】B【解析】解:根据题意,设等比数列{a n}的公比为q,若2a2为3a1和a3的等差中项,则有2×2a2=3a1+a3,变形可得4a1q=3a1+a1q2,即q2-4q+3=0,解得q=1或3;又a2-a1=2,即a1(q-1)=2,则q=3,a1=1,则a n=3n-1,则有a4=33=27;故选:B.根据题意,设等比数列{a n}的公比为q,由2a2为3a1和a3的等差中项,可得2×2a2=3a1+a3,利用等比数列的通项公式代入化简为q2-4q+3=0,解得q,又a2-a1=2,即a1(q-1)=2,q≠1,分析可得a1、q的值,解可得数列{a n}的通项公式,将n=4代入计算可得答案.本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.6.【答案】D【解析】解:由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大,由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为=0.1,=0.16,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,故A,B,C错误;由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67,故D正确;故选:D.根据茎叶图的知识以及样本来估计总体,进行合理的评价,恰当的描述即可.本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.7.【答案】A【解析】解:根据函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象,可得A=1,•=-,∴ω=2.再利用五点法作图可得2•+φ=π,求得φ=,∴f(x)=sin(2x+).为了得到g(x)=sin(ωx+)=sin(2x+)的图象,只需将f(x)的图象上所有点向右平移个单位长度,即可,故选:A.由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得f(x)得解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.【答案】C【解析】解:由程序框图可得:m=2a-3,当i的值为1时,m=2(2a-3)-3=4a-9,当i的值为2时,m=2(4a-9)-3=8a-21,当i的值为3时,m=2(8a-21)-3=16a-45,当i的值为4时,m=2(16a-45)-3=32a-93,此时不满足循环条件,输出m=32a-93=67,解得:a=5.故选:C.模拟程序框图的运行过程,即可得出程序运行后输出m值时对应a的值.本题考查了模拟实验法解程序框图的应用问题,是基础题.9.【答案】C【解析】解:该几何体是由半个圆柱对接半个球而形成的,视图表示的是几何体水平放置时的情形,其表面积S=2π×12+π×12+π×2+2×2=4+5π.该几何体是由半个圆柱对接半个球而形成的,利用三视图的数据求解几何体的表面积,然后推出结果.本题考查三视图求解几何体的表面积,考查空间想象能力以及计算能力.10.【答案】C【解析】解:当甲成立,即“相交直线l、m都在平面α内,并且都不在平面β内”时,若“l、m中至少有一条与平面β相交”,则“平面α与平面β相交”成立;若“平面α与平面β相交”,则“l、m中至少有一条与平面β相交”也成立故选:C.判断乙是丙的什么条件,即看乙⇒丙、丙⇒乙是否成立.当乙成立时,直线l、m中至少有一条与平面β相交,则平面α与平面β至少有一个公共点,故相交相交.反之丙成立时,若l、m中至少有一条与平面β相交,则l∥m,由已知矛盾,故乙成立.本题考查空间两条直线、两个平面的位置关系判断、充要条件的判断,考查逻辑推理能力.11.【答案】B【解析】解:由f(x)=2x-1+2x+3=0得2x-1=-2x-3,即2x=-4x-6,作出函数y=2x与y=-4x-6的图象如图,(黑色图象),由图象知两个图象交点的横坐标x1满足-2<x1<-1,由g(x)=x-x-1=0得x-1=x,作出y=x-1和y=x的图象如图(红色图象)由图象知两个图象交点的横坐标x2满足2作出h(x)=()x和y=,的图象如图(蓝色图象)由图象知两个图象交点的横坐标x3满足1<x2<2,综上x1,x2,x3的大小关系为x1<x3<x2,故选:B.利用函数与方程的关系,分别转化为y=2x与y=-4x-6的图象,y=x-1和y=x的图象,h(x)=()x和y=的图象,利用数形结合研究x1,x2,x3的范围即可得到结论.本题主要考查函数与方程的应用,根据条件转化为两个函数图象交点问题,利用数形结合求出对应究x1,x2,x3的范围是解决本题的关键.12.【答案】B【解析】解:设MF1与圆相切于点E,因为|MF2|=|F1F2|=2c,所以△MF1F2为等腰三角形,N为MF1的中点,所以|F1E|=|MF1|,又因为在直角△F1EO中,|F1E|2=|F1O|2-a2=c2-a2,所以|F1E|=b=|MF1|①又|MF1|=|MF2|+2a=2c+2a ②,c2=a2+b2③由①②③可得c2-a2=()2,即为4(c-a)=c+a,即3c=5a,b===a,则双曲线的渐近线方程为y=±x,即为y=±x.故选:B.先设MF1与圆相切于点E,利用|MF2|=|F1F2|,及直线MF1与圆x2+y2=a2相切,可得几何量之间的关系,从而可求双曲线的渐近线方程.本题考查直线与圆相切,考查双曲线的定义,考查双曲线的几何性质,注意运用平面几何的性质,考查运算能力,属于中档题.13.【答案】3【解析】解:∵||=2,是单位向量,且与夹角为60°,∴•(-)=-•=4-2×1×=3,故答案为:3.依题意,利用平面向量的数量积即可求得•(-)的值.本题考查平面向量数量积的运算,掌握平面向量的数量积的运算性质及定义是解决问题的关键,属于中档题.14.【答案】80【解析】解:(2x-)5的展开式中,通项公式T r+1=(2x)5-r=(-1)r25-r,令5-r=2,解得r=2.∴x2的系数=23=80.故答案为:80.利用通项公式即可得出.本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.15.【答案】(x-2)2+(y-√3)2=4【解析】解:∵抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,∴|PF|=|PA|,F(1,0),准线l的方程为:x=-1;设F在l上的射影为F′,又PA⊥l,依题意,∠AFF′=60°,|FF′|=2,∴|AF′|=2,PA∥x轴,∴点P的纵坐标为2,设点P的横坐标为x0,(2)2=4x0,∴x0=3,∴|PF|=|PA|=x0-(-1)=3-(-1)=4.故以PF为直径的圆的圆心为(2,),半径为2.以PF为直径的圆的标准方程为(x-2)2+(y-)2=4故答案为:(x-2)2+(y-)2=4.利用抛物线的定义,|PF|=|PA|,设F在l上的射影为F′,依题意,可求得|FF′|,|AF′|,从而可求得点P的纵坐标,代入抛物线方程可求得点P的横坐标,从而可求得|PA|.本题考查抛物线的简单性质,考查转化思想,考查解三角形的能力,属于中档题.16.【答案】200201【解析】解:设等差数列{a n}的首项为a1,公差为2,前n项和为S n,且S1,S2,S4成等比数列.则:,解得:a1=1,所以:a n=1+2(n-1)=2n-1,所以:b n=(-1)n-1=,所以:,==,故答案为:首项利用已知条件求出数列的通项公式,进一步利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.17.【答案】解:(Ⅰ)∵∠BAD=60°,∠BAC=90°,∴∠DAC=30°,在△ADC中,由正弦定理可得:DCsin∠DAC =ACsin∠ADC,∴sin∠ADC=ACDC sin∠DAC=√32,∴∠ADC=120°,或60°,又∠BAD=60°,∴∠ADC=120°(Ⅱ)∵BD=2DC,∴BC=3DC,在△ABC中,由勾股定理可得:BC2=AB2+AC2,可得:9DC2=6+3DC2,∴DC=1,BD=2,AC=√3,令∠ADB=θ,由余弦定理:在△ADB中,AB2=AD2+BD2-2AD•BD•cosθ,在△ADC中,AC2=AD2+CD2-2AD•CD•cos(π-θ),可得:{3=AD2+1+2ADcosθ6=AD2+4−4ADcosθ,∴解得:AD2=2,可得:AD=√2.【解析】(Ⅰ)由已知可求∠DAC=30°,在△ADC 中,由正弦定理可得sin ∠ADC=,即可解得∠ADC=120°. (Ⅱ)由已知在△ABC 中,由勾股定理可得DC=1,BD=2,AC=,令∠ADB=θ,由余弦定理,即可解得AD 的值.本题主要考查了正弦定理,余弦定理,勾股定理在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.【答案】证明:(1)∵平面四边形ABCD ,AB ⊥BD ,AB =BC =CD =2,BD =2√2, 面ABD ⊥面BCD ,AB ⊥BD ,面ABD ∩平面BCD =BD ,∴AB ⊥面BCD ,∴AB ⊥CD ,又AC 2=AB 2+BC 2=8,AD 2=AB 2+BD 2=12,AD 2=AC 2+CD 2=12,∴AB ⊥BC ,AB ⊥BD ,AC ⊥CD ,∵AC ∩AB =A ,∴CD ⊥平面ABC .解:(2)AB ⊥面BCD ,如图以B 为原点,在平面BCD中,过B 作BD 的垂线为x 轴,以BD 为y 轴,以BA 为z 轴,建立空间直角坐标系,则B (0,0,0),A (0,0,2),C (√2,√2,0),D (0,2√2,0),∵E 是AD 的中点,∴E (0,√2,1),∴BC ⃗⃗⃗⃗⃗ =(√2,√2,0),BE ⃗⃗⃗⃗⃗ =(0,√2,1),令平面BCE 的一个法向量为n⃗ =(x ,y ,z ), 则{n ⃗ ⋅BC ⃗⃗⃗⃗⃗ =√2x +√2y =0n⃗ ⋅BE ⃗⃗⃗⃗⃗ =√2y +z =0,取x =1,得n ⃗ =(1,-1,√2), ∵CD ⊥面ABC ,∴平面ABC 的一个法向量为CD ⃗⃗⃗⃗⃗ =(-√2,√2,0),∴cos <n ⃗ ,CD ⃗⃗⃗⃗⃗ >=n ⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|CD ⃗⃗⃗⃗⃗ |=√22, ∴二面角E -BC =A 的大小为45°.【解析】(1)推导出AB ⊥面BCD ,从而AB ⊥CD ,再求出AB ⊥BC ,AB ⊥BD ,AC ⊥CD ,由此能证明CD ⊥平面ABC .(2)以B 为原点,在平面BCD 中,过B 作BD 的垂线为x 轴,以BD 为y 轴,以BA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角E-BC=A 的大小.本题考查线面垂直的证明,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.19.【答案】解:(Ⅰ)由题意知X的可能取值为100,300,500,P(X=100)=2+16=0.2,90=0.4,P(X=300)=3690=0.4,P(X=500)=25+7+490∴X的分布列为:E(X)=100×0.2+300×0.4+500×0.4=340.(Ⅱ)由题意知六月份这种饮料的进货量n满足100≤n≤500,当300≤n≤500时,若最高气温不低于25,则Y=5n-3n=2n,若最高气温位于[20,25),则Y=5×300+2(n-300)-3n=900-n,若最高气温低于20,则Y=5×100+2(n-100)-3n=300-n,∴E(Y)=2n×0.4+(900-n)×0.4+(300-n)×0.2=420+0.2n,此时,n=500时,Y的数学期望达到最大值,最大值为520元,当100≤n≤300时,若最高气温不低于25,则Y=5n-3n=2n,若最高气温位于[20,25),则Y=5n-3n=2n,若最高气温低于20,则Y=5×100-(n-100)-300=300-n,∴E(Y)=2n×(0.4+0.4)+(300-n)×0.2=60+1.4n,此时,n=300时,Y的数学期望达到最大值,最大值为480元,∴n=340时,Y的数学期望值为:420+0.2×340=488不是最大值,n=500时,y的数学期望达到最大值,最大值为520元.【解析】(Ⅰ)由题意知X的可能取值为100,300,500,分别求出相应的概率,由此能求出X的分布列和E(X).(Ⅱ)六月份这种饮料的进货量n 满足100≤n≤500,当300≤n≤500时,若最高气温不低于25,则Y=5n-3n=2n ,若最高气温位于[20,25),则Y=5×300+2(n-300)-3n=900-n ,若最高气温低于20,则Y=5×100+2(n-100)-3n=300-n ,求出E (Y )=420+0.2n ,当n=500时,Y 的数学期望达到最大值,最大值为520元;当100≤n≤300时,若最高气温不低于25,则Y=5n-3n=2n ,若最高气温位于[20,25),则Y=5n-3n=2n ,若最高气温低于20,则Y=5×100-(n-100)-300=300-n ,E (Y )=60+1.4n ,n=300时,Y 的数学期望达到最大值,最大值为480元.由此能求出n=500时,y 的数学期望达到最大值,最大值为520元.本题考查离散型随机变量的分布列、数学期望的求法,考查互斥事件概率加法公式等基础知识,考查运算求解能力,是中档题.20.【答案】解:(Ⅰ)由题意可得{12c ×1=√34a 2+1b 2=1a 2=b 2+c 2,解得a 2=6,b 2=3, 故椭圆C 的方程为x 26+y 23=1, 证明(Ⅱ):设直线AP 的斜率为k ,则直线BP 的斜率为-k ,设A (x 1,y 1),B (x 2,y 2),直线PA 的方程为y +1=k (x -2),即y =kx +1-2k联立{y =kx +1−2k x 26+y 23=1,得(1+2k 2)x 2+4(k -2k 2)x +8k 2-8k -4=0.∴2x 1=8k 2−8k−41+2k 2,即x 1=4k 2−4k−21+2k 2设直线PB 的方程为y +1=-k (x -2),同理求得x 2=4k 2+4k−21+2k 2∴x 2-x 1=-8k 1+2k 2∴y 1-y 2=k (x 1+x 2)+2-4k =8k 1+2k 2,∴直线AB 的斜率k AB =y 2−y 1x 2−x 1=1, 易知l 与在两坐标轴的截距绝对值相等且都不为0,∴直线AB 与两坐标轴围成的三角形一定是等腰三角形【解析】(Ⅰ)由题意可得,解得a2=6,b2=3,则椭圆方程可求;(Ⅱ)设直线PA的方程为y+1=k(x-2),联立直线方程和椭圆方程,求得A的横坐标,同理求得B的横坐标,进一步求得A、B的纵坐标的差,代入斜率公式得答案.本题考查椭圆标准方程的求法,考查了直线与椭圆位置关系的应用,考查计算能力,属中档题.21.【答案】解:(1)∵f(x)=12x2−2x+mlnx+2,(x>0),∴f′(x)=x−2+mx =x2−2x+mx,令g(x)=x2-2x+m,∵m<1,∴△=4-4m>0,令f’(x)=0则x=1±√1−m,当1−√1−m≤0,即m≤0时,令f’(x)<0则x∈(0,1+√1−m);令f’(x)>0则x∈(1+√1−m,+∞).此时函数在(0,1+√1−m)上单调递减;在(1+√1−m,+∞)上单调递增.当1−√1−m>0,即0<m<1时,令f’(x)<0,则x∈(1−√1−m,1+√1−m);令f’(x)>0则x∈(0,1−√1−m)∪(1+√1−m,+∞),此时函数在(1−√1−m,1+√1−m)上单调递减;在(0,1−√1−m)和(1+√1−m,+∞)上单调递增.(2)由(1)知,若f(x)有两个极值点,则0<m<1且x1=1−√1−m∈(0,1),x2=1+√1−m∈(1,2),又x1,x2是x2-2x+m=0的两个根,则x1+x2=2,m=2x1−x12,∴f(x1)x2=12x12−2x1+2+(2x1−x12)lnx12−x1=12(2−x1)+x1lnx1,令ℎ(t)=12(2−t)+tlnt,t∈(0,1),则ℎ′(t)=lnt+12,令h’(t)<0,则t∈(0√e ),令h’(t)>0,则t∈(√e1),所以h(t)在(0e )上单调递减;在(e1)上单调递增.∴ℎ(t)≥ℎ(√e )=1−√e,∵ℎ(1)=12;t→0,ℎ(t)→1,∴h(t)<1,得证.【解析】(1)首先求得导函数,然后分类讨论确定函数的单调性即可;(2)首先确定x1,x2的范围,然后结合题意证明题中的不等式即可.本题主要考查导函数研究函数的单调性,导函数研究函数的极值,利用导数证明不等式的方法等知识,属于中等题.22.【答案】解:(Ⅰ)当θ0=3π4时,联立{θ=3π4ρ=4cosθ得A(-2√2,3π4);同理得B(2√6,3π4),由极径的几何意义有|AB|=2√6-(-2√2)=2√6+2√2.(Ⅱ)由已知令P(ρ,θ),A(ρ1,θ),B(ρ2,θ),∵ρ1=4cosθ,ρ2=4√3sinθ,P为AB的中点,∴ρ=ρ1+ρ22=2cosθ+2√3sinθ,即ρ2=2ρcosθ+2√3sinθ,所以P点的轨迹的直角坐标方程为x2+y2-2x-2√3y=0,因为直线l不与坐标轴重合,所以需去掉(1,0),(0,√3).【解析】(Ⅰ)用直线l的极坐标方程分别代入C1,C2的极坐标方程,再根据极径的几何意义可得;(Ⅱ)先求出AB的中点的轨迹的极坐标方程,再化成直角坐标方程.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)f (x )={3x −2,x ≥3x +4,−12<x <32−3x ,x ≤−12,其图象为(2)关于x 的不等式f (x )≥|x -m |的解集包含[4,5],即|2x +1|+|x -3|≥|x -m |在x ∈[4,5]上恒成立,∴|x -m |≤3x -2,即2-3x ≤m -x ≤3x -2,∴2-2x ≤m ≤4x -2,x ∈[4,5]上恒成立,∴-6≤m ≤14,故m ∈[-6,14].【解析】(1)f (x )=,画图即可,(2)关于x 的不等式f (x )≥|x -m|的解集包含[4,5],可得|x-m|≤3x -2在x ∈[4,5]上恒成立,解得即可本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,数形结合思想,是一道常规题.。

(整理版)三中高二(下)期中数学试卷(理科)

(整理版)三中高二(下)期中数学试卷(理科)

- 省高二〔下〕期中数学试卷〔理科〕参考答案与试题解析一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,有且只有一项符合题目要求.把答案填写在答题卡上1.〔5分〕〔•〕设i是虚数单位,复数为纯虚数,那么实数a为〔〕A.2B.﹣2 C.D.考点:复数代数形式的混合运算.专题:计算题.分析:复数的分子、分母同乘分母的共轭复数,化简后它的实部为0,可求实数a的值.解答:解:复数==,它是纯虚数,所以a=2,应选A点评:此题是根底题,考查复数的代数形式的混合运算,考查计算能力,常考题型.2.〔5分〕在平面上,假设两个正三角形的边长之比1:2,那么它们的面积之比为1:4,类似地,在空间中,假设两个正四面体的棱长之比为1:2,那么它的体积比为〔〕A.1:4 B.1:6 C.1:8 D.1:9考点:类比推理.专题:规律型.分析:由平面图形面积类比立体图形的体积,结合三角形的面积比的方法类比求四面体的体积比即可.解答:解:平面上,假设两个正三角形的边长的比为1:2,那么它们的面积比为1:4,类似地,由平面图形面积类比立体图形的体积,得出:在空间内,假设两个正四面体的棱长的比为1:2,那么它们的底面积之比为1:4,对应高之比为1:2,所以体积比为 1:8应选C.点评:此题主要考查类比推理.类比推理是指依据两类数学对象的相似性,将的一类数学对象的性质类比迁移到另一类数学对象上去.3.〔5分〕〔•嘉定区一模〕,那么f〔n+1〕﹣f〔n〕=〔〕A.B.C.D.考点:数列的函数特性.专题:计算题.分析:由f〔n〕=1+++…+++,知f〔n+1〕=1+++…++++,由此能求出f〔n+1〕﹣f〔n〕.解答:解:∵f〔n〕=1+++…+++,∴f〔n+1〕=1+++…++++,∴f〔n+1〕﹣f〔n〕=.应选D.点评:4.〔5分〕设函数f〔x〕=x2﹣2x﹣4lnx,那么f〔x〕的递增区间为〔〕A.〔0,+∞〕B.〔﹣1,0〕,〔2,+∞〕C.〔2,+∞〕D.〔0,1〕考点:利用导数研究函数的单调性.专题:计算题.分析:先确定函数的定义域然后求导数fˊ〔x〕,在函数的定义域内解不等式fˊ〔x〕>0,即可求出函数f〔x〕=x2﹣2x﹣4lnx的递增区间.解答:解:∵f〔x〕=x2﹣2x﹣4lnx,x>0∴f'〔x〕=2x﹣2﹣令f'〔x〕=2x﹣2﹣>0,〔x>0〕解得x>2∴函数f〔x〕=x2﹣2x﹣4lnx的递增区间是〔2,+∞〕应选C.点评:此题主要考查了对数函数的导数,以及利用导数研究函数的单调性等根底知识,考查计算能力,属于根底题.5.〔5分〕〔•〕〔e x+2x〕dx等于〔〕A.1B.e﹣1 C.e D.e2+1考点:定积分.专题:计算题.分析:求出被积函数的原函数,将积分的上限代入减去将下限代入求出差.解答:解:〔e x+2x〕dx=〔e x+x2〕|01=e+1﹣1=e应选C.点评:此题考查利用微积分根本定理求定积分值.6.〔5分〕〔•湖南〕假设函数f〔x〕=x2+bx+c的图象的顶点在第四象限,那么函数f′〔x〕的图象是〔〕A .B.C.D.考点:函数的单调性与导数的关系.专题:数形结合法.分析:先判断函数f〔x〕的单调性,根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减得到答案.解答:解:函数f〔x〕=x2+bx+c是开口向上的二次函数,定点在第四象限说明对称轴大于0 根据函数f〔x〕在对称轴左侧单调递减,导函数小于0;在对称轴右侧单调递增,导函数大于0知,A满足条件应选A.点评:此题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.7.〔5分〕设正数x,y满足log2〔x+y+3〕=log2x+log2y,那么x+y的取值范围是〔〕A.〔0,6] B.[6,+∞〕C.[1+,+∞〕D.〔0,1+]考点:根本不等式.专不等式的解法及应用.分析:由正数x,y满足log2〔x+y+3〕=log2x+log2y,利用对数的运算性质可得x+y+3=xy,利用根本不等式可得,即x+y+3.当且仅当x=y>0时取等号.利用一元二次不等式的解法解出即可.解答:解:由正数x,y满足log2〔x+y+3〕=log2x+log2y,∴x+y+3=xy,而,那么x+y+3.当且仅当x=y>0时取等号.令x+y=t,那么化为t2﹣4t﹣12≥0,解得t≥6或t≤﹣2.∵t>0,∴取t≥6.应选B.点评:熟练掌握对数的运算性质、根本不等式的性质、一元二次不等式的解法是解题的关键.8.〔5分〕函数f〔x〕=x2+2x+alnx,假设函数f〔x〕在〔0,1〕上单调,那么实数a的取值范围是〔〕A.a≥0B.a<﹣4 C.a≥0或a≤﹣4 D.a>0或a<﹣4考点:函数的单调性与导数的关系.专题:计算题.分析:求出原函数的导函数,由函数f〔x〕在〔0,1〕上单调,所以在x∈〔0,1〕时,f′〔x〕≥0或f′〔x〕≤0恒成立,别离变量后利用二次函数的单调性求最值,从而得到a的范围.解答:解:由f〔x〕=x2+2x+alnx,所以,假设函数f〔x〕在〔0,1〕上单调,那么当x∈〔0,1〕时,f′〔x〕≥0或f′〔x〕≤0恒成立,即2x2+2x+a≥0①,或2x2+2x+a≤0②在〔0,1〕上恒成立,由①得,a≥﹣2x2﹣2x,由②得,a≤﹣2x2﹣2x,因为y=﹣2x2﹣2x的图象开口向下,且对称轴为,所以在〔0,1〕上,y max=0,y min=﹣4所以a的范围是a≥0或a≤﹣4.应选C.点评:此题考查了函数的单调性与导数的关系,训练了利用二次函数的单调性求函数的最值,是中档题.9.〔5分〕假设函数f〔x〕=,那么的值为〔〕A.B.C.D.分段函数的应用;定积分.考点:专计算题;函数的性质及应用;导数的概念及应用.题:分利用分段函数,表示出积分,再求出相应的积分的值,即可求得结论.析:解答:解:∵函数f〔x〕=,∴=+=+×﹣×+=++1﹣+﹣+2﹣=应选B.点此题考查分段函数,考查定积分知识,考查学生的计算能力,属于中档题.评:10.〔5分〕〔•延庆县一模〕函数y=f〔x〕是定义在R上的奇函数,且当x∈〔﹣∞,0〕时不等式f〔x〕+xf′〔x〕<0成立,假设a=3•f〔3〕,b=〔logπ3〕•f〔logπ3〕,c=〔〕•f〔〕.那么a,b,c的大小关系是〔〕A.a>b>c B.c>a>b C.c>b>a D.a>c>b考点:函数奇偶性的性质;简单复合函数的导数;函数的单调性与导数的关系.专题:综合题;压轴题.分析:由式子〔x〕+xf′〔x〕,可以联想到:〔uv〕′=u′v+uv′,从而可设h〔x〕=xf〔x〕,有:h′〔x〕=f〔x〕+xf′〔x〕<0,所以利用h〔x〕的单调性问题很容易解决.解答:解:构造函数h〔x〕=xf〔x〕,由函数y=f〔x〕以及函数y=x是R上的奇函数可得h〔x〕=xf〔x〕是R上的偶函数,又当x∈〔﹣∞,0〕时h′〔x〕=f〔x〕+xf′〔x〕<0,所以函数h〔x〕在x∈〔﹣∞,0〕时的单调性为单调递减函数;所以h〔x〕在x∈〔0,+∞〕时的单调性为单调递增函数.又因为函数y=f〔x〕是定义在R上的奇函数,所以f〔0〕=0,从而h〔0〕=0因为=﹣2,所以f〔〕=f〔﹣2〕=﹣f〔2〕,由0<logπ3<1<3<3<2所以h〔logπ3〕<h〔3〕<h〔2〕=f〔〕,即:b<a<c应选B.点评:此题考查的考点与方法有:1〕所有的根本函数的奇偶性;2〕抽象问题具体化的思想方法,构造函数的思想;3〕导数的运算法那么:〔uv〕′=u′v+uv′;4〕指对数函数的图象;5〕奇偶函数在对称区间上的单调性:奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反;5〕奇偶函数的性质:奇×奇=偶;偶×偶=偶;奇×偶=奇〔同号得正、异号得负〕;奇+奇=奇;偶+偶=偶.此题结合构造出h〔x〕是正确解答的关键所在.二、填空题:本大题共5小题,每题5分,共25分.11.〔5分〕假设f〔x〕在R上可导,f〔x〕=x2+2f′〔2〕x+3,那么∫03f〔x〕dx= ﹣18 .考点:定积分.专题:计算题.分析:对原函数两边求导,再将x=2代入先求出f′〔2〕的值,再根据计算定积分的公式先求出被积函数的原函数即可求得∫03f〔x〕dx.解答:解:∵f〔x〕=x2+2f′〔2〕x+3,∴f′〔x〕=2x+2f′〔2〕,当x=2时,有:f′〔2〕=4+2f′〔2〕,∴f′〔2〕=﹣4,∴f〔x〕=x2﹣8x+3,∴∫03f〔x〕dx=∫03〔x2﹣8x+3〕dx=〔x3﹣4x2+3x〕|03=﹣18.故答案为:﹣18.点评:本小题主要考查定积分、定积分的应用、导函数的概念等根底知识,属于根底题.12.〔5分〕曲线y=x2﹣3x+2lnx的切线中,斜率最小的切线方程为x﹣y﹣3=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:先求出曲线对应函数的导数,由根本不等式求出导数的最小值,即得到曲线斜率的最小值.解答:解:∵曲线y=x2﹣3x+2lnx,〔x>0〕y'=2x+﹣3=≥2×2﹣3=1,当x=1时,y'min=1,此时斜率最小,即k=1,当x=1时,y=﹣2.此切线过点〔1,﹣2〕∴切线方程为y+2=1〔x﹣1〕,即x﹣y﹣3=0,故答案为:x﹣y﹣3=0.点评:此题主要利用导数研究曲线上的某点切线方程,此题是一道根底题,还考查直线的斜率.13.〔5分〕函数y=x+2cosx在区间上的最大值是.考点:利用导数求闭区间上函数的最值.专题:计算题.分析:对函数y=x+2cosx进行求导,研究函数在区间上的极值,此题极大值就是最大值.解答:解:∵y=x+2cosx,∴y′=1﹣2sinx令y′=0而x∈那么x=,当x∈[0,]时,y′>0.当x∈[,]时,y′<0.所以当x=时取极大值,也是最大值;故答案为点此题考查了利用导数求闭区间上函数的最大值问题,属于导数的根底题.评:14.〔5分〕f〔n〕=1+++…+〔n∈N+,n≥2〕,经计算得f〔4〕>2,f〔8〕,f〔16〕>3,f〔32〕,由此可推得一般性结论为f〔2n〕>.考点:归纳推理.专题:探究型.分析:根据中的等式:,f〔4〕>2,,f〔16〕>3,,…,我们分析等式左边数的变化规律及等式两边数的关系,归纳推断后,即可得到答案.解答:解:观察中等式:得,f〔4〕>2,即f〔22〕>,即f〔23〕>f〔16〕>3,即f〔24〕>…,归纳可得:f〔2n〕≥〔n∈N*〕故答案为:f〔2n〕≥〔n∈N*〕.点评:15.〔5分〕假设函数y=在区间〔1,4〕内为减函数,在区间〔6,+∞〕内为增函数,那么a的取值范围是5≤a≤7.考点:函数的单调性与导数的关系.专题:计算题;导数的概念及应用.分析:求出函数的导函数,利用函数y=在区间〔1,4〕内为减函数,在区间〔6,+∞〕内为增函数得到导函数在不同区间内的符号,列式后解不等式组求解a的范围.解答:解:由y=,得y′=x2﹣ax+a﹣1.因为函数y=在区间〔1,4〕内为减函数,在区间〔6,+∞〕内为增函数,所以y′=x2﹣ax+a﹣1在区间〔1,4〕内恒小于0,在区间〔6,+∞〕内恒大于0,令g〔x〕=x2﹣ax+a﹣1.那么,解得5≤a≤7.故答案为5≤a≤7.点评:此题考查了函数的单调性与导数的关系,考查了利用二次函数零点所在的范围求参数的值,考查了数学转化思想方法,是中档题.三、解答题:解容许写出文字说明,证明过程或演算步骤〔共6题,共75分〕16.〔12分〕计算〔1〕求积分值:〔3x2+4x3〕dx〔2〕求函数y=+的导数.考点:微积分根本定理;导数的乘法与除法法那么.专题:计算题;导数的概念及应用.分析:〔1〕求出被积函数3x2+4x3的原函数,将积分的上限、下限代入求值.〔2〕先对原函数式通分化简,再利用初等函数的求导法那么求解即可.解答:解:〔1〕〔3x2+4x3〕dx=3x2dx+4x3dx=x3|+x4|=24.〔2〕y=+==,∴y′=〔〕′==.点评:此题主要考查了定积分的计算、导数的乘法与除法法那么,解决该类问题的关键是求出被积函数的原函数,掌握函数的求导法那么,属于计算题、根底题.17.〔12分〕求曲线y=x2,直线y=x,y=3x围成的图形的面积.考点:定积分在求面积中的应用.专题:计算题;导数的概念及应用.分析:先联立两个曲线的方程,求出交点,以确定积分公式中x的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式解之即可.解答:解:在同一直角坐标系下作出曲线y=x2,直线y=x,y=3x的图象,所求面积为图中阴影局部的面积.解方程组得交点〔1,1〕,解方程组得交点〔3,9〕,因此所围图形的面积为:S=〔3x﹣x〕dx+〔3x﹣x2〕dx=2xdx+〔3x ﹣x2〕dx=x2|+〔x2﹣x3〕|=1+〔×32﹣×33〕﹣〔×12﹣×13〕=.点评:此题主要考查了定积分在求面积中的应用,以及定积分的计算,属于根底题.18.〔12分〕函数f〔x〕=alnx﹣ax﹣3〔a∈R〕.〔1〕求函数f〔x〕的单调区间;〔2〕函数y=f〔x〕的图象在x=4处的切线的斜率为,假设函数g〔x〕=x3+x2[f′〔x〕+]在区间〔1,3〕上不是单调函数,求m的取值范围.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:〔1〕求导数f′〔x〕,利用导数与函数单调性的关系分情况讨论即可.〔2〕由切线斜率为,可求出a值,进而求出f〔x〕、f′〔x〕,因为g〔x〕在区间〔1,3〕上不单调,所以g′〔x〕改变符号,从而得到m所满足的条件.解答:解〔1〕f′〔x〕=〔x>0〕,①当a>0时,假设x∈〔0,1〕,那么f′〔x〕>0;假设x∈〔1,+∞〕,那么f′〔x〕<0,∴当a>0时,f〔x〕的单调递增区间为〔0,1],单调递减区间为[1,+∞〕;②当a<0时,假设x∈〔1,+∞〕,那么f′〔x〕>0;假设x∈〔0,1〕,那么f′〔x〕<0,∴当a<0时,f〔x〕的单调递增区间为[1,+∞〕,单调递减区间为〔0,1];③当a=0时,f〔x〕=﹣3,f〔x〕不是单调函数,无单调区间.〔2〕由题意知,f′〔4〕=﹣=,得a=﹣2,那么f〔x〕=﹣2lnx+2x﹣3,∴g〔x〕==x3+〔+2〕x2﹣2x,∴g′〔x〕=x2+〔m+4〕x﹣2.∵g〔x〕在区间〔1,3〕上不是单调函数,且g′〔0〕=﹣2<0,∴,即解得.故m的取值范围是〔﹣,﹣3〕.点评:此题考查了导数与函数单调性的关系,利用导数解决问题的能力,注意数形结合思想的应用.19.〔12分〕a,b,c∈〔0,1〕,求证:〔1﹣a〕b,〔1﹣b〕c,〔1﹣c〕a中至少有一个不大于.考点:不等式的证明.专题:证明题;反证法.分析:首先根据题意,通过反证法假设假设〔1﹣a〕b,〔1﹣b〕c,〔1﹣c〕a中都大于,得出:;然后根据根本不等式,得出.相互矛盾,即可证明.解答:证明:反证法假设〔1﹣a〕b,〔1﹣b〕c,〔1﹣c〕a中都大于〔1﹣a〕b>〔1﹣b〕c>〔1﹣c〕a>即①②③①②③相加:由根本不等式a+b≥2④⑤⑥④⑤⑥三式相加与.点评:此题考查反证法的应用,涉及不等式的证明与根本不等式的应用,属于中档题.20.〔13分〕如图,曲线C1:y=x2与曲线C2:y=﹣x2+2ax〔a>1〕交于点O,A,直线x=t〔0<t≤1〕与曲线C1,C2分别相交于点D,B,连结OD,DA,AB,OB.〔1〕写出曲边四边形ABOD〔阴影局部〕的面积S与t的函数关系式S=f〔t〕;〔2〕求函数S=f〔t〕在区间〔0,1]上的最大值.考点:导数在最大值、最小值问题中的应用;函数最值的应用;定积分在求面积中的应用.专题:计算题;导数的综合应用.分析:〔1〕先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲边四边形ABOD〔阴影局部〕的面积,即可求得函数关系式S=f〔t〕;〔2〕由〔1〕确定了函数及其导数的解析式,解不等式f'〔x〕>0与f'〔x〕<0,可求出函数的单调区间,对字母a进行分类讨论,根据函数的单调性求出函数f〔x〕在区间〔0,1]上的最大值.解答:解析〔1〕由解得或.∴O〔0,0〕,A〔a,a2〕.又由得B〔t,﹣t2+2at〕,D〔t,t2〕,∴S=〔﹣x2+2ax〕dx﹣t×t2+〔﹣t2+2at﹣t2〕×〔a﹣t〕=〔﹣x3+ax2〕|﹣t3+〔﹣t2+at〕×〔a﹣t〕=﹣t3+at2﹣t3+t3﹣2at2+a2t=t3﹣at2+a2t.∴S=f〔t〕=t3﹣at2+a2t〔0<t≤1〕.〔2〕f′〔t〕=t2﹣2at+a2,令f′〔t〕=0,即t2﹣2at+a2=0.解得t=〔2﹣〕a或t=〔2+〕a.∵0<t≤1,a>1,∴t=〔2+〕a应舍去.假设〔2﹣〕a≥1,即a≥=时,∵0<t≤1,∴f′〔t〕≥0.∴f〔t〕在区间〔0,1]上单调递增,S的最大值是f〔1〕=a2﹣a+.假设〔2﹣〕a<1,即1<a<时,当0<t<〔2﹣〕a时f′〔t〕>0.当〔2﹣〕a<t≤1时,f′〔t〕<0.∴f〔t〕在区间〔0,〔2﹣〕a]上单调递增,在区间〔〔2﹣〕a,1]上单调递减.∴f〔t〕的最大值是f〔〔2﹣〕a〕=[〔2﹣〕a]3﹣a[〔2﹣〕a]2+a2〔2﹣〕a=a3.点评:此题考查利用定积分求面积,考查导数在最大值、最小值问题中的应用,以及学生灵活转化题目条件的能力,属于中档题.21.〔14分〕函数f〔x〕=ln〔x+1〕﹣.〔1〕假设函数f〔x〕在[0,+∞〕内为增函数,求正实数a的取值范围.〔2〕当a=1时,求f〔x〕在[﹣,1]上的最大值和最小值;〔3〕试利用〔1〕的结论,证明:对于大于1的任意正整数n,都有+++…+<lnn.考点:利用导数求闭区间上函数的最值;函数的单调性与导数的关系.专题:导数的综合应用.分析:〔1〕求函数的导数,那么导数f′〔x〕≥0对任意x∈[0,+∞〕恒成立即可,别离参数即得a≥对任意x∈[0,+∞〕恒成立,a≥〔〕max〔x∈[0,+∞〕〕即可.〔2〕a=1时,求f〔x〕的导数,再令导数等于0,得到的x的值为函数的极值点,在借助函数在[﹣,1]的单调性,判断函数当x为何值时有最大值,何时有最小值.〔3〕由〔1〕知,当a=1时,f〔x〕=ln〔1+x〕﹣在[0,+∞〕上是增函数,那么f〔x〕≥f〔0〕,即ln〔1+x〕≥,x∈[0,+∞〕成立.即ln>,得证,或利用数学归纳法来证明也可.解答:解:〔1〕∵f〔x〕=ln〔x+1〕﹣,∴f′〔x〕=〔a>0〕.∵函数f〔x〕在[0,+∞〕内为增函数,∴f′〔x〕≥0对任意x∈[0,+∞〕恒成立,∴a〔x+1〕﹣1≥0对任意x∈[0,+∞〕恒成立,即a≥对任意x∈[0,+∞〕恒成立.而当x∈[0,+∞〕时,〔〕max=1,∴a≥1.〔2〕当a=1时,f′〔x〕=.∴当x∈[﹣,0〕时,f′〔x〕<0,f〔x〕在[﹣,0〕上单调递减,当x∈〔0,1]时,f′〔x〕>0,f〔x〕在〔0,1]上单调递增,∴f〔x〕在[﹣,1]上有唯一极小值点,故f〔x〕min=f〔0〕=0.又f〔﹣〕=1+ln=1﹣ln2,f〔1〕=﹣+ln2,f〔﹣〕﹣f〔1〕=﹣2ln2==∵e3>16,∴f〔﹣〕﹣f〔1〕>0,即f〔﹣〕>f〔1〕.∴f〔x〕在[﹣,1]上的最大值为f〔﹣〕=1﹣ln2.综上,函数f〔x〕在[﹣,1]上的最大值是1﹣ln2,最小值是 0.〔3〕法一:用数学归纳法.①当n=2时,要证<ln2,只要证ln4>1,显然成立.②假设当n=k时,不等式+++…+<lnk〔k>1,k∈N*〕成立.那么当n=k+1时,+++…++<lnk+.要证lnk+<ln〔k+1〕成立,只要证<ln,即<ln〔1+〕.令=x>0,那么上式化为<ln〔1+x〕〔x>0〕.只要证:ln〔1+x〕﹣>0〔*〕.由〔1〕知,当a=1时,f〔x〕=ln〔1+x〕﹣在[0,+∞〕内是增函数,故有f〔x〕≥f〔0〕,即ln〔1+x〕≥x∈[0,+∞〕成立,而〔*〕中x=〔k>1,k∈N*〕,x>0,∴ln〔1+x〕﹣>0 即〔*〕式成立.∴当n=k+1时,不等式成立.由①②知对任意n>1的正整数不等式都成立.法二:由〔1〕知,当a=1时,f〔x〕=ln〔1+x〕﹣在[0,+∞〕上是增函数,故有f〔x〕≥f〔0〕,即ln〔1+x〕≥,x∈[0,+∞〕成立.令x=〔n∈N*〕,那么x>0,∴有ln〔1+x〕>,即ln>.由此得ln>,ln>,ln>,…,ln>,那么ln+ln+ln+…+ln>+++…+,即得lnn>+++…+.故对大于1的任意正整数n.都有+++…+<lnn.点评:此题重点考查导数知识的运用,考查函数的单调性,考查函数的最值,考查大小比拟,解题的关键是正确求出导函数,合理构建不等式,属于中档题.。

高二下学期期中联考数学(理)试题Word版含答案

高二下学期期中联考数学(理)试题Word版含答案

高二数学试题(理科)(本试卷满分150分,时间:120分钟) 一.选择题(每小题5分,共60分)1. 若i 是虚数单位,则复数2018(23)z i i =⋅-的虚部等于( )A. 2B. 3C. 3iD. 3-2.61()2x x +的展开式中,常数项等于( )A. 52B. 1516 C. 20 D. 1603. 《论语·子路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足”,所以,名不正,则民无所措手足.上述推理过程用的是( )A. 类比推理B. 归纳推理C. 演绎推理D. 合情推理4. 某班准备从甲、乙、丙等6人中选出4人在班会上发言介绍学习经验,要求甲、乙、丙三人中至少有两人参加,那么不同的发言顺序有( )A .18种B .12种C . 432种D .288种5. 若纯虚数z 满足(12)z i a i -=+,其中a R ∈,i 是虚数单位,则实数a 的值等于( )A. 2-B.12-C. 2D. 126. 若函数2()1x a f x x -=+在2x =-取得极值,则函数()f x 的单调递减区间是( ) A.(,2)-∞-和(0,)+∞ B.(2,0)- C.(2,1)--和(1,0)- D. (2,1)--7. 在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3m n p rb b b b ++= B.3m n p r b b b b ++= C.3m n p rb b b b = D.3m n p r b b b b =8. 若一条曲线上任意一点处的切线的斜率均为正数,则称该曲线为“升曲线”.已知函数()f x 定义域为R ,且满足'()()f x f x >,则下列曲线中是“升曲线”的是( )A. ()y xf x =B.()xy e f x = C. ()f x y x =D. ()xf x y e =9. 利用数学归纳法证明不等式1111++1()232nn n N n *+++<∈-的过程中,由n k =到1n k =+时,不等式的左边增加的项数为( )A.1B.21k -C. 2kD. k10.已知函数3()3f x x x m =-+,若方程()0f x =有两个相异实根12,x x ,且120x x +<,则实数m 的值等于( )A. 2-或2B. 2-C. 2D. 011. 已知03cos()2m x dx ππ=-⎰,则23)mx y z -+(的展开式中,2m x yz -项的系数等于( )A. 180B. 180-C. 90-D. 1512. 若直线y ax b =+与曲线()ln 1f x x =-相切,则ba 的最小值为( )A.21e -B. 2e -C. e -D. 1e -二.填空题(每小题5分,共20分)13. 若i 是虚数单位,复数z 满足121zii =+-,则复数z 在复平面内对应点的坐标为________.14.观察下列各式:11=,141123+=+,1131121232++=+++,111811212312345+++=++++++,由此可猜想,若1111+12123123+10m+++=++++++,则m =__________.15. 在某班举行的“庆五一”联欢晚会开幕前已排好有8个不同节目的节目单,如果保持原来的节目相对顺序不变,临时再插进去,,A B C 三个不同的新节目,且插进的三个新节目按,,A B C 顺序出场,那么共有__________种不同的插入方法(用数字作答).16. 若函数21()ln 22f x x ax x=--存在单调递减区间,则实数a 的取值范围是——————.三.解答题(共6小题,满分70分)17. (本小题满分10分)已知i 是虚数单位,复数z 的共轭复数是z ,且满足521i z z i ++=+.(I )求复数z 的模||z ;(II )若复数(2)z mi -在复平面内对应的点在第一象限,求实数m 的取值范围.18. (本小题满分12分)已知01a b <<<. (I )试猜想ln a b +与ln b a +的大小关系; (II )证明(I )中你的结论.19. (本小题满分12分)若(21)nx -的展开式中第3项的系数是第5项的系数的4倍.(I )求n 的值; (II )若2012(21)(45)(45)(45)n nn x a a x a x a x -=+-+-++-,求024na a a a ++++的值.20. (本小题满分12分)已知函数ax x e x f x --=2)(的图像在0=x 处的切线方程为2y x b =+.(I )求实数,a b 的值;(II )若函数'()1()f x g x x -=,求()g x 在(0,)+∞上的极值.21. (本小题满分12分)已知数列{}n a 的前n 项和为n S,且满足3(,,0)2n n S a b n N b R b *=+∈∈≠.(I )求证:{}n a 是等比数列; (II )求证:{}1n a +不是等比数列.22. (本小题满分12分)已知函数()()()2ln ,.f x a x xg x x =+=(I )当2a =-时,求函数()()()h x f x g x =+的单调区间;(II )当0a >时,若对于区间[]1,2上的任意两个不相等的实数12,x x ,都有()()()()1212f x f x g x g x -<-成立,求实数a 的取值范围.高二数学试题(理科)参考答案及评分标准 一.选择题1.B2. A3. C4. D5. C6. C7. D8. D9. B 10. C 11. B 12. C 二.填空题13.(3,1)- 14. 2011 15. 165 16. (1,)-+∞三.解答题17. 解析:(I )设复数(,)z x yi x y R =+∈,则z x yi =-, ---------1分于是(5)(1)2()(1)(1)i i x yi x yi i i +-++-=+-,即332x yi i -=-, ---------3分所以332x y =⎧⎨-=-⎩,解得12x y =⎧⎨=⎩,即12z i =+. ---------5分故||z ==. ---------6分 (II )由(I )得(2)(12)(2)(22)(4)z mi i mi m m i -=+-=++-, ---------8分 由于复数(2)z mi -在复平面内对应的点在第一象限,所以22040m m +>⎧⎨->⎩,解得14m -<<. ---------10分 18. 解:(I )取211,a b e e ==,则21ln 1a b e +=-,1ln 2b a e +=-,则有ln ln a b b a +>+;再取3211,a b e e ==,则31ln 2a b e +=-,21ln 3b a e +=-,则有ln ln a b b a +>+.故猜想ln ln a b b a +>+. ---------4分(II )令()ln f x x x =-,则'1()1f x x =-,当01x <<时,'1()10f x x =-<,即函数()f x 在(0,1)上单调递减, ---------7分 又因为01a b <<<,所以()()f a f b >,即ln ln a a b b ->-, ---------10分 故ln ln a b b a +>+. ---------12分19. 解:(I )(21)nx -展开式的通项1(2)(1)(1)2r n r r r r n r n r r n n T C x C x ---+=-=-⋅,0,1,2,,r n=.---------1分因此第3项的系数是222(1)2n n C --,第5项的系数444(1)2n n C --, ---------3分于是有222(1)2n n C --4444(1)2n nC -=-, ---------4分整理得24n nC C =,解得6n =. ---------6分(II )由(I )知6260126(21)(45)(45)(45)x a a x a x a x -=+-+-++-.令451x -=,即32x =,得60123456264a a a a a a a ++++++==, ---------8分令451x -=-,即1x =,得6012345611a a a a a a a -+-+-+==, ---------10分两式相加得02462()65a a a a +++=,故0246652a a a a +++=. ---------12分20. 解析:(I )因为,a x e x f x --='2)(所以a f -='1)0(. -----------2分于是由题知12a -=,解得1a =-. -----------4分因此x x e x f x +-=2)(,而1)0(=f ,于是b +⨯=021,解得1=b . ----------6分 (II )由(I )得'()12()x f x e x g x x x --==,所以'2(1)()x e x g x x -=, ----------8分令'()0g x =得1x =, 当x 变化时,'(),()g x g x 的变化情况如下:x(0,1)1 (1,)+∞'()g x-0 +()g x递减极小值递增------------10分 所以()g x 在1x =取得极小值(1)2g e =-,无极大值. ---------12分21. 证明:(I )因为32n n S a b =+,所以当2n ≥时1132n n S a b--=+, ---------1分 两式相减得1133()()22n n n n S S a b a b ---=+-+,即13322n n n a a a -=-, ---------3分因此13nn a a -=, ---------4分故{}n a 是公比为3q =的等比数列. ---------5分(II )(方法一)假设{}1n a +是等比数列,则有211(1)(1)(1)n n n a a a -++=++,即21111211n n n n n n a a a a a a -+-+++=+++. ---------7分由(I )知{}n a 是等比数列,所以211n n n a a a -+=,于是112n n n a a a -+=+,即11169n n n a a a ---=+,解得10n a -=,这与{}n a 是等比数列相矛盾, ---------11分故假设错误,即{}1n a +不是等比数列. ---------12分(方法二) 由(I )知11132a S a b==+,所以12a b =-,因此123n n a b -=-⋅. ---------7分于是123112,116,1118a b a b a b+=-+=-+=-, ---------8分假设{}1n a +是等比数列,则有2213(1)(1)(1)a a a +=++, ---------10分即2(16)(12)(118)b b b -=--,解得0b =,这与0b ≠相矛盾, ---------11分 故假设错误,即{}1n a +不是等比数列. ---------12分22. 解析:(I )当2a =-时,22()()()2(ln )22ln h x f x g x x x x x x x =+=-++=--,定义域为(0,)+∞.2'2222()22x x h x x x x --=--=. -----------2分令'()0h x >得210x x -->,解得12x +>,令'()0h x <得210x x --<,解得102x <<,因此()h x的单调递增区间是)+∞,单调递减区间是. ---------4分(II )不妨设1212x x ≤<≤.因为0a >,所以()'1(1)0f x a x =+>,因此()f x 在[1,2]上单调递增,即12()()f x f x <.又因为2()g x x =在[1,2]上也单调递增,所以12()()g x g x <.所以不等式()()()()1212f x f x g x g x -<-即为2121()()()()f x f xg x g x -<-,即2211()()()()f xg x f x g x -<-, ------------7分设()()()F x f x g x =-,即2()ln F x ax a x x =+-,则21()()F x F x <,因此()F x 在[1,2]上单调递减.于是'()20aF x a x x =+-≤在[1,2]上恒成立,即221x a x ≤+在[1,2]上恒成立. -------------9分 令22()1x u x x =+,则2'224()0(1)x x u x x +=>+,即()u x 在[1,2]上单调递增,因此()u x 在[1,2]上的最小值为(1)1u =, ------------11分 所以1a ≤,故实数a 的取值范围是01a <≤. ------------12分。

高二上学期期中考试数学(理)试题(含答案)

高二上学期期中考试数学(理)试题(含答案)

——上学期省六校协作体高二期中考试数学试题(理科)命题学校:北镇高中 命题人 :才忠勇 校对人:杨柳第Ⅰ卷一、选择题(本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{012}A =,,,2{20}B x x x =+-,则A B =( )A.{0}B.{01}, C.{12}, D.{012},, 2.下列说法正确的是( ) A.命题“21”是假命题B.命题“x∀R ,210x +>”的否定是“0x ∃R ,2010x +<”C.命题“若22ab>,则a b >”的否命题“若22ab>,则a b ”D.“1x >”是“2x >”的必要不充分条件3.如果0a b <<,那么下列各式一定成立的是( ) A. 0a b -> B. ac bc < C. 22a b > D.11a b< 4.已知等差数列{}n a 的前n 项和为n S ,若47a =,520S =,则10a =( ) A. 16 B.19 C. 22 D.255.某空间几何体的三视图如图所示,则该几何体的体积为(A.8B.16C.32D.646.已知1=a ,2=b ,a 与b 的夹角为3π,那么4-a b 等于( ) 第5题图侧视图俯视图正视图A. 2B.6C.7.如图所示的程序框图运行的结果为( ) A.1022 B.1024 C.2044 D.20488.已知实数x ,y 满足约束条件20220220x y x y x y +⎧⎪-+⎨⎪--⎩,则目标函数z x y =+的最大值为( ) A.-12 B.25C.4D.69.中国古代数学著作“算法统宗”中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( ) A.24里 B.12里 C.6里 D.3里 10.若不等式2162a bx x b a+<+对任意a ,(0)b +∞,恒成立,则实数x 的取值范围是( )A.(20)-,B.(42)-,C.(2)(0)-∞-+∞,, D.(4)(2)-∞-+∞,, 11.等差数列{}n a 中,11101<-a a ,若其前n 项和n S 有最大值,则使0n S >成立的最大自然数n 第6题第7题图的值为( )A.19B.20C.9D.1012.若关于x 的不等式220x mx +->在区间[12],上有解,则实数m 的取值范围为( ) A. ,[1+∞) B. ,(1+∞) C. ,[-1+∞) D. ,(-1+∞) 第Ⅱ卷二、填空题(本题共4小题,每小题5分.) 13.不等式2111x x +-的解集为 ___________.14.若命题“0x ∃R ,02223x a a --”是假命题,则实数a 的取值范围为___________.15.若正数x ,y 满足35x y xy +=,则43x y +的最小值为___________.16.设数列{}n a 23n n =+…,则12231n a a a n +++=+…______.三、解答题 (本题共6小题,共70分.) 17.(本小题满分10分)设命题:p 实数x 满足22430x ax a -+<,命题:q 实数x 满足31x -<. (Ⅰ)若1a =,且p q ∧为真,求实数x 的取值范围;(Ⅱ)若0a >,且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)已知锐角ABC △,内角A ,B ,C 所对的边分别为a ,b ,c 2sin c A =. (Ⅰ)求角C ;(Ⅱ)若c =ABC △a b +的值.19.(本小题满分12分) 已知方程2(3)0x m x m +-+=.(Ⅰ)若此方程有两个正实根,求实数m 的取值范围;(Ⅱ)若此方程有两个实根均在(02),,求实数m 的取值范围.20.(本小题满分12分) 已知正项等比数列{}n a ,112a =,2a 与4a 的等比中项为18. (Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)令n n b na =,数列{}n b 的前n 项和为n S .证明:对任意的*n N ,都有2n S <.21.(本小题满分12分)已知关于x 的不等式2320ax x -+>(aR ).(Ⅰ)若关于x 的不等式2320ax x -+>(a R )的解集为{1}x x x b <>或,求a ,b的值;(Ⅱ)解关于x 的不等式2325ax x ax -+>-(a R ).22.(本小题满分12分)已知数列{}n a 的首项为1,前n 项和为n S 与n a 之间满足2221nn n S a S =-*(2)n nN ,,(Ⅰ)求证:数列1{}nS 是等差数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)设存在正整数k ,使12(1)(1)(1)21n S S S k n ++++…*n N 都成立,求k 的最大值.2017——2018学年度上学期省六校协作体高二期中考试数学试题(理科) 参考答案与评分标准一、选择题二、填空题 13. {21}x x -< 14. [12],15. 5 16. 226n n + 三、解答题17.(本小题满分10分)解:由题,若q 为真,则24x <<.……………………………………………………………2分(Ⅰ)当1a =时,若p 为真,则13x <<,…………………………………………………4分故x 的取值范围为(23),.…………………………………………………………………………5分(Ⅱ)当0a >时,若p 为真,则3a x a <<,…………………………………………………6分因为p ⌝是q ⌝的充分不必要条件,所以q 是p 的充分不必要条件,………………………………………………………………8分 于是,234a a ⎧⎨⎩,即423a ,故实数a 的取值范围4[2]3,.……………………………………………………………………10分18.(本小题满分12分)解:2sin sin A C A =, (2)分 因为(0)A π,,所以sin 0A ≠,于是,sin 2C =,………………………………………4分又因为锐角ABC △,所以(0)2C π,,…………………………………………………………5分 解得3C π= (6)分(Ⅱ)因为1sin 2ABC S ab C =△, (7)分所以42ab =,解得6ab =,………………………………………………………………9分由余弦定理,得2222cos c a b ab C =+-,……………………………………………………10分即27()2(1cos )a b ab C =+-+,………………………………………………………………11分解得5a b +=.…………………………………………………………………………………12分19.(本小题满分12分)解:设2()(3)f x x m x m =+-+.…………………………………………………………………1分(Ⅰ)由题,2302(3)40(0)0m m mf m -⎧->⎪⎪⎪∆=--⎨⎪⎪=>⎪⎩, (4)分即3190m m m m <⎧⎪⎨⎪>⎩或,解得01m <故m 的取值范围为(01],.…………………………………………………………………6分(Ⅱ)由题,23022(3)40(0)0(2)320m m mf m f m -⎧<-<⎪⎪⎪∆=--⎨⎪=>⎪=->⎪⎩, (10)分即1319023m m m m m -<<⎧⎪⎪⎪>⎨⎪⎪>⎪⎩或,解得213m <,故m 的取值范围为2(1]3,.………………………………………………………………12分(注:其他解法请酌情给分.) 20.(本小题满分12分)解:(Ⅰ)因为正项等比数列{}n a ,所以0n a >,设公比为q ,则0q >.……………………1分又因为2a 与4a 的等比中项为18,所以318a =,………………………………………………2分 即2118a q =,由112a =,得12q =,……………………………………………………………3分于是,数列{}n a 的通项公式为12n na =.………………………………………………………4分(Ⅱ)由题可知,2n n nb =,…………………………………………………………………5分于是,231232222n n nS =++++…——① 2341112322222n n nS +=++++…——②……………………………………………………6分 由①-②,得23411111112222222n n n nS +=+++++-……………………………………………8分 111(1)221212n n n +-=-- 11122n n n+=-- (10)分解得222n n n S +=-,……………………………………………………………………………11分故2n S <.………………………………………………………………………………………12分21.(本小题满分12分)解:(Ⅰ)由题,方程2320ax x -+=的两根分别为11x =,2x b =,于是,9803121a b a b a ⎧∆=->⎪⎪⎪+=⎨⎪⎪=⎪⎩⋅,……………………………………………………………………3分解得1a =,2b =.…………………………………………………………………………4分 (Ⅱ)原不等式等价于2(3)30ax a x +-->,等价于(1)(3)0x ax +->,……………5分 (1)当0a =时,原不等式的解集为{1}x x <-;……………………………………6分 (2)当0a ≠时,11x =-,23x a=,……………………………………………………7分 ①当31a>-,即3a <-或0a >时,……………………………………………………8分(ⅰ)当0a >时,原不等式的解集为3{1}x x x a<->或;…………………………9分 (ⅱ)当3a <-时,原不等式的解集为3{1}x x a-<<;……………………………10分②当31a =-,即3a =-时,原不等式的解集为x ∅.…………………………11分 ③当31a <-,即30a -<<时,原不等式的解集为3{1}x x a<<-.……………12分22.(本小题满分12分)解:(Ⅰ)因为21221nn n n n S a S S S -==--*(2)nnN ,,………………………………………1分故212()(21)n n n n S S S S -=--,所以1120n n n n S S S S ---+=,……………………………………………………………………2分由题,0n S ≠,两边同时除以1n n S S -⋅,得11120n nS S --+=, 故1112n n S S --=*(2)n nN ,,………………………………………………………………3分 故数列1{}nS 是公差为2的等差数列.…………………………………………………………4分(Ⅱ)由(Ⅰ)知,111(1)221n n n S S =+-⨯=-,……………………………………………5分 所以121n S n =-*()n N ,11122123(21)(23)n n n a S S n n n n --=-=-=----*(2)nnN ,,……………………………6分又11a =,不满足上式,………………………………………………………………………7分第11页 共11页 故*112(2)(21)(23)n n a n n n n =⎧⎪=-⎨⎪--⎩N ,,,.………………………………………………………8分 (Ⅲ)原不等式等价于11(11)(1)(1)21321k n n ++++-…*n N 都成立,即11(11)(1)(1)k +++…,…………………………………………………………9分 令11(11)(1)(1)()f n +++=…, 于是,(1)1()f n f n +=>,即(1)()f n f n +>,……………………………10分所以()f n 在*n N 上单调递增,故min ()(1)3f n f ===,………………………11分因为k 为正整数,所以k 的最大值为1.………………………………………………12分。

(最新)高二下册期中考试数学理试题及答案(人教版)

(最新)高二下册期中考试数学理试题及答案(人教版)

高二年级第二学期期中练习数 学(理科)学校 班级 姓名 成绩 本试卷共100分.考试时间90分钟.一、选择题:本大题共8小题, 每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i z =-的虚部是A. 2-B. 2C.2i -D. 2i 2.下列导数运算错误..的是( ) A. 21()'2x x --=- B.(cos )'sin x x =- C. (ln )'1ln x x x =+ D. (2)'2ln 2x x = 3. 函数()f x 的图象如图所示,则()f x 的极大值点的个数为( ) A. 0 B. 1 C. 2 D. 34.若函数()f x 的导函数'()(2)e x f x x x -=-,则下列关系一定成立的是( )A.(2)0f >B. (0)(1)f f >C. (2)(1)f f <D. (2)(3)f f >5. 已知两个命题::p “若复数12,z z 满足120z z ->,则1z >2z .”:q “存在唯一的一个实数对(,)a b 使得i i(2i)a b -=+.” 其真假情况是( )A.p 真q 假B. p 假q 假C. p 假q 真D. p 真q 真 6.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在1t =到3t =的平均速度为v ,在2t =的瞬时速度为2v ,则v 和2v 关系为( )A .2vv > B .2v v < C .2v v = D .不能确定7.如图,过原点斜率为k 的直线与曲线ln y x =交于两点11(,)A x y ,22(,)B x y . ① k 的取值范围是1(0,)e.② 1211k x x <<. ③ 当12(,)x x x ∈时,()ln f x kx x =-先减后增且恒为负.以上结论中所有正确结论的序号是(A.①B.①②C.①③8.已知函数32()f x axbx cx d =+++()f x 的图象可能是( )9.计算1+2ii=_________. 10.20(3)x dx -=⎰_____________.11.已知()1xf x x =- ,则'()f x =______________. 12. 方程(1)1x x e -=的解的个数为_______________.三、解答题:本大题共5小题,共52分. 解答应写出文字说明,证明过程或演算步骤. 13.(本小题12分) 已知函数cx bx ax x f ++=23)(,其导函数为)('x f 的部分值如下表所示:(Ⅰ)实数c 的值为___________;当x = ________时,()f x 取得极大值...(将答案填写在横线上). (Ⅱ)求实数a ,b 的值.(Ⅲ)若()f x 在(,2)m m +上单调递减,求m 的取值范围.14.(本小题10分)如图,四棱锥B ACDE -的底面ACDE 满足 DE //AC ,AC =2DE . (Ⅰ)若DC ⊥平面ABC , AB ⊥BC ,求证:平面ABE ⊥平面BCD ; (Ⅱ)求证:在平面ABE 内不存在直线与DC 平行;某同学用分析法证明第(1)问,用反证法证明第 (2)问,证明过程如下,请你在横线上填上合适的内容.(Ⅰ)证明:欲证平面ABE ⊥平面BCD ,只需证_______________________________,由已知AB ⊥BC ,只需证_________________, 由已知DC ⊥平面ABC 可得DC ⊥AB 成立, 所以平面ABE ⊥平面BCD .(Ⅱ)证明:假设________________________________________,又因为DC ⊄平面ABE ,所以//DC 平面ABE . 又因为平面ACDE I 平面ABE =AE , 所以__________________, 又因为DE //AC ,所以ACDE 是平行四边形,所以AC DE =,这与_______________________________矛盾, 所以假设错误,原结论正确.15.(本小题12分)已知函数()ln f x x ax =+(a ∈R ). (Ⅰ)若函数)(x f 在点))1(,1(f 处的切线与直线x y 2=平行,求实数a 的值及该切线方程; (Ⅱ)若对任意的),0(+∞∈x ,都有1)(≤x f 成立,求实数a 的取值范围.16. (本小题8分)请阅读问题1的解答过程,然后借鉴问题1的解题思路完成问题2的解答: 问题1:已知数集{}()1212,,1,2n n A a a a a a a n =≤<<<≥L L 具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .若数集{}14,2,3,a a 具有性质P ,求,a a 的值.问题2:已知数集1212,,0,2n n A a a a a a a n =≤<<<≥L L 具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a +与j i a a -两数中至少有一个属于A .若数集{}14,1,3,a a 具有性质P ,求14,a a 的值.17. (本小题10分)已知函数1()(0)f x x x=>,对于正数1x ,2x ,…,n x (n ∈N +),记12n n S x x x =+++L ,如图,由点(0,0),(,0)i x ,(,())i i x f x ,(0,())i f x 构成的矩形的周长为i C (1,2,,)i n =L ,都满足4i i C S =(1,2,,)i n =L . (Ⅰ)求1x ;(Ⅱ)猜想n x 的表达式(用n 表示),并用数学归纳法证明.数 学(理科)一、选择题:本大题共8小题, 每小题4分,共32分.AABD CCCD二、填空题:本大题共4小题, 每小题4分,共16分.9.2i - 10. 4- 11. 21(1)x -- 12. 1三、解答题:本大题共5小题,共52分. 解答应写出文字说明,证明过程或演算步骤. 13.(本小题12分) (Ⅰ)6, 3. ------------------------------------------------------------------4分(Ⅱ)解:2'()32f x ax bx c =++,--------------------------------------------------------------5分由已知表格可得'(1)8,'(3)0,f f =⎧⎨=⎩解得2,32.a b ⎧=-⎪⎨⎪=⎩---------------------------------------------7分(Ⅲ)解:由(Ⅱ)可得2'()2462(3)(1)f x x x x x =-++=--+,-----------------------8分 由'()0f x <可得(,1)x ∈-∞-(3,)+∞U ,------------------------------------------------9因为()f x 在(,2)m m +上单调递减,所以仅需21m +≤-或者3m ≥, ------------------------------------------------------11分所以m 的取值范为3m ≥或3m ≤-.-----------------------------------------------------12分 14.(本小题10分)(Ⅰ)证明:欲证平面ABE ⊥平面BCD ,只需证由已知AB ⊥BC ----------------------------------------------------4分由已知DC ⊥平面ABC 可得DC ⊥AB 成立, 所以平面------------------------------------6分又因为DC I 平面ABE =AE ,------------------------------------------8分所以AC DE =-----------------------------------------------10分所以假设错误,原结论正确.15.(本小题12分) (Ⅰ)解:11'()ax f x a x x+=+=,0x >.----------------------------------------------------------2分由已知可得'(1)12f a =+=,解得1a =.---------------------------------------------------3分因为(1)1f =,所以在点))1(,1(f 处的切线方程为21y x =-.------------------------4分(Ⅱ)解1:若对任意),0(+∞∈x ,都有1)(≤x f 成立,即1ln xa x-≤成立.------------6分设1ln ()x g x x-=,--------------------------------------------------------------7分 2ln 2'()x g x x-=,令'()0g x =,解得2e x =, 则'(),()g x g x 的情况如下:分所以()g x 的最小值为22(e )e g -=-, ------------------------------------------10分所以,依题意只需实数a 满足2e a -≤-,---------------------------------------11分故所求a 的取值范围是2(,e ]--∞-.--------------------------------------------12分解2:当0a ≥时,'()0f x >恒成立,所以函数()f x 的单调递增区间为(0,)+∞又因为11(1)ln(1)11f a a a+=+++>,所以不符题意,舍.--------------------6分当0a <时,令'()0f x =,得1x a=-.----------------------------------------------7分所以'(),()f x f x 随x 的变化如下表所示:分所以()f x 的最大值为1()f a -,------------------------------------------------------10分所以,依题意只需11()ln()11f a a-=--≤即可,解得2e a -≤-.---------------11分综上,a 的取值范围是2(,e ]--∞-.---------------------------------------------------12分16. (本小题8分)解:对于集合中最大的数4a ,因为444a a a +>,443a a +>,441a a +>-----------------2分所以44a a -,43a -,41a -,41a a -都属于该集合.--------------------------------------------4分又因为14013a a ≤<<<,所以44a a -<43a -<41a -41a a <-.-----------------------6分 所以1440a a a =-=,431a -=,------------------------------------------------------------------7分即140,4a a ==.-------------------------------------------------------------------------------------8分17. (本小题10分)(Ⅰ)解:由题意知,12(())2()i i i i iC x f x x x =+=+(1,2,,)i n =L ,所以12i iiS x x =+(1,2,,)i n =L .--------------------------------------------------------------1分令i =1,得11112S x x =+,又11S x =,且1x >0,故11x =.---------------------------------------------------------------2分(Ⅱ)解:令i =2,得22212S x x =+,又212S x x =+,11x =,且2x >0,故21x =;------------------------------------3分 令i =3,得33312S x x =+,由此猜想,n x =(n ∈N +).-------------------------------------------------------5分下面用数学归纳法证明: ①当n =1时,11x =,命题成立;---------------------------------------------------------6分②假设n =k时命题成立,即k x =(k ∈N +), -----------------------------7分则当n =k +1时,11112k k k S x x +++=+,又11k k k S S x ++=+,12k k kS x x =+, 故11111()2k k k k k x x x x x +++++=+,由k x =,得21110k k x +++-=,--------------------------------------8分所以1k x +).-------------------------------------------9分即当n =k +1时命题成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁阳四中高二数学(理)下学期期中考试试题 范兆强本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一.选择题(本大题共10个小题,每小题5分,共50分.在每个小题的四个选项中,只有一项是符合题目要求的.) 1.复数13)31(2-+i i 的值是 ( )A .2B .21C .21-D .2- 2.)('0x f =0是可导函数)(x f 在点0x x =处取极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知(p xx-22)的展开式中,不含x 的项是2720,那么正数p 的值是 ( )A . 1B .2C .3D .44.如果654321,,,,,a a a a a a 的方差为3,那么2)3(1-a .2)3(2-a . 2)3(3-a .2)3(4-a .2)3(5-a .2)3(6-a 的方差是( )A .0B .3C .6D .12 5.今天为星期四,则今天后的第20062天是( )A .星期一B .星期二C .星期四D .星期日 6.函数x x x y 6213123--=的单调区间为 ( )A .(-2,3)B .(―∞,―2)和(-2,3)C .(-2,3)和(3,+∞)D .(-∞,-2)和(3,+∞)7.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有 ( ) A .10 B .48 C .60 D .808.正态总体为1,0==σμ时的概率密度函数R x ex f x ∈⋅=-,21)(22π则下列判断正确的是( )A .函数f (x )是奇函数且在(-∞,+∞)上单调递减B .函数f (x )是奇函数且在(-∞,+∞)上单调递增C .函数f (x )是偶函数且有最大值π21 D .函数f (x )是偶函数且有最小值π219.把语文、数学、物理、历史、外语这五门课程安排在一天的五节课里,如果数学必须比历史先上,则不同的排法有 ( ) A .48 B .24 C .60 D .12010.有A .B .C .D .E .F6个集装箱,准备用甲.乙.丙三辆卡车运送,每台卡车一次运两个.若卡车甲不能运A 箱,卡车乙不能运B 箱,此外无其它任何限制;要把这6个集装箱分配给这3台卡车运送,则不同的分配方案的种数为 ( ) A .168 B .84 C .56 D .42第Ⅱ卷(非选择题满分100分)二、填空题:(本题共5小题,每小题5分,共25分) 11. (2x+x )4的展开式中x 3的系数是12.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为__________.13.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n 个等式为_________.14.已知函数)0(1)1(3)(223>+-+-=k k x k kx x f ,若)(x f 的单调减区间是 (0,4),则在曲线)(x f y =的切线中,斜率最小的切线方程是_________________.15.口袋里放有大小相同的2个红球和1个白球,有 放回的每次模取一个球,定义数列{}n a :⎩⎨⎧-=次摸取白球第次摸取红球第n n a n 11 如果n S 为数列{}n a 的前n 项之和,那么37=S 的概率为 __________三、解答题 本题共6小题,共75分16.(12分)已知(41x +3x 2)n 展开式中的倒数第三项的系数为45,求:(1)含x 3的项; (2)系数最大的项.17、(本小题共12分)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列. 18.(本小题满分12分) 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)记“函数x x x f ξ+=2)(为R 上的偶函数”为事件A ,求事件A 的概率; (Ⅱ)求ξ的分布列和数学期望.19.(12分)已知函数3()3f x x x =-(1)求函数()f x 在3[3,]2-上的最大值和最小值(2)过点(2,6)P -作曲线()y f x =的切线,求此切线的方程20.(13分)函数数列{})(x f n 满足:)0(1)(21>+=x xx x f ,)]([)(11x f f x f n n =+(1)求)(),(32x f x f ;(2)猜想)(x f n 的表达式,并证明你的结论.21.(14分)已知a 为实数,函数23()()()2f x x x a =++.(I )若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围; (II )若(1)0f '-=,(ⅰ) 求函数()f x 的单调区间;(ⅱ) 证明对任意的12,(1,0)x x ∈-,不等式125()()16f x f x -<恒成立宁阳四中高二数学(理)期中考试参考答案一、选择题 ABCD A D D C C D 二、填空题11.24 12.32 13.)321()1()1(16941121n n n n ++++-=⋅-++-+-++ 14.1280x y +-= 15、72928三、解答题16.解:(1)由题设知2245,45,10.n n n C C n -==∴=即21113010363341211010710433101130()(),3,6,12210.r rrrr r r T C x x C xr x T C xC x x ---+-=⋅======令得含的项为 (2)系数最大的项为中间项,即55302551212610252.T C xx -==17.(12分)解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=.401442333-A C A 即甲、乙两人同时参加A 岗位服务的概率是.401(Ⅱ)记甲、乙两个同时参加同一岗位服务为事件E ,那么P (E )=.101442344=A C A 所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=.109 (Ⅲ)随机变量ξ可能取的值为1,2.事件“ξ=2”是指有两人同时参加A 岗位服务,则P (ξ=2)=.4144233323=A C A C所以p (ξ-1)=1-P (ξ=2)=3.ξ的分布列是18、解:设该学生选修甲、乙、丙的概率分别为x 、y 、z依题意得⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧=----=-=--5.06.04.0,88.0)1)(1)(1(1,12.0)1(,08.0)1)(1(z y x z y x z xy z y x 解得(I )若函数x x x f ξ+=2)(为R 上的偶函数,则ξ=0当ξ=0时,表示该学生选修三门功课或三门功课都没选.)1)(1)(1()0()(z y x xyz P A P ---+===∴ξ=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24∴事件A 的概率为0.24(II )依题意知ξ=0.2则ξ的分布列为∴ξ的数学期望为E ξ=0×0.24+2×0.76=1.5219.解:(1)'()3(1)(1)f x x x =+-当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >,3[3,1],[1,]2∴--为函数()f x 的单调增区间当(1,1)x ∈-时,'()0f x <,[1,1]∴-为函数()f x 的单调减区间 又39(3)18,(1)2,(1)2,()28f f f f -=--==-=-,∴当3x =-时,min ()18f x =- 当1x =-时,max ()2f x =(2)设切点为3(,3)Q x x x -,则所求切线方程为32(3)3(1)()y x x x x x --=-- 由于切线过点(2,6)P -,326(3)3(1)(2)x x x x ∴---=--,解得0x =或3x = 所以切线方程为30x y +=或24540x y --=20.解:(1)221111221)(1)())(()(x x x f x f x f f x f +=+==222221331)(1)())(()(xx x f x f x f f x f +=+==(2)猜想:)(1)(2*∈+=N n nx x x f n下面用数学归纳法证明: ①当n=1时,211)(xx x f +=,已知,显然成立②假设当)(*∈=N K K n 时 ,猜想成立,即21)(kxx x f k +=则当1+=K n 时,2222211)1(1)1(11)(1)())(()(xk x kx x kx xx f x f x f f x f k k k k ++=+++=+==+ 即对1+=K n 时,猜想也成立. 由①②可得)(1)(2*∈+=N n nx x x f n 成立21.解: 解:(Ⅰ) ∵3233()22f x x ax x a =+++,∴23()322f x x ax '=++.∵函数()f x 的图象上有与x 轴平行的切线,∴()0f x '=有实数解. ∴2344302a D =-⨯⨯≥,…………………4分 ∴292a ≥.因此,所求实数a的取值范围是32(,(,)-∞+∞. (Ⅱ) (ⅰ)∵(1)0f '-=,∴33202a -+=,即94a =. ∴231()323()(1)22f x x ax x x '=++=++. 由()0f x '>,得1x <-或12x >-; 由()0f x '<,得112x -<<-.因此,函数()f x 的单调增区间为(,1]-∞-,1[,)2-+∞;单调减区间为1[1,]2--.(ⅱ)由(ⅰ)的结论可知,()f x 在1[1,]2--上的最大值为25(1)8f -=,最小值为149()216f -=;()f x 在1[,0]2-上的的最大值为27(0)8f =,最小值为149()216f -=.∴()f x 在[1,0]-上的的最大值为27(0)8f =,最小值为149()216f -=. 因此,任意的12,(1,0)x x ∈-,恒有1227495()()81616f x f x -<-=.。

相关文档
最新文档