二次根式讲义

合集下载

第1课时二次根式的概念ppt课件

第1课时二次根式的概念ppt课件
2.式子 3x 6 有意义的条件是
(A)
A.x>2 B.x≥2 C.x<2 D.x≤2
3.当x=__-1__时,二次根式 x 1 取最小值,其最小值 为___0___.
4.当a是怎样的实数时,下列各式在实数范围内有
意义?
(1) a 1 ;
(2) 2a 3;
(3) a ;
(4)
2.
5a
解:(1) a-1 0,a 1.
你们是根据 哪些特征猜 出的呢?
通过表情包来辨别人物,最重要的是根据个人的特 征,那么数学的特征是什么呢?
“数学根本上是玩概念的,不是玩技巧,技巧不足 道也.”
----中科院数学与系统科学研究院 李邦河
问题1 什么叫做平方根? 一般地,如果一个数的平方等于a,那么这个数
叫做a的平方根. 问题2 什么叫做算术平方根? 如果 x2 = a(x≥0),那么 x 称为 a 的算术平方根. 用 a (a 0) 表示. 问题3 什么数有算术平方根? 我们知道,负数没有平方根.因此,在实数范围内
得a=0.
练一练 已知|3x-y-1|和 2x y 4 互为相反数,求x+4y的平 方根. 解:由题意得3x-y-1=0且2x+y-4=0.
解得x=1,y=2.
∴x+4y=1+2×4=9,
∴x+4y的平方根为±3.
当堂练习
1. 下列式子中,不属于二次根式的是( C )
a C D
2
【变式题1】当x是怎样的实数时,下列各式在实数范
围内有意义?(1) 1 ; x 1
解:由题意得x-1>0, ∴x>1.
(2) x 3 . x 1
解:∵被开方数需大于或等于零,
∴3+x≥0,∴x≥-3. ∵分母不能等于零,

《二次根式》 讲义

《二次根式》 讲义

《二次根式》讲义一、二次根式的定义形如\(\sqrt{a}(a\geq 0)\)的式子叫做二次根式。

其中,\(\sqrt{}\)称为二次根号,\(a\)叫做被开方数。

需要特别注意的是,二次根式有两个非常重要的限制条件:一是根指数为 2;二是被开方数必须是非负数。

例如,\(\sqrt{5}\),\(\sqrt{16}\),\(\sqrt{x^2 +1}\)(其中\(x\)为任意实数)等都是二次根式;而\(\sqrt{-5}\)就不是二次根式,因为被开方数\(-5\)是负数。

二、二次根式的性质1、\(\sqrt{a^2} =|a|\)当\(a \geq 0\)时,\(\sqrt{a^2} = a\);当\(a < 0\)时,\(\sqrt{a^2} = a\)。

例如,\(\sqrt{3^2} = 3\),\(\sqrt{(-5)^2} = 5\)。

2、\((\sqrt{a})^2 = a\)(\(a\geq 0\))例如,\((\sqrt{7})^2 = 7\)。

3、\(\sqrt{ab} =\sqrt{a} \cdot \sqrt{b}\)(\(a\geq 0\),\(b\geq 0\))例如,\(\sqrt{12} =\sqrt{4\times 3} =\sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}\)。

4、\(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}\)(\(a\geq 0\),\(b > 0\))例如,\(\sqrt{\dfrac{18}{2}}=\dfrac{\sqrt{18}}{\sqrt{2}}=\dfrac{3\sqrt{2}}{\sqrt{2}}= 3\)。

三、二次根式的化简化简二次根式是二次根式运算中的重要环节,其目的是将二次根式化为最简二次根式。

最简二次根式需要满足以下两个条件:1、被开方数不含分母;2、被开方数中不含能开得尽方的因数或因式。

二次根式辅导讲义

二次根式辅导讲义

二次根式一、知识梳理1、二次根式的概念和性质二次根式的定义:形如a (0a ≥)的式子叫做二次根式.注意点:(1)被开方数是正数或0;(2)二次根式a (0a ≥)表示非负数a 的算术平方根.二次根式的性质:(1)二次根式的非负性:0a ≥;(2)2()(0)a a a =≥;(3)2(0)(0)(0)a a a a a a a a >⎧⎪===⎨⎪-<⎩;(4)当0a ≥时,22()a a =.2、最简二次根式最简二次根式最简二次根式的定义:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开 得尽方的因数或因式.这样的二次根式叫做最简二次根式.最简二次根式的满足条件:(1)被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式);(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不含二次根式.说明:二次根式的计算结果要写成最简根式的形式.3、二次根式的加减同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式.二次根式的加减同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次 根式.合并同类二次根式:()a x b x a b x +=+,同类二次根式才可加减合并.分母有理化分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.a b+与a b-互为有理化因式;分式有理化时,一定要保证有理化因式不为0.4、二次根式综合运算二次根式的综合运算法则:先算乘除法,再算加减法,有括号的先算括号里面的,最终结果二次根式部分要化为最简二次根式.注意:在二次根式的计算题中,如果题目中没有明确说明字母的取值范围,按照字母使二次根式有意义计算.5、二次根式化简求值二次根式的化简求值:先把二次根式化为最简二次根式,然后进行二次根式的加减乘除运算,化为较为简单的一个式子(或直接得出结果),最后代入未知数的值求解,有时候也会存在整体代入的情况.注意:对于二次根式的化简求值如果字母没有明确说明取值范围,必须要进行分类讨论.6、根式的大小比较比较大小的方法1.作差法:比较a、b的大小,0,0,0,a b a b a ba b>>⎧⎪-==⎨⎪<<⎩2.作商法:比较a、b的大小,当0,0a b>>时,可以采用作商法,1,1,1,a b aa b ba b>>⎧⎪==⎨⎪<<⎩二次根式比较大小的方法(1)0a b a b>>⇔>(2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比较.(3)估算法(4)分子有理化(5)倒数法7、二次根式的乘除二次根式的乘除法二次根式的乘法法则:a b ab⋅=(0a≥,0b≥).二次根式的除法法则:a abb=(0a≥,0b>).说明:利用乘除法则时注意a、b的取值范围,对于ab a b=⋅,a、b都非负,否则不成立.二、典型例题题型一、二次根式的概念和性质例1: 函数1x y x =-中自变量x 的取值范围是( ) A .1x ≥B .1x <且0x ≠C .1x >D .1x ≥且0x ≠【答案】C【解析】该题考查的是函数的定义域.根式下的式子在非负条件下有意义,分数在分母不为0的条件下有意义,综上所述,10x -≥,且10x -≠,∴1x >,故本题答案为C .例2: 若320-+-=x y ,则xy 的值为____.A .8B .6C .5D .9【答案】A【解析】该题考查的是的非负性.根据题意得:3020x y -=⎧⎨-=⎩解得:32x y =⎧⎨=⎩∴32x y =,故选A .变式: 已知:()322512012x x y x -+-=+--,求x y 的值. 【答案】25【解析】该题考查的是二次根式的性质.∵()322512012x xy x -+-=+--有意义∴()32020120120x x x ⎧-≥⎪⎪-≥⎨⎪--≠⎪⎩所以2x =,055y =+=∴2525x y ==题型二、最简二次根式例1、下列二次根式中,最简二次根式是( )A .22xB .0.5C .22x y +D .1x 【答案】C【解析】该题考查最简二次根式.A 、x x 222=被开方数含能开得尽方的因数,不是最简二次根式;故本选项错误; B 、120.522==,被开方数含分母,不是最简二次根式;故本选项错误; C 、22x y +满足最简二次根式的定义,是最简二次根式;D 、1x x x=,被开方数含能开得尽方的因数,不是最简二次根式. 故选C .例2、若最简二次根式2342a +与22613a -是同类二次根式,则a =_________【答案】1±【解析】该题考查的是二次根式.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 根据题意可列:22461a a +=-解得:1a =±变式、若2,m ,4为三角形三边,化简:()()2226m m -+-=____________.【答案】4【解析】该题考查的是根式的化简求值.∵2,m ,4为三角形三边,可知包括如下关系:①24m +>,即6m <②24m +>,即2m >∴原式264m m =-+-=题型三、二次根式的加减例1、计算124183-⨯=__________.【答案】6【解析】该题考查的是二次根式的计算.原式346923=⨯-⨯⨯326323=-⨯ 2666=-=例2、111115533131317+++=++++____.【答案】1714-【解析】该题考查根式的分母有理化.11115135133171317144444155********-----+++=+++=++++ 故答案为1714-. 变式、已知32x =+,32y =-,则33_________x y xy +=.【答案】10【解析】因为32x =+,32y =-,所以()()32321xy =+-=,()()323223x y +=++-=,所以()()()22332221232110x y xy xy x y xy x y xy ⎡⎤⎡⎤+=+=+-=⨯-⨯=⎢⎥⎣⎦⎣⎦题型四、二次根式综合运算例1、化简:2244112a a a a -+--+(112a ≤≤)【答案】32a -【解析】()()222244112211211a a a a a a a a -+--+---=---,因为112a ≤≤,所以原式21121132a a a a a =---=-+-=-例2、若352x y +=-,325x y -=-,求xy .【答案】52-【解析】2()352x y +=-;2()325x y -=-∴22()()352(325)5244x y x y xy +-----===-变式、化简22691025a a a a +++-+【答案】当3a <-时,原式=22a -+;当35a -≤<时,原式=8;当5a ≥时,原式=22a -;【解析】()()22226910253535a a a a a a a a +++-+=++-=++-,当3a <-时,原式353522a a a a a =++-=---+=-+;当35a -≤<时,原式35358a a a a =++-=+-+=;当5a ≥时,原式353522a a a a a =++-=++-=-题型五、二次根式化简求值例1、化简:()221269x x x -+-+=____【答案】43x -【解析】该题考查根式的化简.()()2221269123x x x x x -+-+=-+-∵由题得120x -≥,12x ≤∴()2333x x x -=-=-.∴原式12343x x x =-+-=-.故答案为43x -.例2、化简:108322++.【答案】42+【解析】22108322108(12)108(12)1882(42)42++=++=++=+=+=+变式、化简:(1)412-(2)415+【答案】(1)31-(2)1062+【解析】(1)()24124233131-=-=-=- (2)221064158215(53)222++=+=+=题型六、根式的大小比较例1、比较大小:512-_______12.(填“>”、“<”或“=”). 【答案】>【解析】该题考查的是二次根式比大小.5115115254022222------===>,即511022-->, 即51122->. 例2、设120082006,2007A B =-=,比较大小:A ____B .【答案】A B >【解析】222008200620082006A ==+-,22220072007B ==;2008200622007+< ∴22A B< ∴A B >变式、已知21a =-,226b =-,62c =-,那么a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c b a >>D .c b a <<【答案】B【解析】()()221,223,2322a b c ⎛⎫=-=-=- ⎪ ⎪⎝⎭2222(231)2(13)(2223)0222b a -=--+=-+=+->,b a > 2222(132)2(13)(2223)0222a c -=--+=-+=+->,a c >b ac >>题型七、二次根式的乘除例1、下列计算正确的是( )A .235⋅=B .236⋅=C .84=D .2(3)3-=-【答案】B【解析】根据二次根式的乘法运算法则,可得236⋅=,故答案为B 选项.例2、下列计算结果正确的是( )A .257+=B .2510⨯=C .3223-=D .25105=【答案】B【解析】该题考查的是二次根式计算.A 选项2与5不是同类项,不能合并,故本选项错误;B 选项252510⨯=⨯=,故本选项正确;C 选项32222-=,故本选项错误;D 选项21055=,故本选项错误. 故答案是B .变式、已知:4322232b a a =-+-+,求11a b +的平方根.【答案】2±【解析】该题考查的是二次根式.4322232b a a =-+-+,根据被开方数的非负性我们知道320230a a -≥⎧⎨-≥⎩,所以23a =, 代入得43222322b a a =-+-+=,所以1131222a b +=+=,平方根为2±三、课堂巩固1、函数11y x =-中自变量的取值范围是( B )A .1x ≠B .1x >C .1x ≥D .1x ≥-2、对于所有实数,a b ,下列等式总能成立的是( C )A .()2a b a b +=+B .22a b a b +=+C .()22222a b a b +=+ D .()2a b a b +=+ 3、函数12y x =+中,自变量x 的取值范围是2->x 4、实数P 在数轴上的位置如图所示,化简()()2223p p -+-=15、计算:=⨯121726,=--)84)(213(24, =⨯-03.027.02-0.18,=÷-327348-5.6、化简:()221269x x x -+-+=x 34-.7、设120082006,2007A B =-=,比较大小:A >B . 8、已知: 21x =-,求223x x +-的值.()()()()2222231322-=-+=+-=-+x x x x 9、已知:,x y 为实数,且113y x x <-+-+,化简:23816y y y ---+. 1=x 3<y 原式=()1-4343=---=---y y y y1 2 3 4 p课后作业1、函数2x y x-=中,自变量x 的取值范围是( A ) A .2x ≤且0x ≠B .2x ≤C .2x <且0x ≠D .0x ≠2、若()424A a =+,则A =( A ) A .24a +B .22a +C .()222a + D .()224a + 3、若2(2)10m n ++-= 则m n -= -3 .4、在下列二次根式22211025312232322a a a a b m x a b x a b +-++,,,,,,,,,,中,最简二次根式有6个.5、若最简二次根式35a -与3a +是同类二次根式,则a =___4___.6、若231604b a a +-+=-,则3223a b a b +=-___-18___.7、比较大小:512-___>___12.(填“>”、“<”或“=”). 8、计算:01186(121)221+---- 原式=01232212=--++9、化简:(1)412-原式=()13132-=- (2)415+221064158215(53)222++=+=+=。

二次根式讲义(初次、基础版)

二次根式讲义(初次、基础版)

二次根式【知识要点】 必杀技:要注意二次根式中字母的取值范围: 被开方数必须是非负数.1. 二次根式的主要性质: ①⎩⎨⎧<-≥==002a a a a a a ; ②()a a =2(),0≥a ; ③()0,0≥≥⋅=b a b a ab ④()0,0>≥==b a b ab ba b a ; ⑤()()b a b a b a b a ba b a --=-+-=+1; ⑥b a b a ba -+=-1. A 、最简二次根式:被开方数中不含分母,并且被开方数中不含开的尽方的因数或因式,像这样的二次根式成为最简二次根式最简二次根式的条件:①根号内不含有开的尽方的因数或因式②根号内不含有分母③分母不含有根号B 、同类二次根式:被开方数相同的最简二次根式叫做同类二次根式C 、乘法公式:)0,0______(≥≥=⋅b a b a ;反之:)0,0_______(≥≥=b a abD 、除法公式:)0,0______(>≥=b a ba ;反之:)0,0______(>≥=b a b a E 、合并同类二次根式:__________________;=-=+a n a m a n a m【典型例题】例1.x 是怎样的实数时,下列二次根式有意义?(1)1+x ; (2)23-x ; (3)123+x ; (4)x231-. 例2.若a a ---33有意义,则a 的值为______________.例3.若22)2()2(-=-x x ,则x 的取值范围是________________.例4.已知2<x <3,化简:3)2(2-+-x x . 例5.数a 、b 在数轴上的位置如图所示,化简222)()1()1(b a b a ---++.例1、乘法运算(1))169()25(-⨯- (2)1527⨯ (3)228n m (4)a a 122532⋅- 例2:除法运算(1)354- (2)531513÷ (3)921.15004.0⨯⨯ (4)2294a b 例3:加减混合运算二次根式加减时,可以先将二次根式化简成最简二次根式,再合并同类二次根式,一般步骤为: 化简→分类→合并例1、计算:(1)ab ab ab b a ÷+-)3(33,其中0,0>>b a(4)20)21()23(3632918-+-++-- 【变式练习】 计算:6、27348612421-+-; (2))312218(21812-+-- (3)a ab a b ab a 4322763232+-,其中0>ab (4)33)2321418(÷--- 【课堂练习】 1.如果03332=⎪⎪⎭⎫ ⎝⎛-++y x ,那么()=2005xy .2.已知y x ,的实数,214422-+-+-=x x x y ,则y x 43+的值为 . 3.化简下列各式:(1)()()()44322>---a a a (2)()()233522-+---4.已知23-=a ,求121232---++a aa a a 的值. 【贴近中考】1. (2011江苏省南京市)计算)(12=___________. 2. (2011江苏省扬州市)=_______________.3. (2011内蒙古包头市)_________ 4. (2011青海省)___________.5. (2011 山东省菏泽市) 实数a 在数轴上的位置如图所示,则化简后为( )A. 7B. -7C. 2a -15D. 无法确定 6. (2011 山东省济宁市) 下列各式计算正确的是( )A=B.2=C.=D.2=7. (2011山东省聊城市)=_____________.8. (2011 山东省临沂市)计算的结果是( )A.B.5C .5D .0 5 a 10。

二次根式讲义

二次根式讲义

二次根式辅导讲义同步知识梳理一:二次根式得概念二次根式得定义形如得式子叫二次根式,其中叫被开方数,只有当就是一个非负数时,才有意义.二:二次根式得性质1、非负性:a a()≥0就是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2、()() a aa20=≥.注意:此性质既可正用,也可反用,反用得意义在于,可以把任意一个非负数或非负代数式写成完全平方得形式:a a a=≥()()203、a aa aa a20 ==≥-<⎧⎨⎩||()()注意:(1)字母不一定就是正数.(2)能开得尽方得因式移到根号外时,必须用它得算术平方根代替.(3)可移到根号内得因式,必须就是非负因式,如果因式得值就是负得,应把负号留在根号外.4、公式a aa aa a2==≥-<⎧⎨⎩||()()与()()a aa20=≥得区别与联系(1)a2表示求一个数得平方得算术根,a得范围就是一切实数.(2)()a2表示一个数得算术平方根得平方,a得范围就是非负数.(3)a2与()a 2得运算结果都就是非负得.三:最简二次根式与同类二次根式2a B、1--3<0,则化简(1)148 (2)4337- (3)11212 (4)13550-【例14】把下列各式分母有理化(1)328x x y(2)38xx【例15】把下列各式分母有理化:(1)221- (2)5353+- (3)333223- 举一反三:1、已知2323x -=+,2323y +=-,求下列各式得值:(1)x y x y +-(2)223x xy y -+专题五:二次根式计算——二次根式得乘除【例16】化简(1)916⨯ (2)1525⋅ (3)229x y (0,0≥≥y x ) (4)12×632⨯ 【例17】计算(1)(2) (3) (4)(5) (6) (7) (8)【例18】化简:(1)364 (2)22649b a )0,0(≥>b a (2)2964xy )0,0(>≥y x (4)25169x y )0,0(>≥y x【例19】计算:(1)123 (2)3128÷ (3)11416÷(4)648【例20】能使等式22xxx x =--成立得得x 得取值范围就是( )A 、2x >B 、0x ≥C 、02x ≤≤D 、无解专题六:二次根式计算——二次根式得加减【例20】计算(1)11327520.53227--+-; (2)12543102024553457⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 【例21】(1)224344x y x y x y x y --+--+ (2)a b a ba b a b--+-+ 专题七:二次根式计算——二次根式得混合计算与求值1、ab b a ab b 3)23(235÷-⋅ 2、 22 (212 +418-348 ) 3、132x y ·(-42y x)÷162x y 4、673)32272(-⋅++5、62332)(62332(+--+)6、1110)562()562(+-【例21】 1.已知:,求得值.2.已知,求得值。

第二十一章二次根式 辅导讲义

第二十一章二次根式 辅导讲义
∴3-2 =( -1)2∴ = -1
求:(1) ;(2) ;(3)你会算 吗?
6.当x= 时,求 + 的值.(结果用最简二次根式表示)
教师评定:
1、学生上次作业评价:○好○较好○一般○差○没做作业
2、学生本次上课情况评价:○好○较好○一般○差
教师签字:
家长签字:___________
4.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=( )2,5=( )2,你知道是谁的二次根式呢?下面我们观察:
( -1)2=( )2-2·1· +12=2-2 +1=3-2
反之,3-2 =2-2 +1=( -1)2
例2.判断下列各式是否正确,不正确的请予以改正:
(1)
(2) × =4× × =4 × =4 =8
例3.已知 ,且x为偶数,求(1+x) 的值.
例4.观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:
= = -1,
= = - ,
同理可得: = - ,……
从计算结果中找出规律,并利用这一规律计算
A.13 B. C.10 D.5
4.( -3 +2 )× 的值是().
A. -3 B.3 - C.2 - D. -
5.计算( + )( - )的值是().
A.2 B.3 C.4 D.1
二、填空题
1.在 、 、 、 、 、3 、-2 中,与 是同类二次根式的有________.
2.计算二次根式5 -3 -7 +9 的最后结果是________.

二次根式讲义

二次根式讲义

二次根式讲义 一、知识点梳理 1.二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

2.定义重点①式子有意义:)0(≥a a 中必须,否则,式子没有意义②隐含条件:)0(≥a a ,则,即也为非负数4. 二次根式的乘除运算b a ab ⋅=(00≥≥b a ,))0,0(≥≥=b a b ab a根式中分母不能含有根号,且要变为最简。

6.最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

三、典型例题讲解 例11、用代数式表示:(1)面积为S 的正方形的边长为______.(2)•面积为10•的直角三角形的两直角边的比为1:•2,•则这两条直角边分别为______.2、在二次根式1a -中,字母a 的取值范围是( )A .1<aB .1≤aC .1≥aD .1>a 3、下列式子中,是二次根式的有( )①22x +,②3x ,③32,④2()x -A .1个B .2个C .3个D .4个 4、(1)若0≥a ,则a _____0.(2)若021=++-x y ,则=x _____,=y ______. 5、求使式子有意义的实数x 的取值范围.(1)2x - (2)11x - 例21、计算:(1)=2)3(______;(2)=-2)52(_____. 2、下列式子正确的个数是( )①2)4(4±=;②3)3(2-=--;③1)2()3(22=-;④2)7(7=.A .1个B .2个C .3个D .4个3、在实数范围内分解因式792-a .解:=-=-222)7()3(79a a ( )·( )4、计算:(1)22=______.(2)2(5)-=_____; (3)2211010-==______.5、计算: (1)2(2)x -(2≤x ) (2)2(32)- (3)-2(3.14)π-例31、计算:(1)2×7=______.(2)12×8=______; (3)0.1×100=_______.2、下列运算不正确的是( )A .0.40.6⨯=0.2×0.6=1.2B .4×36=2×6=12C .0.4 3.60.4 3.6 1.44⨯=⨯===1.2D .a ·3=3a (0≥a ) 3、计算:(1)3×(-212) (2)2×6×13(3)2ab ·1b (4)-12xy ·(-4y )4、计算:(1)812=______;(2)126=_____.5、计算:(1)318÷2=_____;(2)293x y xy ÷=______. 例41、化简:(1)8=______;(2)1327=____.2、化简:(1)3a =_____;(2)2316x y =_____.3、化简:(1)56=______; (2)-125015⨯=______; (3)2332ab c=______;4、下列计算正确的是( )A .-1210×2=-1220B .y x xy x xy x 31313313=⋅=⋅C .112882887272⨯=⨯=4=2 D .534=5435、把38化为最简二次根式为_______.6、下列二次根式中,不是最简二次根式的是( )A .aB .31C .1x D .21a +四、举一反三 1.(2012义乌)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间2.(2012杭州)已知)212()33(-⨯-=m ,则有( )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 3.(2012泰安)下列运算正确的是( )A .2(5)5-=- B .21()164--= C .632x x x ÷= D .325()x x =4.(2012德阳)使代数式12-x x有意义的x 的取值范围是( )A . 0≥xB .21≠x C .0≥x 且21≠x D .一切实数5.(2011山东菏泽)实数a 在数轴上的位置如图所示,则22(4)(11)a a -+- 化简后为( )A . 7B . -7C .152-aD . 无法确定6.(2011山东济宁)若0)3(12=++-+y y x ,则y x -的值为 ( )A .1B .-1C .7D .-77.(2011山东烟台)如果aa 21)12(2-=-,则( )A .21<a B. 21≤a C. 21>a D. 21≥a8.(2011山东日照)已知x ,y 为实数,且满足x +1y y ---1)1(=0,那么20112011y x -= .9. (2011山东枣庄)对于任意不相等的两个实数a 、b ,定义运算※如下:a※b =b a b a -+,如3※2=32532+=-.那么8※12= .10.已知a ,b ,c 为△ABC 的三边长,化简22()()a b c b a c +-+---a b c --.a 105第2题图第4题图 五、过关测试二次根式的定义 1、二次根式11x --有意义,则实数x 的取值范围为_____. 2、矩形面积为12cm 2,矩形的长与宽之比为3:2,则矩形长为_____cm ,宽为____cm . 3、无论实数x 取何值下列式子总有意义为( )A .2(1)x -- B .21x -+ C .21x + D .1x -4、如图所示,方格图中小正方形的边长为1,将方格图中阴影部分剪下来,再把剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) A .3 B .2 C .5 D .65、如图所示,在平面直角坐标系中,A (-2,3),B (-4,0),C (-2,0)是三角形的三个顶点,求三角形各边的长.6、已知1433b a --与114+-b a 互为相反数,试求a ,b 的值.7、已知x ,y 为实数,且y =1122x x -+-+12,求x ,y 的值.二次根式的性质1、计算:(1)=2)75(____________; (2)=-2)2(x ______.2、(1)当0≥x 时,=-2x ______________;(2)当0≤x 时,2x =______. 3、下列式子计算不正确的是( )A .3)3(2=B .a a =-2)((0≥a )C .2(32)-=3-2D .15)53(2-=- 4、计算:(1)22)3553()54(- (2)22(6)(8)-+-(3)2)52(494-⋅+ (4)2230.6--5、已知实数x 在数轴上的位置如图所示,化简2222(1)(2)x x x --+-.6、(改错题)计算:(2x -)2+2(3)x - 解:(2x -)2+2(3)x -=2-x +x -3 ① =-1 ②你认为上述解答过程是错在第_____步,为什么?并求出正确的结果.二次根式的乘法 1、计算:(1)-122×3=_____; (2)18×(-32)=_____. 2、计算:(1)110×110=______; (2)131x·3xy =______. 3、化简:(1)3a -=_____;(2)34m n (0<m )=______. 4、若)2)(1(21--=-⋅-x x x x .则x 的取值范围是( )A .1>xB .2≥xC .2>xD .1≥x 5、定义运算“@”运算法则,x@y@z =xyz ,则2@3@6值为( )A .3B .2C .6D .126、下列各等式成立的是( )A .45×25=85B .53×42=205C .43×32=75D ,53×42=20 7、已知2=a ,则200的值为( )A .a 2B .a 3C .a 10D .a 8 8、下列计算正确的是( )A .(121)(9)1219-⨯-=-⨯-=33B .23x =x 3C .(16)(25)1625-⨯-=⨯=20D .249x -=32-x 9、阅读解答题:因为23=223⨯=12 ①-23=2(2)3-⨯=12 ②所以23=-23 ③ 即2=-2导致以上出现错误的结果错因在第几步( ) A .① B .② C .③ D .④ 10、化简:(1)2000 (2)250a b (0<a ,0>b )(3)18×3220×(-1315) (4)627×(-23)(5)2xy ×12x (6)115×23×(-1210)11、计算(1)5xy ×(-323x y )×361y (2)32ab b ·(-323a b )·3ab(0<a ,0>b )(3))))((abx ax x a b x ab --- (0>a ,0>b ,0>x )12、将aa 1-括号外的因式a 移到括号内部.二次根式的除法及最简二次根式 1、计算:(1)49=_____________;(2)2764=______.2、计算:(1)0.680.17=__________;(2)328=______. 3、计算:(1)0.48=______;(2)512=_____. 4、若2211x xx x--=++,则x 取值范围为_______. 5、下列各式是最简二次根式为( ) A .15B .24C .28D .7326、如图所示,小芳想在墙壁上钉一个三角形架,•其中两直角边的长度之比为3:2,斜边长为520,则较短直角边的长度为( ) A .40 B .210 C .410 D .426 7、化去下列各式中根号内的分母正确的是( ) A .2225555== B .22151535=⨯ C .3333n n mn m m m ==(0>m ,0>n ) D .11aa a a===a 8、下列各式计算正确的是( )A .442939---==---=23B .238499==2132C .3163727÷= D .825=58 9、把下列二次根式化为最简二次根式: (1)338=_______; (2)712=_______;(3)2.11.0⋅=_______;(4)3273x =_______; 10、计算:(1)48÷(32·3)(2)43623x x ÷(3)3520÷(-136)(4)8243311、计算:(1)3223×(-1815)÷1225(2)-4318÷(28×1354)。

二次根式讲义 Word

二次根式讲义 Word

二次根式及其运算概述:二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法。

知识盘点:1、二次根式的性质:2、二次根式的运算法则:(5)3、设a,b,c,d,m是有理数,且m不是完全平方数,则当且仅4、当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.典典例精析:例1 化简:点评:若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简.例2 化简:点评:两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.解法1 配方法.配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则解法2 待定系数法.例4 化简:点评:(1)将被开方数的化成分母是2的分数就可以按例3的方法解决了,还要注意开方时考虑符号;(2)这是多重复合二次根式,可从里往外逐步化简。

例5:(2010湖北省荆门市)已知a =2b =2a b -的值. 点评:由于a+b 和ab 都是有理数,所以整体代人较为简便。

点评:考虑到被开方数的平方差特点待定系数法设原式为x ,两边平方可以使原式简化。

例7:化简441296222+--+-+++x x x x x x点评:本题的解法叫零点法,也叫分段讨论法,是解决绝对值题型的基本方法。

例8:设154-=a ,试求a a a 4223--的值。

点评:原式=a(a 2-2a-4)=a(a 2-2a+1)-5a ….通过配方巧妙解答,流畅自然。

例9:计算10121011101144++-++点评:设10,10,10424===a a a 则达到化繁为简之妙。

例10:已知a 、b 都是有理数,且347-是方程02=++b ax x 的解,求a+b 。

二次根式知识点讲义

二次根式知识点讲义

第一章 二次根式知识点一: 二次根式的概念 知识点二:取值范围:二次根式()的双重非负性PS;单项式和多项式统称整式。

单项式:由数字与字母或字母与字母的相乘组成的代数式叫做单项式(单独的一个数字或字母也是单项式)形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

例1下列各式13)-其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x知识点三:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。

但与都是非负数,即,。

因而它的运算的结果是有差别的,,而2、相同:当被开方数是非负数,即时,=;时,无意义,而.例3、(1)-2)3(; (2)2)32(; (3) 2)(b a + (a+b ≥0)知识点四 .最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

例4、(1__ __;(2=___ __;(3=____;(40,0)x y≥≥=___ _;(5)_______420=-。

例5、在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)知识点五.二次根式的运算:PS把多项式中同类项合成一项,叫做合并同类项1同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式底数幂相乘,底数不变,指数相加。

即:a m﹒a n=a m+n。

幂的乘方,底数不变,指数相乘。

(a m)n =a m n积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

二次根式讲义

二次根式讲义
A. B. C. D.
7. 若 ,求 的值。
8、化简:
【例二】若y= + +2009,则x+y=
【例三】若a、b为实数,且满足|a-2|+ =0, 则b-a的 值为( )
A.2 B.0 C.-2 D.以上都不对
【例四】若 是二次根式,则字母a应满足的条件是( )
A. B. C. D.
3、化简
【例五】 的平方根是( )
A.5B. -5C.± D.±5
【例六】计算 +|-11|- ,正确的结果是( )
6、分母有理化
在二次根式的运算中,把分母中的根号化去的过程称为分母有理化。
方法一: (a≥0,b≥0)
方法二: (a≥0,b≥02、二次根式的化简和混合运算
三、经典例题
1、求二次根式的值
【例一】当x=-2时,二次根式 的值为_______.
2、利用二次根式非负性解题
满足:(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式。
4同类二次根式:
把几个二次根式化为最简二次根式,如果被开方数相同,那么这几个二次根式叫做同类二次根式。
5、二次根式的运算
(1)乘法 (a≥0,b≥0)
(2)除法运算: (a≥0,b>0)
(3)加减运算:先把各个二次根式化成最简二次根式,在合并同类二次根式。
2、(2013,永州)已知 ,则 的值为
A. 0 B. C. 1 D.2
3、(2013,上海)下列式子中,属于最简二次根式的是( )
4、(2012,陕西)计算: .
A. ;B. ;C. ;D. .
5、(2013,佛山)化简 的结果是( )
A. B. C. D.

二次根式基础讲义

二次根式基础讲义

二次根式复习讲义(MS )一、基础知识(一)二次根式的概念:(1)二次根式:式子a (a ≥0)叫做二次根式.(2)最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.把满足这两个条件的二次根式,叫做最简二次根式。

(3)同类二次根式:化成最简二次根式后,如果被开方数相同。

,这几个二次根式就叫做同类二次根式.(4)分母有理化:把分母中的根号化去,叫做分母有理化。

(5)有理化因式:两个含有二次根式的代数式相乘,如果它们的积为有理式,我们说这两个代数式互为有理化因式.(6)代数式:用基本运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子叫代数式。

(二).同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

(三)二次根式的性质.20)(0);,(0)0,(0),(0)0,0)____(0,0);a a a a a a a a a a b a b ≥=≥>⎧⎪===⎨⎪-<⎩=≥≥=≥>是一个非负数;(*)(三)二次根式的运算:(1)二次根式的加减:先将二次根式化成最简二次根式,然后合并同类二次根式。

(20,0,0)a b a b =≥≥=≥>注意:做乘法时要灵活运用乘法分式;做除法时,有时要写为分数形式,然后分母有理化; 化简时要注意a 的正负性,尤其是隐含的正负性.二、分类考点 二次根式的定义例: ) A 、6个 B 、5个 C 、4个 D 、3个练习:下列各式中,哪些是二次根式,哪些不是二次根式?1.求a 为何值时,下列各式有意义. (1)a a 212-+ (2)32-+a a (4)215.0-a练习1、 53+-x 的取值范围是 _________________练习2有意义的x 的取值范围是 _________________ 练习3、x x --+315的取值范围是 _________________练习4、若31-+a 在实数范围内有意义, 则a 满足的条件是( )A.2=aB. 2≥a C .4-≤a D. 2≥a 或4-≤a例1: 在根式1) ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例2.在二次根式45, 2x 3, 11, 54, x 4中,最简二次根式个数是( ) A .1个 B.2个 C.3个 D.4个例1.把下列各式中根号外的因式适当改变后移到根号里面(1)53- (2)3.010 (3)1832 (4)616 (5)2142-例2、将根号外的数移到根号内(1)33 (2)717(3)x 2 (4)x x 2练习1.计算化简(1)226061- (2)84252.0b a (3)b b 42-(4)b a 325(0<b ) (5)2211b a -(b a <)练习3.求值(1)当211=x 时,求2244x x x +--的值;(2)当3-=a 时,求4152+-⋅-a a a 的值.练习4.求值22)2()1(+--b a ,其中3,14==b a .练习5、10)21()2006(312-+---+;练习5、已知AB,试比较A 与B 的大小。

二次根式复习专题讲义(补课用)汇总

二次根式复习专题讲义(补课用)汇总

二次根式复习专题讲义(补课用)汇总二次根式复专题讲义一、二次根式的概念:1.二次根式:形如 $\sqrt{a}$ ($a\geq 0$)的式子叫做二次根式,也称为二次根号。

①.式子中,被开方数(式)必须大于等于零。

②.$a$($a\geq 0$)是一个非负数。

即$\sqrt{a^2}=a$($a\geq 0$);③。

$\sqrt{a^2}=|a|$($a$为任意实数)2.二次根式的乘:①.一般的,有$\frac{a}{b}\cdot\frac{\sqrt{b}}{\sqrt{b}}=\frac{a\sqrt{b}}{b}$($a\geq 0$,$b>0$)②.反过来,有$\frac{a\sqrt{b}}{b}=\sqrt{ab}$($a\geq 0$,$b>0$)3.二次根式的除:①.一般地,对二次根式的除法规定:$\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a}}{\sqrt{b}}\cdot\frac{\sqrt{b}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}$($a\geq 0$,$b>0$),即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$($a\geq 0$,$b>0$)②.反过来,$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($a\geq 0$,$b>0$)4.二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

典型例题分析:例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、$\frac{1}{x}$、$\sqrt{x}$($x>0$)、$\sqrt{42}$、-2、$\frac{1}{\sqrt{x}+\sqrt{y}}$($x\geq 0$,$y\geq 0$).例2.当$x$是多少时,$\frac{2x+3}{x+1}$在实数范围内有意义?frac{3x-1}{x+2}$在实数范围内有意义?变式题2:①.当$x$是多少时,$\frac{\sqrt{x-2}}{x-1}$有意义?例3.①.已知$y=\frac{2x+3}{x^2}$在实数范围内有意义,求$x$的取值范围和$y$的值.②.若$a+1+\frac{1}{b-1}=0$,求$a^{2004}+b^{2004}$的值.③.已知$\frac{x-y+1}{x-3}=0$,求$xy$的值.例4.计算:1.$\left(\frac{3}{2}\right)^2$2.$\left(\frac{3\sqrt{5}}{2}\right)^2$3.$\left(\frac{3}{\sqrt{2}}\right)^2$4.$\left(\frac{5}{\sqrt{3}}\right)^2$5.$\left(\frac{\sqrt{5}}{2}\right)^2$6.$\left(\frac{7}{\sqrt{2}}\right)^2$7.$\left(\frac{2}{\sqrt{5}}\right)^2$例5.计算:1.$\frac{(x+1)^2}{x^2}$($x\geq 0$)2.$\frac{a^2}{a^2+2a+1}$3.$\frac{a^2}{a^2-2a+1}$4.$\frac{9}{25}+\frac{4}{9}$变式题:计算1.$\left(-\frac{3}{2}\right)^2$2.$(23^2-32^2)$例6.在实数范围内分解下列因式:1)$x^2-3$(2)$x^4-4$(3)$2x^2-3$例7.化简:1)$\frac{9}{\sqrt{25}}$2)$(-4)^2$3)$\frac{a^2}{25}$($a\neq 0$)4)$(-3)^2$例8.填空:当$a\geq 0$时,$\sqrt{a^2}=$ $a$;当$a<0$时,$\sqrt{a^2}=$ $-a$,并根据这一性质回答下列问题.1)若$a^2=a$,则$a$可以是什么数?2)若$a^2=-a$,则$a$可以是什么数?3)若$a^2>a$,则$a$可以是什么数?例9.当$x>2$,化简$(x-2)^2-(1-2x)^2$.例10.先化简再求值:当$a=9$时,求$a^2+1-2a$的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)^2=a+1-2a+a^2=1+a-a^2乙的解答为:原式=a+(1-a)^2/(1-a)^2=a+1-a=1;a+(a-1)/(1-a)=2a-1=17.两种解答中,甲的解答是错误的,错误的原因是少写了一步展开式子的步骤.变式题1.根据题目条件,得到|1995-a|+a-2=a,即|1995-a|=a-2,因为a-200≥-199,所以当a≥197时,1995-a为正数,此时a-1995=|1995-a|=a-2-1995=-1993-a;当a<197时,1995-a为负数,此时a-1995=|1995-a|=1995-a-2=1993+a,综上所述,a-1995的值为-1993-a(a≥197)或1993+a(a<197)。

二次根式的讲解

二次根式的讲解

二次根式的概念与性质一、知识结构:知识要点梳理知识点一:二次根式的概念一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。

如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。

(2) 3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

如与,a+与a-,-与+,互为有理化因式。

关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“”表示的代数式,这里的开方运算是最后一步运算。

如,等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)象“,”等虽然可以进行开方运算,但它们仍属于二次根式。

知识点二:二次根式的性质1.;2.;3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.(6)若,则。

注意与的逆用。

要点诠释:二次根式(a≥0)的值是非负数,其性质可以正用亦可逆用,正用时去掉根号起到化简的作用;逆用时可以把一个非负数写成完全平方的形式,有利于在实数范围内进行因式分解.要注意以下问题:(1)因为被开方数a2≥0(非负数),所以a可以取任意实数。

第三讲 二次根式讲义

第三讲  二次根式讲义

第三讲 二次根式一、课标下复习指南 (一)二次根式的有关概念 1.二次根式形如)0(≥a a 的式子叫做二次根式.2.最简二次根式(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.满足上述两个条件的二次根式叫做最简二次根式. (二)二次根式的主要性质1.)0(≥a a 是一个非负数; 2.);0()(2≥=a a a 3.⎩⎨⎧<-≥==);0(),0(||2a a a a a a4.);0,0(≥≥⋅=b a b a ab5.);0,0(>≥=b a ba ba6.若a >b ≥0,则.b a >(三)二次根式的运算 1.二次根式的加减二次根式加减时,先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. *3.分母有理化把分母中的根号化去,分式值不变,叫做分母有理化. 常用的二次根式的有理化因式:(1)a 与a 互为有理化因式;(2)b a +与b a -,一般的,b c a +与b c a -互为有理化因式;(3)b a +与b a -,一般的,b d a c +与b d a c -互为有理化因式. 二、例题分析例1 当x 为何值时,下列代数式有意义?.1)2(;322)1(232x x x x x -+----解 (1)欲使3222---x x x 有意义,只要使⎩⎨⎧=/--≥-.032,022x x x 即⎩⎨⎧≠-=/≥.31,2x x x 且 解得x ≥2且x ≠3. ∴当x ≥2且x ≠3时,3222---x x x 有意义.(2)欲使231x x -+-有意义,只要使-x 2≥0,解得x =0. ∴当x =0时,231x x -+-有意义.说明 代数式有意义的条件:分式有意义的条件是分式的分母不为零;二次根式有意义的条件是被开方数为非负数;由实际意义得到的代数式还要符合实际意义.例2 化简:(1);14962123xx x x x -+ *(2)已知1<x <2,化简122+-x x .442x x +-+ 解 (1)原式x x x x x x 4221-+=x x 23-=(2)∵1<x <2,∴x -1>0,2-x >0.224412x x x x +-++-∴22)2()1(x x -+-==|x -1|+|2-x |=(x -1)+(2-x )=1.说明 (1)二次根式的化简要考虑最简二次根式的两个条件,根号内是多项式时,要考虑是否是完全平方式;(2)化简2a 时,要考虑字母a 的取值范围;(3)在二次根式运算中,根号外的因式可以平方后作为被开方数的因式移进根号内,从而使运算简化.例3 计算:(1);22)8321464(÷+- (2)+⋅-+-5()625()2332(202.)6219 解 (1)原式22)262264(÷+-= .232+=(2)原式=5)(625[()1861212(-++-62561230)625()]6219-+-=-⋅+.61435-=说明 整式和分式的运算性质在二次根式的运算中同样适用,乘法公式、分配律、约分等都有可能简化运算过程,要根据式子的结构特征灵活使用.例4 已知xy =3,求yxyx y x+的值. 分析 因为xy =3,所以x ,y 同正或同负,要分情况讨论.解 当x >0,y >0时, 原式.322==+=xy xy xy 当x <0,y <0时,原式.322-=-=--=xy xy xy 综上可知,原式.32±= 三、课标下新题展示例5 若n 20是整数,则满足条件的最小正数n 为( ). A .2 B .3C .4D .5解 D .说明 对于二次根式的性质:||);0()(22a a a a a =≥=,会有多种形式进行考查,要熟练掌握.例6 对正实数a ,b ,定义,*b a ab b a +-=若4*x =44,则x 的值是______. 解 依题意,得.4444=+-x x 整理,得.484=+x x 变形,得.4912)(2=++x x.49)1(2=+∴x71=+∴x 或,71-=+x 6=x 或8-=x (舍).∴x =36.经检验,x =36是原方程的解. ∴x 的值是36.说明 此题考查了阅读理解能力、完全平方公式、二次根式的性质、配方法解方程,是一道代数综合题,要求每个基本知识点都熟练掌握. 四、课标考试达标题(一)选择题1.在根式⑤④③②①;2;15;;5223a b a a -2;12aa ⑥中,最简二次根式是( ). A .②③⑤ B .②③⑥C .②③④⑥D .①③⑤⑥2.如果最简根式a b b -3和22+-a b 是同类二次根式,那么a 、b 的值分别是( ).A .a =0,b =2B .a =2,b =0C .a =-1,b =1D .a =1,b =-23.下列各式中,运算正确的是( ). A .553322=+ B .236=÷ C .632=D .12233=-(二)填空题4.当x 满足______条件时,32++-x x在实数范围内有意义. 5.若式子|2|)1(2-+-x x 化简的结果为2x -3,则x 的取值范围是______. 6.已知x 为整数,且满足32≤≤-x ,则x =______.7.观察下列各式:=+=+412,312311514513,413=+…请你将发现的规律用含自然数n 的等式表示出来______.(n ≥1)(三)解答题 8.计算:.)2(xy yxxyxy ⋅+-9.化简:.)23(36329180-++--10.先化简,再求值:423)225(--÷---a a a a ,其中.33-=a*11.观察下列分母有理化的运算:-=+2121=+-=+321,23231,1,32-251+.,25 -= 从计算结果中找出规律,并利用这一规律计算:+++++++ 321231121().12010()200920101+⋅+参考答案第三讲 二次根式1.B . 2.A . 3.B . 4.-3≤x <0. 5.x ≥2. 6.-1,0,1. 7.21)1(21++=++n n n n . 8.xy -2y +x . 9.⋅2210.-2(a +3),.32- 11.2009.。

二次根式讲义

二次根式讲义

龙文教育学科教师辅导讲义教师: 于利 学生: 王楠鑫 时间:课 题二次根式教学目标(1) 理解二次根式的概念.(2)理解a (a ≥0)是一个非负数,(a )2=a (a ≥0),2a =a (a ≥0). (3)掌握二次根式的性质与运算法则(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.重点、难点重点1.二次根式a (a ≥0)的内涵.a (a ≥0)是一个非负数;(a )2=a (a ≥0);2a =a (a ≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念. 4.二次根式的加减运算.难点:1.对a (a ≥0)是一个非负数的理解;对等式(a )2=a (a ≥0)及2a =a (a ≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式考点及考试要求二次根式是中学数学的基础知识是中考常考题目教学内容第十二章 二次根式1、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

例1 求下列二次根式中字母a 的取值范围:(1)1+a , (2)112a-; (3)2(3)a -例2 当x=4时,求二次根式12x -的值例3 .计算(1)(7)2; (2)⎥⎦⎤⎢⎣⎡43 (3)2)23( (4)2)(b a (b ≥0) 例4. 当x 是多少时,23x ++11x +在实数范围内有意义? 例5 (1)已知y=2x -+2x -+5,求xy的值2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

二次根式及其运算知识讲义(解析版)

二次根式及其运算知识讲义(解析版)

专题01 二次根式及其运算知识讲义【相关概念】二次根式:a≥0)的式子叫做二次根式.a为被开方数,a可以是数字或代数式.代数式:含有字母的数学表达式称为代数式.整式、分式均为代数式.最简二次根式:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【二次根式运算】乘法=a≥0,b≥0)除法=(a≥0,b >0)加(减)法先把各根式化成最简根式,再合并同类根式分母有理化====【二次根式性质】,a≥0非负数:|a|,a 2n()()00a a a a ≥⎧=⎨-≤⎩2a =【二次根式应用】因式的内移和外移:(1)负号不能移到根号下;(2)根号下的负号不能移到根号外.【题型一】二次根式有意义条件例1. (2020·m 能取的最小整数值是()A .m = 0B .m = 1C .m = 2D .m = 3【答案】B.3m -1≥0,解得:m≥13, 所以,m 能取的最小整数值是1.故答案为:B .例2. (2020·=-,那么x 的取值范围是_______. 【答案】-3≤x≤0.【解析】解:∵233x x +-∴x≤0,且x+3≥0,解得:-3≤x≤0,故答案为:-3≤x≤0.例3.(2019·=x 的取值范围是______. 【答案】x≥2.=∴x≥0,x−2≥0,∴x≥2.故答案为:x≥2.【题型二】同类二次根式例4. (2020·是同类二次根式,那么满足条件的m 中最小正整数是________.【答案】4.【解析】解:当5m+8=7时,m=-15,不合题意,,即5m+8=28时,m=4,是同类二次根式,那么m 的最小正整数是4,故答案为:4.例5. mn =_________.【答案】10.∴n=2,2m-5=5,∴m=5,n=2∴mn=10故答案为:10.例6. mn=________.【答案】21.∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴mn=21故答案为:21.【题型三】变式考查例7. (2020·浙江宁波市期中)我们把形如b(a,b为最简二次根式)32是()A型无理数B C型无理数D型无理数【答案】B.【解析】解:2故答案为:B.例8. (1n所有可能的值;(2是整数,求正整数n的最小值.【答案】(1)自然数n 的值为2、9、14、17、18;(2)正整数n 的最小值为6.【解析】解:(1是整数,∴18-n=0或1或4或9或16,解得:n=18或17或14或9或2,则自然数n 的值为2,9,14,17,18;(2=是整数,n 为正整数,∴正整数n 的最小值为6.例9.(2020·21x =-,则x=__________. 【答案】12或1.21x =-,∴2x-1=0或2x-1=1,解得:x=12或x=1. 故答案为12或1. 【题型四】二次根式运算例10.(2020·周长为( )A .B .C .D .无法确定【答案】A.若,,则周长为若,∴,此三角形不存在,∴个三角形的周长为故答案为:A .例11)2211-.)2211--1313=--+-=例12.(2020·福建省泉州月考)已知1x =,x 的整数部分为a ,小数部分为b ,求a b的值..【解析】解:∵3,∴+1<4,故a=3,-2,∴)3232274a b ====-. 例13.(2020·广东佛山市月考)先阅读,再解答:由222=-= 可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:==,请完成下列问题:1的有理化因式是;(2)= .(直接写结果)>或<)(4)利用你发现的规律计算下列式子的值:)1+【答案】(1+1;(2);(3)<;(4)2017.【解析】解:(1+1;(2333==+;(3=>(4)原式=)120181+=)11=2018-1=2017.例14. 若a,b都是正整数,且a<b是可以合并的二次根式,是否存在a,b,=a,b的值;若不存在,请说明理由.【答案】当a=3,b=48;当a=12,b=27.,m、n为正整数,m<n,∴m=1,n=4或m=2,n=3故a=3,b=48或a=12,b=27.例15.(2019·辽宁大连市期中)[观察]请你观察下列式子的特点,并直接写出结果:11112=+-=;11123=+-=;11134=+-=;……[发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空:=(n为正整数);(2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果:11n++=.【答案】[观察]32,76,1312;[发现](1)1111n n+-+或221n nn n+++;(2)证明见解析;[应用]221n nn++.【解析】[观察]32,76,1312,[发现](1)1111n n+-+或221n nn n+++(2)左边=====∵n 为正整数,∴()11111011n n n n +-=+>++ ∴左边=右边[应用11n +++111111111111223341n n =+-++-++-+++-+…… 1111n n =⨯+-+ 1n n n =++ 22=1n n n ++. 【题型五】化简求值例16. (2021·江苏南通市期末)化简2+的结果是( ) A .152x -B .1-C .27x -D .1 【答案】A.【解析】解:∵二次根式被开方数为非负数,∴7-x≥0,则x≤7∴x-8<0,原式=7-x+8-x=15-2x故答案为:A .例17.(2020·浙江杭州期中)实数a ,b 在数轴上的位置如图,||a b -的结果为( )A .2aB .2a -C .2bD .2b -【答案】B.【解析】解:由题意得:a >b ,|a |<|b |,a >0,b <0,∴a -b >0,a +b <0,∴原式=-a -b -a +b =-2a ,故答案为:B .例18.若数轴上表示数x 的点在原点的左边,则化简3x + ) A .4x - B .4x C .2x - D .2x【答案】C.【解析】解:∵数x 的点在原点的左边,∴x <0,∴原式=|3x +|x ||=|3x -x |=|2x |=-2x .故答案为:C .例19.(2020·温州月考)下列四个式子中,与(a -的值相等的是() AB .CD .【答案】D.【解析】解:由题意得:2021-a>0,得:a<2021,∴a-2021<0,∴原式=(2021a --== 故答案为:D . 例20.下列给出的四个命题:①若a b = ,则a a b b =;②若a 2﹣5a+5=01a =- ;③(1a -=其中是真命题是【答案】②.【解析】解:①当a=-1,b=1时,命题不成立,是假命题,②a 2=5a-5,∴5a-5≥0,即a≥1,,是真命题;③(a -==,是假命题, 故答案为:②.【题型六】阅读材料例21.(2021·北京延庆区期末)我们规定用(a ,b )表示一对数对.给出如下定义:记m=,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”.例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”,1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”,,求ab 的值.【答案】(1)1(3与1)3, ;(2)13;(3)1 ;(4)16或6.【解析】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为⎝与⎭, ∵数对(3,y )的一对“对称数对”相同,= ∴y=13;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1), 1=, ∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=,综上所述,16ab =或6ab =. 例22. 阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式..11==. 类比应用:(1= ; (29++=+ . 拓展延伸:的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽AB =1. (1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE ,则点D 到线段AE 的距离为 .【答案】类比应用:(1);(2)2;拓展延伸:(1)12;(2)矩形DCEF为黄金矩形,理由见解析;(3【解析】解:类比应用:(1)根据题意可得:== (2)根据题意可得:9++(9+++19-+-1=2;拓展延伸:(1的矩形叫黄金矩形, 若黄金矩形ABCD 的宽AB =1,则黄金矩形ABCD 的长BC; (2)矩形DCEF 为黄金矩形,理由是:由裁剪可知:AB=AF=BE=EF=CD=1,根据黄金矩形的性质可得:AD=BC=1=∴FD=EC=AD-AF=112-=12,∴DF EF =11122÷=,故矩形DCEF 为黄金矩形;(3)连接AE ,DE ,过D 作DG ⊥AE 于点G ,∵AB=EF=1,,∴=在△AED 中,S △AED =1122AD EF AE DG ⨯⨯=⨯⨯,即AD EF AE DG ⨯=⨯1DG =,解得∴点D 到线段AE 的距离为4+. 例23. (2019·四川月考)阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一步化简:====1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求 a 2 + b 2 .我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则 a 2 + b 2 = (a + b)2 - 2ab = x 2- 2y = 4+ 6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1...+(2)已知 m 是正整数, ab且 2a 2+ 1823ab + 2b 2 = 2019 .求 m . (31=【答案】(1)12;(2)2;(3)9. 【解析】解:(1)原式12019+2222=+++2019++== (2)∵ab∴=2(2m+1),=1∵2a 2+ 1823ab + 2b 2 = 2019∴2(a 2+b 2)+1823=2019∴a 2+b 2=98∴4(2m+1)2=100∴m=2或m=-3∵m是正整数∴m=2.(31=,得:21=20=2281=-+=0≥≥.例24.(2020·湖南怀化市期末)同学们,我们以前学过完全平方公式222)2(a ab b a b ±+=±,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如23=,25=,下面我们观察:)2221211213=-⨯=-=-23211)-=-=,∴231)-=1= 求:(1;(2(3=,则m 、n 与a 、b 的关系是什么?并说明理由.【答案】(11;(21;(3)m+n=a ,mn=b ,理由见解析.【解析】解:(11;(21==;(3)m+n =a ,mn =b.=∴2a =+,∴,∴m+n =a ,mn =b.例25.(2020·安徽安庆市)阅读理解题,下面我们观察:2221)211213=-⨯=-=-反之23211)-=-=,所以231)-=1= 完成下列各题:(1)在实数范围内因式分解:(2(3.【答案】(1)2(1+;(21;(3【解析】解:(1)22231(1+=+=+(21==(3==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)把商的算术平方根的性质 反过来写为 ,则为二次根式的除法法则,即二次根式相除,就是把被开方数相除,根指数不变.
注意:二次根式的乘、除法法则和积的算术平方根、商的算术平方根的性质互为逆运算,在计算和化简二次根式时可结合题目灵活运用,但始终要注意法则与性质成立的条件.
7、分母有理化(例7)
定义:把分母中的二次根式化去,叫做分母有理化.例如
质:商的算术平方根等于被除数的算术平方根与除数的算术平方根的商,即 可以简单地说:商的算术平方根等于算术平方根的商.
注意:(1)在运用商的算术平方根的性质解决有关计算时,一定要准确把握性质成立的条件,即被开方数的分子为非负数,而分母大于0.
(2)如果被开方数是带分数,应先化成假分数,如 必须先化成 ,注意 ;如果被开方数是小数,应先化成分数,如 必须先化成
1、下列各式中,哪些是二次根式,哪些不是二次根式?
(1) ;(2) ;(3) (4)
2、化简:(1) ;(2) ;(3) ;(4)
3、化简:(1) ;(2)
4、化简:(1) ;(2)
5、化简
6、计算:(1) ;(2) ;(3) ;(4)
7、把下列各式分母有理化:
(1) ;(2) .
8、合并被开方数相同的二次根式:
注意:
(1)二次根式的加减实际上就是合并被开方数相同的二次根式,因此在进行二次根式加减时,能否准确化简二次根式是关键.化成最简二次根式后,被开方数不同的二次根式不能合并,如 就是最简结果,不能再合并.
(2)二次根式的加法也满足加法交换律和结合律.
10、二次根式的混合运算
(1)运算顺序:与数、整式和分式的混合运算一样,二次根式的混合运算,也应先算乘除,后算加减;有括号时,先算括号内的.
6、二次根式的乘法和除法(例6)
(1)把积的算术平方根的性质 反过来写为 ,则为二次根式的乘法法则,即二次根式相乘,把被开方数相乘,根指数不变.
二次根式的乘法法则可推广到多个二次根式进行相乘的运算,如 .二次根式前面有系数时,可类比单项式乘单项式的法则进行计算,即系数之积作为积的系数,被开方数之积作为被开方数.
积的算术平方根的性质:积的算术平方根等于积中各因式的算术平方根的积,即
注意:(1)在这个性质中, 可以是实数,也可以是代数式,但不管是实数,还是代数式,都必须使二次根式有意义,即 .要防止出现 这样的错误.
(2)另外该性质并非局限于被开方数为两个因数,它可以推广到更多个,如 .
(3)如果一个二次根式的被开方数比较大,可以运用该性质将其分解为若干个,再分别运用 化简二次根式.
5、最简二次根式(例5)
定义:一般地,如果一个二次根式满足下面两个条件,那么,我们把这样的二次根式叫做最简二次根式.
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式
如 都是最简二次根式.要注意分母中不能含有根号,如 不是最简二次根式.
把二次根式化为最简二次根式时,当被开方数为小数或分数时,可运用商的算术平方根的性质变形,使被开方数化为整数;当被开方数为整数时,可以把它分解因数,再运用积的算术平方根的性质变形,化为最简二次根式.
教学情况记录表
课程类别
□同步□串讲□其他(请注明类别:_____________________)
本次课授课目标
1、了解二次根式和最简二次根式的概念
2、理解二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算
3、会确定二次根式有意义的条件
教学重点
二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算
教学难点
二次根式的混合运算
教学步骤及内容
1、错题回顾
2、知识总结
1、二次根式的概念(例1)
一般地,我们把形如 的式子叫做二次根式.在二次根式中, 可以是一个数,也可以是一个代数式,但不管是什么形式,作为被开方数的 必须满足 ,当 时,二次根式无意义.也就是说,当被开方数 时,二次根式才有意义.
注意:二次根式的两个基本特征:一是根指数为2,二是被开方数为非负数.比如 等均是二次根式,而像 等均不是二次根式.
(1) ;(2)
9、(1) ;(2)
10、(1)( (2)
4、中考链接
1、若实数 满足 ,则 _______
2、计算 =_______
3、计算 ________
4、计算 ________
5、计算: _________
6、 _________
7、 _______
8、先化简,再求值: ,其中
9、计算:(1) (2)
(2)二次根式混合运算的结果应写为最简形式,这个形式可以是最简二次根式,也可以是几个非同类最简二次根式的和或差.
(3)在运算过程中,每个二次根式都可以看成是一个“单项式”,因此实数运算中的运算律(结合律、交换律、分配律等)和所有的乘法公式(平方差公式、完全平方公式等)在二次根式的运算中仍然适用.
三、例题讲解
注意:(1)有理化因式:两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式互为有理化因式.
(2)分母有理化的依据:分式的基本性质.
(3)分母有理化的方法:将分子和分母都乘分母的有理化因式,化去分母中的二次根式.
(4)分母有理化因式不唯一,但以运算最简便为宜,如 的有理化因式是 .
8、二次根式的合并(例8)
合并被开方数相同的二次根式,把系数相加减,根指数和被开方数不变.方法与整式加减运算中的合并同类项类似,例如 .二次根式的系数是带分数的要化成假分数的形式.
9、二次根式的加减法(例9)
二次根式的加减法法则:二次根式的加减运算,就是将被开方数相同的项进行合并。为此,首先应将每个二次根式化为最简二次根式,然后将被开方数相同的最简二次根式的项进行合并.可简单地概括为:先化简,后合并.
10、计算:(1) (2)
2、二次根式的性质(例2)
(1)二次根式的非负性,即 ,这一性质也是非负数的算术平方根.
(2)一个非负数的算术平方根的平方是它本身,即 .把公式 反过来就得到了式子 ,也就是说,逆用这一性质,可以把任何一个非负数写成一个数的平方的形式.
(3)任意一个数的平方的算术平方根等于它本身的绝对值,即 .
3、积的算术平方根的性质(例3)
相关文档
最新文档