高职专升本高等数学试题及答案(4)
江苏专升本数学2024真题及答案
江苏专升本数学2024真题一、单项选择题(共8小题,每小题4分,总计32分)1.设1)(,11)(,1cos )(2-=-+=-=xe x x x x x γβα,则当0→x 时()A.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的高阶无穷小B.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的同阶无穷小C.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的同阶无穷小D.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的高阶无穷小2.若函数)(lim 22sin )(0x f xxx f x →+=则=→)(lim 0x f x ()A.4-B.2-C.2D.43.若xe2-是函数)(x f 的一个原函数,则='')(x f ()A.xe 24- B.e4- C.xe 28- D.xe28--4.若)12ln()(+=x x f ,则=)()(x f n ()A.n n x n )12()!1(2)1(1+-⋅⋅-- B.n n n x n )12()!1(2)1(11+-⋅⋅---C.nn n x n )12()!1(2)1(1+-⋅⋅-- D.nn n x n )12()!1(2)1(+-⋅⋅-5.下列级数收敛的是()A.∑∞=++1211n n n B.∑∞=++-122)1(n n n C.∑∞=11sinn n n D.∑∞=-11sin)1(n n n6.设y y x x y x f 232),(223-+-=,则函数),(y x f ()A.在点)1,0(处不取极值,在点)1,1(处取极大值B.在点)1,0(处不取极值,在点)1,1(处取极小值C.在点)1,0(处取极大值,在点)1,1(处取极小值D.在点)1,0(处取极小值,在点)1,1(处取极大值7.矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----278811944113221111111的秩为()A.1B.2C.3D.48.设向量组321,,ααα线性无关,则一定线性相关的向量组为()A.313221,αααααα+++,B.131221,αααααα---,C.321211,αααααα+++, D.321211,αααααα---,二、填空题(共6小题,每小题4分,总计24分)9.若1=x 是函数xx axx x f --=23)(的第一类间断点,则=→)(lim 0x f x 10.设)(x y y =是由参数方程⎪⎩⎪⎨⎧-=+=tt y tt x 3232所确定的函数,若23|0-==t t dx dy ,则=0t 11.设⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(2x x xx x f ,)(sin x f y =,则==0|x dx dy 12.若⎰⎰∞--∞-=az ax dx e dx e 1,则常数=a 13.幂级数∑∞=-1)1(!3n nn n x n n 的收敛半径为14.行列式=4003043002102001三、计算题(共8小题,每小题8分,总计64分)15.求极限2(arctan lim 22π-∞→x x x 16.求不定积分dxx x x ⎰++-+2)3(1217.计算定积分⎰-+1211dx x x x18.已知x xx x x e ey e e y e y 3233,,+=+==是某二阶常系数齐次线性微分方程的三个特解,求该微分方程19.设),(y x z z =是由方程0)32arctan(=-++xyz z y x 所确定的函数,求全微分)0,0(|dz 20.计算二次积分⎰⎰-111cos x dyyy dx 21.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛541431,100110111,2111C B A ,求矩阵X ,使C AXB =22.求方程组⎪⎩⎪⎨⎧=--+=+-+=-+852725243214321321x x x x x x x x x x x 的通解四、证明题(本题10分)23.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且0)1(,1)0(==f f ,证明:(1)在开区间)1,0(内至少存在一点η,使得ηη=)(f (2)在开区间)1,0(内至少存在一点ξ,使得ξξξξ2)()(=+'f f 五、综合题(本题共2小题,每小题20分,总计20分)24.设函数)(x f 满足)42()()(-=-'x e x f x f x,且5)0(=f ,求:(1)函数)(x f 的解析式(2)曲线)(x f y =的凹凸区间与拐点25.设函数)(x f 在闭区间),1[+∞上单调增加,且0)1(=f .曲线)(x f y =与直线)1(>=t t x 及x 轴所围成的曲边三角形记为t D .已知t D 的面积为1ln +-t t t ,求当e t =时,t D 绕x 轴旋转一周所形成的旋转体的体积答案选择题1-5AADCD 6-8BDB填空题9.110.011.112.2113.e 314.4计算题15.1-16.Cx x ++-+2arctan 2)3ln(17.41π-18.xe y y y 3223=+'-''19.dy dx dz 3231|)0,0(--=20.231cos 1sin -+21.⎪⎪⎭⎫ ⎝⎛01011122.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛003210110131114321C C x x x x 证明题23.(1)x x f x F -=)()(零点定理;(2)2)()(x x xf x g -=罗尔定理24.(1))54()(2+-=x x e x f x;(2)拐点)2,1(),8,1(1e e --,凹区间),1(),1,(+∞--∞凸区间)1,1(-25.)2(-e π。
专升本高等数学(含答案)
高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。
A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。
专升本高数试题及答案
专升本高数试题及答案一、选择题(每题2分,共10分)1. 函数f(x)=x^2-4x+3在区间[0,6]上的最大值是()。
A. 3B. 4C. 6D. 92. 极限lim(x→0) (sin(x)/x) 的值是()。
A. 0B. 1C. 2D. 无穷大3. 设f(x)是定义在R上的函数,若f(0)=-1,f'(0)=2,则f'(π)的值是()。
A. 2B. -2C. π^2D. 无法确定4. 曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是()。
A. 0B. 1C. -1D. 25. 已知数列{an}满足a1=2,an+1=an+n,数列{an}的前n项和Sn=()。
A. n^2+nB. n^2C. n(n+1)/2D. n^3/3二、填空题(每题2分,共10分)6. 微分方程dy/dx + y = x的通解是 y = ________。
7. 若曲线y=x^2上一点P(x0,y0)处的切线方程为y=2x-1,则x0=_______。
8. 函数f(x)=x^3-6x^2+9x+2在x=2处的导数f'(2)=_______。
9. 已知级数∑n=1^∞ (1/n^2)是收敛的,其和为π^2/6,则∑n=1^∞ (1/n^3)的和为_______。
10. 若函数f(x)=sin(x)+cos(x),则f''(π/4)=_______。
三、计算题(每题10分,共30分)11. 求函数f(x)=2x^3-x^2+1在区间[-1,2]上的最大值和最小值。
12. 求曲线y=x^2-4x+3与直线y=6的交点坐标。
13. 求函数f(x)=ln(x)+1/x在区间(0,1)上的单调性。
四、证明题(每题15分,共30分)14. 证明:对于任意正整数n,有1^2 + 1/2^2 + 1/3^2 + ... +1/n^2 < 2。
15. 证明:函数f(x)=e^x - x在区间(0, +∞)上是单调递增的。
专升本高数试题及答案
专升本高数试题及答案一、选择题1.已知函数f(x)=log₁₀(2x-1),则f(2)的值为多少?A) 0B) 1C) log₁₀3D) log₁₀2答案:D2.若f(x)在点x=a处可导,且f'(a)=3,则f(x)在点x=a处的切线斜率为多少?A) 3B) aC) f(a)D) 0答案:A3.已知集合A={1,2,3,4},集合B={3,4,5,6},则A∪B的结果为:A) {1,2,3,4,5,6}B) {1,2,3,4}C) {1,2,5,6}D) {3,4,5,6}答案:A二、计算题1.计算limₓ→∞(3x³+2x²-5x+1)的值。
答案:无穷大2.已知函数f(x)=x²+2x+1,求f'(x)的值。
答案:f'(x)=2x+23.已知三个数的平均值为85,其中两个数为60和90,求第三个数的值。
答案:第三个数的值为95三、证明题证明:对于任意实数x,若x²=x,则x=0或x=1。
证明:假设x²=x,则将方程两边移项得到x²-x=0,再因式分解得到x(x-1)=0,根据零乘法,得到x=0或x-1=0,即x=0或x=1。
由此可证明对于任意实数x,若x²=x,则x=0或x=1。
四、应用题某公司员工工资调整规则如下:每个员工的基本工资为3000元,年龄每增加1岁,工资增加50元;工龄每增加1年,工资增加100元。
现有一名员工,年龄为30岁,工龄为5年,请计算该员工的总工资。
答案:年龄增加的工资 = (30-20) * 50 = 500元工龄增加的工资 = 5 * 100 = 500元总工资 = 基本工资 + 年龄增加的工资 + 工龄增加的工资 = 3000 + 500 + 500 = 4000元总结:本文提供了专升本高数的试题及答案,包括选择题、计算题、证明题和应用题。
通过对这些题目的解答,读者可以巩固和提升自己在高等数学方面的知识和技能。
《高等数学》(专升本)试题及参考答案
《高等数学》(专升本)习题答案一、单选题1、若无穷级数收敛,而发散,则称称无穷级数(C)A发散 B收敛 C条件收敛 D绝对收敛2、点x=0是函数y=x^4的(D)A驻点但非极值点 B拐点 C驻点且是拐点 D驻点且是极值点3、极限(B)A B C1 D04、函数f(x)在点x0极限存在是函数在该点连续的(A)A必要条件 B充分条件 C充要条件 D无关条件5、(C)A B C0 D16、曲线y=1/∣x∣的渐近线情况是(C)A只有水平渐近线 B只有垂直渐近线C既有水平渐近线又有垂直渐近线 D既无水平渐近线又无垂直渐近线7、函数的定义域为(D)A B C D8、y=x/(x^2-1)的垂直渐近线有(B)条A1 B2 C3 D49、向量、垂直,则条件:向量、的数量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件D既非充分又非必要条件10、当x→0时,下列函数不是无穷小量的是(D)Ay=x By=0 Cy=ln(x+1) Dy=e^x11、,则(D)A BC D12、设f(x)=2^x-1,则当x→0时,f(x)是x的(D)A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无穷13、(A)A0 B C D14、若f(x)在x=x0处可导,则∣f(x)∣在处(C)A可导 B不可导 C连续但未必可导 D不连续15、直线上的一个方向向量,直线上的一个方向向量,若与平行,则(B)A BC D16、设函数y=f(x)在点x0处可导,且f′(x)>0, 曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为{C}A0 B∏/2 C锐角 D钝角17、设,则(A)A B C D18、函数y=x^2*e^(-x)及图象在(1,2)内是(B)A单调减少且是凸的 B单调增加且是凸的C单调减少且是凹的 D单调增加且是凹的19、和在点连续是在点可微分的(A)A充分条件 B必要条件 C充要条件 D无关条件20、以下结论正确的是(C )A 若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.21、无穷大量减去无穷小量是(D)A无穷小量 B零 C常量 D未定式22、下列各微分式正确的是(C)Axdx=d(x^2) Bcos2x=d(sin2x) Cdx=-d(5-x) Dd(x^2)=(dx^2)23、已知向量两两相互垂直,且,求(C)A1 B2 C4 D824、函数y=ln(1+x^2)在区间[-1,-2]上的最大值为(D)A4 B0 C1 Dln525、在面上求一个垂直于向量,且与等长的向量(D)A B C D26、曲线y=xlnx的平行于直线x-y+1=0的切线方程是(C)Ay=x By=(lnx-1)(x-1) Cy=x-1 Dy=-(x-1)27、向量与向量平行,则条件:其向量积是(B)A充分非必要条件B充分且必要条件 C必要非充分条件 D既非充分又非必要条件28、曲线y=e^x-e^-x的凹区间是(B)A(-∞,0) B(0,+∞) C(-∞,1) D(-∞,+∞)29函数在区间上极小值是(D)A-1 B1 C2 D030函数y=3x^2-x^3在区间[1,3]上的最大值为(A)A4 B0 C1 D331、若,则(A)A4 B0 C2 D32、已知y=xsin3x ,则dy=(B)A(-cos3x+3sin3x)dx B(3xcos3x+sin3x)dxC(cos3x+3sin3x)dx D(xcos3x+sin3x)dx33、二重极限(D)A等于0 B等于1 C等于 D不存在34、曲线 y=x^3+x-2 在点(1,0)处的切线方程是(B)Ay=2(x-1) By=4(x-1) Cy=4x-1 Dy=3(x-1)35、设,则(C)A BC D36、曲线y=2+lnx在点x=1处的切线方程是(B)Ay=x-1 By=x+1 Cy=x Dy=-x37、向量与轴与轴构成等角,与轴夹角是前者的2倍,下面哪一个代表的是的方向(C)A BC D38、半径R为的金属圆片,加热后伸长了R,则面积S的微分dS是(B)A∏RdR B2∏RdR C∏dR D2∏dR39、设在处间断,则有(D)A在处一定没有意义;B;(即);C不存在,或;D若在处有定义,则时,不是无穷小40、曲线y=x/(x+2)的渐进线为(D)Ax=-2 By=1 Cx=0 Dx=-2,y=141、若无穷级数收敛,且收敛,则称称无穷级数(D)A发散 B收敛 C条件收敛 D绝对收敛42、函数y=(x^2-1)^3的驻点个数为(B)A4 B3 C1 D243、曲线在点处的切线斜率是(A)A B C2 D44、M1(2,3,1)到点M2(2,7,4)的距离∣M1M2∣=(C)A3 B4 C5 D645、利用变量替换,一定可以把方程化为新的方程表达式(A)A B C D46、两个向量a与b垂直的充要条件是(A)Aab=0 Ba*b=0 Ca-b=0 Da+b=047、已知向量,求向量在轴上的投影及在轴上的分量(A)A27,51 B25,27 C25,51 D27,25 48、求抛物线 y=x^2与y=2-x^2 所围成的平面图形的面积(B)A1 B8/3 C3 D249、若,为无穷间断点,为可去间断点,则(C)A B C D50、要用铁板做一个体积为2m^3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?(A)A均为³√2m时,用料最省. B均为³√3m时,用料最省.C均为√3m时,用料最省. D均为√2m时,用料最省.二、判断题1、设,则(错)2、已知曲线y=f(x)在x=2处的切线的倾斜角为5/6∏,则f′(2)=-1(错)3、对于无穷积分,有(对)4、定义函数极限的前提是该函数需要在定义处的邻域内有意义(对)5、函数的定义域是(对)6、函数就是映射,映射就是函数(错)7、设,且满足,则(错)8、函数有界,则界是唯一的(错)9、设是曲线与所围成,则,是否正确(错)10、极限存在,则一定唯一(对)11、在处二阶可导,且,若,则为极小值点(对)12、1/x的极限为0(错)13、设,其中,则,是否正确(对)14、1/n-1的极限为0(错)15、,是否正确(对)16、对于函数f(x),若f′(x0)=0,则x0是极值点(错)17、,是否正确(对)18、无界函数与其定义域没有关系(错)19、齐次型微分方程,设,则(对)20、若函数f(x)在x0处连续,则f(x)在x0处极限存在(对)21、函数可微可导,且(对)22、函数f(x)在[a,b]在内连续,且f(a)和f(b)异号,则f(x)=0在(a,b)内至少有一个实数根(对)23、微分方程的通解为,是否正确(对)24、y=e^(-x^2) 在区间(-∞,0)(1,∞)内分别是单调增加,单调增加(错)25、设是由所确定,函数在上连续,那么(对)26、有限个无穷小的和仍然是无穷小(对)27、是齐次线性方程的线性无关的特解,则是方程的通解(对)28、函数在一点的导数就是在一点的微分(错)29、设表示域:,则(错)30、方程x=cos在(0,∏/2)内至少有一实根(错)31、设,则,是否正确(对)32、f〞(x)=0对应的点不一定是曲线的拐点(对)33、设,其中,则(错)34、y=ln(1-x)/(1+x)是奇函数(对)35、设由所确定,则(对)36、方程x=cos在(0,∏/2)内至少有一实根(错)37、设在区间上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点(对)38、无穷间断点就是函数在该点的极限是无穷(对)39、设是圆周围成的区域,是否正确(对)40、定积分在几何上就是用来计算曲边梯形的面积(对)41、,是否正确(对)42、数列要么收敛,要么发散(对)43、函数在点可导(对)44、函数在一点处极限存在的充要条件是函数在该点的左极限等于右极限(对)45、在的邻域内可导,且,若:当时,;当时,则为极小值点(错)46、定积分在几何上就是用来计算曲边梯形的面积(对)47、二元函数的最小值点是(对)48、任何函数都可以求出定积分(错)49、设为,与为顶点三角形区域,则积分方程(对)50、若被积函数连续,则原函数不一定存在(错)。
(完整版)专升本高等数学习题集与答案
·第一章 函数一、选择题1.以下函数中,【 C 】不是奇函数A.y tan x xB. y xC. y ( x 1) ( x 1)D. y2 sin 2 x2.f (x) 与 g( x) 同样的是【x以下各组中,函数 】A.f ( x) x, g( x)3x 3B.f ( x) 1, g( x) sec 2 xtan 2 xC. f ( x) x 1, g(x) x21D. f ( x) 2 ln x, g( x)ln x 23.x1以下函数中,在定义域内是单一增添、有界的函数是【】A. y x+arctan xB. y cosxC. yarcsin xD. y x sin x4. 以下函数中,定义域是 [,+ ] , 且是单一递加的是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x5. 函数 yarctan x 的定义域是 【】A. (0, )B. (2 , )2C.[, 2 ]D. (,+ )26. 以下函数中,定义域为 [ 1,1] ,且是单一减少的函数是【】A. y arcsin xB. y arccosxC. y arctan xD. y arccot x7. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]8. 已知函数 yarcsin( x 1) ,则函数的定义域是 【】A. ( , )B. [ 1,1]C. (, )D. [ 2,0]9.以下各组函数中, 【 A 】 是同样的函数A. f ( x) ln x 2和 gx 2ln x B. f (x)x 和 g xx 2C. f ( x) x 和 g x ( x )2D. f ( x) sin x 和 g(x) arcsin x10. 设以下函数在其定义域内是增函数的是【】A. f ( x) cos xB. f ( x) arccos xC. f (x)tan xD. f (x)arctan x11. 反正切函数 y arctan x 的定义域是【】A. (, ) B. (0, )2 2C. ( , )D. [1,1]12. 以下函数是奇函数的是【】··A. y x arcsin xB.y x arccosxC.y xarccot xD. yx 2 arctan x13. 函数 y5ln sin 3x 的复合过程为 【 A 】A. y 5u ,u ln v, v w 3 , w sin xB. y 5u 3, u ln sin xC. y5ln u 3 ,u sin x D. y5u , u ln v 3,v sin x二、填空题1.函数 yarcsin xarctan x的定义域是 ___________.5 5 2.f ( x)x 2arcsin x的定义域为 ___________.33.函数 f ( x) x 2 arcsinx 1的定义域为 ___________。
(完整版)中职升高职数学试题及答案(1-5套),推荐文档
)
建议收藏下数学载试本卷(五文) ,以便随时学习!25 9
A. 18
B. 16
C. 12
D. 8
8、等差数列{an}的首项 a1 1,公差 d 3 ,则第 3 项 a3 的值为(
一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。本大题共 8 小题,每 小题 3 分,共 24 分)
A. 5
A. y 3x B. y 1 x 3
C. y 3x
D. y
3 x
3
6、已知 sin 4 ,且 是第二象限角,则 tan 的值为(
)
5
A. 3
3
B.
5
5
C. 3 4
D. 4 3
中职升高职招生考试数学试卷(三)
一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。本大题共 8 小题,每 小题 3 分,共 24 分)
2
3
B.
3
3
C.
2
D. 3
5、已知等数比列{an},首项 a1 2 ,公比 q 3 ,则前 4 项和 s4 等于(
)
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分)
9.
7
10.
(, 1) (6, ) ,也可以写成{x x 1或 x 6}
A. 80
B.81
C. 26
6、下列向量中与向量 a (1, 2) 垂直的是(
参考答案
3、点 (2,1) 关于 x 轴的对称点的坐标为 (
)
A. (2,1)
B. (2, 1)
C. (2, 1)
4、向量 a (2, 3) , b (5, 4) ,则 a b (
D. (1, 2)
高职升本《高等数学》历年试题(2006-2013)
2006年天津市高等院校“高职升本科”招生统一考试高等数学本试卷分第I 卷(选择题)和第Ⅱ卷两部分。
共 150分。
考试时间120分钟。
第I 卷(选择题共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并 将本人考试用条形码贴在答题卡的贴条形码处。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.考试结束,监考人将本试卷和答题卡一并收回。
一、选择题:本大题共10小题,每小题4分,共40分。
1.下列说法正确的是A .函数 y = x ln( x 2+1- x )的定义域为区间(-∞,0]B .函数 y = e xx -1+1在区间(-∞,+∞)内是偶函数e C .当n → ∞时, 12 + n 22 + ........nn 2是无穷小量 nD .当 x → +∞时, y = e xsinx 不是无穷大量f(x 0 + 2h) - f(x 0) =2.设 f (x )在点A . -2x 0的某领域可导, f (x 0)为极大值,则lim hh →0B .0C .1D .23.设奇函数 f (x )在区间 (-∞,+∞)内二阶可导,若当 x > 0时, f '(x ) > 0且f ''(x ) > 0,则当 x < 0时, y = f (x )A .单调增加,且曲线是凸的C .单调减少,且曲线是凸的 B .单调增加,且曲线是凹的D .单调减少,且曲线是凹的⎰ f (x )dx =f (x ),则4.若 f (x ) = e -2x + x limx →0B .- 1 e -2x + CA .- 2e -2x + C 2D .- 1 x + 1e -2 x 2 + C 2 2C .- 1 e -2x + 2x 2+ C24 2⎰ ⎰ f (x )dx = sin 2,则 xf (x 2)dx =5.若11D . sin 22A. sin 2 B .2sin 2 C sin 2.21+∞6.若广义积分⎰ dx 收敛,则k 的取值范围为 x ln xkeA .k ≥ 27.若向量a ,b 的模分别为| a |= 2,| b |= 2且B .k > 0C .k >1D .k > 2a ⋅b = 2⨯ ,则| a b |=C .- 2A .2B . 2D .18.平面3x - 2y = 0 A .过Z 轴B .平行于XOY 坐标面 D .平行于Y 轴C .平行于X 轴9.若 f (1,1) = -1为 f (x , y ) = ax 3 + by 3+ cxy 的极值,则常数a,b,c 的值分别为 A .1,-1,-1 B .1,1,-3 C .-1,-1,-3 D .-1,-1,310.微分方程 y ''- 4y '+5y = 0的通解为A . y = e x(C 1cosx + C 2sinx )B . y = e x(C 1cos 2x + C 2sin 2x )C . y = e 2x (C 1cosx + C 2sinx )D . y = e 2x (C 1cos 2x + C 2sin 2x )2006年天津市高等院校“高职升本科”招生统一考试高等数学第Ⅱ卷 (选择题 共110分)二三题号得分总分(17)(18)(19)(20)(21)(22)(23)(24)注意事项:1.答第Ⅱ卷前,考生须将密封线内的项目填写清楚。
高等数学试题及答案专升本
高等数学试题及答案专升本高等数学试题及答案(专升本)一、选择题(每题4分,共40分)1. 极限lim(x→0) (sin x)/x 的值是()。
A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x - 4的导数是()。
A. 2x + 3B. 2x - 3C. x^2 + 3D. x^2 - 3答案:A3. 曲线y = x^3 - 3x + 2在点(1, 0)处的切线斜率是()。
A. 1B. -1C. 3D. -3答案:B4. 不定积分∫(3x^2 - 2x + 1)dx 的结果是()。
A. x^3 - x^2 + x + CB. x^3 + x^2 - x + CC. x^3 - x^2 + x + CD. x^3 + x^2 - x + C答案:C5. 函数y = e^x 的原函数是()。
A. e^x + CB. e^(-x) + CC. e^x - CD. e^(-x) - C答案:A6. 已知函数f(x) = 2x + 1,g(x) = 3x - 2,则f[g(x)]的表达式是()。
A. 6x - 3B. 6x + 1C. 9x - 5D. 9x + 1答案:C7. 函数y = ln(x) 的反函数是()。
A. e^yC. x^yD. y^x答案:A8. 函数y = x^2 在区间[-2, 2]上的最大值是()。
A. 0B. 4C. -4D. 2答案:B9. 函数y = x^3 - 3x^2 + 2x 的极值点是()。
A. x = 0B. x = 1C. x = 2答案:B10. 曲线y = x^2 + 2x + 1与直线y = 3x + 2的交点个数是()。
A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)11. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 2x - 3) 的值是 _______。
答案:112. 函数f(x) = x^3 - 6x^2 + 11x - 6的二阶导数是 _______。
专升本高数试题及答案
专升本高数试题及答案一、选择题(每题4分,共20分)1. 设函数f(x) = x^3 - 3x^2 + 2x,求f'(x)的值。
A. 3x^2 - 6x + 2B. x^3 - 3x^2 + 2C. 3x^2 - 6x + 2D. 3x^2 + 6x + 2答案:C2. 计算不定积分∫(3x^2 + 2)dx。
A. x^3 + 2x + CB. x^3 + 2x^2 + CC. x^3 + 2x + 3x^2 + CD. x^3 + 2x^2 + 3x + C答案:A3. 已知数列{an}满足an = 2an-1 + 1,且a1 = 1,求数列的通项公式。
A. an = 2^n - 1B. an = 2^(n-1) + 1C. an = 2^n + 1D. an = 2^(n+1) - 1答案:A4. 设A为3阶方阵,且|A| = 2,则|2A|的值为多少?A. 4B. 8C. 16D. 32答案:B5. 已知函数y = sin(x) + cos(x),求其导数y'。
A. cos(x) - sin(x)B. sin(x) + cos(x)C. cos(x) + sin(x)D. -cos(x) - sin(x)答案:A二、填空题(每题4分,共20分)1. 设函数f(x) = x^2 - 4x + 4,求其顶点坐标为______。
答案:(2, 0)2. 计算定积分∫(0, 2) (x^2 - 2x + 1)dx的值为______。
答案:23. 已知数列{bn}满足bn = 3bn-1 + 2,且b1 = 1,求b3的值为______。
答案:284. 设矩阵B = |1 2|,求其逆矩阵B^(-1)为______。
答案:|-2 1|5. 已知函数y = e^(-x),求其导数y'。
答案:-e^(-x)三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 9x + 1的极值点。
高职升本《高等数学》试卷及参考答案
高等院校“高职升本科”高等数学试卷2及参考答案本试卷分第I 卷(选择题)和第Ⅱ卷两部分。
共150分。
考试时间120分钟。
第I 卷(选择题 共40分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并将本人考试用条形码贴在答题卡的贴条形码处。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3. 考试结束,监考人将本试卷和答题卡一并收回。
一、单项选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列极限正确的是A. B. 1sin 1lim=∞→x xx 11tanlim =∞→xx x C. D. 04lim =-∞→xx ∞=∞→x x e lim 2. 当时,与等价的无穷小是0→x 112-+x A .B. C. 2 D.x 2x 2x 221x 3. 设函数在()内可导且,又<,则当()()x g x f ,+∞∞-,()0≠x g ()()x g x f '()()x g x f ' <<(其中为常数)时,有a x b b a , A. <B. <()()x g x f ()()a g a f ()()x g x f ()()b g b f C .< D.<()()x g x f ()()a g a f ()()x g x f ()()b g b f 4. 函数在区间上满足拉格朗日中值定理的()1ln +=x y []1,0=ξ A .B. C. D.212ln 12ln 212ln 11-5. 设向量与向量共线,且满足,则=x {}2,1,2-=a 18=⋅x ax A. B. {}3,6,3-{}4,2,4- C . D. {}4,2,4--{}6,3,6-6. 不定积分⎰=dx x x2cos A. B. C x x x ++cos ln tan C x x +-cos ln tan C.D. C x x x +-sin ln tan Cx x x +-cos ln tan 7. 广义积分⎰=-e dx xx 12ln 11 A.B. C.D. 2ππ108. 当>时,下列不等式成立的是x 1 A .> B. < ()x +1ln x xe x C. < D. >()x +1ln x x sin x9. 设周期函数在内可导,周期为4,且,则曲线()x f ()+∞∞-,()()1211lim-=--→xx f f x 在点处的切线斜率为()x f y =()()5,5f A. 1B. 2C. -2D. -110.下列微分方程中,通解是的方程为()x C x C e y x2sin 2cos 21+= A. B. 032=-'-''y y y 052=+'-''y y y C.D. 02=-'+''y y y 0136=+'+''y y y高等院校“高职升本科”招生统一考试高等数学试卷第II 卷(非选择题 共110分)注意事项:1.答第II 卷前,考生须将密封线内的项目填写清楚.2. 考生须用蓝,黑色钢笔或圆珠笔直接答在试卷上.二三四题号161718192021222324252627总分得分二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.11. 求极限: =⎪⎭⎫⎝⎛-∞→241cos1lim x x x 12. 已知点是曲线的拐点,则常数的值分别为 ()3,123bx ax y +=b a ,13. 设 则的值为 ()⎩⎨⎧<≥=0,sin ,0,2x x x x f x ()dx x f ⎰-20114. 曲线绕Y 轴旋转一周所形成的旋转曲面的方程为 ⎪⎩⎪⎨⎧==+0,1222x z y 15. 函数的驻点为()()y yx e y x f x2,22++=16. 交换积分次序:()=⎰⎰--dx y x f dy y1201,三、解答题:本大题共8小题,共86分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分).得分评卷人得分评卷人设为常数且函数 在点处连续,求的值.k ()⎪⎩⎪⎨⎧≥<<=+-1,10,12x ex x x f k x x 1=x k 18.(本小题满分10分)求曲线 ,在相对应的点处的切线方程.()⎩⎨⎧=++=-+0101y te t t x y 0=t 19.(本小题满分10分)设,并且.()⎰+='C edx xx f x()01=f (1)求的表达式; (2) 求不定积分.()x f ()⎰dx x xf 得分评卷人得分评卷人20.(本小题满分10分)已知点和直线,直线. ()3,2,1-A 958273:1-=+=-z y x L 654:2zy x L ==(1)求过点且垂直于直线的平面的方程;A 1L π(2)求过点和直线垂直且平行于平面的直线方程.A 2L π21.(本小题满分10分)设区域,计算二重积分.x y x x y D 2,0:22≤+≤≤⎰⎰+Ddxdy y x 22得分评卷人得分评卷人22.(本小题满分12分)设二元函数,求全微分和二阶偏导数.()yxy z +=1dz 22xz ∂∂23.(本小题满分12分)已知函数在区间上连续,且>0,设函数()x f []b a ,()x f , .()()()⎰⎰+=x ax bdt tf dt t f x F 1[]b a x ,∈(1)证明;()2≥'x F (2)证明方程在区间内有且仅有一个根.()0=x F ()b a ,得分评卷人得分评卷人24.(本小题满分12分)求微分方程的一个解,使得由曲线与直线()02=-+dx y x xdy ()x y y =()x y y =及轴所围成的平面图形绕轴旋转一周所围成的旋转体体积最小.2,1==x x x x2008年天津市高等院校“高职升本科”招生统一考试高等数学参考答案一、选择题1.B2. D3. C4. D5. B6. A7. A8. C9. C 10. B 二、填空题11.12. 13. 2129,23-2ln 111cos +-14. 15. 16. 12222=++z x y ⎪⎭⎫ ⎝⎛-1,21()⎰⎰--2101,x dyy x f dx 三、解答题17.解: 因为在点处连续,所以()x f 1=x ()()1lim 1f x f x =-→ 因为 ,()()[]2121121111lim lim lim e x x x f x x x x x =-+==-→-→→--- 又因为 ,所以 ,因此 ()ke f +=11kee +=121=k 18. 解: 因为,所以dt dx 01=--+t t t dtdx21+-= 因为 所以 0=++dt dy dt dy te e yyyyte e dt dy +-=1得分评卷人因此()()y yte t e dtdx dt dy dx dy +-==121 当时,所求的切线方程的斜率为0=t 1,0-==y x 1-=e k 故所求的切线方程为x e y 11-=+ 19.解:(1)由已知,得 ()⎰+='C e x d x f x2 所以因此 ()C e x f x +=2()C ex f x2121+= 于是 ()C e x f x 21212+=因为 ,所以()01=f e C -= 于是 ()e e x f x 21212-=(2)()()⎰⎰⎰⎰-=-=xdx e dx e dx ex xe dx x xf x x 214121222 ()Cex e x +-=224120. 解:(1) 直线的方向向量为1L {}9,8,7=→s 于是所求平面的方程为π()()()0392817=-+-++z y x 即 36987=++z y x (2)所求直线的方向向量为k j i kj i m363987654-+-==→故所求直线的方程为132211-=--=+z y x 21.解:在极坐标下,区域D 为,θγπθcos 20,40≤≤≤≤ 所以⎰⎰⎰⎰⎰==+Dd d d dxdy y x 4403cos 20222cos 38ππθθθγγθ ()92101222238sin sin 138402=⎪⎪⎭⎫ ⎝⎛-=-=⎰θθπd22. 解:(1)因为 ()xy y ez +=1ln 所以=∂∂xz ()()y xy y xy xy y y xy y e ++=⋅+⋅⋅+111121ln=∂∂y z()()⎥⎦⎤⎢⎣⎡⋅+⋅+++x xy y xy e xy y 111ln 1ln ()()y xy xy xy xy +⎥⎦⎤⎢⎣⎡+++=111ln 于是 dy yzdx x z dz ∂∂+∂∂=()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++++++=dy xy xy xy dx xyy xy y11ln 112(2) ()()yy xy xxy y xy y x xy x z +∂∂⋅++⎪⎪⎭⎫ ⎝⎛+∂∂+=∂∂11112222 ()()()y yxy xy y xy y xy xy yy ++⋅++++⋅-=111112222()()23411xy yy xy y +-+=23.证明:(1)因为 >0,()x f 所以 ()()()()()2121=⋅≥+='x f x f x f x f x F (2) 因为 <0()()()()⎰⎰⎰-=+=a aa bb a dt tf dt t f dt t f a F 11>0 ,()()⎰=badt t f b F 且在区间上连续.()x F []b a , 所以由零点定理知=0在区间内至少有一个根.()x F ()b a , 由(1)知 >0, 所以在上单调增加,从而方程=0()2≥'x F ()x F []b a ,()x F 在区间内至多有一个根.()b a , 故方程=0在区间内有且仅有一个根.()x F ()b a ,24.由 ,得 ,其通解为()02=-+dx y x xdy 12-=-'y xy x Cx dx x C x dx e C e y dx x dx x +=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎰-+⎰=⎰⎰-222221 由及轴所围成的平面图形绕轴旋转一周所得的旋转2,1,2==+=x x x Cx y x x 体体积为 于是 ()()⎰⎪⎭⎫⎝⎛++=+=2122237215531C C dx Cx x C V ππ⎪⎭⎫ ⎝⎛+=215562C dC dV π 令,得驻点 ,由>0. 知是0=dC dV 12475-=C π56212475=⎪⎭⎫ ⎝⎛-''V 12475-=C 惟一极小值点,因此也是最小值点,故所求曲线为 .x x y +-=212475。
大专升本科数学试题及答案
大专升本科数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = cos(x)C. y = |x|D. y = e^x2. 函数f(x) = 2x^3 - 6x^2 + 3x + 5在区间(-∞,+∞)上的最大值是:A. 1B. 3C. 5D. 63. 已知数列{an}满足a1 = 1,an + 1 = 2an + 1,该数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 几何数列4. 以下哪个选项是微分方程dy/dx + y = 0的解?A. y = e^(-x)B. y = e^xC. y = sin(x)D. y = cos(x)5. 计算不定积分∫(2x + 1)dx的结果是:A. x^2 + x + CB. x^2 + 2x + CC. 2x^2 + x + CD. 2x^2 + 3x + C6. 如果随机变量X服从二项分布B(n, p),那么E(X)等于:A. npB. n/2C. n + pD. 2np7. 下列哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]8. 已知点A(1, 2),B(4, 6),线段AB的中点M的坐标是:A. (2, 3)B. (3, 4)C. (5, 7)D. (1, 1)9. 以下哪个选项是极限lim (x→0) [(x^2 + x) / (x - 1)]的值?A. 1B. 0C. -1D. 210. 已知函数f(x) = x^2 - 4x + 3,若f(x) < 0,则x的取值范围是:A. (1, 3)B. (-∞, 2) ∪ (2, +∞)C. (-∞, 1) ∪ (3, +∞)D. (2, 3)二、填空题(每题4分,共20分)11. 函数f(x) = √x (x≥0)的值域是_________。
高等数学专升本试卷(含答案)
高等数学专升本试卷(含答案)高等数学专升本试卷(含答案)第一部分:选择题1. 在两点之间用直线段所构成的最短路径称为什么?选项:A. 曲线B. 斜线C. 弧线D. 线段答案:D. 线段2. 下列哪个函数在定义域内是递增的?选项:A. f(x) = x^2B. f(x) = e^xC. f(x) = ln(x)D. f(x) = 1/x答案:B. f(x) = e^x3. 下列级数中收敛的是:选项:A. ∑(n=1→∞) (-1)^n/nB. ∑(n=1→∞) n^2/n!C. ∑(n=1→∞) (1/n)^2D. ∑(n=1→∞) (1/2)^n答案:C. ∑(n=1→∞) (1/n)^24. 若函数f(x)在区间[0,1]上连续,则下列哪个不等式恒成立?选项:A. f(0) ≤ f(x) ≤ f(1)B. f(0) ≥ f(x) ≥ f(1)C. f(0) ≥ f(x) ≤ f(1)D. f(0) ≤ f(x) ≥ f(1)答案:A. f(0) ≤ f(x) ≤ f(1)第二部分:填空题1. 设函数f(x) = 2x^3 + 5x^2 - 3x + 2,那么f'(x) = ______。
答案:6x^2 + 10x - 32. 若a, b为实数,且a ≠ b,则a - b的倒数是 ________。
答案:1/(a - b)3. 设y = ln(x^2 - 4),则dy/dx = _______。
答案:2x/(x^2 - 4)4. 若两条直线y = 2x + a与y = bx + 6的夹角为60°,那么b的值为_______。
答案:√3第三部分:计算题1. 求极限lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x))。
解:由泰勒展开,sin(x) ≈ x,cos(x) ≈ 1 - x^2/2,当x→0时,忽略高阶无穷小,得到:lim(x→0) (sin^2(x) - x^2)/(x^4 + cos^2(x)) = lim(x→0) (x^2 - x^2)/(x^4 + (1 - x^2/2)^2)= lim(x→0) (0)/(x^4 + (1 - x^2/2)^2)= 0/(1) = 0答案:02. 求定积分∫(0→1) (x^2 + 3x + 2) dx。
高职高数考试试卷及答案
一.单项选择题(在每个小题四个备选答案中选出一个正确答案,本大题分10小题, 每小题2分, 共20分)1.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( )A.(-1,51)B.(-51,5)C.(0,51) D.(51,+∞) 2.设函数g (x)在x = a 连续而f (x) = (x-a)g(x),则'f (a) =( ) A.0 B.g '(a) C.f (a)D.g (a)3.设函数f (x)定义在开区间I上,∈0x I ,且点(x 0, f (x 0) )是曲线y= f (x)的拐点,则必有 ( )A.在点(x 0,f (x 0))两侧,曲线y=f (x)均为凹弧或均为凸弧.B.当x<x 0时,曲线y=f (x)是凹弧(或凸弧), 则x>x 0时,曲线y=f (x)是凸弧(或凹弧).C.x<x 0时,f (x)<f(x 0) 而x>x 0时,f(x)>f(x 0).D.x<x 0时,f (x)>f(x 0) 而x>x 0时,f(x)<f(x 0).4.设某商品的需求函数为D(P)=475-10P-P 2,则当P = 5时的需求价格弹性为( ) A.0.25 B.-0.25 C.100 D.-1005.无穷限积分⎰+∞xe -x dx =( )A.-1B.1C.-21D.216.函数f(x)=arcsin(2x-1)的定义域是( )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]7.设f(x)=⎩⎨⎧<≥+0x ,x 0x ),x 1ln(, 则=')0(f ( )A.0B.1C.-1D.不存在8.设函数f(x)满足)x (f 0'=0, )x (f 1'不存在, 则( ) A.x=x 0及x=x 1都是极值点 B.只有x=x 0是极值点C.只有x=x 1是极值点D.x=x 0与x=x 1都有可能不是极值点9.设f(x)在[-a,a](a>0)上连续, 则⎰-=aadx )x (f ( )A.0B.2⎰adx )x (fC.⎰-+adx )]x (f )x (f [D.⎰--adx )]x (f )x (f [10.设供给函数S=S(p)(其中p 为商品价格), 则供给价格弹性是( )A.)p (S S p '-B. )p (S S p 'C. )p (S p 'D.)p (S S1'二.计算题(本题50分) 1、(本题5分)求函数6130lg*+-=x xy 的定义域 2、(本题5分)设f(x-1)=x 2-x, 求f(x).3、(本题15分)求下列函数的极限 (1) 20cos 1lim x xx -→(2)xx x In x )sin 1(lim+→(3)设4)(lim =-+∞→xx kx k x ,求k 的值 4.(本题5分)设y=ln(arctan(1-x)),求dxdy 5.(本题20分)求下列函数的导数(1) )21ln(x y -= (2) xxee y +-=11 (3))arccos(2x x y += .(4)xxy cos 1sin +=6.(本题5分)求极限xcos x sec )x 1ln(lim20x -+→三、(本题10分)设函数⎩⎨⎧≤>+=0,0,1)(2x x x x x f ,讨论函数在0=x 处的连续性四、(本题15分)计算下列行列式1.856105342---=D2. 设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111111111 , B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--150421321求:1.2AB - A 2. B A T 高等数学 (参考答案)一.单项选择题(每小题2分, 共20分)1.C2.D3.B4.A5.B6.D7.B8.D9.C 10.B二.计算题(本题55分)2. x2+x3. (1) 1/2 P32 (2) 1 P84 (3) In 24.5 (1)(2)(3)(4)1/2sec2x/26. 1三、(本题10分)在x=0处是间断的。
高等数学专升本试卷(含答案)
高等数学专升本试卷(含答案) 高等数学专升本试卷题号得分考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。
一.选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1.函数y=1-x+arccos(x+1)的定义域是()A。
x<1B。
(-3,1)C。
{x|x<1} ∩ {-3≤x≤1}D。
-3≤x≤12.极限lim(sin3x/x) x→∞等于()A。
0B。
3C。
1D。
不存在3.下列函数中,微分等于ln(2x)+c的是() A。
xlnx+cB。
y=ln(lnx)+cC。
3D。
14.d(1-cosx)=()∫(1-cosx)dxA。
1-cosxB。
-cosx+cC。
x-sinx+cD。
sinx+c5.方程z=(x^2+y^2)/ab表示的二次曲面是(超纲,去掉)()A。
椭球面B。
圆锥面C。
椭圆抛物面D。
柱面.第1页,共9页二.填空题(只须在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.lim(x→2) (x^2+x-6)/(x^2-4) = _________________.2.设函数f(x)={ex。
x>a+x。
x≤aa=__________________.3.设函数y=xe,则y''(x)=__________________.4.函数y=sinx-x在区间[0,π]上的最大值是______________________.5.|sin(π/4)| = _______________.6.设F(x)=∫(π/4)^(x+1)(sin(t)+1)dt=_______________________.7.设F(x)=∫(a,-a) (f(x)+f(-x))dx=____________________________.8.设a=3i-j-2k,b=i+2j-k,则a·b=______________________.9.设z=(2x+y),则(∂z/∂x) (0,1) = ____________________.10.设D= (∂z/∂x) (0,1) = ____________________.剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
专升本的高数试题及答案
专升本的高数试题及答案一、选择题(每题2分,共20分)1. 设函数f(x)的定义域为R,若f(x) = x^2 + 2x + 3,求f(-1)的值。
A. 0B. 1C. 2D. 32. 函数y = sin(x)的周期是:A. πB. 2πC. π/2D. 4π3. 已知等差数列的首项a1=3,公差d=2,求第10项a10的值。
A. 23B. 21C. 19D. 174. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. 无穷大5. 曲线y = x^3 - 6x^2 + 9x在x=2处的切线斜率是:A. 0B. 1C. -1D. 36. 函数y = 2^x的反函数是:A. y = log2(x)B. y = log10(x)C. y = e^xD. y = sin(x)7. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. -4C. 4D. 无法确定8. 曲线y = x^2与直线y = 4的交点坐标是:A. (2, 4)B. (-2, 4)C. (2, -4)D. (-2, -4)9. 已知曲线y = x^2 + 2x + 1,求其在x=1处的切线方程。
A. y = 2x - 1B. y = x + 2C. y = 2x + 1D. y = x - 210. 函数y = x^3 - 3x^2 + 2的导数是:A. 3x^2 - 6xB. 3x^2 - 6x + 2C. 3x^2 - 6x - 2D. 3x^2 - 6x + 1答案:1. B 2. B 3. B 4. B 5. D 6. A 7. A 8. A,B 9. A 10. A二、填空题(每题2分,共20分)1. 若f(x) = x^3 - 2x^2 + 5x - 6,求f'(x) = __________。
答案:3x^2 - 4x + 52. 函数y = cos(x)的导数是 __________。
江苏专转本高等数学真题 (附答案)
2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学》试卷4 (闭卷)
适用班级:选修班(专升本)
班级: 学号: 姓名: 得分: ﹒ ﹒
一、选择题(将答案代号填入括号内,每题3分,共30分).
1、函数 2)1ln(++
-=x x y 的定义域是( ).
A []1,2-
B [)1,2-
C (]1,2-
D ()1,2- 2、极限x
x e ∞
→lim 的值是( ).
A 、 ∞+
B 、 0
C 、∞-
D 、 不存在 3、=--→2
11)
1sin(lim
x x x ( ).
A 、1
B 、 0
C 、 21-
D 、2
1 4、曲线 23
-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).
A 、)(2
x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、2
2
)()(dx x d = 6、设
⎰
+=C x
dx x f 2
cos 2)( ,则 =)(x f ( ).
A 、2sin
x B 、 2sin x - C 、 C x +2sin D 、2
sin 2x - 7、
⎰=+dx x x
ln 2( ).
A 、C x ++-
22
ln 12 B 、 C x ++2
)ln 2(1
C 、 C x ++ln 2ln
D 、 C x
x
++-
2
ln 1 8、曲线2
x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).
A 、⎰
1
4
dx x π B 、⎰
1
ydy π
C 、⎰
-1
)1(dy y π D 、⎰
-1
04
)1(dx x π
9、⎰=+1
01dx e e x
x
( ). A 、21ln
e + B 、22ln e + C 、31ln e + D 、2
21ln e + 10、
⎰
=π
20
|sin |dx x ( )。
A 0;
B 2;
C 4;
D –4。
二、填空题(每题3分,共15分)
1、设函数x
xe y =,则 =''y ; 2、如果3
2
2sin 3lim
0=→x mx x , 则 =m .
3. )(x F 是)(x f 的一个原函数,若)(x F 的图象是一条抛物线,那么)(x f 的图象是一条 ; 4、
=⎰
-1
1
3cos xdx x ;
5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;
三、计算题(每小题5分) 1、求极限 x
x
x x --+→11lim 0
;
2、求x x y sin ln cot 2
1
2+= 的导数;
3、求函数 1
1
33+-=x x y 的微分;
4、求不定积分⎰++
1
1x dx ;
5、求定积分 ⎰
e
e
dx x 1ln ;
6、解方程 21x
y x
dx dy -=
;
四、 应用题(每小题10分)
1.求抛物线2
x y = 与 2
2x y -=所围成的平面图形的面积.
2设有一个长8米宽5米的矩形铁皮,在四个角上切去四个大小相同的小正方形。
问切去的边长为多少时,才能使剩下的铁皮折成的开口盒子容积最大?并求开口盒子容积的最大值
参考答案
一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、C ;
三、1、 1; 2、x 3
cot - ; 3、dx x x 2
32
)1(6+ ;
4、C x x +++-+)11ln(212;
5、)12(2e
- ; 6、C x y =-+2212 ;
四 1、38; 2、3
10
=x (舍去) 1=x 此时 1842640)(=+-=x v。