(浙教版)绍兴市中2018-2019学年八年级下期中考试数学试题-附标准答案

合集下载

浙教版数学八年级下学期《期中测试卷》及答案

浙教版数学八年级下学期《期中测试卷》及答案
[详解]A、x2+3y=1,含有两个未知数,故不是一元二次方程;
B、x2+3x=1,是一元二次方程,故此选项正确;
C、ax2+bx+c=0,当a≠0时,是一元二次方程,故C错误;
D、 ,是分式方程,故D错误.
故选B.
[点睛]考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
A. 1B. 2C. 3D. 4
10.如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上 动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为()
A. 1B. C. D.
二、填空题(本题共8小题,每小题3分,共24分)
11.求值: __________.
12.一元二次方程 解为________.
13.如果多边形的每个内角都等于 ,则它的边数为______.
14.某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.
15.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加 条件是_________(只填写一个条件,不使用图形以外的字母和线段).
5.如图,在□ABCD中,点M为CD的中点,且DC=2AD,则AM与BM的夹角的度数为()
A.100°B.95°C.90°D.85°
6.用配方法解方程x2﹣ x﹣1=0时,应将其变形为( )
A. (x﹣ )2= B. (x+ )2=
C. (x﹣ )2=0D. (x﹣ )2=
7.某商场对上周女装的销售情况进行了统计,销售情况如表:

2018-2019学年度下学期八年级期中质量检测数学试题及答案.docx

2018-2019学年度下学期八年级期中质量检测数学试题及答案.docx

2018-2019学年度下学期八年级期中质量检测数学试题( 满分 120 分,考试用时 120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为选择题,36 分;第Ⅱ卷为非选择题,84 分;共 120分。

2.答卷前务必将自己的姓名、座号和准考证号按要求填写在答题卡上的相应位置。

3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。

4. 第Ⅱ卷必需用0.5 毫米黑色签字笔书写到答题卡题号所指示的答题区域,不得超出预留范围。

5.在草稿纸、试卷上答题均无效。

第Ⅰ卷(选择题36 分)一、选择题(本大题共12 小题,每小题 3 分,满分 36 分.请将正确选项的字母代号填涂在答题卡相应位置上)1.用两个全等的等边三角形可以拼成下列哪种图形().A. 矩形 B .菱形C.正方形D.等腰梯形2.在□ABCD 中,∠ A: ∠B=7: 2,则∠ C、∠ D 的度数分别为().A . 70°和 20°B . 280 °和 80°C. 140 °和 40°D. 105 °和 30°3.函数y=2x5的图象经过().﹣A .第一、三、四象限;B.第一、二、四象限;C.第二、三、四象限;D.第一、二、三象限.4.1112x 2,2x-1 图象上的两个点,且x 1x 2点 P (x,y),点 P (y )是一次函数 y =4< 0<,则 y 1与 y 2的大小关系是().A .y1>y2B .y1>y2> 0C.y1<y2 D .y1=y25 . 在一次射击训练中,甲、乙两人各射击10 次,两人10 次射击成绩的平均数均是9.1 环,方差分别是S2=1.2, S2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定描述正确的是().A .甲比乙 定;B .乙比甲 定 ;C .甲和乙一 定;D .甲、乙 定性没法 比.6. 一次函数 y= 2x+4 的 象是由 y= 2x-2 的 象平移得到的, 移 方法 ( ) .A .向右平移 4 个 位;B .向左平移 4 个 位;C .向上平移 6 个 位;D .向下平移 6 个 位.7. 次 接矩形的各 中点,所得的四 形一定是 () .A .正方形B .菱形C .矩形D .无法判断8.若 数 a 、 b 、 c 足 a + b + c = 0,且 a < b < c , 函数 y =ax + c 的 象可能是 ( ) .9.如 , D 、 E 、 F 分 是△ ABC 各 的中点, AH 是高,如果 ED =5cm ,那么 HF 的 ( ).A . 6cmB .5cmC . 4cmD .不能确定 10. 已知菱形的周 40,一条 角12, 个菱形的面( ) .9A . 24B . 47C . 48D . 9611. 如 ,直 y=kx+b 点 A ( 3, 1)和点 B ( 6,0), 不等 式 0< kx+b < 1x 的解集 ().3A . x < 0B . 0<x < 3C . x > 6D . 3< x <61112.如 ,矩形 ABCD 的面 20cm 2, 角 交于点 O ,以 AB 、 AO 做平行四 形AOC 1B , 角 交于点 O 1,以 AB 、 AO 1做 平 行 四 形 AO 1C 2B ⋯⋯ 依 此 推 , 平 行 四 形AO 2019C 2020B 的面 () cm 2.5555A .22016B.2 2017C.22018D.2 2019第Ⅱ卷(非选择题84 分)二、填空题(本大题共 4 小题;每小题 4 分,共 16 分.把答案写在题中横线上)13. 一组数据35106x的众数是5,则这组数据的中位数是.,,,,14. 若已知方程组2x y bx1的解是y,则直线 y=- 2x+ b 与直线 y= x-a 的交点坐标x y a3是 __________.15. 已知直线y3x3与x轴、y轴分别交于点A B,在坐标轴上找点P,使△ABP为、等腰三角形,则点P 的个数为个.16.如图,在△ABC 中, AB=6, AC=8, BC=10 , P 为边 BC上一动点 (且点 P 不与点 B、 C 重合 ), PE ⊥AB 于 E, PF⊥AC于 F .则 EF 的最小值为 _________.16 题图三、解答题 : 本大题共 6 小题,满分68 分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分 10 分)已知 y k 3 x k28是关于x的正比例函数,(1)写出 y 与 x 之间的函数解析式;(2)求当 x= - 4 时, y 的值.18.(本题满分 8 分)在□ABCD 中,点 E、F 分别在 BC、AD 上,且 BE = DF .求证:四边形 AECF 是平行四边形.19.(本题满分12 分)某中学举行“中国梦?校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的 5 名选手的决赛成绩如图所示.( 1)根据图示填空:19 题图项目平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.20.(本题满分 12 分)如图,直线 l1的解析式为y3x 3 ,且 l1与 x 轴交于点 D,直线l2经过点 A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ ADC 的面积;(3)在直线l2上存在异于点 C 的另一点 P,使得△ADC 与△ ADP 的面积相等,请直接写出点P的坐标...y yl1l2O D 3x 3A( 4,0)B2C20题图21.(本题满分 12 分)材料阅读:小明偶然发现线段 AB 的端点 A 的坐标为( 1 , 2),端点 B 的坐标为( 3 ,4),则线段AB 中点的坐标为( 2 , 3),通过进一步的探究发现在平面直角坐标系中,以任意两点P( x1,y1)、 Q(x2, y2)为端点的线段中点坐标为知识运用:如图 , 矩形 ONEF 的对角线相交于点分别在 x 轴和 y 轴上,O 为坐标原点,点3) ,则点 M 的坐标为 _________.x1x2,y1y2.22M, ON、OFE 的坐标为 (4,能力拓展:21 题图在直角坐标系中,有A(-1, 2)、B(3,1)、 C(1 , 4)三点,另有一点 D 与点 A、 B、 C 构成平行四边形的顶点,求点D的坐标 .22.(本题满分14 分)现有正方形ABCD 和一个以O 为直角顶点的三角板,移动三角板,使三角板两直角边所....在直线分别与直线BC、 CD 交于点 M、N.( 1)如图 1,若点 O 与点 A 重合,则OM 与 ON 的数量关系是 ___________;( 2)如图 2,若点 O 在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;( 3)如图 3,若点 O 在正方形的内部(含边界),当OM=ON 时,请探究点 O 在移动过程中可形成什么图形?( 4)如图 4 是点 O 在正方形外部的一种情况.当OM =ON 时,请你就 “点 O 的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论(不必说理).NA(O)D ADA DODOANO NMN MM BC BCBC图 1图 2图 3BMC图 422 题图2018-2019 学年度下学期八年期中量数学试题评分标准(分 120分,考用 120 分)一、 ( 本大共12 小,每小 3 分,分36 分.在每小所出的四个中,只有一是符合目要求的,将正确的字母代号填涂在答卡相位置上)1~5 BCACA;6~10 CBABD ;11~12 DC.二、填空 ( 本大共 4 小,每小 4 分,分16 分.不需写出解答程,将答案直接写在答卡相位置上.)13. 5 ;14.(-1,3);15.6个;16. 4.8.三、解答( 本大共6 小,分68 分.在答卡指定区域内作答,解答写出必要的文字明、明程或演算步.)17.(本分10 分)解:( 1)∵y是x的正比例函数.∴ k 2-8=1,且k-3≠0,⋯⋯⋯⋯⋯⋯⋯ 3 分∴解得 k=-3∴ y=-6 x.⋯⋯⋯⋯⋯⋯⋯ 6 分( 2)当 x=-4 , y=-6 ×( -4) =24 .⋯⋯⋯⋯⋯10分18.(本分8 分)明 :∵ ABCD是平行四形,∴ AD = BC ,AD∥ BC.⋯⋯⋯⋯⋯⋯⋯ 2 分又∵ BE = DF ,∴ AD-DF = BC- BE,即AF = CE,注意到AF∥ CE,⋯⋯⋯⋯⋯⋯⋯ 6 分因此四形AECF 是平行四形.⋯⋯⋯⋯⋯⋯⋯8 分或通明AE = CF (由△ ABE≌△ CDF )而得或其他方法也可。

2018-2019学年第二学期浙教版八年级数学期中试卷及答案

2018-2019学年第二学期浙教版八年级数学期中试卷及答案

2018学年第二学期期中学业水平考试卷八年级数学一、选择题(本题有10小题,每小题3分,共30分)1.若二次根式有意义,则x的取值范围是()A.x≥0 B.x>0 C.x≤2 D.x<22.下列计算正确的是()A.+=B.+=C.﹣=D.÷=2 3.在下列方程中,是一元二次方程的是()A.x+y=0 B.x+5=0 C.x2﹣2014=0 D.x﹣=04.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=7 5.一组数据2,2,2,4,4,7的中位数是()A.2 B.3 C.4 D.76.王老师对甲、乙两人五次数学成绩进行统计,两人平均成绩均为90分,方差S甲2=12,S乙2=51,则下列说法正确的是()A.甲同学的成绩更稳定B.乙同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定D.不能确定7.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.8.如图,O为▱ABCD两对角线的交点,图中全等的三角形有()A.1对B.2对C.3对D.4对9如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2 B.3 C.D.10.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=,则梯形AECD的周长为()A.22 B.23 C.24 D.25二、填空题(共6小题,每小题3分,共18分)11.化简的结果是.12.已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是.13.某组数据的方差计算公式为S2=[(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是,该组数据的平均数是.14.某种产品原来售价为200元,经过连续两次大幅度降价处理,现按72元的售价销售.设平均每次降价的百分率为x,列出方程:.15.若y=,则x+y=.16.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是.三、简答题:(本大题52分)17.(6分)计算:(1)(2).18.(6分)解方程:(1)2x2﹣5x﹣8=0.(2)(x﹣2)(2x﹣3)=2(x﹣2)19.(6分)如图,请用三种不同方法将平行四边形ABCD分割成四个面积相等的三角形.(作图工具不限,保留作图痕迹,不写作法.)20.(10分)图甲和图乙分别是A,B两家酒店去年下半年的月营业额(单位:百万元)统计图.A酒店去年下半年的月营业额扇形统计图B酒店去年下半年的月营业额(月营业额单位:百万元) 折线统计图图甲图乙(1)求A酒店12月份的营业额a的值.(2)已知B酒店去年下半年的月平均营业额为2.3百万元,求8月份的月营业额,并补全折线统计图.(3)完成下面的表格(单位:百万元)(4)综合以上分析,你认为哪一些数据更能较为准确的反映酒店的经营业绩?你认为哪家酒店的经营状况较好?请简述理由.21.(8分)如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说明.22.(6分)商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)问商场经营该商品原来一天可获利润多少元?(2)若商场经营该商品一天要获利润2160元,则每件商品售价应为多少元?23.(10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=23,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP、BP,求CP、DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC 上?求出此时平行四边形的面积2018学年第二学期期中学业水平考试卷八年级数学答案一、选择题(本题有10小题,每小题3分,共30分)1.C2.D3.C4.B5.B6.A7.B8.D9.C 10.A二、填空题(共6小题,每小题3分,共18分)11. 3 12. 6 13. 8 2 14.200(1﹣x)2=7215. 716.①②⑤三.简答题:(本大题52分)17(6分)(1)原式=6﹣5+3 (2)原式=9﹣2+1+2+2=10.=10+218(6分)(1)a=2,b=﹣5,c=﹣8,(2)(x﹣2)(2x﹣3)﹣2(x﹣2)=0,x1=,x2=.x1=2,x2=.19(6分)20.(10分)(1)a=4百万元.……2分(2)8月份的月营业额为3百万元.作图:……3分(3)(4)理由充分即可.……2分21.(8分)(1)方法一:如图①,∵在▱ABCD中,AD∥BC,∴∠DAB+∠ABC=180°.∵AE、BF分别平分∠DAB和∠ABC,∴∠DAB=2∠BAE,∠ABC=2∠ABF.∴2∠BAE+2∠ABF=180°.即∠BAE+∠ABF=90°.∴∠AMB=90°.∴AE⊥BF.方法二:如图②,延长BC、AE相交于点P,∵在▱ABCD中,AD∥BC,∴∠DAP=∠APB.∵AE平分∠DAB,∴∠DAP=∠P AB.∴∠APB=∠P AB.∴AB=BP.∵BF平分∠ABP,∴AP⊥BF,即AE⊥BF.(2)线段DF与CE是相等关系,即DF=CE,∵在▱ABCD中,CD∥AB,∴∠DEA=∠EAB.又∵AE平分∠DAB,∴∠DAE=∠EAB.∴∠DEA=∠DAE.∴DE=AD.同理可得,CF=BC.又∵在▱ABCD中,AD=BC,∴DE=CF.∴DE﹣EF=CF﹣EF.即DF=CE.22.(6分)解:(1)若商店经营该商品不降价,则一天可获利润100×(100﹣80)=2000(元).(2)设后来该商品每件降价x元,依题意,得(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0.解得x 1=2,x 2=8.当x =2时,售价为100﹣2=98(元), 当x =8时,售价为100﹣8=92(元).故商店经营该商品一天要获利润2160元时,每件商品应售价应为98元或92元 23.(10分)在Rt △ABC 中,AB =23,∠BAC =30°,∴BC =3,AC =3. (1)如图(1),作DF ⊥AC , ∵Rt △ACD 中,AD =CD ,∴DF =AF =CF =23. ∵BP 平分∠ABC ,∴∠PBC =30°, ∴CP =1,PF =21, ∴DP =22DF PF +=210.(2)当P 点位置如图(2)所示时, 根据(1)中结论,DF =23,∠ADF =45°,又PD =BC =3, ∴PDDF =23, ∴∠PDF =30°.∴∠PDA =∠ADF -∠PDF =15°.当P 点位置如图(3)所示时,同(2)可得∠PDF =30°. ∴∠PDA =∠ADF +∠PDF =75°.(3)∵BC ⊥AC∴只有当DP ⊥AC 时,以D ,P ,B ,Q 为顶点的四边形为平行四边形 如图,在□DPBQ 中,BC ∥DP ,∵∠ACB =90°,∴DP ⊥AC . 根据(1)中结论可知,DP =CP =23, ∴S □DPBQ =CP DP ⋅=49.。

浙教版数学八年级下学期《期中考试试题》含答案

浙教版数学八年级下学期《期中考试试题》含答案

浙 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是( )A =B 1=C .3+=D 2= 2.居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则用电量的中位数是( )A .41度B .42度C .45度D .46度 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 4.已知关于x 的一元二次方程()22210x m x m --+=有实数根,则m 的取值范围是( )A .0m ≠B .14m ≥C .14m ≤D .14m >5.若22440a b b -++++=,则 abc =( ) A .4 B .2C .− 2D .1 6.如图所示,在平行四边形ABCD 中,已知AD=5cm,AB=3cm,AE 平分∠BAD 交BC 边于点E,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm 7.如图,在长20米,宽12米的矩形ABCD 空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x 米,根据题意列方程,正确的是( )A .32x +2x 2=40B .x (32+4x )=40C .64x +4x 2=40D .64x ﹣4x 2=408.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:∠AE CE >;∠ABC S AB AC =⋅;∠ABE AOE S S =;∠14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个9.已知m 、n 是正整数,,则满足条件的有序数对(m,n)为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是 10.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .B .C .6D .12二、填空题(本大题共7小题,每小题3分,共21分)11.某组数据的方差计算公式为()()()222212812282S x x x ⎡⎤=---+++⎣⎦,则该组数据的样本容量是_____,该组数据的平均数是________.12.若x 满足|2017-x|+ =x, 则x -20172=________13.如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.14.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______. 15.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.16.已知y +18,_____.17.如图,在平行四边形ABCD 中,AB ,点E 为AD 的中点,连接BE 、CE,且BE =BC,过点C 作CF∠BE,垂足为点F,若BF =2EF,则BC 的长=________.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)18.解方程(1)(1)(2)1x x x +-=+ 24x -=19.若a 2+b 2=c 2,则我们把形如ax 2=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a =3,b =4时,写出相应的“勾系一元二次方程”;(2)求证:关于x 的“勾系一元二次方程”ax 2=0(a≠0)必有实数根.20.计算:|(2)3+-21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图∠中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?22.2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.(1)利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的14,求每年至少有多少吨“留香瓜”卖给了水果商贩?(2)利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?23.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t(秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列计算中正确的是( )A=B1=C.3+=D=[答案]D[分析]直接利用二次根式的加减运算法则分别计算得出答案.[详解]解:A无法合并,故此选项错误;B无法合并,故此选项错误;C、3无法合并,故此选项错误;D=故此选项正确;故选D.[点睛]此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.2.居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则用电量的中位数是( )A.41度B.42度C.45度D.46度[答案]C[分析]将用电量从小到大排列,再根据中位数的定义计算.解:将用电量从小到大排列为:42,42,42,42,42,42,45,45,45,50,50,50,50,50,共有3+5+6=14户,则中位数为:(45+45)÷2=45度,故选C .[点睛]本题考查了中位数,解题的关键是掌握中位数的求法.3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .[答案]A[分析]根据轴对称图形和中心对称图形的定义进行判断即可;[详解]A 、既是轴对称图形又是中心对称图形,符合题意;B 、既不是轴对称图形也不是中心对称图形,不符合题意;C 、是轴对称图形但不是中心对称图形,不符合题意;D 、不是轴对称图形是中心对称图形,不符合题意;故选:A .[点睛]本题考查了轴对称图形和中心对称图形的定义,熟练掌握轴对称图形和中心对称图形的定义是解题的关键;4.已知关于x 的一元二次方程()22210x m x m --+=有实数根,则m 的取值范围是A .0m ≠B .14m ≥C .14m ≤D .14m > [答案]C[分析]由方程有实数根即△=b 2﹣4ac≥0,从而得出关于m 的不等式,解不等式即可得答案.[详解]△关于x 的一元二次方程()22210x m x m --+=有实数根, △△=b 2﹣4ac≥0,即[-(2m -1)]2-4m 2≥0,解得:m≤14, [点睛]本题主要考查根的判别式,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2﹣4ac,当△>0时,方程有两个不相等得实数根;当△=0时,方程有两个相等得实数根;当△<0时,方程没有实数根;熟练掌握一元二次方程的根与判别式间的关系是解题的关键.5.若22440a b b -++++=,则 abc =( ) A .4B .2C .− 2D .1 [答案]C[分析] 先根据绝对值,完全平方式以及二次根式的非负性,求出a,b,c 的值,进而即可求解.[详解]△2|2|44a b b -+++△2|2|(2)0a b -+++=,△|2|a -=0,2(2)b +0=, 即: a=2,b=-2,c=12, △abc =2×(-2)×12=-2. 故选C .[点睛] 本题主要考查绝对值,完全平方式以及二次根式的非负性,根据非负性,求出a,b,c 的值,是解题的关键.6.如图所示,在平行四边形ABCD 中,已知AD=5cm,AB=3cm,AE 平分∠BAD 交BC 边于点E,则EC 等于( )A .2 cmB .3 cmC .4 cmD .5 cm[答案]A[分析] 根据在□ABCD 中,AE 平分△BAD,得到△BAE=△AEB,即AB=BE,即可求出EC 的长度.[详解]△在□ABCD 中,AE 平分△BAD,△△DAE=△BAE,△DAE=△AEB,△△BAE=△AEB,△AB=BE,△AD=5cm,AB=3cm,△BE=3cm,BC=5cm,△EC=5-3=2cm,故选:A.[点睛]本题是对平行四边形知识的考查,熟练掌握平行四边形性质及角平分线知识是解决本题的关键.7.如图,在长20米,宽12米的矩形ABCD空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x米,根据题意列方程,正确的是()A.32x+2x2=40B.x(32+4x)=40C.64x+4x2=40D.64x﹣4x2=40[答案]B[分析]设小路的宽度为x米,则小正方形的边长为2x米,根据小路的横向总长度(20+2x)米和纵向总长度(12+2x)米,根据矩形的面积公式可得到方程.[详解]解:设道路宽为x米,则中间正方形的边长为2x米,依题意,得:x(20+2x+12+2x)=40,即x(32+4x)=40,故选:B.[点睛]考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.8.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:∠AE CE >;∠ABC S AB AC =⋅;∠ABE AOE S S =;∠14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个[答案]B[分析] 利用平行四边形的性质可得60ABC ADC ∠=∠=︒,120BAD ∠=︒,利用角平分线的性质证明ABE ∆是等边三角形,然后推出12AE BE BC ==,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.[详解] 解:四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BAD ∠=︒,AE ∵平分BAD ∠,60BAE EAD ∴∠=∠=︒ABE ∴∆是等边三角形,AE AB BE ∴==,60AEB ∠=︒, 12AB BC =,12AE BE BC ∴==, AE CE ∴=,故△错误;可得30EAC ACE ∠=∠=︒90BAC ∴∠=︒,ABCD S AB AC ∴=⋅,故△正确;BE EC =,E ∴为BC 中点,ABE ACE S S ∆∆∴=,AO CO =,1122AOE EOC AEC ABE S S S S ∆∆∆∆∴===, 2ABE AOE S S ∆∆∴=;故△不正确;四边形ABCD 是平行四边形,AC CO ∴=,AE CE =,EO AC ∴⊥,30∠=︒ACE ,12EO EC ∴=, 12EC AB =, 1144OE BC AD ∴==,故△正确; 故正确的个数为2个,故选:B .[点睛]此题主要考查了平行四边形的性质,以及等边三角形的判定与性质.注意证得ABE ∆是等边三角形是关键.9.已知m 、n 是正整数,,则满足条件的有序数对(m,n)为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是 [答案]C[分析] 根据二次根式的性质分析即可得出答案.[详解]解:,m 、n 是正整数, △m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C .[点睛]本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A.B .C .6 D .12[答案]A[分析] 设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得AB =从而可得CD =,最后利用平行四边形的面积公式即可得.[详解]设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=, 909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,2,BG AG AB ∴====CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=,故选:A .[点睛]本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.二、填空题(本大题共7小题,每小题3分,共21分)11.某组数据的方差计算公式为()()()222212812282S x x x ⎡⎤=---+++⎣⎦,则该组数据的样本容量是_____,该组数据的平均数是________.[答案]8 2[分析] 样本方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解.[详解] 解:由于22221281[(2)(2)(2)]8S x x x =-+-+⋯+-,所以该组数据的样本容量是8,该组数据的平均数是2.故答案为:8,2.[点睛]本题考查了方差,样本容量,平均数,熟练记住公式:2222121[()()()]n S x x x x x x n=-+-+⋯+-中各个字母所代表的含义.12.若x 满足|2017-x|+ =x, 则x -20172=________[答案]2018[分析]根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题. [详解]解:由条件知,x -2018≥0, 所以x≥2018,|2017-x|=x -2017.所以x -2017+ =x,即 =2017,所以x -2018=20172 ,所以x -20172=2018,故答案为:2018.[点睛]本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.13.如图,四边形ABCD 中,AC BC ⊥,AD //BC ,若AB a ,2AD BC b ==,M 为BD 的中点,则CM 的长为_______.[答案]12a [分析]延长BC ,使BE AD =,根据题意先证明四边形ABED 是平行四边形,可解得111222BC AD BE b ===,继而得到C 是BE 的中点,再结合中位线的性质解题即可.解:延长BC ,使BE AD =,//AD BC∴四边形ABED 是平行四边形,△DE=AB,,2AB a AD BC b ===111222BC AD BE b ∴=== C ∴是BE 的中点, M 为BD 的中点,111222CM DE AB a ∴=== 12CM a ∴= 故答案为:12a . [点睛]本题考查平行四边形的判定与性质、中位线的性质等知识,是重要考点,难度较易,掌握相关知识、作出正确的辅助线是解题关键.14.设a ,b 分别是方程220220x x +-=的两个实数根,则22a a b ++的值是______.[答案]2021根据题意得a 2+a -2022=0,即a 2+a=2022,利用根与系数的关系得到a+b=-1,代入整理后的代数式求值.[详解]解:a,b 分别是方程x 2+x -2022=0的两个实数根,△a+b=-1,a 2+a -2022=0,△a 2+a=2022,故a 2+2a+b=a 2+a+(a+b)=2022-1=2021,故答案为:2021.[点睛]本题主要考查了一元二次方程的根,根与系数的关系,一元二次方程20ax bx c ++=(0a ≠) 的根与系数的关系为12b x x a +=-,12c x x a=. 15.等腰三角形一边长是3,另两边长是关于x 的方程240x x k -+=的两个根,则k 的值为_______.[答案]3或4.[分析]分等腰三角形的腰长为3和底边为3两种情形求解即可.[详解]当等腰三角形的腰长为3时,则另一边长为3,△另两边长是关于x 的方程240x x k -+=的两个根,△x=3是方程240x x k -+=的根,△23430k -⨯+=,△2430x x -+=,△x=3或x=1,△等腰三角形的三边为3,3,1,存在,当等腰三角形的底边为3时,则两腰为方程的根,△另两边长是关于x 的方程240x x k -+=的两个根,△2(4)40k --=,△k=4,△2440x x -+=,△122x x ==,△等腰三角形的三边为2,2,3,存在,综上所述,k=3或k=4,故答案为:3或4.[点睛]本题考查了一元二次方程的根与等腰三角形的边长之间的关系,灵活运用分类思想,根的定义,根的判别式是解题的关键.16.已知y +18,_____.[答案][分析]首先由二次根式有意义的条件求得x =8,则y =18,然后代入化简后的代数式求值.[详解]解:由题意得,x﹣8≥0,8﹣x≥0,解得,x=8,则y=18,△x>0,y>0,△把x=8, y=18代入=﹣=故答案为:[点睛]本题考查了二次根式有意义的条件和二次根式的化简求值,解题关键是根据二次根式有意义的条件确定x、y的值,能够熟练的运用二次根式的性质化简.17.如图,在平行四边形ABCD中,AB,点E为AD的中点,连接BE、CE,且BE=BC,过点C作CF∠BE,垂足为点F,若BF=2EF,则BC的长=________.[答案][分析]过点C 作CG AD ⊥于点G,由平行四边形的性质可得://AD BC ,AB =,AD=BC,由平行线性质可得:BCE DEC ∠=∠,由BE =BC 可得:BCE BEC ∠=∠,进而可得=BEC DEC ∠∠,用AAS 可证EFC EGC ≅,可得EF=EG,FC=GC,由BF =2EF 可设EF=x ,则BF=2x ,BC=BE=3x ,在Rt BFC △中,由勾股定理可求FC 的长度,故可得CG 和DG 的长度, 在Rt CDG 中,由勾股定理可列方程解出x 即可求出.[详解]如图所示,过点C 作CG AD ⊥于点G,△四边形ABCD 为平行四边形,△//AD BC ,AB =△BCE DEC ∠=∠,△BE =BC,△BCE BEC ∠=∠,△=BEC DEC ∠∠,又△90EFC EGC ∠=∠=︒,EC=EC,△EFC EGC ≅,△EF=EG,FC=GC,△BF =2EF,△设EF=x ,则BF=2x ,BC=BE=3x ,在Rt BFC △中,FC ==,,EG=EF=x ,△E 为AD 中点, △ED= 12BC= 32x , △DG= 3122x x x -=,在Rt CDG 中,DG=12x ,△)22212x ⎛⎫+= ⎪⎝⎭,解得:3x =,△BC=3x =故答案为:[点睛]本题主要考查了全等三角形的判定与性质,勾股定理,平行四边形的性质,根据已知条件作出适当的辅助线构造直角三角形是解题的关键.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.解方程(1)(1)(2)1x x x +-=+ 24x -=[答案](1)11x =-,23x =;(2)1x =,2x =[分析](1)先将方程化为一般式,再利用因式分解法解题;(2)先将方程化为一般式,再利用配方法解题.[详解]解:(1)(1)(2)1x x x +-=+整理得,2230x x --=(3)(+1)=0x x -121,3x x ∴=-=;24x -=240x --=240x ∴--=2(60x ∴-=2(6x ∴-=x ∴=12x x ∴==[点睛]本题考查解一元二次方程,涉及因式分解法、配方法等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.若a 2+b 2=c 2,则我们把形如ax 2=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a =3,b =4时,写出相应的“勾系一元二次方程”;(2)求证:关于x 的“勾系一元二次方程”ax 2=0(a≠0)必有实数根.[答案](1)3x2x+4=0;(2)见解析[分析](1)由a=3,b=4,由a2+b2=c2求出c=±5,从而得出答案;(2)只要根据一元二次方程根的判别式证明△≥0即可解决问题.[详解](1)解:由a2+b2=c2可得:当a=3,b=4时,c=±5,相应的勾系一元二次方程为3x2x+4=0;(2)证明:根据题意,得△=2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0△△≥0,△勾系一元二次方程ax2=0(a≠0)必有实数根.[点睛]本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.20.计算:|(2)3+-[答案]3;(2)-[分析](1)分别化简各项,再作加减法;(2)利用完全平方公式和平方差公式展开,再作加减法.[详解]解:+=452+3;(2)3+-=2338+--=-[点睛]本题考查了二次根式的混合运算,解题的关键是掌握运算法则.21.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图∠中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?[答案](1)28,(2)1.5元,1.8元;(3)960[分析](1)根据扇形统计图中的数据,可以计算出m%的值,从而可以得到m的值;(2)根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为1.8元的约多少枚.[详解]解:(1)m%=1﹣10%﹣22%﹣32%﹣8%=28%,即m的值是28,故答案为:28;(2)本次调查了5+11+14+16+4=50枚,中位数是:1.5元,众数是1.8元;故答案为:1.5元,1.8元;(3)3000×32%=960(枚),答:价格为1.8元的约960枚.故答案为:960.[点睛]本题考查条形统计图、扇形统计图、中位数、平均数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.(1)利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的14,求每年至少有多少吨“留香瓜”卖给了水果商贩? (2)利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?[答案](1)500吨;(2)300吨[分析](1)设利用网络平台进行销售前,每年有x 吨“留香瓜”卖给了水果商贩,根据题意列不等式即可求解;(2)设每年在网络平台上销售了m 吨“留香瓜”,根据题意列方程即可求解.[详解]解:(1)设利用网络平台进行销售前,每年有x 吨“留香瓜”卖给了水果商贩.由题意,得1101000(600)810004x x ⨯-≤⨯⨯ 解之得:x 500≥答:利用电商平台进行销售前,每年至少有500吨“留香瓜”卖给了水果商贩.(2)本地自产自销“留香瓜”的销量按(1)问中的最大值为:600-500=100(吨)设每年在网络平台上销售了m 吨“留香瓜”.则101000100201000m ⨯⨯+⨯+81000(500)9200000100m m ⎫⎛+⨯-= ⎪⎝⎭解得11400m =(舍去),2300m =,答:每年在网络平台上销售了300吨“留香瓜”.[点睛]本题考查了一元一次不等式的应用,一元二次方程的应用,解题关键是理清题目中的数量关系,列出方程或不等式.23.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P,Q 分别从点B,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t(秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C,D,Q,P 为顶点的四边形面积为260cm ,求相应的t 的值.[答案](1)t=5;(2)t=9;(3)t=15[分析](1)由平行四边形的性质得出DQ=CP,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由题意得出方程,解方程即可;(2)当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由梯形面积公式得出方程,解方程即可;(3)当10.5≤t <16时,点P 到达C 点返回,由梯形面积公式得出方程,解方程即可.[详解]解:(1)△四边形PQDC 是平行四边形,△DQ=CP,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,如图1所示:△DQ=AD-AQ=16-t,CP=21-2t△16-t=21-2t解得:t=5;即当t=5秒时,四边形PQDC是平行四边形;(2)当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:CP=21-2t,DQ=16-t,若以C,D,Q,P为顶点的四边形面积为60cm2,则12(DQ+CP)×AB=60,即12(16-t+21-2t)×12=60,解得:t=9;即当0<t<10.5时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为9秒;(3)当10.5≤t<16时,如图2所示,点P到达C点返回,CP=2t-21,DQ=16-t,则同(2)得:12(DQ+CP)×AB=60,即12(16-t+2t-21)×12=60,解得:t=15.即当10.5≤t<16时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为15秒.[点睛]本题是四边形综合题目,考查了直角梯形的性质、平行四边形的判定与性质、梯形的面积等知识,熟练掌握直角梯形的性质和平行四边形的判定与性质是解题的关键.。

2018-2019学年浙教版八年级下册期中考试数学试题及答案

2018-2019学年浙教版八年级下册期中考试数学试题及答案

l 3l 2l 1CBA2018-2019学年八年级第二学期期中数学试题卷一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A . 众数B . 方差C . 平均数D . 中位数 2.用配方法解方程x 2+8x+7=0,则配方正确的是( )A .(x+4)2=9B .(x ﹣4)2=9C .(x ﹣8)2=16D .(x+8)2=57 3.要使式子有意义,则x 的取值范围是( ) A . x >0 B . x ≥﹣2 C . x ≥2 D . x ≤2 4.下列运算正确的是( ) A . 2﹣=1 B . (﹣)2=2 C .=±11 D .==3﹣2=15.如果关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=3,x 2=1,那么这个一元二次方程是( )A . x 2+3x+4=0B . x 2+4x ﹣3=0C . x 2﹣4x+3=0D . x 2+3x ﹣4=0 6.平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF , 则添加的条件不能是( )A .AE =CFB .BE =FDC .BF =DED .∠1=∠2第10题图7用电量(度) 120 140 160 180 200户数 2 3 6 7 2则这20户家庭该月用电量的众数和中位数分别是( )A .180,160B .160,180C .160,160D .180,1808. 在▱ABCD 中,∠ACB=25°,现将▱ABCD 沿EF 折叠,使点C 与点A 重合,点D 落在G 处,则∠GFE 的度数( )A.135°B.120°C.115°D.100° 9.关于x 的方程x 2+2kx+k ﹣1=0的根的情况描述正确的是( ) A . k 为任何实数,方程都没有实数根B . k 为任何实数,方程都有两个不相等的实数根C . k 为任何实数,方程都有两个相等的实数根D . 根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【来源10、如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2, l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是 ( ) A .172 B .52 C .24 D .7二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。

浙教版数学八年级下学期《期中检测卷》及答案

浙教版数学八年级下学期《期中检测卷》及答案
A.①②③B.①②④C.②③④D.①②③④
10.如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB= ,AC=2,BD=4,则AE的长为()
A B. C. D.
二、仔细填一填(每小题4分,共24分)
11.化简:① =_______,② =________.
12.已知关于x的一元二次方程x2+(a-1)x+a=0有一个根是﹣2,则a的值为________.
A. 平均数B. 众数C. 方差D. 中位数
6.若一组数据x1+1,x2+1,…,xn+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,xn+2的平均数和方差分别为()
A.17,2B.18,2C.17,3D.18,3
7.若正数 是一元二次方程 一个根, 是一元二次方程 的一个根,则 的值是()
A.17,2B.18,2C.17,3D.18,3
[答案]B
[解析]
[分析]
根据平均数的变化规律可得出数据x1+2,x2+2,…,xn+2的平均数是18;根据方差变化规律可知x1+2,x2+2,…,xn+2的方差是2.
[详解]∵x1+1,x2+1,…,xn+1的平均数为17,方差为2,
∴x1+2,x2+2,…,xn+2的平均数和方差分别为18,2.
1.下列手机软件图标中,属于中心对称的是()
A. B. C. D.
[答案]C
[解析]
[分析]
根据中心对称图形的定义逐项识别即可,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.

浙江省绍兴市八年级下学期期中数学试卷

浙江省绍兴市八年级下学期期中数学试卷

浙江省绍兴市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列二次根式,最简二次根式是()A .B .C .D .2. (2分)下列各组数中,互为相反数的一组是()A . -2与B . -2与C . -2与D . 与3. (2分)估计(2 -)· 的值应在()A . 1和2之间B . 2和3之间C . 3和4之间D . 4和5之间4. (2分)下列线段不能构成直角三角形的是()A . 3,4,5B . 2,,3C . 4,5,7D . 1,,5. (2分) (2020七上·庆云月考) 代数式的最小值是()A . 0B . 2C . 3D . 56. (2分) (2020七上·宣城月考) 设a是有理数,则的值()A . 不可能是负数B . 是负数C . 是正数D . 可能是负数或正数7. (2分) (2017·长春模拟) 如图,AB∥CD,AD=CD,∠2=40°,则∠1的度数是()A . 80°B . 75°C . 70°D . 65°8. (2分)(2017·新泰模拟) 如图,▱ABCD的顶点A,B,D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A . 36°B . 46°C . 27°D . 63°9. (2分)下列命题正确的是()A . 一组对边平行且相等的四边形是平行四边形B . 有一个角是直角的四边形是矩形C . 对角线互相垂直的四边形是菱形D . 邻边相等的四边形是正方形10. (2分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如右图那样折叠,使点A与点B重合,则折痕BE的长是()A .B .C .D .11. (2分)(2020·石屏模拟) 如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1 ,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是()A .B .C .D .12. (2分)如图,圆柱底面直径AB、母线BC均为4cm,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离()A . cmB . cmC . cmD . cm二、填空题 (共6题;共6分)13. (1分) (2020八上·雅安期中) 若 + =0, 则 =________.14. (1分)如果是二次根式,那么a、b应满足________.15. (1分)若分别是的整数部分与小数部分,则的值为________.16. (1分)(2018·安徽模拟) 在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,过C点作CE⊥BD于E,延长AF,EC 交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.其中一定成立的是________.(把所有正确结论的序号都填在横线上)17. (1分) (2019八下·浏阳期中) 若矩形的对角线长为2cm,两条对角线相交所成的一个夹角为60°,则该矩形的面积为________ .18. (1分) (2019八下·任城期末) 《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为________.三、解答题 (共7题;共47分)19. (10分) (2015八下·江东期中) 计算(1) + ﹣(2)(3+ )(3﹣)+(1+ )2 .20. (5分) (2017八下·东莞期中) 计算:21. (6分)(2019·白山模拟) 如图,在△ABC中,P为平面内一点,连结PA,PB,PC,分别以PC和AC为一边向右作等边三角形△PCM和△ACD.(1)【探究】求证:PM=PC,MD=PA(2)【应用】若BC=a,AC=b,∠ACB=60°,则PA+PB+PC的最小值是________(用a,b表示)22. (5分) (2017九上·云阳期中) 如图,点D、A、C在同一直线上,AB∥CE,AB=CD,∠B=∠D,求证:BC=DE.23. (5分) (2016八上·罗田期中) 如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.24. (6分) (2016八上·扬州期末) 如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为________cm2 .25. (10分)(2020·吉林模拟) 在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC,(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共7题;共47分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:。

浙江省绍兴市八年级下学期数学期中考试试卷

浙江省绍兴市八年级下学期数学期中考试试卷

浙江省绍兴市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是()A . a2b2B . ab﹣πa2C . ab-b2D . ab-a22. (2分) (2019八上·嘉荫期末) 下列说法正确的是()A . 圆有无数条对称轴,对称轴是直径所在的直线B . 正方形有两条对称轴C . 两个图形全等,那么这两个图形必成轴对称D . 等腰三角形的对称轴是高所在的直线3. (2分)如图,把△ABC沿直线BC方向平移到△DEF,则下列结论错误的是()A . ∠A=∠DB . BE=CFC . AC=DED . AB∥DE4. (2分) (2017八下·邵阳期末) 若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是()A . x>1B . x>2C . x<1D . x<25. (2分)(2019·南通) 如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为()A .B .C .D .6. (2分)某地为了发展旅游业,要在三条公路围成的一块平地上修建一个度假村,使度假村到三条公路的距离相等,这个度假村的选址地点共有()处.A . 1B . 2C . 3D . 47. (2分) (2016八上·富顺期中) 如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B的度数是()A . 45°B . 60°C . 50°D . 55°8. (2分) (2018九上·云南期末) 某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A . 48°B . 40°C . 30°D . 24°二、填空题 (共8题;共9分)9. (2分) (2018八上·四平期末) 如图,中, ,分别是上动点,且,当AP=________时,才能使和全等.10. (1分) (2020八上·温州期末) 若m>n,则m-n________0(填“>”或“=”或“<”)。

2018-2019学年度第二学期八年级数学期中考试题及参考答案

2018-2019学年度第二学期八年级数学期中考试题及参考答案

学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------2018-2019学年度第二学期期中考试题(卷)八 年 级 数 学(时间:120分钟 满分:100分)一.选择题(共10小题,每小题3分,共30分) 1.下列运算中正确的是( ) A .=﹣2B .﹣24×=2 C .(﹣2)2×(﹣3)2=36 D .=±42.要使式子有意义,则x 的取值范围是( )A .x >﹣2B .x >2C .x ≤2D .x <23.下列根式中是最简二次根式的是( ) A .2B .C .D .4.下列各组数中不能作为直角三角形的三条边的是( ) A .6,8,10B .9,12,15C .1.5,2,3D .7,24,255.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动( ) A .0mB .1mC .2mD .3m6.如图,在直角△ABC 中,∠C =90°,AC =3,AB =4,则点C 到斜边AB 的距离是( ) A .B .C .5D7.如图,在ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cmB .2 cmC .3 cmD .4 cm8.在Rt △ABC 中,斜边上的中线CD =2.5cm ,则斜边AB 的长是( ) A .2.5cmB .5cmC .7.5cmD .10cm9.如图,在ABCD 中,AB ⊥AC ,若AB =4,AC =6,则BD 的长是( ) A .8B .9C .10D .1110.如图,在菱形ABCD 中,∠BAD =120°,点A 坐标是(﹣2,0),则点B 坐标为( ) A .(0,2) B .(0,)C .(0,1)D .(0,2)二.填空题(共10小题,每小题3分,共30分)11.实数a 在数轴上对应的点的位置如图所示,则化简|a ﹣2|﹣= .12.如果最简二次根式与2是同类二次根式,那么a = .13.若ABC 的三边分别是a 、b 、c ,且a 、b 、c 满足a 2+c 2=b 2,则∠ =90°. 14.ABCD 中,∠A +∠C =220°,则∠A = .15.若点A (3,m )在直角坐标系的x 轴上,则点B (m ﹣1,m +2)到原点O 的距离为 . 16.已知菱形的面积为24cm 2,一条对角线长为6cm ,则这个菱形的边长是 厘米. 17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =12,则AB = .18.三角形各边分别是3cm 、5cm 、6cm ,则连接各边中点所围成的三角形的周长是 cm .19.如图,在△ABC 中,∠ACB 为直角,∠A =30°,CD ⊥AB 于点D ,CE 是AB 边上的中线,若BD =2,则CE = .20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知△BOC 与△AOB 的周长之差为3,平行四边形ABCD 的周长为26,则BC 的长度为 .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------三.解答题(共6小题,共40分) 21.(4分)已知a =+2,b =2﹣,求下列各式的值:(1)a 2+2ab +b 2; (2)a 2﹣b 2.22.(5分)如图所示,在四边形ABCD 中,AB =2,AD =,BC =2,∠CAD =30°,∠D =90°,求∠ACB的度数?23.(5分)已知:如图,在ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .猜测DE 和BF 的位置关系和数量关系,并加以证明.24.(8分)如图,在ABCD 中,AD >AB ,AE 平分∠BAD ,交BC 于点E ,过点E 作EF ∥AB 交AD 于点F . (1)求证:四边形ABEF 是菱形;(2)若菱形ABEF 的周长为16,∠EBA =120°,求AE 的大小.25.(8分)如图,已知四边形ABCD 是平行四边形,△AOB 是等边三角形.(1)求证:四边形ABCD 是矩形.(2)若AB =5cm ,求四边形ABCD 的面积.26.(10分)如图1,已知四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,(1)若取AB 的中点M ,可证AE=EF ,请写出证明过程.(2)如图2,若点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,那么结论“AE=EF ”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------2018-2019学年度第二学期八年级数学期中考试题参考答案一、选择题(共10小题)C C A C BD B B C D 二、填空题(共8小题)11、 -2a+3 12、 2 13、 B 14、 110° . 1516、 5 17、6 18、7 19、 4 20、 8 三.解答题(共10小题) 21.∵a =+2,b =2﹣,∴a +b =4,a ﹣b =2,(1)a 2+2ab +b 2=(a +b )2=42=16;(2)a 2﹣b 2=(a +b )(a ﹣b )=4×2=8.22、∵在直角△ACD 中,AD =,∠CAD =30°,∠D =90°,∴由勾股定理得AC =2, ∵AB =2,BC =2,∴AC 2+BC 2=4+4=8=(2)2=AB 2,∴∠ACB =90°.23、解:DE ∥BF DE =BF理由如下:∵四边形ABCD 是平行四边形 ∴AD =BC ,AD ∥BC∴∠DAC =∠ACB ,且AE =CF ,AD =BC ∴△ADE ≌△CBF (SAS ) ∴DE =BF ,∠AED =∠BFC ∴∠DEC =∠AFB ∴DE ∥BF24、(1)证明:∵▱ABCD∴BC ∥AD ,即 BE ∥AF ∵EF ∥AB∴四边形ABEF 为平行四边形∵AE 平分∠BAF ∴∠EAB =∠EAF ∵BC ∥AD ∴∠BEA =∠EAF ∴∠BEA =∠BAE ∴AB =BE∴四边形ABEF 是菱形(2)解:连接BF 交AE 于点O ;则BF ⊥AE 于点O∵BA =BE ,∠EBA =120°∴∠BEA =∠BAE =30° ∵菱形ABEF 的周长为16 ∴AB =4在Rt △ABO 中∠BAO =30° ∴由勾股定理可得:AO =∴AE =25、解:(1)平行四边形ABCD 是矩形.理由如下:∵四边形ABCD 是平行四边形(已知),学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线----------------------------------------------- ∴AO =CO ,BO =DO (平行四边形的对角线互相平分), ∵△AOB 是等边三角形(已知), ∴OA =OB =OC =OD (等量代换), ∴AC =BD (等量代换),∴平行四边形ABCD 是矩形(对角线相等的平行四边形是矩形);(2)因为AB =5,在Rt △ABC 中,由题意可知,AC =10,则BC ==5,所以平行四边形ABCD 的面积S =5×5=25(cm 2)26、解:(1)∵四边形ABCD 是正方形 ∴AB=BC ,∠B=∠BCD=∠DCG=90°, ∵取AB 的中点M ,点E 是边BC 的中点, ∴AM=EC=BE , ∴∠BME=∠BEM=45°, ∴∠AME=135°, ∵CF 平分∠DCG , ∴∠DCF=∠FCG=45°, ∴∠ECF=180°-∠FCG=135°, ∴∠AME=∠ECF , ∵∠AEF=90°, ∴∠AEB+∠CEF=90°, 又∠AEB+∠MAE=90°, ∴∠MAE=∠CEF ,即∴△AME ≌△ECF (ASA ),∴AE=EF ,(2)AE=EF 仍然成立,理由如下:在BA 延长线上截取AP=CE ,连接PE ,则BP=BE , ∵∠B=90°,BP=BE , ∴∠P=45°, 又∠FCE=45°, ∴∠P=∠FCE ,∵∠PAE=90°+∠DAE ,∠CEF=90°+∠BEA , ∵AD ∥CB , ∴∠DAE=∠BEA , ∴∠PAE=∠CEF , ∴△APE ≌△ECF , ∴AE=EF .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------。

浙江省绍兴市八年级(下)期中数学试卷

浙江省绍兴市八年级(下)期中数学试卷

八年级(下)期中数学试卷一、选择题(本大题共10小题,共20.0分)1.如图图形中是中心对称图形的是()A. B. C. D.2.下列运算正确的是()A. 2-=1B. (-)2=2C. =±11D. ==3-2=13.二次根式有意义时,x的取值范围是()A. x≤B. x<C. x>D. x≥4.下列方程是一元二次方程的有()A. x(2x+1)=2x(x-3)-2B. x2+y=3C. ax2+bx+c=0D. x2=05.下列条件不能判定四边形ABCD是平行四边形的是()A. AB∥CD,AD∥BCB. ∠A=∠C,∠B=∠DC. AB=CD,AD=BCD. AB∥CD,AD=BC6.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠BAE等于()A. 50°B. 25°C. 30°D. 20°7.如图在▱ABCD中,BC=8cm,CD=6cm,∠D=40°,BE平分∠ABC,下列结论错误的是()A. ∠BED=150°B. ∠C=140°C. AE=6cmD. ED=2cm8.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中()A. 每一个内角都大于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 有一个内角小于60°9.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A. 10.8(1+x)=16.8B. 16.8(1-x)=10.8C. 10.8(1+x)2=16.8D. 10.8[(1+x)+(1+x)2]=16.810.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A. 5B. 10C. 10D. 15二、填空题(本大题共10小题,共30.0分)11.数据1,2,8,5,3,9,5,4,5,4的众数是______;中位数是______.12.已知一个多边形的内角和是2340°,则这个多边形的边数是______.13.已知点P(6,3)关于原点的对称P1点的坐标是______.14.若y=++2,则x+y=______.15.若关于x的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为______.16.方程x2+2|x|-1=0的根为______.17.四边形ABCD中,AC⊥BD,顺次连接它的各边中点所得的四边形是______.18.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为______cm.19.已知在直角坐标系中有A、B、C、D四个点,其中A,B,C三个点的坐标分别为(0,2),(-1,0),(2,0),则当点D的坐标为______时,以A、B、C、D 四个点为顶点的四边形是平行四边形.20.下列给出四个命题:①直角三角形的两边是方程y2-7y+12=0的两根,则它的第三边是5;②若一元二次方程ax2+bx+c=0(a≠0)的系数a,c异号,则该方程有两个不相等的实数根;③若一元二次方程(m-2)x2+x+m2-4=0有一个根为0,那么m=±2;④已知一元二次方程ax2+bx+c=0(a≠0)中a,b,c满足a-b+c=0,4a+2b+c=0则方程的两根为x1=-1,x2=2;其中真命题的是______(填序号).三、计算题(本大题共1小题,共6.0分)21.计算下列各式:(1)(-)÷(2)3-(+)四、解答题(本大题共6小题,共44.0分)22.解下列方程:(1)x2+3=3(x+1)(2)-3x2-5x+2=023.在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.24.如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF,EF、BD相交于点O,求证:OE=OF.25.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.26.学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.27.问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD.(S表示面积)实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S =S矩形ABCD+S.四边形EFGH如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S、S.之间的数量关系,并说明理由.矩形ABCD迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=,求EG的长.答案和解析1.【答案】A【解析】解:A、如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,故A符合题意;故选:A.根据中心对称图形的概念求解.本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】B【解析】解:A、原式=,所以A选项错误;B、原式=2,所以B选项正确;C、原式=|-11|=11,所以C选项错误;D、原式==,所以D选项错误.故选:B.根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C、D进行判断.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.3.【答案】D【解析】解:根据题意得:2x-3≥0,解得:x≥.故选:D.根据二次根式的性质,被开方数大于等于0,即可得2x-3≥0,解不等式可求x的取值范围.主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.【答案】D【解析】解:A、由已知方程得到:7x+2=0,属于一元一次方程,故本选项错误;B、该方程中含有2个未知数,不是一元二次方程,故本选项错误;C、该方程中,当a=0时,它不是一元二次方程,故本选项错误;D、该方程符合一元二次方程的定义,故本选项正确;故选:D.根据一元二次方程的定义进行判断.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.5.【答案】D【解析】解:A、根据两组对边分别平行,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;B、根据两组对角分别相等的四边形是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;C、根据两组对边分别相等,是平行四边形可判定四边形ABCD是平行四边形,故此选项不合题意;D、不能判定判定四边形ABCD是平行四边形,故此选项符合题意;故选:D.根据平行四边形的5种判定方法分别进行分析即可.本题考查了平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)两组对角分别相等的四边形是平行四边形.(4)一组对边平行且相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6.【答案】A【解析】解:∵DB=DC,∴∠C=∠DBC=70°,∴∠CDB=180°-140°=40°,∵CD∥AB,∴∠ABE=∠CDB=40°,∴AE⊥BD,∴∠AEB=90°,∴∠BAE=90°-40°=50°.故选:A.在Rt△AEB中,想办法求出∠ABE即可解决问题.本题考查平行四边形的性质、等腰三角形的性质.直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.7.【答案】A【解析】解:∵四边形ABCD是平行四边形,∠D=50°,∴AD∥BC,AD=BC=8cm,AB=CD=6cm,∠ABC=∠D=60°,∴∠C=180°-∠D=120°,故B正确;∵BE平分∠ABC,∴∠ABE=∠EBC=∠ABC=30°,∴∠AEB=∠EBC=30°,∴∠BED=180°-∠AEB=150°,故A错误;∴∠AEB=∠ABE,∴AE=AB=6cm,故C正确;AD=BC=8cm,∴ED=AD-AE=2cm,故D正确.故选:A.由▱ABCD中,BC=8cm,CD=6cm,∠D=60°,根据平行四边形的性质,可求得∠C=120°;又由BE平分∠ABC,易求得∠AEB=∠ABE=∠EBC=30°,∠BED=150°,继而可求得AE=AB=CD=6cm,ED=AD-AE=2cm.此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意数形结合思想的应用.8.【答案】A【解析】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.熟记反证法的步骤,然后进行判断即可.此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.【答案】C【解析】【分析】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选C.10.【答案】B【解析】解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G==5,∴C四边形EFGH=2E′G=10.故选:B.作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB=10、GG′=AD=5,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值.本题考查了轴对称中的最短路线问题以及矩形的性质,找出四边形EFGH周长取最小值时点E、F、G之间为位置关系是解题的关键.11.【答案】5 4.5【解析】解:将数据从小到大重新排列后为1,2,3,4,4,5,5,5,8,9;观察数据可知最中间的两个数是4和5,故其中位数即这两个数平均数(4+5)÷2=4.5;出现次数最多的是5,所以众数为5.故填5,4.5.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.本题属于基础题,考查了确定一组数据的中位数和众数的能力.12.【答案】15【解析】解:设所求正n边形边数为n,则(n-2)•180°=2340°,解得n=15.故这个多边形的边数是15.故答案为:15.根据多边形的内角和计算公式作答.本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.【答案】(-6,-3)【解析】解:点P(6,3)关于原点的对称P1点的坐标是(-6,-3).故答案为:(-6,-3).根据关于原点对称点的坐标特点:横纵坐标都是互为相反数关系可得答案.此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.14.【答案】5【解析】解:由y=++2,得x=3,y=2.x+y=5,故答案为:5.根据二次根式的被开方数是非负数,可得x、y的值,根据有理数的加法,可得答案.本题考查了二次根式有意义的条件,二次根式有意义的条件是被开方数是非负数.15.【答案】m<5且m≠1【解析】解:∵关于x的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,∴△>0且m-1≠0,即(-4)2-4(m-1)>0且m≠1,解得m<5且m≠1,故答案为:m<5且m≠1.由一元二次方程根的情况,根据根的判别式可得到关于m的不等式,则可求得m的取值范围.本题主要考查根的判别式,掌握一元二次方程根的个数与根的判别式的关系是解题的关键.16.【答案】x1=-1+,x2=1-【解析】解:(|x)2+2|x|-1=0,△=22-4×1×(-1)=8,|x|==-1±,∴|x|=-1+,∴x1=-1+,x2=1-.故答案为x1=-1+,x2=1-.把原方程看作关于|x|的一元二次方程,利用求根公式解方程|x|=-1+,然后根据绝对值的意义得到x的值.本题考查了解一元二次方程-公式法:用求根公式解一元二次方程的方法是公式法.17.【答案】矩形【解析】解:如图所示:AC⊥BD,点E、F、G、H分别是边AB、BC、CD、DA的中点,∵在△DAC中,根据三角形中位线定理知,HG∥AC且HG=AC,同理,在△ABC中,EF∥AC且EF=AC,∴HG∥EF∥AC,且HG=EF,∴四边形EFGH是平行四边形;同理,HE∥DB;又∵AC⊥BD,∴HE⊥HG,∴▱EFGH是矩形;故答案为:矩形.利用三角形中位线定理可以推知四边形EFGH是平行四边形;然后由三角形中位线定理、已知条件“AC⊥BD”推知HE⊥HG;最后由矩形判定定理“有一内角为直角是平行四边形是矩形”可以证得▱EFGH是矩形.本题考查了三角形中位线定理、矩形的判定定理.三角形的中位线平行于第三边且等于第三边的一半.18.【答案】10【解析】解:∵AC,BD相交于点O∴O为BD的中点∵OE⊥BD∴BE=DE△ABE的周长=AB+AE+BE=AB+AD=×20=10cm△ABE的周长为10cm.故答案为10.要求周长,就要求出三角形的三边,利用垂直平分线的性质即可求出BE=DE,所以△ABE 的周长=AB+AE+BE=AB+AD.本题考查的是平行四边形的性质及线段垂直平分线的性质,解答此题的关键是将三角形的三边长转为平行四边形的一组邻边的长.19.【答案】(3,2)、(-3,2)、(1,-2)【解析】解:如图所示:故答案为:(3,2)、(-3,2)、(1,-2).分别在平面直角坐标系中确定出A、B、C的位置,再根据两组对边分别平行的四边形是平行四边形可确定D的位置.此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.20.【答案】②④【解析】解:①是假命题.直角三角形的两边是方程y2-7y+12=0的两根,则它的第三边是5或;②是真命题.根据△>0即可判断;③是假命题.若一元二次方程(m-2)x2+x+m2-4=0有一个根为0,那么m=-2;④是真命题.故答案为②④根据一元二次方程的性质,勾股定理一一判断即可;本题考查命题与定理,一元二次方程,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:(1)原式=-=-2;(2)原式=3-2-=.【解析】(1)利用二次根式的除法法则运算;(2)先把二次根式化为最简二次根式,然后去括号后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:(1)x2+3=3(x+1),整理得:x2-3x=0,x(x-3)=0,x=0,x-3=0,x1=0,x2=3;(2)-3x2-5x+2=0a=-3,b=-5,c=2,b2-4ac=25-4×(-3)×2=49,∴x==-,∴x1=-2,x2=.【解析】(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,再代入公式求出即可;本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:因式分解法、直接开平方法、公式法、配方法.23.【答案】解:(1)观察表格,可知这组样本数据的平均数是==2,∴这组样本数据的平均数为2,∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;(2)∵在50名学生中,读书多于2册的学生有18名,有300×=108.∴根据样本数据,可以估计该校八年级300名学生在本次活动中读书多于2册的约有108名.【解析】(1)先根据表格提示的数据50名学生读书的册数,然后除以50即可求出平均数,在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;(2)从表格中得知在50名学生中,读书多于2册的学生有18名,所以可以估计该校八年级300名学生在本次活动中读书多于2册的约有300×=108.本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.24.【答案】证明:方法1,连接BE、DF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OF=OE.方法2,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵∠ODE=∠OBF,AE=CF,∴DE=BF,在△DOE和△BOF中,,∴△DOE≌△BOF(AAS),∴OE=OF.【解析】本题考查了平行四边形的判定与性质;通过作辅助线证明四边形BEDF是平行四边形是解决问题的关键.方法1、连接BE、DF,由已知证出四边形BEDF是平行四边形,即可得出结论.方法2、先判断出DE=BF,进而判断出△DOE≌△BOF即可.25.【答案】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【解析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC 可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.26.【答案】解:(1)方案1:长为米,宽为7米.(1分)方案2:长为9米,宽为7米.(2分)方案3:长=宽=8米;(3分)(注:本题方案有无数种,写对一个得(1分),共(3分).用图形示意同样给分.)(2)在长方形花圃周长不变的情况下,长方形花圃面积不能增加2平方米.(4分)由题意得长方形长与宽的和为16米.设长方形花圃的长为x米,则宽为(16-x)米.方法一:x(16-x)=63+2,(5分)x2-16x+65=0,∵△=(-16)2-4×1×65=-4<0,∴此方程无实数根.∴在周长不变的情况下,长方形花圃的面积不能增加2平方米.(7分)方法二:S长方形=x(16-x)=-x2+16x(5分)=-(x-8)2+64.∴在长方形花圃周长不变的情况下,长方形的最大面积为64平方米,因此不能增加2平方米.(7分)【解析】(1)本题根据实际有多种不同的方案.(2)设长方形花圃的长为x米,则宽为16-x.即可列方程,然后根据b2-4ac可知方程有无解.本题考查的是一元二次方程的应用,同时考生要注意考虑实际问题,懂得开放性思考.27.【答案】解:问题呈现:如图1,∵四边形ABCD是矩形,∴AB∥CD,∠A=90°,∵AE=DG,∴四边形AEGD是矩形,∴S△HGE=S矩形AEGD,同理S△EGF=S矩形BEGC,∴S四边形EFGH=S△HGE+S△EFG=S矩形BEGC.实验探究:结论:2S四边形EFGH=S矩形ABCD-S矩形A1B1C1D1.理由:如图3,∵S△EHC1=S矩形AEC1H,S△HGD1=S矩形HDGD1,S△EFB1=S矩形EBFB1,S△FGA1=S矩,形CFA1G∴S四边形EFGH=S△EHC1+S△HD1G+S△EFB1+S△A1FG-S矩形A1B1C1D1,∴2S四边形EFGH=2S△EHC1+2S△HGD1+2S△EFB1+2S△FGA1-2S矩形A1B1C1D1,∴2S四边形EFGH=S矩形ABCD-S矩形A1B1C1D1.迁移应用:如图4,∵2S四边形EFGH=S矩形ABCD-S矩形A1B1C1D1,∴S矩形A1B1C1D1=25-2×11=3=A1B1•A1D1,∵正方形的面积为25,∴边长为5,∵A1D12=HF2-52=29-25=4,∴A1D1=2,A1B1=,∴EG2=A1B12+52=,∴EG=.【解析】问题呈现:只要证明S△HGE=S矩形AEGD,同理S△EGF=S矩形BEGC,由此可得S四边形=S△HGE+S△EFG=S矩形ABCD;EFGH实验探究:结论:2S四边形EFGH=S矩形ABCD-S矩形A1B1C1D1.根据S△EHC1=S矩形AEC1H,S△HGD1=S,S△EFB1=S矩形EBFB1,S△FGA1=S矩形CFA1G,即可证明;矩形HDGD1迁移应用:直接利用探究的结论即可解决问题.本题属于四边形综合题,主要考查了矩形的性质、勾股定理等知识的综合运用,解题的关键是学会利用分割法添加辅助线,学会利用特殊位置解决问题,属于中考压轴题.。

浙教版数学八年级下学期《期中检测题》及答案

浙教版数学八年级下学期《期中检测题》及答案
C.平均数变大,方差变小D.平均数变大,方差变大
6.用反证法证明命题“在直角三角形中,至少有一个锐角不大于 ”时,应先假设().
A. 有一个锐角小于 B. 每一个锐角小于
C. 有一个锐角大于 D. 每一个锐角大于
7.化简二次根式 的结果是()
A. B. C. D.
8.把方程 的左边配方后可得方程()
[详解]解:∵平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、C(3,2)、D(2,0),
∴AB= = ,BC=3,
∵若点A关于BP的对称点为A',
∴BA′=BA= ,
在△BA′C中,由三角形三边关系可知A′C≥BC-BA′,
∴A′C≥3- ,即A′C的最小值为3- ,
故选B.
[点睛]本题考查平行四这形及轴对称的性质,利用三角形的三边关系得到A′C≥BC-BA′是解题的关键.
13.顺次连接四边形各边中点所得的四边形是________
[答案]平行四边形
[解析]
试题分析:根据中位线的性质可得四边形的对边分别平行且相等,则所得到的四边形为平行四边形.
14.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为 ,根据题意列出的方程是_________.
(1)若要围成总面积为36m2 花圃,边AB的长应是多少?
(2)花圃的面积能否达到36.75m2?若能,求出边AB的长;若不能,请说明理由.
答案与解析
一、选择题
1.下列图案,既是轴对称图形又是中心对称图形的个数是().
A.1B.2C.3D.4
[答案]C
[解析]
[分析]
根据轴对称图形与中心对称图形的概念求解.

浙江省绍兴市八年级(下)期中数学试卷

浙江省绍兴市八年级(下)期中数学试卷


7
8
9
7
10
10
9
10
10
10

10
8
7
9
8
10
10
9
10
9
(1)甲队成绩的中位数是
分,乙队成绩的众数是
分;
(2)计算甲、乙队的平均成绩和方差,试说明成绩较为整齐的是哪一队?
21.(10 分)水库大坝截面的迎水坡坡比(DE 与 AE 的长度之比)为 1:0.6,背水坡坡比
第3页(共5页)
为 1:2,大坝高 DE=30 米,坝顶宽 CD=10 米,求大坝的截面的周长和面积.

12.(4 分)某组数据的方差计算公式为 S2= [(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则
该组数据的样本容量是
,该组数据的平均数是

13.(4 分)若(a2+b2)(a2+b2﹣1)=12,则 a2+b2 为

14.(4 分)如图,某小区规划在一个长 40m、宽 30m 的长方形 ABCD 上修建三条同样宽的
通道,使其中两条与 AB 平行,另一条与 AD 平行,其余部分种花草.要使每一块花草的
面积都为 58m2,那么通道的宽应设计成多少 m?设通道的宽为 xm,由题意列得方


15.(4 分)关于 x 的方程 a(x+m)2+b=0 的解是 x1=﹣2,x2=1,(a,m,b 均为常数,a
≠0),则方程 a(x+m+2)2+b=0 的解是
浙江省绍兴市八年级(下)期中数学试卷
一、选择题(本题共 10 个小题,每小题 3 分,共 30 分) 1.(3 分)下列计算正确的是( )

浙教版八年级下学期数学《期中考试试题》附答案

浙教版八年级下学期数学《期中考试试题》附答案
[详解]设 ,则原方程变形为:
解得, , (不符合题意,舍去)
∴ 5.
故答案为:5.
[点睛]本题考查了用换元法解一元二次方程,设 是解题的关键,注意:平方都是非负数.
14.如图,已知正六边形 ,连接 ,则 _________°.
[答案]60
[解析]
[分析]
作出正六边形的外接圆,连接OE,OA则可知∠AOE=120°,从而可得∠ECA的度数.
A. B. C. D.
[答案]D
[解析]
[分析]
根据题意直接利用二次根式有意义的条件得出x的取值范围进而得出答案.
[详解]解:式子 在实数范围内有意义,
则1-x≥0,
解得: .
故选:D.
[点睛]本题主要考查二次根式有意义的条件,正确掌握二次根式的性质是解题的关键.
2.一元二次方程 配方后可变形为().
浙 教 版 数 学 八年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题
1. 在实数范围内有意义,则 的取值范围是()
A. B. C. D.
2.一元二次方程 配方后可变形为().
A. B.
C. D.
3.下列运算中,正确的是()
A. B.
[答案]3
[解析]
[分析]
先求出 的取值范围,即可求出 的整数部分和小数部分,然后代入求值即可.
[详解]解:∵ < <
∴2< <3
∴ 的整数部分为2, 的小数部分为a= -2
∴(4 -2)( -2)=( +2)( -2)=7-4=3
故答案为:3.
[点睛]此题考查的是求一个数算术平方根的小数部分,掌握实数比较大小方法是解决此题的关键.

(浙教版)绍兴市中2018-2019学年八年级下期中考试数学试题-附答案

(浙教版)绍兴市中2018-2019学年八年级下期中考试数学试题-附答案

绍兴市2018-2019学年第二学期期中考试八年级数学测试卷一、选择题:(每小题3分,共30分)1.要使二次根式3-x 有意义,则x 应满足 ( ) A .3≥x B .3>x C .3-≥x D .3≠x2.下列方程是一元二次方程的是 ( ) A .32x x -= B .220x -= C .221x y -= D .112x x+= 3. 下列运算中,结果正确的是 ( )A .636±=B .3223=-C =D .2343=4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元) 20 30 35 50 100 学生数(人)51551010在这次活动中,该班同学捐款金额的众数和中位数分别是 ( ) A .50,50 B .30,35 C .30,50 D .15,50 5.下列二次根式中,最简二次根式是( )A .8B .2.1C .2D .3a6.将方程2x +4x +3=0配方后,原方程变形为 ( ) A .2(2)x +=1 B .2(4)x +=1 C .2(2)x +=-3 D. 2(2)x +=-1 7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月 增长的百分数相同,则平均每月的增长率为 ( ) A.%10 B.%15 C.%20 D.%25 8.已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( )A .当0=k 时,方程无解B .当1=k 时,方程有一个实数解C .当1-=k 时,方程有两个相等的实数解D .当0≠k 时,方程总有两个不相等的实数解9.关于x 的一元二次方程2(1)230k x x --+=有两个不相等的实根,则k 的取值范围 是 ( ) A. 43k <B.43k <且1k ≠C. 403k ≤≤ D. 1k ≠ 10. 若α,β是方程x 2﹣2x ﹣2=0的两个实数根,则α2+β2的值为 ( )A .10B .9C .8D .7二、填空题:(本题有10小题,每小题3分,共30分) 11.当2x =的值是 . 12.方程012=-x 的根是____________13.已知关于x 的方程x 2+kx +3=0的一个根为x =3,则k 为 .14.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是20.90S =甲平方环,2 1.22S =乙平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是 .15.已知数据2,3,4,4,a ,1的平均数是3,则这组数据的众数是 . 16.下列二次根式,不能..合并的是(填写序号即可). ①48; ②18; ; 17.同学们对公园的滑梯很熟悉吧!如图是某公园新增设的一台滑梯,该滑梯高度AC =2米, 滑梯AB 的坡比是1:2(即AC :BC =1:2),则滑梯AB 的长是 米.18. 如图,是一个长为30m ,宽为20m 的长方形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为5322m ,那么小道进出口的宽度应为______m . 19.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是_______20.三角形的两边长分别为3和6,第三边长是方程x 2-6x +8=0的根,则这个三角形的周长 是__________三、解答题(共5题,共40分) 21.计算(本题6分) (1)81832--(2)1)22.解下列方程(本题8分)(1) 240x x -= (2)x 2-6x +8=023.(本题8分)A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一(1)请将表一和图一中的空缺部分补充完整;(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数;(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绍兴市2018-2019学年第二学期期中考试八年级数学测试卷一、选择题:(每小题3分,共30分)1.要使二次根式3-x 有意义,则x 应满足 ( ) A .3≥x B .3>x C .3-≥x D .3≠x2.下列方程是一元二次方程的是 ( ) A .32x x -= B .220x -= C .221x y -= D .112x x+= 3. 下列运算中,结果正确的是 ( )A .636±=B .3223=-C =D .2343=4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元) 20 30 35 50 100 学生数(人)51551010在这次活动中,该班同学捐款金额的众数和中位数分别是 ( ) A .50,50 B .30,35 C .30,50 D .15,50 5.下列二次根式中,最简二次根式是( )A .8B .2.1C .2D .3a6.将方程2x +4x +3=0配方后,原方程变形为 ( ) A .2(2)x +=1 B .2(4)x +=1 C .2(2)x +=-3 D. 2(2)x +=-1 7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月 增长的百分数相同,则平均每月的增长率为 ( ) A.%10 B.%15 C.%20 D.%25 8.已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( )A .当0=k 时,方程无解B .当1=k 时,方程有一个实数解C .当1-=k 时,方程有两个相等的实数解D .当0≠k 时,方程总有两个不相等的实数解9.关于x 的一元二次方程2(1)230k x x --+=有两个不相等的实根,则k 的取值范围 是 ( ) A. 43k <B.43k <且1k ≠C. 403k ≤≤ D. 1k ≠ 10. 若α,β是方程x 2﹣2x ﹣2=0的两个实数根,则α2+β2的值为 ( )A .10B .9C .8D .7二、填空题:(本题有10小题,每小题3分,共30分) 11.当2x =的值是 . 12.方程012=-x 的根是____________13.已知关于x 的方程x 2+kx +3=0的一个根为x =3,则k 为 .14.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是20.90S =甲平方环,2 1.22S =乙平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是 .15.已知数据2,3,4,4,a ,1的平均数是3,则这组数据的众数是 . 16.下列二次根式,不能..合并的是(填写序号即可). ①48; ②18; ; 17.同学们对公园的滑梯很熟悉吧!如图是某公园新增设的一台滑梯,该滑梯高度AC =2米, 滑梯AB 的坡比是1:2(即AC :BC =1:2),则滑梯AB 的长是 米.18. 如图,是一个长为30m ,宽为20m 的长方形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为5322m ,那么小道进出口的宽度应为______m . 19.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是_______20.三角形的两边长分别为3和6,第三边长是方程x 2-6x +8=0的根,则这个三角形的周长 是__________三、解答题(共5题,共40分) 21.计算(本题6分) (1)81832--(2)1)22.解下列方程(本题8分)(1) 240x x -= (2)x 2-6x +8=023.(本题8分)A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一(1)请将表一和图一中的空缺部分补充完整;(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数;(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选。

24.(本题9分)如图,在5×5边长都是1,在所给网格中按下列要求画出图形:(1)已知点A,点B都在格点(即小正方形的顶点)上,求线段AB的长度;(2)以上题中所画线段AB为一边,另外两条边长分别是3,C在格点上(只需画出符合条件的一个..三角形);(3)所画的△ABC的AB边上高线长为(直接写出答案).25.(本题9分)诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件。

(1)设每件童装降价x元时,每天可销售______________件,每件盈利_____________元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元。

(3)要想平均每天赢利2000元,可能吗?请说明理由。

附加题(共20分)1.已知实数a 满足2|2012|,2012a a a -=-=则 。

2. 若方程02)(1(2=+--)m x x x 的三根是一个三角形三边的长,则实数m 的取值 范围是________。

3. 已知11m n ==且()()227143678m m a n n -+--=,则a 的值等于 ________。

4.一次选拔考试的及格率为25%,及格者的平均分数比规定的及格分数多15分,不及格者的平均分比规定的及格分数少25分,又知全体考生的平均分数是60分,求这次考试规定的及格分数是多少?5.已知:△ABC 的两边AB,AC 是关于x 的一元二次方程x 2-(2k+3)x+k 2+3k+2=0的两个实数根,第三 边BC 的长为5,(1)k 为何值时, △ABC 是以BC 为斜边的直角三角形;(2) k 为何值时, △ABC 是等腰三角形,并求出此时△ABC 的周长.7.设直线(n 为自然数)与两坐标轴围成的三角形面积为S n (n =1,2,…2016),则S 1+S 2+…+S 2016的值为________。

3.甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分 别得3分、2分、1分(没有并列名次),他们一共进行了五轮比赛,结果甲共得14分;乙第 一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是________。

八年级数学期中试卷参考答案1.A2.B3.D4.B5.C6.A7.C8.C9.B 10.C11. 1 12.x 1 =1 ,x 2 =-1 13. -4 14.甲 15. 4 16.② 17.52 18. 1 19.-1 20. 13 21. (1)2- (2)-122.(1) x 1 =0 ,x 2 =4 (2)x 1 =2 ,x 2 =423. 解答:解:(1)A 大学生的口试成绩为90;补充后的图如图所示:(2)A 的票数为300×35%=105(张),B 的票数为300×40%=120(张), C 的票数为300×25%=75(张); (3)A 的成绩为3343105390485++⨯+⨯+⨯=92.5(分)B 的成绩为3343120380495++⨯+⨯+⨯=98 (分)C 的成绩为334375385490++⨯+⨯+⨯=84(分)故B 学生成绩最高,能当选学生会主席.24.(1)5 (2)如图所示为其中一种情形 (3)55625.(1)(20+2x ) (40-x )(2)(20+2x )(40-x )=1200 x 1 =20 ,x 2 =10答:每件童装降价20元或10元。

(3) (20+2x )(40-x )=2000 此方程无解,故不可能做到平均每天盈利2000元。

附加题答案 1. 2013 2.143≤<m 3.-94. 设考生人数为a 人,及格分数为x 分.则:25%a (x+15)+75%a (x-25)=60a 解得:x=75.答:这次考试规定的及格分数是75分.5. (1)∵△ABC 是以BC 为斜边的直角三角形,BC=5,∴AB 2+AC 2=25,∵AB 、AC 的长是关于x 的一元二次方程x 2-(2k+3)x+k 2+3k+2=0的两个实数根, ∴A B+AC=2k+3,AB •AC=k 2+3k+2,∴AB 2+AC 2=(AB+AC )2-2AB •AC , 即(2k+3)2-2(k 2+3k+2)=25, 解得k=2或-5(舍去负数); (2)∵△ABC 是等腰三角形;∴当AB=AC 时,△=b 2-4ac=0,∴(2k+3)2-4(k 2+3k+2)=0 解得k 不存在;当AB=BC 时,即AB=5, ∴5+AC=2k+3,5AC=k 2+3k+2, 解得k=3或4, ∴AC=4或6∴△ABC 的周长为14或16.。

相关文档
最新文档