9 热力学基础.

合集下载

热 力 学 基 础 总 结

热 力 学 基 础 总 结

(CB)

(
A nB
)T
,v,nc
(CB)

(
G nB
)T
,V
,nc
; (CB)
(
U nB
)
S ,V
,nc
V
(CB)

( nB
)T , p,nc
H
(CB)

( nB
) S , p,nc
; (CB)
A ( nB )T , p,nc (CB) ;
解: 偏摩尔量:
; ; ; H
( nB )T , p,nc (CB)
• 热力学量变换法(变量变换法)就是将不能用实 验直接测量的量转换为用实验量或状态方程表 示的关系的基本方法。
变量变换法
从研究工作需要来看:
变量变换法是在学科发展中形成的科学方法。 通常在研究工作中会提出许多科学命题,为 寻求解决问题的思路或设计实验,总要想法 进行命题的转换,以利用已有信息或通过实 验进行分析,其间变量变换就是一个有效的 方法,今以实例说明。
解:在水的正常沸点时 1= 2;
在温度为 373.15K 及 202 650 Pa 下
因为 所以

(
Gm* p
)T
Vm
>0
3> 1
4> 2
4> 3> 2= 1。
4> 3。
计算题
1 一定量纯理想气体由同一始态,分别经绝热可逆 膨胀至(T2,p2, V2)和经绝热不可逆膨胀至(T2',p2',V2')
=
nCV,m dT T
p dV T V
dG= – SdT + Vdp dGT= Vdp
变量变换法

第9章-热力学1xue

第9章-热力学1xue

大爆炸后的宇宙温度 实验室能够达到的最高温度 太阳中心的温度 太阳表面的温度 地球中心的温度 水的三相点温度 微波背景辐射温度 实验室能够达到的最低温度 激光致冷) (激光致冷)
9-1-2 平衡态 准静态过程
平衡态:一个孤立系统, 平衡态:一个孤立系统,其宏观性质在经过 充分长的时间后保持不变( 充分长的时间后保持不变(即其状态参量不 再随时间改变)的状态。 再随时间改变)的状态。
两热力学系统相互接触,而与外界没有热量交 两热力学系统相互接触, 当经过了足够长的时间后, 换,当经过了足够长的时间后,它们的冷热程度不 再发生变化,则我们称两系统达到了热平衡。 再发生变化,则我们称两系统达到了热平衡。 热平衡 热力学第零定律: 热力学第零定律: 如果两个系统分别与第三个系统 达到热平衡,则这两个系统彼此也处于热平衡。 达到热平衡,则这两个系统彼此也处于热平衡。
当代科学实验里能产生的最高温度是10 ,最低温度是2× 当代科学实验里能产生的最高温度是 8K,最低温度是 ×10-8K, 上下跨越了16个数量级 个数量级。 上下跨越了 个数量级。
热学的研究方法: 热学的研究方法:
1.宏观法 宏观法 最基本的实验规律→逻辑推理(运用数学 运用数学) 称为热力学。 最基本的实验规律→逻辑推理 运用数学 ------称为热力学。 称为热力学 优点:可靠、普遍。 缺点:未揭示微观本质。 缺点:未揭示微观本质。 优点:可靠、普遍。 2.微观法 微观法. 微观法 物质的微观结构 + 统计方法 ------称为统计力学 称为统计力学 其初级理论称为气体分子运动论(气体动理论 气体动理论) 其初级理论称为气体分子运动论 气体动理论 优点:揭示了热现象的微观本质。 缺点:可靠性、 遍性差。 优点:揭示了热现象的微观本质。 缺点:可靠性、普 遍性差。 在热学研究中宏观法与微观法相辅相成。 在热学研究中宏观法与微观法相辅相成。

新课本 热力学基础 等值过程9至11卡诺循环 蓝背景

新课本 热力学基础 等值过程9至11卡诺循环 蓝背景

E E( T )
五、热力学第一定律
(The first law of hermodynamics)
外界对系统所 作的功
内能的增量满足 E = E – E = W +Q 2 1
W = -W
热力学第一定律:Q = W+E2-E1
热力学第一定律另一表述: 制造第一类永动机(能对外不断自动作功而不需要 消耗任何燃料、也不需要提供其他能量的机器)是不可 能的。 1)对无限小过程: dQ dE dW
如图,从 T1 过程。
T2 是准静态
系统 (温度 T1) 直接与 热 源 T2接触,最终达到热平衡 ,不是 准静态过程 T1+3△T
T1+△T
T1+2△T
T2
例3
准静态过程是理想过程,是实际
过程的理想化,抽象化;
( P1 , V 1 , T1 ) ( P2 , V 2 , T 2 )
二、功(work)
T0 T0
2
另解:∵过程为绝热的 P0V0 P0 P r ( 2V0 ) 2
PV P0 V

0
第二种解是错误的,因为上述过程为非准静态过程, 绝热的(准静态)过程方程不再适用。 例三:计算绝热过程(P0, V0)(P, V)中理想气体所 做的功
P0V0 解:W PdV dV V1 V0 V P0V0 1 1 1 ( r 1 r 1 ) ( P0V0 PV ) r 1 V0 V r 1
V2 V
例. 理想气体在P-V 图中分别经历b1a、a2c过程, 已知a态、b态的温度相同,a态、c态在同一绝热 线上,试判断以上过程的吸、放热情况。请从以 下答案中选出正确答案 A.过程b1a放热,a2c吸热

热力学基础

热力学基础
冰-水的相变潜热为335kJ·kg-1,而水的显热吸收 仅为4kJ·kg-1·K-1。储存相同的热量,潜热储热设 备所需的设备体积比显热储热小得多。潜热储能是 一种重要的储能方式。
如LiF的熔点为848℃,相变潜热为1300kJ·kg-1; LiH的熔点为688℃,相变潜热高达2840kJ·kg-1。
量、物质交换
(2)体系的性质与状态函数
经典热力学中把系统在任何瞬时所处的宏观物理状 况称为系统的状态,而把用来描述系统所处状态的物理 量,即系统的宏观性质称为状态参数(状态函数),又 称为热力学变量。
体系状态确定后,各性质就有完全确定的值,即性 质与(热力学平衡)状态间存在单值对应关系,性质之 中只有几个是独立的。
前言
热力学-研究各种形式的能相互转化规律 以及与此转化有关的物质性质间相互关系的科学。
热力学一般从两个方面来讨论物质进行的变 化: (1)物质的性质按指定要求发生变化时(各种 物理变化和化学变化过程),必须与外界交换多 少各种形式的能(热、功和其他形式能量之间的 相互转换及其转换过程中所遵循的规律)?
热力学是材料科学的重要基础,是理解材 料制备加工(如金属渗碳、熔化-凝固、陶瓷烧 成、聚合物合成)、相的平衡与转变、元素在 不同相之间的分布以及金属的腐蚀、氧化、材 料表面与界面性质、结构上的物理和化学有序 性以及各类晶体缺陷的形成等一系列重要现象 的的钥匙,而动力学研究有助于了解这些现象 的发展历程,深入揭示材料中的组织形成规律。
内能为状态函数,用符号U表示。它的绝对值
尚无法测定,只能求出变化值。 对于组成与质量确定的体系而言,
U f (T ,V )
§1. 2 热力学第一定律
1.2.1 表达式
• 热力学第一定律的实质就是能量守恒原理。热力学 第一定律适用于任何系统的任何过程。

热力学补充习题

热力学补充习题

第9章 热力学基础一、选择题1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [ ] (A) 准静态过程一定是可逆过程 (B) 可逆过程一定是准静态过程(C) 二者实质上是热力学中的同一个概念2. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对3. 有关热量, 下列说法中正确的是 [ ] (A) 热是一种物质(B) 热能是物质系统的状态参量(C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度(B) 功是描写系统与外界相互作用的物理量(C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D) 系统具有的能量等于系统对外作的功5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式p V MR T d d =μ表示[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式V p MR T d d =μ表示[ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表示[ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式V p p V MR T d d d +=μ表示[ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 任意准静态过程9. 热力学第一定律表明:[ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于110. 对于微小变化的过程, 热力学第一定律为d Q = d E d A .在以下过程中, 这三者同时为正的过程是[ ] (A) 等温膨胀 (B) 等容膨胀 (C) 等压膨胀 (D) 绝热膨胀11. 对理想气体的等压压缩过程,下列表述正确的是[ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0 (C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 012. 功的计算式A p V V =⎰d 适用于[ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(Vp . 一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2V, 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较14. 1mol 理想气体从初态(T 1、p 1、V 1 )等温压缩到体积V 2, 外界对气体所作的功为[ ] (A) 121lnV V RT (B) 211ln V V RT (C) )(121V V p - (D) 1122V p V p -15. 如果W 表示气体等温压缩至给定体积所作的功, Q 表示在此过程中气体吸收的热量, A 表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为 [ ] (A) W +Q -A (B) Q -W -A (C) A -W -Q (D) Q +A -W16. 理想气体内能增量的表示式T C E V ∆=∆ν适用于[ ] (A) 等体过程 (B) 等压过程 (C) 绝热过程 (D) 任何过程17. 刚性双原子分子气体的定压比热与定体比热之比在高温时为 [ ] (A) (B) (C) (D)18. 公式R C C V p +=在什么条件下成立[ ] (A) 气体的质量为1 kg (B) 气体的压强不太高 (C) 气体的温度不太低 (D) 理想气体19. 同一种气体的定压摩尔热容大于定体摩尔热容, 其原因是 [ ] (A) 膨胀系数不同 (B) 温度不同(C) 气体膨胀需要作功 (D) 分子引力不同20. 摩尔数相同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体, 从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体 [ ] (A) 从外界吸热和内能的增量均相同 (B) 从外界吸热和内能的增量均不相同 (C) 从外界吸热相同, 内能的增量不相同 (D) 从外界吸热不同, 内能的增量相同21. 两气缸装有同样的理想气体, 初态相同.经等体过程后, 其中一缸气体的压强变为原来的两倍, 另一缸气体的温度也变为原来的两倍.在此过程中, 两气体从外界吸热 [ ] (A) 相同 (B) 不相同, 前一种情况吸热多 (C) 不相同, 后一种情况吸热较多 (D) 吸热多少无法判断22. 摩尔数相同的理想气体H 2和He, 从同一初态开始经等压膨胀到体积增大一倍时 [ ] (A) H 2对外作的功大于He 对外作的功 (B) H 2对外作的功小于He 对外作的功 (C) H 2的吸热大于He 的吸热 (D) H 2的吸热小于He 的吸热23. 摩尔数相同的两种理想气体, 一种是单原子分子, 另一种是双原子分子, 从同一状态开始经等压膨胀到原体积的两倍.在此过程中, 两气体 [ ] (A) 对外作功和从外界吸热均相同 (B) 对外作功和从外界吸热均不相同 (C) 对外作功相同, 从外界吸热不同 (D) 对外作功不同, 从外界吸热相同24. 摩尔数相同但分子自由度不同的两种理想气体从同一初态开始作等温膨胀, 若膨胀后体积相同, 则两气体在此过程中 [ ] (A) 对外作功相同, 吸热不同 (B) 对外作功不同, 吸热相同 (C) 对外作功和吸热均相同 (D) 对外作功和吸热均不相同25. 两气缸装有同样的理想气体, 初始状态相同.等温膨胀后, 其中一气缸的体积膨胀为原来的两倍, 另一气缸内气体的压强减小到原来的一半.在其变化过程中, 两气体对外作功[ ] (A) 相同 (B) 不相同, 前一种情况作功较大 (C) 不相同, 后一种情况作功较大 (D) 作功大小无法判断26. 理想气体由初状态( p 1、V 1、T 1)绝热膨胀到末状态( p 2、V 2、T 2),对外作的功为 [ ] (A))(12T T C MV -μ(B) )(12T T C Mp -μ(C) )(12T T C MV --μ(D) )(12T T C Mp --μ27. 在273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.将此气体绝热压缩至体积为16.8升, 需要作多少功[ ] (A) 330 J (B) 680 J (C) 719 J (D) 223 J28. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2 .在上述三过程中, 气体的[ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同 (C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同29. 如果使系统从初态变到位于同一绝热线上的另一终态则 [ ] (A) 系统的总内能不变(B) 联结这两态有许多绝热路径 (C) 联结这两态只可能有一个绝热路径 (D) 由于没有热量的传递, 所以没有作功30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时,绝热压缩比等温压缩的终态压强[ ] (A) 较高 (B) 较低 (C) 相等 (D) 无法比较31. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所作的机械功为最大, 这个过程应是 [ ] (A) 绝热过程 (B) 等温过程(C) 等压过程 (D) 绝热过程或等温过程均可32. 视为理想气体的0.04 kg 的氦气(原子量为4), 温度由290K 升为300K .若在升温过程中对外膨胀作功831 J, 则此过程是[ ] (A) 等体过程 (B) 等压过程(C) 绝热过程 (D) 等体过程和等压过程均可能33. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的 [ ] (A) 等温压缩 (B) 等体降压 (C) 等压压缩 (D) 等压膨胀34. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V .在这个循环中, 气体必然[ ] (A) 内能增加 (B) 内能减少 (C) 向外界放热 (D) 对外界作功35. 提高实际热机的效率, 下面几种设想中不可行的是 [ ] (A) 采用摩尔热容量较大的气体作工作物质 (B) 提高高温热源的温度 (C) 使循环尽量接近卡诺循环(D) 力求减少热损失、摩擦等不可逆因素36. 在下面节约与开拓能源的几个设想中, 理论上可行的是 [ ] (A) 在现有循环热机中进行技术改进, 使热机的循环效率达100% (B) 利用海面与海面下的海水温差进行热机循环作功 (C) 从一个热源吸热, 不断作等温膨胀, 对外作功 (D) 从一个热源吸热, 不断作绝热膨胀, 对外作功37. 关于热运动规律,下列说法中唯一正确的是 [ ] (A) 任何热机的效率均可表示为吸Q A =ηT 9-1-34图(B) 任何可逆热机的效率均可表示为高低T T -=1η (C) 一条等温线与一条绝热线可以相交两次(D) 两条绝热线与一条等温线可以构成一个循环38. 卡诺循环的特点是[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成 (B) 完成一次卡诺循环必须有高温和低温两个热源 (C) 卡诺循环的效率只与高温和低温热源的温度有关(D) 完成一次卡诺循环系统对外界作的净功一定大于039. 在功与热的转变过程中, 下面说法中正确的是 [ ] (A) 可逆卡诺机的效率最高, 但恒小于1(B) 可逆卡诺机的效率最高, 可达到1(C) 功可以全部变为热量, 而热量不能全部变为功 (D) 绝热过程对外作功, 系统的内能必增加40. 两个恒温热源的温度分别为T 和t , 如果T >t , 则在这两个热源之间进行的卡诺循环热机的效率为 [ ] (A)t T T - (B) t t T - (C) T t T - (D) TtT +41. 对于热传递, 下列叙述中正确的是 [ ] (A) 热量不能从低温物体向高温物体传递 (B) 热量从高温物体向低温物体传递是不可逆的 (C) 热传递的不可逆性不同于热功转换的不可逆性(D) 理想气体等温膨胀时本身内能不变, 所以该过程也不会传热42. 根据热力学第二定律可知, 下列说法中唯一正确的是 [ ] (A) 功可以全部转换为热, 但热不能全部转换为功(B) 热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体 (C) 不可逆过程就是不能沿相反方向进行的过程 (D) 一切自发过程都是不可逆过程43. 根据热力学第二定律判断, 下列哪种说法是正确的[ ] (A) 热量能从高温物体传到低温物体, 但不能从低温物体传到高温物体 (B) 功可以全部变为热, 但热不能全部变为功 (C) 气体能够自由膨胀, 但不能自由压缩(D) 有规则运动的能量能够变为无规则运动的能量, 但无规则运动的能量不能变为有规则运动的能量44. 热力学第二定律表明:[ ] (A) 不可能从单一热源吸收热量使之全部变为有用功 (B) 在一个可逆过程中, 工作物质净吸热等于对外作的功 (C) 摩擦生热的过程是不可逆的(D) 热量不可能从温度低的物体传到温度高的物体45. “理想气体和单一热源接触作等温膨胀时, 吸收的热量全部用来对外作功.”对此说法, 有以下几种评论, 哪一种是正确的[ ] (A) 不违反热力学第一定律, 但违反热力学第二定律 (B) 不违反热力学第二定律, 但违反热力学第一定律 (C) 不违反热力学第一定律, 也不违反热力学第二定律 (D) 违反热力学第一定律, 也违反热力学第二定律46. 有人设计了一台卡诺热机(可逆的).每循环一次可从400K 的高温热源吸收1800J 的热量, 向300K 的低温热源放热800J, 同时对外作功1000J .这样的设计是 [ ] (A) 可以的, 符合热力学第一定律 (B) 可以的, 符合热力学第二定律(C) 不行的, 卡诺循环所作的功不能大于向低温热源放出的热量 (D) 不行的, 这个热机的效率超过了理论值47. 1mol 的单原子分子理想气体从状态A 变为状态B, 如果变化过程不知道, 但A 、B 两态的压强、温度、体积都知道, 则可求出[ ] (A) 气体所作的功 (B) 气体内能的变化(C) 气体传给外界的热量 (D) 气体的质量48. 如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所作的功和热机效率变化情况是: [ ] (A) 净功增大,效率提高(B) 净功增大,效率降低 (C) 净功和效率都不变 (D) 净功增大,效率不变49. 用两种方法: 使高温热源的温度T 1升高△T ;使低温热源的温度T 2降低同样的△T 值;分别可使卡诺循环的效率升高1η∆和 2η∆,两者相比:[ ] (A) 1η∆>2η∆ (B) 2η∆>1η∆(C) 1η∆=2η∆ (D) 无法确定哪个大T9-1-48图50. 下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号. [ ]51. 在T9-1-51图中,I c II 为理想气体绝热过程,I a II 和I b II 是任意过程.此两任意过程中气体作功与吸收热量的情况是:[ ] (A) I a II 过程放热,作负功;I b II 过程放热,作负功(B) I a II 过程吸热,作负功;I b II 过程放热,作负功 (C) I a II 过程吸热,作正功;I b II 过程吸热,作负功(D) I a II 过程放热,作正功;I b II 过程吸热,作正功52. 给定理想气体,从标准状态(p 0,V 0,T 0)开始作绝热膨胀,体积增大到3倍.膨胀后温度T 、压强p 与标准状态时T 0、p 0之关系为(为比热比) [ ] (A) 01)31(T T -=γ, 0)31(p p γ= (B) 0)31(T T γ=,01)31(p p -=γ (C) 0)31(T T γ-=,01)31(p p -=γ (D) 01)31(T T -=γ,0)31(p p γ-=53. 甲说:“由热力学第一定律可证明任何热机的效率不可能等于1.”乙说:“热力学第二定律可表述为效率等于 100%的热机不可能制造成功.”丙说:“由热力学第一定律可证明任何卡诺循环的效率都等于)1(12T T -.”丁说:“由热力学第一定律可证明理想气体卡诺热机(可逆的)循环的效率等于)1(12T T-.”对以上说法,有如下几种评论,哪种是正确的[ ] (A) 甲、乙、丙、丁全对 (B) 甲、乙、丙、丁全错(C) 甲、乙、丁对,丙错 (D) 乙、丁对,甲、丙错54. 某理想气体分别进行了如T9-1-54图所示的两个卡诺循环:I(abcda )和II(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I 的效率为η,每次循环在高温热源处吸的热量为Q ,循环II 的效率为η',每次循环在高温热源处吸的热量为Q ',则 [ ] (A) Q Q '<'<,ηη (B) Q Q '>'<,ηη(C) Q Q '<'>,ηη (D) Q Q '>'>,ηη(D)(C)(A)(B)T9-1-51图T9-1-54图55. 两个完全相同的气缸内盛有同种气体,设其初始状态相同.今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:[ ] (A) 气缸1和气缸2内气体的温度变化相同 (B) 气缸1内的气体较气缸2内的气体的温度变化大(C) 气缸1内的气体较气缸2内的气体的温度变化小 (D) 气缸1和气缸2内的气体的温度无变化二、填空题1. 不等量的氢气和氦气从相同的初态作等压膨胀, 体积变为原来的两倍.在这过程中, 氢气和氦气对外作的功之比为 .2. 1mol 的单原子分子理想气体, 在1atm 的恒定压力下从273K 加热到373K, 气体的内能改变了 .3. 各为1摩尔的氢气和氦气, 从同一状态(p ,V )开始作等温膨胀.若氢气膨胀后体积变为2V , 氦气膨胀后压强变为2p, 则氢气和氦气从外界吸收的热量之比为 . 4. 两个相同的容器, 一个装氢气, 一个装氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等.现将6J 热量传给氦气, 使之温度升高.若使氢气也升高同样的温度, 则应向氢气传递的热量为 .5. 1摩尔的单原子分子理想气体, 在1个大气压的恒定压力作用下从273K 加热到373K, 此过程中气体作的功为 .6. 273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.此气体等温压缩至体积为16.8升的过程中需作的功为 .7. 一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外作功300 J . 若冷凝器的温度为7?C, 则热源的温度为 .8. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为1S 和2S ,则二者的大小关系是 .9. 一卡诺机(可逆的),低温热源的温度为C 27,热机效率为40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K .T9-2-8图10. 一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷系数212T T T w -=,则η与w 的关系为 .11. 1mol 理想气体(设V P C =γ为已知)的循环过程如T -V 图所示,其中CA 为绝热过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为已知.则C 点的状态参量为:=C V , =C T , =C p .12. 一定量的理想气体,从A 状态),2(11V p 经历如T9-2-12图所示的直线过程变到B 状态),(11V p ,则AB 过程中系统作功___________, 内能改变△E =_________________.13. 质量为M 、温度为0T 的氦气装在绝热的容积为V 的封闭容器中,容器一速率v 作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为 .14. 有ν摩尔理想气体,作如T9-2-14图所示的循环过程abca ,其中acb 为半圆弧,b -a 为等压过程,a c p p 2=,在此循环过程中气体净吸热量为Q νC p )(a b T T -(填入:> , <或=).15. 一定量的理想气体经历acb 过程时吸热550 J .则经历acbea 过程时,吸热为 .16. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程: 等压过程; 等温过程; 绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.T 12TT9-2-11图2p 11T9-2-12图p p T9-2-14图533m 10-T9-2-15图17. 一定量的理想气体,从状态a 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试在T9-2-17图中示意地画出这三种过程的p -V 图曲线.在上述三种过程中:(1) 气体的内能增加的是__________过程;(2) 气体的内能减少的是__________过程.18. 如T9-2-18图所示,已知图中两部分的面积分别为S 1和S 2.如果气体的膨胀过程为a 1b ,则气体对外做功W =________; 如果气体进行a 1b 2?a 的循环过程,则它对外做功W =_______________.19. 如T9-2-19图所示,一定量的理想气体经历c b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化E ∆.则Q 和E ∆ >0或<0或= 0的情况是:Q _________, E __________.20. 将热量Q 传给一定量的理想气体,(1) 若气体的体积不变,则其热量转化为 ; (2) 若气体的温度不变,则其热量转化为 ;(3) 若气体的压强不变,则其热量转化为 . 21. 一能量为1012 eV 的宇宙射线粒子,射入一氖管中,氖管内充有 mol 的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_________________K .(1 eV =×1019J ,普适气体常量R = J/(molK))22. 有一卡诺热机,用29kg 空气作为工作物质,工作在27℃的高温热源与-73℃的低温热源之间,此热机的效率η=______________.若在等温膨胀的过程中气缸体积增大到倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10-3 kgmol -1,普适气体常量R =11K mol J --⋅⋅23. 一气体分子的质量可以根据该气体的定体比热来计算.氩气的定体比热c V = k J ·kg 1·K 1,则氩原子的质量m =_____ _____.T9-2-18图1T9-2-17图2T9-2-19图三、计算题1. 1 mol 刚性双原子分子的理想气体,开始时处于Pa 1001.151⨯=p 、331m 10-=V 的状态,然后经图示直线过程I 变到Pa 1004.452⨯=p 、332m 102-⨯=V 的状态.后又经过方程为C pV=21(常量)的过程II 变到压强Pa 1001.1513⨯==p p 的状态.求:(1) 在过程I 中气体吸的热量; (2) 整个过程气体吸的热量.2. 一卡诺热机(可逆的),当高温热源的温度为C 127ο、低温热源温度为C 27ο时,其每次循环对外作净功8000J .今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外作净功10000J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环热机的效率; (2) 第二个循环的高温热源的温度.3. 如T9-3-15图所示,器壁与活塞均绝热的容器中间被一隔板等分为两部分,其中右边贮有1摩尔处于标准状态的氦气(可视为理想气体),左边为真空.现先把隔板拉开,待气体平衡后,再缓慢向右推动活塞,把气体压缩到原来的体积.求氦气的温度改变量.4 如T9-3-15图所示,一固定绝热隔板将某种理想气体分成A 、B 两部分,B 的外侧是可动活塞.开始时A 、B 两部分的温度T 、体积V 、压强p 均相同,并与大气压强相平衡.现对A 、B 两部分气体缓慢地加热,当对A 和B 给予相等的热量Q 以后,A 室中气体的温度升高度数与B 室中气体的温度升高度数之比为7:5.(1) 求该气体的定体摩尔热容C V 和定压摩尔热容C p ; (2) B 室中气体吸收的热量有百分之几用于对外作功5 温度为25℃、压强为1atm 的1mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(普适气体常量R = 1--⋅⋅K mol J 1,ln 3=(1) 计算这个过程中气体对外所作的功;(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少1p VT9-3-17图T9-3-15图。

热力学基础热量传递方式

热力学基础热量传递方式

热力学基础热量传递方式在我们的日常生活和各种工业生产过程中,热量传递是一个极其常见且至关重要的现象。

从我们冬天取暖时感受到的温暖,到汽车发动机的冷却,再到电子设备的散热,热量传递都在默默地发挥着作用。

那么,热量传递到底有哪些方式呢?让我们一起来深入了解一下。

热量传递主要有三种基本方式:热传导、热对流和热辐射。

首先来说说热传导。

热传导是指由于物体内部或物体之间存在温度差,使得热量从高温处向低温处传递的过程。

这就好比是一群人排队传递物品,排在前面的人把物品递给后面的人,依次传递下去。

在固体中,热传导主要是通过自由电子的运动和晶格的振动来实现的。

比如,我们拿着一根金属棒的一端,在另一端用火加热,很快就能感觉到这一端也变热了,这就是热传导的作用。

不同的材料热传导的性能也不一样,像金属通常是热的良导体,而木材、塑料等则是热的不良导体。

热对流则是指由于流体的宏观运动而引起的热量传递现象。

这里的流体包括气体和液体。

想象一下烧开水的场景,水在锅里受热后会产生对流,底部的热水向上流动,上部的冷水向下流动,从而形成了循环,使得整锅水逐渐升温。

热对流又可以分为自然对流和强制对流。

自然对流是由于流体内部温度不均匀而引起的密度差异,从而产生的流动。

比如,室内空气的流动就是一种自然对流,靠近暖气片的空气受热上升,冷空气则从下方补充进来。

强制对流则是通过外部力量,如风扇、水泵等,迫使流体流动来加强热量传递。

例如,汽车发动机的水冷系统就是通过水泵让冷却液强制循环来带走热量的。

接下来是热辐射。

热辐射是物体由于自身温度而向外发射电磁波来传递能量的过程。

与热传导和热对流不同,热辐射不需要任何介质,可以在真空中进行。

太阳的能量就是通过热辐射传递到地球上的。

任何物体,只要其温度高于绝对零度,就会不停地向外辐射热量。

而且,物体的温度越高,辐射的能量就越大,波长就越短。

比如,烧红的铁块会发出明亮的光,就是因为它的温度高,辐射出了大量的可见光。

热力学基础知识理想气体和状态方程

热力学基础知识理想气体和状态方程

热力学基础知识理想气体和状态方程热力学基础知识理想气体和状态方程热力学是研究物质的能量转化和能量传递规律的科学。

在热力学中,理想气体是一种非常重要的概念。

本文将重点讨论理想气体的基本特性以及与之相关的状态方程。

一、理想气体的定义理想气体是指在一定温度和压强下,具有假设的性质:分子间无相互作用力;分子体积可以忽略不计;分子间碰撞是完全弹性碰撞。

这些假设条件使得理想气体能够通过简单的数学模型来描述。

二、理想气体的基本特性1. 理想气体的压强根据理想气体的假设条件,气体分子与容器壁之间的碰撞会产生压强。

根据牛顿第三定律,壁对气体分子的压力等于气体分子对壁的压力,因此气体的压强可以用公式P = F / A表示,其中P为压强,F为气体分子对壁的冲击力,A为壁的面积。

2. 理想气体的体积由于理想气体假设没有分子间相互作用力和分子体积,所以理想气体的体积可以视为分子的无限小点。

3. 理想气体的温度理想气体的温度可以通过测量气体分子的平均动能来确定。

根据理想气体假设条件,气体分子具有随机运动的性质,其平均动能与温度成正比。

三、状态方程状态方程是用来描述气体状态的数学方程。

对于理想气体,有两种常见的状态方程:理想气体状态方程和麦克斯韦分布速率分布定律。

1. 理想气体状态方程理想气体状态方程可以表示为PV = nRT,其中P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R为气体常量,T表示气体的绝对温度。

这个方程表明,在一定温度下,气体的压强与体积成反比。

2. 麦克斯韦分布速率分布定律麦克斯韦分布速率分布定律用来描述气体分子的速率分布情况,即相同温度下分子的速率在一定范围内是连续分布的。

该定律表明,气体分子的速率与其质量和温度有关。

四、理想气体的应用由于理想气体模型的简化和实用性,理想气体在科学研究和工程技术中有着广泛的应用。

比如,在化学反应中,理想气体状态方程可以用来计算反应的气体产量和反应条件的选择;在工业过程中,理想气体模型可以用来优化工艺参数和设计设备。

大学物理章-热力学基础-试题

大学物理章-热力学基础-试题

第9章 热力学基础一、选择题1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是[ ] (A) 准静态过程一定是可逆过程(B) 可逆过程一定是准静态过程(C) 二者都是理想化的过程(D) 二者实质上是热力学中的同一个概念2. 对于物体的热力学过程, 下列说法中正确的是[ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关(B) 摩尔热容量的大小与所经历的过程无关(C) 在物体内, 若单位体积内所含热量越多, 则其温度越高(D) 以上说法都不对3. 有关热量, 下列说法中正确的是[ ] (A) 热是一种物质(B) 热能是物质系统的状态参量(C) 热量是表征物质系统固有属性的物理量(D) 热传递是改变物质系统内能的一种形式4. 关于功的下列各说法中, 错误的是[ ] (A) 功是能量变化的一种量度(B) 功是描写系统与外界相互作用的物理量(C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样(D) 系统具有的能量等于系统对外作的功5. 理想气体状态方程在不同的过程中有不同的微分表达式, 示[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表示[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 绝热过程8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式V p p V MR T d d d +=μ表示[ ] (A) 等温过程 (B) 等压过程(C) 等体过程 (D) 任意过程9. 热力学第一定律表明:[ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量(B) 系统内能的增量等于系统从外界吸收的热量(C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功不等于系统传给外界的热量(D) 热机的效率不可能等于110. 对于微小变化的过程, 热力学第一定律为d Q = d E d A .在以下过程中, 这三者同时为正的过程是[ ] (A) 等温膨胀 (B) 等容膨胀(C) 等压膨胀 (D) 绝热膨胀11. 对理想气体的等压压缩过程,下列表述正确的是[ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0(C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 012. 功的计算式A p V V =⎰d 适用于[ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2,(V p . 一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2V , 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较14. 1mol 理想气体从初态(T 1、p 1、V 1 )等温压缩到体积V 2, 外界对气体所作的功为[ ] (A) 121ln V V RT (B) 211ln V V RT(C) )(121V V p - (D) 1122V p V p -15. 如果W 表示气体等温压缩至给定体积所作的功, Q 表示在此过程中气体吸收的热量, A 表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为 [ ] (A) W +Q -A (B) Q -W -A (C) A -W -Q (D) Q +A -W16. 理想气体内能增量的表示式T C E V ∆=∆ν适用于[ ] (A) 等体过程 (B) 等压过程 (C) 绝热过程 (D) 任何过程17. 刚性双原子分子气体的定压比热与定体比热之比在高温时为[ ] (A) 1.0 (B) 1.2 (C) 1.3 (D) 1.418. 公式R C C V p +=在什么条件下成立?[ ] (A) 气体的质量为1 kg (B) 气体的压强不太高(C) 气体的温度不太低 (D) 理想气体19. 同一种气体的定压摩尔热容大于定体摩尔热容, 其原因是[ ] (A) 膨胀系数不同 (B) 温度不同(C) 气体膨胀需要作功 (D) 分子引力不同20. 摩尔数相同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体, 从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体[ ] (A) 从外界吸热和内能的增量均相同(B) 从外界吸热和内能的增量均不相同(C) 从外界吸热相同, 内能的增量不相同(D) 从外界吸热不同, 内能的增量相同21. 两气缸装有同样的理想气体, 初态相同.经等体过程后, 其中一缸气体的压强变为原来的两倍, 另一缸气体的温度也变为原来的两倍.在此过程中, 两气体从外界吸热[ ] (A) 相同 (B) 不相同, 前一种情况吸热多(C) 不相同, 后一种情况吸热较多 (D) 吸热多少无法判断22. 摩尔数相同的理想气体H 2和He, 从同一初态开始经等压膨胀到体积增大一倍时[ ] (A) H 2对外作的功大于He 对外作的功(B) H 2对外作的功小于He 对外作的功(C) H 2的吸热大于He 的吸热(D) H 2的吸热小于He 的吸热23. 摩尔数相同的两种理想气体, 一种是单原子分子, 另一种是双原子分子, 从同一状态开始经等压膨胀到原体积的两倍.在此过程中, 两气体[ ] (A) 对外作功和从外界吸热均相同(B) 对外作功和从外界吸热均不相同(C) 对外作功相同, 从外界吸热不同(D) 对外作功不同, 从外界吸热相同24. 摩尔数相同但分子自由度不同的两种理想气体从同一初态开始作等温膨胀, 若膨胀后体积相同, 则两气体在此过程中[ ] (A) 对外作功相同, 吸热不同(B) 对外作功不同, 吸热相同(C) 对外作功和吸热均相同(D) 对外作功和吸热均不相同25. 两气缸装有同样的理想气体, 初始状态相同.等温膨胀后, 其中一气缸的体积膨胀为原来的两倍, 另一气缸内气体的压强减小到原来的一半.在其变化过程中, 两气体对外作功[ ] (A) 相同 (B) 不相同, 前一种情况作功较大(C) 不相同, 后一种情况作功较大 (D) 作功大小无法判断26. 理想气体由初状态( p 1、V 1、T 1)绝热膨胀到末状态( p 2、V 2、T 2),对外作的功为 [ ] (A) )(12T T C MV -μ(B) )(12T T C M p -μ (C) )(12T T C M V --μ (D) )(12T T C M p --μ27. 在273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.将此气体绝热压缩至体积为16.8升, 需要作多少功?[ ] (A) 330 J (B) 680 J (C) 719 J (D) 223 J28. 一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E 1变化到E 2 .在上述三过程中, 气体的[ ] (A) 温度变化相同, 吸热相同 (B) 温度变化相同, 吸热不同(C) 温度变化不同, 吸热相同 (D) 温度变化不同, 吸热也不同29. 如果使系统从初态变到位于同一绝热线上的另一终态则[ ] (A) 系统的总内能不变(B) 联结这两态有许多绝热路径(C) 联结这两态只可能有一个绝热路径(D) 由于没有热量的传递, 所以没有作功30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时,绝热压缩比等温压缩的终态压强[ ] (A) 较高 (B) 较低 (C) 相等 (D) 无法比较31. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所作的机械功为最大, 这个过程应是[ ] (A) 绝热过程 (B) 等温过程(C) 等压过程 (D) 绝热过程或等温过程均可32. 视为理想气体的0.04 kg 的氦气(原子量为4), 温度由290K 升为300K .若在升温过程中对外膨胀作功831 J, 则此过程是[ ] (A) 等体过程 (B) 等压过程(C) 绝热过程 (D) 等体过程和等压过程均可能33. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的?[ ] (A) 等温压缩 (B) 等体降压(C) 等压压缩 (D) 等压膨胀34. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V .在这个循环中, 气体必然[ ] (A) 内能增加 (B) 内能减少(C) 向外界放热 (D) 对外界作功35. 提高实际热机的效率, 下面几种设想中不可行的是[ ] (A) 采用摩尔热容量较大的气体作工作物质(B) 提高高温热源的温度(C) 使循环尽量接近卡诺循环(D) 力求减少热损失、摩擦等不可逆因素36. 在下面节约与开拓能源的几个设想中, 理论上可行的是[ ] (A) 在现有循环热机中进行技术改进, 使热机的循环效率达100%(B) 利用海面与海面下的海水温差进行热机循环作功(C) 从一个热源吸热, 不断作等温膨胀, 对外作功(D) 从一个热源吸热, 不断作绝热膨胀, 对外作功37. 下列说法中唯一正确的是[ ] (A) 任何热机的效率均可表示为吸Q A =η (B) 任何可逆热机的效率均可表示为高低T T -=1ηT 9-1-34图(C) 一条等温线与一条绝热线可以相交两次(D) 两条绝热线与一条等温线可以构成一个循环38. 卡诺循环的特点是[ ] (A) 卡诺循环由两个等压过程和两个绝热过程组成(B) 完成一次卡诺循环必须有高温和低温两个热源(C) 卡诺循环的效率只与高温和低温热源的温度有关(D) 完成一次卡诺循环系统对外界作的净功一定大于039. 在功与热的转变过程中, 下面说法中正确的是[ ] (A) 可逆卡诺机的效率最高, 但恒小于1(B) 可逆卡诺机的效率最高, 可达到1(C) 功可以全部变为热量, 而热量不能全部变为功(D) 绝热过程对外作功, 系统的内能必增加40. 两个恒温热源的温度分别为T 和t , 如果T >t , 则在这两个热源之间进行的卡诺循环热机的效率为 [ ] (A)t T T - (B) t t T - (C) T t T - (D) Tt T + 41. 对于热传递, 下列叙述中正确的是[ ] (A) 热量不能从低温物体向高温物体传递(B) 热量从高温物体向低温物体传递是不可逆的(C) 热传递的不可逆性不同于热功转换的不可逆性(D) 理想气体等温膨胀时本身内能不变, 所以该过程也不会传热42. 根据热力学第二定律可知, 下列说法中唯一正确的是[ ] (A) 功可以全部转换为热, 但热不能全部转换为功(B) 热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体(C) 不可逆过程就是不能沿相反方向进行的过程(D) 一切自发过程都是不可逆过程43. 根据热力学第二定律判断, 下列哪种说法是正确的[ ] (A) 热量能从高温物体传到低温物体, 但不能从低温物体传到高温物体(B) 功可以全部变为热, 但热不能全部变为功(C) 气体能够自由膨胀, 但不能自由压缩(D) 有规则运动的能量能够变为无规则运动的能量, 但无规则运动的能量不能变为有规则运动的能量44. 热力学第二定律表明:[ ] (A) 不可能从单一热源吸收热量使之全部变为有用功(B) 在一个可逆过程中, 工作物质净吸热等于对外作的功(C) 摩擦生热的过程是不可逆的(D) 热量不可能从温度低的物体传到温度高的物体45. “理想气体和单一热源接触作等温膨胀时, 吸收的热量全部用来对外作功.”对此说法, 有以下几种评论, 哪一种是正确的?[ ] (A) 不违反热力学第一定律, 但违反热力学第二定律(B) 不违反热力学第二定律, 但违反热力学第一定律(C) 不违反热力学第一定律, 也不违反热力学第二定律(D) 违反热力学第一定律, 也违反热力学第二定律46. 有人设计了一台卡诺热机(可逆的).每循环一次可从400K 的高温热源吸收1800J的热量, 向300K 的低温热源放热800J, 同时对外作功1000J .这样的设计是[ ] (A) 可以的, 符合热力学第一定律(B) 可以的, 符合热力学第二定律(C) 不行的, 卡诺循环所作的功不能大于向低温热源放出的热量(D) 不行的, 这个热机的效率超过了理论值47. 1mol 的单原子分子理想气体从状态A 变为状态B, 如果变化过程不知道, 但A 、B两态的压强、温度、体积都知道, 则可求出[ ] (A) 气体所作的功 (B) 气体内能的变化(C) 气体传给外界的热量 (D) 气体的质量48. 如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所作的功和热机效率变化情况是:[ ] (A) 净功增大,效率提高(B) 净功增大,效率降低(C) 净功和效率都不变(D) 净功增大,效率不变49. 用两种方法: 使高温热源的温度T 1升高△T ;使低温热源的温度T 2降低同样的△T 值;分别可使卡诺循环的效率升高1η∆和 2η∆,两者相比:[ ] (A) 1η∆>2η∆ (B) 2η∆>1η∆(C) 1η∆=2η∆ (D) 无法确定哪个大50. 下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号.[ ]T9-1-48图 2T 1T a b b 'c 'c d VO O p 等温 绝热 绝热O V p 绝热 绝热等压等温等容 绝热p 等温 绝热容等V p51. 在T9-1-51图中,I c II 为理想气体绝热过程,I a II和I b II 是任意过程.此两任意过程中气体作功与吸收热量的情况是:[ ] (A) I a II 过程放热,作负功;I b II 过程放热,作负功 (B) I a II 过程吸热,作负功;I b II 过程放热,作负功 (C) I a II 过程吸热,作正功;I b II 过程吸热,作负功 (D) I a II 过程放热,作正功;I b II 过程吸热,作正功52. 给定理想气体,从标准状态(p 0,V 0,T 0)开始作绝热膨胀,体积增大到3倍.膨胀后温度T 、压强p 与标准状态时T 0、p 0之关系为(为比热比) [ ] (A) 01)31(T T -=γ, 0)31(p p γ= (B) 0)31(T T γ=,01)31(p p -=γ (C) 0)31(T T γ-=,01)31(p p -=γ (D) 01)31(T T -=γ,0)31(p p γ-=53. 甲说:“由热力学第一定律可证明任何热机的效率不可能等于1.”乙说:“热力学第二定律可表述为效率等于 100%的热机不可能制造成功.”丙说:“由热力学第一定律可证明任何卡诺循环的效率都等于)1(12T T -.”丁说:“由热力学第一定律可证明理想气体卡诺热机(可逆的)循环的效率等于)1(12T T -.”对以上说法,有如下几种评论,哪种是正确的? [ ] (A) 甲、乙、丙、丁全对 (B) 甲、乙、丙、丁全错(C) 甲、乙、丁对,丙错 (D) 乙、丁对,甲、丙错54. 某理想气体分别进行了如T9-1-54图所示的两个卡诺循环:I(abcda )和II(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I 的效率为η,每次循环在高温热源处吸的热量为Q ,循环II 的效率为η',每次循环在高温热源处吸的热量为Q ',则 [ ] (A) Q Q '<'<,ηη (B) Q Q '>'<,ηη (C) Q Q '<'>,ηη (D) Q Q '>'>,ηη55. 两个完全相同的气缸内盛有同种气体,设其初始状态相同.今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:[ ] (A) 气缸1和气缸2内气体的温度变化相同(B) 气缸1内的气体较气缸2内的气体的温度变化大(C) 气缸1内的气体较气缸2内的气体的温度变化小(D) 气缸1和气缸2内的气体的温度无变化二、填空题 T9-1-51图 a b II I c V OT9-1-54图a b b 'c 'c d V O p a 'd '1. 不等量的氢气和氦气从相同的初态作等压膨胀, 体积变为原来的两倍.在这过程中, 氢气和氦气对外作的功之比为 .2. 1mol 的单原子分子理想气体, 在1atm 的恒定压力下从273K 加热到373K, 气体的内能改变了 .3. 各为1摩尔的氢气和氦气, 从同一状态(p ,V )开始作等温膨胀.若氢气膨胀后体积变为2V , 氦气膨胀后压强变为2p , 则氢气和氦气从外界吸收的热量之比为 .4. 两个相同的容器, 一个装氢气, 一个装氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等.现将6J 热量传给氦气, 使之温度升高.若使氢气也升高同样的温度, 则应向氢气传递的热量为 .5. 1摩尔的单原子分子理想气体, 在1个大气压的恒定压力作用下从273K 加热到373K, 此过程中气体作的功为 .6. 273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.此气体等温压缩至体积为16.8升的过程中需作的功为 .7. 一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外作功300 J . 若冷凝器的温度为7C, 则热源的温度为 .8. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为1S 和2S ,则二者的大小关系是 .9. 一卡诺机(可逆的),低温热源的温度为C 27ο,热机效率为40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K .10. 一个作可逆卡诺循环的热机,其效率为η,它的逆过程的致冷系数212T T T w -=,则η与w 的关系为 .11. 1mol 理想气体(设V P C C =γ为已知)的循环过程如T -V 图所示,其中CA 为绝热过程,A 点状态参量(11,V T ),和B 点的状态参量(21,V T )为已知.则C 点的状态参量为:p V 1S 2S O T9-2-8图=C V ,=C T ,=C p .12. 一定量的理想气体,从A 状态),2(11V p 经历如T9-2-12图所示的直线过程变到B 状态),(11V p ,则AB 过程中系统作功___________, 内能改变△E =_________________.13. 质量为M 、温度为0T 的氦气装在绝热的容积为V 的封闭容器中,容器一速率v 作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为 .14. 有ν摩尔理想气体,作如T9-2-14图所示的循环过程abca ,其中acb 为半圆弧,b -a 为等压过程,a c p p 2=,在此循环过程中气体净吸热量为Q νC p )(a b T T -(填入:> , <或=).15. 一定量的理想气体经历acb 过程时吸热550 J .则经历acbea 过程时,吸热为 .16. 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程: 等压过程; 等温过程; 绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.17. 一定量的理想气体,从状态a 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试在T9-2-17图中示意地画出这三种过程的p -V 图曲线.在上述三种过程中: (1) 气体的内能增加的是__________过程;(2) 气体的内能减少的是__________过程.A p 121pB 1V 12V V O T9-2-12图p c p V O b V c a b a p aV T9-2-14图 Pa 105⨯p 33m 10-O 4c a b 1 T9-2-15图1d e p V O a 1VT9-2-17图2V18. 如T9-2-18图所示,已知图中两部分的面积分别为S 1和S 2. 如果气体的膨胀过程为a 1b ,则气体对外做功W =________; 如果气体进行a 1b 2a 的循环过程,则它对外做功W =_______________.19. 如T9-2-19图所示,一定量的理想气体经历c b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化E ∆.则Q 和E ∆ >0或<0或= 0的情况是:Q _________, E __________.20. 将热量Q 传给一定量的理想气体,(1) 若气体的体积不变,则其热量转化为 ; (2) 若气体的温度不变,则其热量转化为 ;(3) 若气体的压强不变,则其热量转化为 . 21. 一能量为1012eV 的宇宙射线粒子,射入一氖管中,氖管内充有 0.1 mol 的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_________________K .(1 eV =1.60×1019J ,普适气体常量R =8.31 J/(mol K))22. 有一卡诺热机,用29kg 空气作为工作物质,工作在27℃的高温热源与-73℃的低温热源之间,此热机的效率η=______________.若在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10-3kg mol -1,普适气体常量R =8.3111K mol J --⋅⋅)23. 一气体分子的质量可以根据该气体的定体比热来计算.氩气的定体比热c V=0.314 k J ·kg 1·K 1,则氩原子的质量m =__________.三、计算题1. 1 mol 刚性双原子分子的理想气体,开始时处于Pa 1001.151⨯=p 、331m 10-=V 的状态,然后经图示直线过程I 变到Pa 1004.452⨯=p 、332m 102-⨯=V 的状态.后又经过方程为C pV=21(常量)的过程II 变到压强Pa 1001.1513⨯==p p 的状态.求:(1) 在过程I 中气体吸的热量; (2) 整个过程气体吸的热量.p),(22V p ),(11V p 13p p =VI I Ip OabT9-2-18图21S 2S 1p VO abT9-2-19图c2. 1 mol 的理想气体,完成了由两个等容过程和两个等压 过程构成的循环过程(如T9-3-2图),已知状态1的温度为1T , 状态3的温度为3T ,且状态2和4在同一等温线上.试求 气体在这一循环过程中作的功.3. 一卡诺热机(可逆的),当高温热源的温度为C 127ο、低温热源温度为C 27ο时,其每次循环对外作净功8000J .今维持低温热源的温度不变,提高高温热源的温度,使其每次循环对外作净功10000J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环热机的效率;(2) 第二个循环的高温热源的温度.4. 某种单原子分子的理想气体作卡诺循环,已知循环效率%20=η,试问气体在绝热膨胀时,气体体积增大到原来的几倍?5. 1mol 双原子分子理想气体作如T9-3-5图所示的可逆循环过程,其中1-2为直线,2-3为绝热线,3-1为等温线.已知13128,2V V T T ==,试求:(1) 各过程的功,内能增量和传递的热量;(用1T 和已知常数表示) (2) 此循环的效率η.(注:循环效率1Q A =η,A 为每一循环过程气体对外所作的功,1Q 为每一循环过程气体吸收的热量)6. 如T9-3-6图所示,一金属圆筒中盛有1 mol 刚性双原子分子的理想气体,用可动活塞封住,圆筒浸在冰水混合物中.迅速推动活塞,使气体从标准状态(活塞位置I)压缩到体积为原来一半的状态(活塞位置II),然后维持活塞不动,待气体温度下降至0℃,再让活塞缓慢上升到位置I ,完成一次循环. (1) 试在p -V 图上画出相应的理想循环曲线;(2) 若作100 次循环放出的总热量全部用来熔解冰,则有多少冰被熔化(已知冰的熔解热=λ 3.35×105 J·kg -1,普适气体常量 R = 8.31J·mol -1·K -1)7. 比热容比=γ 1.40的理想气体,进行如T9-3-7图所T9-3-2图123T9-3-5图T9-3-6图 T9-3-7图)3示的abca 循环,状态a 的温度为300 K . (1) 求状态b 、c 的温度;(2) 计算各过程中气体所吸收的热量、气体所作的功和气体内能的增量;(3) 求循环效率.8. 一台冰箱工作时,其冷冻室中的温度为-10℃,室温为15℃.若按理想卡诺致冷循环计算,则此致冷机每消耗J 102的功,可以从冷冻室中吸出多少热量?9. 一可逆卡诺热机低温热源的温度为7.0℃,效率为40%;若要将其效率提高50%,则高温热源温度需提高几度?10. 绝热容器中有一定量的气体,初始压强和体积分别为0p 和0V .用一根通有电流的电阻丝对它加热(设电阻不随温度改变).在加热的电流和时间都相同的条件下,第一次保持体积0V 不变,压强变为1p ;第二次保持压强0p 不变,而体积变为1V .不计电阻丝的热容量,求该气体的比热容比.11. 空气中的声速的表达式为u κρ=,其中是气体密度,κ是体弹性模量,满足关系式Vp Vκ∆∆=-.就下列两种情况计算其声速: (1) 假定声波传播时空气的压缩和膨胀过程是一个等温过程(即等温声速模型,亦称为牛顿模型);(2) 假定声波传播时空气的压缩和膨胀过程是一个绝热过程(即绝热声速模型); 比较这两个结果你得出什么结论?(设空气中只有氮气)12. 某热机循环从高温热源获得热量Q H ,并把热量Q L 排给低温热源.设高、低温热源的温度分别为T H =2000K 和T L =300K ,试确定在下列条件下热机是可逆、不可逆或不可能存在的.(1) Q H =1000J ,A =900J ;(2) Q H =2000J ,Q L =300J ;(3) A =1500J ,Q L =500J .13. 研究动力循环和制冷循环是热力学的重要应用之一.内燃机以气缸内燃烧的气体为工质.对于四冲程火花塞点燃式汽油发动机来说,它的理想循环是定体加热循环,称为奥托循环(Otto cycle ).而对于四冲程压燃式柴油机来说,它的理想循环是定压加热循环,称为狄塞耳循环(Diesel cycle ).如T9-3-13图所示,往复式内燃机的奥托循环经历了以下四个冲程:(1)吸气冲程(0→1):当活塞由上止点T 向下止点B 运时,进气阀打开,在大气压力下吸入汽油蒸气和空气T9-3-13图V的混合气体.(2)压缩冲程:进气阀关闭,活塞向左运行,混合气体被绝热压缩(1→2);活塞移动T 点时,混合气体被电火花点燃迅速燃烧,可以认为是定体加热过程(2→3),吸收热量1Q .(3)动力冲程:燃烧气体绝热膨胀,推动活塞对外作功(3→4);然后,气体在定体条件下降压(4→1),放出热量2Q .(4)排气冲程:活塞向左运行,残余气体从排气阀排出.假定内燃机中的工质是理想气体并保持定量,试求上述奥托循环1→2→3→4→1的效率η.14. 绝热壁包围的气缸被一绝热的活塞分成A ,B 两室,活塞在气缸内可无摩擦自由滑动,每室内部有1摩尔的理想气体,定容热容量R c V 25=.开始时,气体都处在平衡态),,(000T V p .现在对A 室加热,直到A 中压强变为20p 为止.(1) 加热结束后,B 室中气体的温度和体积? (2) 求加热之后,A 、B 室中气体的体积和温度; (3) 在这过程中A 室中的气体作了多少功? (4) 加热器传给A 室的热量多少?15. 如T9-3-15图所示,器壁与活塞均绝热的容器中间被一隔板等分为两部分,其中右边贮有1摩尔处于标准状态的氦气(可视为理想气体),左边为真空.现先把隔板拉开,待气体平衡后,再缓慢向右推动活塞,把气体压缩到原来的体积.求氦气的温度改变量.16. 如T9-3-15图所示,一固定绝热隔板将某种理想气体分成A 、B 两部分,B 的外侧是可动活塞.开始时A 、B 两部分的温度T 、体积V 、压强p 均相同,并与大气压强相平衡.现对A 、B 两部分气体缓慢地加热,当对A 和B 给予相等的热量Q 以后,A 室中气体的温度升高度数与B 室中气体的温度升高度数之比为7:5.(1) 求该气体的定体摩尔热容C V 和定压摩尔热容C p ;(2) B 室中气体吸收的热量有百分之几用于对外作功?17. 有两个全同的物体,其内能为(u CT C =为常数),初始时两物体的温度分别为21T T 、.现以两物体分别为高、低温热源驱动一卡诺热机运行,最后两物体达到一共同温度f T .求(1)f T ;(2)求卡诺热机所作的功.18. 温度为25℃、压强为1atm 的1mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)(1) 计算这个过程中气体对外所作的功;(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?19. 图T9-3-19为一循环过程的T -V 曲线.该循环的工质为mol μ的理想气体,其中V C 和γ均已知且为常量.已知a 点的温度为1T ,体积为V 1,b 点的体积为V 2,ca 为绝热过程.求:T9-3-15图He空真T9-3-17图ABT9-3-19图。

大学物理2-1第九章(热力学基础)习题答案

大学物理2-1第九章(热力学基础)习题答案

大学物理2-1第九章(热力学基础)习题答案习 题 九9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。

(1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少?[解] 由热力学第一定律A E Q +∆= 得AQ E -=∆在a <b 过程中,E E E a b∆=-JA Q 19412632011=-=-= 在adb 过程中 JA E Q 236421942=+=+∆=在ba 过程中 JA E A E E Q b a 27884194333-=--=+∆-=+-=本过程中系统放热。

9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa(1atm)的初态等温地压缩到 510026.2⨯Pa(2atm)。

求气体放出的热量。

[解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J P P RT M m A Q mol T 3211046.321ln 30031.82ln ⨯-=⨯⨯⨯===即气体放热为J 31046.3⨯。

9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V 图上的一条过原点的直线,如图所示。

试证此直线表示等压过程。

[证明] 设此直线斜率为k ,则此直线方程为kvE =又E 随温度的关系变化式为Tk T C M M E v mol'=⋅=所以T k kV '=因此C kk T V ='=(C 为恒量) 又由理想气体的状态方程知,C TpV '= (C '为恒量)所以 p 为恒量 即此过程为等压过程。

9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径。

(2)1→2直线。

试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。

热力学基础中的热力学平衡与稳定性

热力学基础中的热力学平衡与稳定性

热力学基础中的热力学平衡与稳定性热力学是一门研究物质内部以及与外界能量交换规律的学科。

在研究物质的热力学性质时,我们经常会遇到热力学平衡与稳定性的概念。

本文将探讨热力学平衡与稳定性的概念和重要性,并介绍一些应用案例。

1. 热力学平衡的概念热力学平衡是指系统中各个宏观性质(如温度、压力、浓度等)保持不变的状态。

在热力学平衡状态下,系统中各个部分之间不存在净的能量和物质交换。

2. 热力学平衡的条件要实现热力学平衡,需要满足以下条件:- 系统内部各部分温度相等,即热平衡;- 系统内部各部分压力相等,即压力平衡;- 系统内部各部分组分浓度相等,即物质平衡。

3. 热力学平衡的重要性热力学平衡是研究热力学性质和进行热力学计算的基础。

在实际应用中,只有在热力学平衡条件下,我们才能通过热力学定律准确描述和预测系统的行为。

4. 热力学稳定性的概念热力学稳定性是指系统在扰动后能够回到原来的平衡态的性质。

系统的稳定性与系统自身的能量和组成有关。

5. 热力学稳定性的条件系统的稳定性取决于系统的势能形式以及系统对应的平衡态。

对于热力学稳定的平衡态,其势能取得极小值。

6. 热力学稳定性的重要性热力学稳定性是判断系统行为的关键因素。

通过分析系统的稳定性,我们可以了解系统对微小扰动的响应以及系统的相变行为。

7. 应用案例:溶液的稳定性以溶液的稳定性为例,溶液中溶质与溶剂之间的平衡态可以通过溶解度来描述。

溶解度是在特定温度下溶质在溶剂中达到平衡时的最大溶解量。

当溶解度达到平衡时,系统的自由能取得极小值,溶液稳定。

8. 应用案例:气相反应的平衡与稳定性对于气相反应如A(g) + B(g) → C(g) + D(g),反应的平衡常数K可以用来描述反应的平衡与稳定性。

当反应达到平衡时,反应物和生成物的浓度保持一定比例,系统稳定。

总结:热力学平衡与稳定性在热力学基础中扮演重要角色。

热力学平衡要求系统内各部分温度、压力和浓度均相等,是进行热力学计算和描述系统行为的基础。

第9章 热力学基础习题解答

第9章 热力学基础习题解答

第9章 热力学基础习题解答9-1 1mol 单原子分子理想气体,在4 atm 、27℃时体积1V =6L ,终态体积2V =12L 。

若过程是:(1)等温;(2)等压;求两种情况下的功、热量及内能的变化。

解:(1)等温过程:0=∆E12/ln 2121V V RT dV V RT pdV A Q V V V V T T νν====⎰⎰17282ln 30031.8=⨯=(J )(2)等压过程:36472/)(32/12=-=∆=∆V V p T iR E ν(J ) 2431)(12=-=V V p A (J )6078=+∆=A E Q P (J )9-2 1mol 单原子分子理想气体从300 K 加热到350 K 。

(1)体积保持不变;(2)压强保持不变;在这两过程中系统各吸收了多少热量?增加了多少内能?气体对外做了多少功?解:(1)等体过程:0=V A3.6232/5031.832/=⨯⨯=∆=∆=T iR E Q V ν(J )(2)等压过程:5.4155031.8)(12=⨯=∆=-=T R V V p A (J ) 10395.4153.623=+=+∆=A E Q P (J )9-3 将400 J 的热量传给标准状态下的2mol 氢气。

(1)若温度不变,氢气的压强、体积各变为多少?(2)若压强不变,氢气的温度、体积各变为多少?(3)若体积不变,氢气的温度、压强各变为多少?哪一过程中它做功最多?为什么?哪一过程中内能增加最多?为什么?解:(1)8.4410013.127331.825000=⨯⨯⨯==p RT V ν(L) 等温过程:01/ln V V RT Q T ν=9.4827331.82400exp 8.44exp 01=⨯⨯==RT Q V V ν(L) 916.09.48/8.44/1001===V V p p (atm )=9.27×104(Pa )(2)等压过程:)(02T T C Q P P -=ν9.2792732/31.87240002=+⨯⨯=+=T C Q T P ν(K ) 9.45273/8.449.279/0022=⨯==T V T V (L)(3)等体过程:)(03T T C Q V V -=ν6.2822732/31.85240003=+⨯⨯=+=T C Q T V ν(K ) 55003310049.1273/10013.16.282/⨯=⨯⨯==T p T p (Pa ) 等温过程做功最多,因为热量全部转化为功。

热力学基础知识

热力学基础知识

热力学基础知识热力学是物理学的一个分支,研究热现象和热能转化的规律。

在我们生活中,也可以看到许多与热力学有关的现象,比如汽车引擎的工作、空调的制冷、发热体的加热等等。

在接下来的文章中,我们将深入了解一些热力学的基本概念和原理。

一、热力学的基本概念1. 温度和热量温度是描述物体热度的物理量,单位是摄氏度(℃)、开尔文(K)、华氏度(℉)等。

热量是指热能的转移量,单位是焦耳(J)、卡路里(cal)等。

两者的联系可以用下面的公式表示:Q=m×c×ΔT其中,Q表示热量,m表示物体质量,c表示物体的热容量,ΔT表示物体温度变化量。

此外,还有一个重要的物理量叫做热力学摩尔容量,指的是单位量物质在温度变化1K时所吸收的热量,单位是焦/摩尔-开尔文(J/mol-K)。

2. 热力学第一定律热力学第一定律也叫做能量守恒定律,指的是能量不能被创造或毁灭,只能从一种形式转化为另一种形式,并且总能量守恒。

从热观点来看,热量也是一种能量,因此热能也具有守恒性质。

3. 热力学第二定律热力学第二定律是一个非常重要的定律,它规定了热能转化的方向性,即热量只能从高温物体流向低温物体,不可能反向。

这个定律也成为热力学的增熵定律,指的是一个孤立系统的熵(混乱度)只可能增加,而不可能减小。

二、热力学的应用1. 热力学循环热力学循环是指通过对气体或液体的加热或冷却来产生机械功或者热量,再将剩余的热量排放到外界,从而实现能量转化的过程。

熟悉汽车工作原理的人应该都知道,汽车引擎就是一种热力学循环系统,通过燃烧汽油来加热气体,从而产生机械功驱动车轮,同时排放废气。

2. 热力学平衡当物体的温度相同时,此时物体达到了热力学平衡,它们之间的热量不再交换。

但是,这并不意味着温度相同的两个物体一定热力学平衡。

比如,在室内放着一瓶冰水和一只热汤的碗,虽然它们的温度都是20℃,但是它们内部的热量分布不同,因此不能说它们处于热力学平衡状态。

《大学物理》第九章 热力学基础 (2)

《大学物理》第九章    热力学基础 (2)

吸收热量
m M mol
CV T
m M mol
C p T
m RT ln V2
M mol
V1
或 m RT ln p1
M mol
p2
对外作功
0
pV
或 m RT M mol
m RT ln V2
M mol
V1
或 m RT ln p1
M mol
p2
内能增量
m M mol
CV T
m M mol
CV T
0
pV 常量
返回 退出
例9-2 设有氧气 8 g,体积为0.4110-3 m3 ,温度为 300 K。如氧气做绝热膨胀,膨胀后的体积为4.110-3 m3 。问:气体做功多少?氧气做等温膨胀,膨胀后 的体积也是4.110-3 m3 ,问这时气体做功多少?
解: m=0.008 kg M =0.032 kg T1=300 K
941 (J)
等温膨胀做功:
A
m M
RT1 ln
V2 V1
1 8.31 300 ln 10 4
1.44 103 (J)
返回 退出
作业 Page70 9-1 9-6
返回 退出
理想气体热力学过程的主要公式
过程 特征 过程方程
等体 V=常量 p 常量 T
等压 p=常量 V 常量 T
等温 T=常量 pV 常量
C
(3)比较各过程吸热多少?
D
解:(1) A A B A A C A A D
(2)等压过程 E A B 0
O V1
V2 V
等温过程 E A C 0 绝热过程 E A D A A D 0
(3) Q A B Q A C Q A D

第9章 热力学基础习题解答

第9章 热力学基础习题解答

第9章 热力学基础习题解答9-1 1mol 单原子分子理想气体,在4 atm 、27℃时体积1V =6L ,终态体积2V =12L 。

若过程是:(1)等温;(2)等压;求两种情况下的功、热量及内能的变化。

解:(1)等温过程:0=∆E12/ln 2121V V RT dV VRTpdV A Q V V V V T T νν====⎰⎰17282ln 30031.8=⨯=(J )(2)等压过程:36472/)(32/12=-=∆=∆V V p T iR E ν(J ) 2431)(12=-=V V p A (J ) 6078=+∆=A E Q P (J )9-2 1mol 单原子分子理想气体从300 K 加热到350 K 。

(1)体积保持不变;(2)压强保持不变;在这两过程中系统各吸收了多少热量?增加了多少内能?气体对外做了多少功?解:(1)等体过程:0=V A3.6232/5031.832/=⨯⨯=∆=∆=T iR E Q V ν(J )(2)等压过程:5.4155031.8)(12=⨯=∆=-=T R V V p A (J ) 10395.4153.623=+=+∆=A E Q P (J ) 9-3 将400 J 的热量传给标准状态下的2mol 氢气。

(1)若温度不变,氢气的压强、体积各变为多少?(2)若压强不变,氢气的温度、体积各变为多少?(3)若体积不变,氢气的温度、压强各变为多少?哪一过程中它做功最多?为什么?哪一过程中内能增加最多?为什么?解:(1)8.4410013.127331.82500=⨯⨯⨯==p RT V ν(L)等温过程:01/ln V V RT Q T ν= 9.4827331.82400exp8.44exp01=⨯⨯==RTQV V ν(L)916.09.48/8.44/1001===V V p p (atm )=9.27×104(Pa ) (2)等压过程:)(02T T C Q P P -=ν 9.2792732/31.87240002=+⨯⨯=+=T C QT Pν(K )9.45273/8.449.279/0022=⨯==T V T V (L) (3)等体过程:)(03T T C Q V V -=ν 6.2822732/31.85240003=+⨯⨯=+=T C QT Vν(K )55003310049.1273/10013.16.282/⨯=⨯⨯==T p T p (Pa )等温过程做功最多,因为热量全部转化为功。

第9章 热力学 (习题、参考答案)

第9章 热力学        (习题、参考答案)

第9章 热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。

2. 掌握内能、功和热量的概念。

3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。

4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。

5. 了解可逆过程与不可逆过程的概念。

6. 解热力学第二定律的两种表述,了解两种表述的等价性。

7. 1. 内能 E 仅为温度T 功 在p —V 热量 2. 3. (1)(2) 系统吸收的热量 12M P m o lP式中R C C V P +=为等压摩尔热容。

(3)等温过程 温度不变的过程,其特点是温度T =常量;其过程方程为pV =常量在等温过程中,系统内能无变化,即(4)绝热过程 不与外界交换热量的过程,其特点是dQ=0,其过程方程pV γ=常量在绝热过程中,系统对外做的功等于系统内能的减少,即7. 循环过程 系统从某一状态出发,经过一系列状态变化后又回到了初始状态的整个变化过程。

其特点是内能变化为零,即在循环过程中,系统吸收的净热量(吸收热量1Q 与放出热量2Q 之差。

注意这里及以后的2Q 均指绝对值)与系统对外做的净功(系统对外作的功1A 与外界对系统作的功2A 之差)相等,即若循环沿过程曲线的顺时针方向进行(称为热循环),则其效率8. 卡诺循环 由两个等温过程和两个绝热过程组成的循环,其效率习 题9-1有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的温度和压强都相等,现将5J 的热量都传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的1)绝程在V—T a 和由初态a ′cb b ,如P (A)Q 1<0,Q 1>Q 2 (B )Q 1 >0,Q 1>Q 2(C )Q 1<0,Q 1<Q 2 (D )Q 1>0,Q 1<Q 2 [ ]9-8设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A )n 倍 (B )n -1倍 (C )n1倍 (D )n n 1+倍 [ ]9-10如图所示的两个卡诺循环,第一个沿A 、B 、C 、D 、A 进行,第二个沿A 、B 、C /、D ?、A 进行,这两个循环的效率?1和?2的关系及这两个循环所作的净功A 1和A 2的关系是(A )?1=?2,A 1=A 2 (B )?1>?2,A 1=A 2 (C )?1=?2,A 1>A 2(D )?1=?2,A 1<A 2 [ ] 9-14 一定量的理想气体,分别经历如图(1)所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线)。

热力学基础知识理想气体的热容和定容比热

热力学基础知识理想气体的热容和定容比热

热力学基础知识理想气体的热容和定容比热热力学是研究热、功和能量转化关系的学科,而理想气体是热力学研究的重要对象之一。

本文将介绍理想气体的热容和定容比热,并探讨其相关概念和计算方法。

一、理想气体的热容理想气体的热容指的是单位质量气体在温度变化下吸收或释放的热量。

根据热力学定律,热容可分为定容热容和定压热容两种形式。

1. 定容热容(Cv)定容热容是指在恒容条件下,单位质量气体温度变化时所吸收或释放的热量。

根据理想气体状态方程,定容热容与理想气体的分子结构无关,只与气体的状态方程和分子自由度有关。

对于单原子理想气体,其分子自由度为3,因此其定容热容为:Cv = (3/2) R其中,R是气体常数。

2. 定压热容(Cp)定压热容是指在恒压条件下,单位质量气体温度变化时所吸收或释放的热量。

与定容热容不同,定压热容与气体分子的内能和分子之间的相互作用也有关。

对于单原子理想气体,其定压热容和定容热容之间存在以下关系:Cp = Cv + R二、理想气体的定容比热理想气体的定容比热是指在恒容条件下单位质量气体温度变化时压强的变化比例。

定容比热用符号γ表示,也称为绝热指数。

1. γ与分子自由度之间的关系定容比热与理想气体的分子自由度之间存在一定的关系。

对于多原子分子气体,其分子自由度包括平动、转动和振动自由度,而单原子分子气体只有平动自由度。

对于单原子理想气体来说,其定容比热为:γ = Cp/Cv = (5/3)2. γ与气体性质之间的关系定容比热γ还与理想气体的性质有关。

理想气体的定容比热越大,表示气体分子在温度升高时对内能的吸收能力越强,分子间相互作用较弱。

而定容比热越小,表示气体分子在温度升高时对内能的吸收能力较弱,分子间相互作用较强。

三、理想气体热容和定容比热的计算理想气体的热容和定容比热可以通过实验测量获得。

一般来说,利用恒容和恒压热容之间的关系,可以通过实验测得的定压热容和理论计算得出定容热容。

同样地,定容比热可以通过已知的定容热容和定压热容之间的关系来计算。

热力学基础中的热力学过程与性质

热力学基础中的热力学过程与性质

热力学基础中的热力学过程与性质热力学是研究能量转化和能量传递规律的学科,而热力学过程是热力学研究的核心内容之一。

了解热力学过程及其性质对于深入理解能量转化和系统行为至关重要。

本文将介绍热力学基础中的热力学过程与性质,以帮助读者更好地理解这一领域的知识。

一、热力学过程的定义热力学过程是指系统从一个平衡态到另一个平衡态的能量转化过程。

在热力学中,有四种基本的热力学过程,分别为等容过程、等压过程、等温过程和绝热过程。

这些过程在实际应用中有着广泛的应用,并且对应着不同的物理系统和能量转化方式。

二、等容过程等容过程是指在恒定体积条件下的能量转化过程。

在等容过程中,系统内部的体积保持不变,从而导致系统的压强和温度发生变化。

对于等容过程,根据热容性质,我们可以得到以下关系式:Q = ΔU其中Q表示系统吸收或释放的热量,ΔU表示系统内能的变化。

三、等压过程等压过程是指在恒定压强条件下的能量转化过程。

在等压过程中,系统的压强保持不变,从而导致系统的体积和温度发生变化。

对于等容过程,根据热容性质,我们可以得到以下关系式:Q = ΔU + PΔV其中P表示系统的压强,ΔV表示系统的体积变化。

四、等温过程等温过程是指在恒定温度条件下的能量转化过程。

在等温过程中,系统的温度保持不变,从而导致系统的压强和体积发生变化。

对于等温过程,根据理想气体状态方程,我们可以得到以下关系式:Q = W其中Q表示系统吸收或释放的热量,W表示系统所做的功。

五、绝热过程绝热过程是指在没有热量交换的条件下进行的能量转化过程。

在绝热过程中,系统不与外界交换热量,从而导致系统的内能发生变化。

对于绝热过程,可以根据绝热条件和状态方程得到以下关系式:Q = 0六、热力学过程的性质热力学过程具有一些重要的性质,这些性质对于分析和计算热力学过程非常有帮助。

1. 焓的性质:焓是热力学系统的重要物理量,它定义为H = U + PV,其中U表示系统的内能,P表示系统的压强,V表示系统的体积。

热力学基础热传导与热辐射

热力学基础热传导与热辐射

热力学基础热传导与热辐射热力学基础:热传导与热辐射在我们日常生活和科学研究的广阔领域中,热力学扮演着至关重要的角色。

其中,热传导和热辐射作为热传递的两种主要方式,更是具有深远的影响和广泛的应用。

让我们首先来了解一下热传导。

想象一下,当您拿着一根金属棒,一端放在火上加热,过一会儿您会发现另一端也变热了。

这就是热传导在起作用。

热传导是由于物质内部的分子、原子和自由电子等微观粒子的热运动而产生的热能传递现象。

简单来说,就是热量从温度高的地方向温度低的地方传递。

不同的物质,其热传导的能力是不一样的。

这一特性用热导率来表示。

像金属这样的良好导体,热导率通常较高,因为它们内部的自由电子能够迅速地传递热量。

而像木头、塑料这样的不良导体,热导率就比较低,所以它们在阻止热量传递方面表现得更好。

热传导的速率与温度差、材料的热导率以及传热的面积和长度都有关系。

温度差越大,热传导的速度就越快;材料的热导率越高,热量传递得也越迅速;传热面积越大、长度越短,同样会使热传导更加高效。

在实际生活中,热传导的例子无处不在。

比如,冬天我们使用热水袋取暖,热量通过热水袋的表面传递到我们的身体上;做饭时,锅底的热量通过锅体传导到食物中,使其被煮熟。

接下来,我们说一说热辐射。

与热传导不同,热辐射不需要任何介质就可以传递热量。

您可以想象一下太阳的光芒穿越浩瀚的太空,将温暖和光明带给地球。

这就是热辐射的力量。

任何温度高于绝对零度的物体都会发出热辐射。

物体的温度越高,其辐射出的能量就越大,波长也越短。

比如,烧红的铁块会发出可见光,而人体也会不断地向外辐射红外线,但由于人体温度相对较低,所以辐射的波长较长,我们的肉眼无法直接看到。

热辐射的特点是它可以在真空中传播,并且传播速度是光速。

这使得热辐射在宇宙空间中的能量传递中发挥着关键作用。

在我们的日常生活中,热辐射也有很多应用。

比如,红外线取暖器就是利用热辐射的原理来工作的。

它发出的红外线被周围的物体吸收,从而使物体温度升高,达到取暖的效果。

热力学基础中的热力学过程与热力学势函数的推导

热力学基础中的热力学过程与热力学势函数的推导

热力学基础中的热力学过程与热力学势函数的推导热力学是研究能量转化和热现象的学科,它以描述宏观热现象为主要内容。

热力学过程是指物质从一个平衡状态转变到另一个平衡状态的过程,而热力学势函数则是描述系统宏观性质的数学函数。

本文将着重介绍热力学基础中的热力学过程与热力学势函数的推导。

1. 热力学过程热力学过程是指物质从一个平衡状态转变到另一个平衡状态的过程。

根据热力学第一定律和第二定律,热力学过程可以分为准静态过程和非准静态过程。

1.1 准静态过程在准静态过程中,系统经过一系列连续的平衡状态,每个平衡状态之间都是无限接近的。

因此,在准静态过程中,系统可以被认为是处于平衡状态,并且可以用热力学函数进行描述。

准静态过程的特点是系统中各个参数的变化缓慢且连续。

1.2 非准静态过程在非准静态过程中,系统不处于平衡状态,并且系统中各个参数的变化速度较快。

非准静态过程通常是在实际系统中发生的,例如爆炸、电火花等。

由于非准静态过程中系统的状态无法被确定,因此无法直接使用热力学函数进行描述。

2. 热力学势函数热力学势函数是描述系统宏观性质的数学函数,在热力学中有多种势函数,例如内能、焓、自由能、吉布斯自由能等。

不同的势函数适用于不同的系统条件,下面我们以内能和吉布斯自由能为例进行推导。

2.1 内能(U)内能是描述系统热平衡性质的热力学势函数,它等于系统中各种组成部分的微观能量之和。

内能可以通过热力学第一定律推导得到。

根据热力学第一定律,系统的内能变化等于系统所接收的热量与对外界所做的功之和。

2.2 吉布斯自由能(G)吉布斯自由能是描述系统在恒定温度和压力下的性质的热力学势函数,它等于系统的内能减去温度与熵的乘积。

吉布斯自由能可以通过热力学第二定律推导得到。

根据热力学第二定律,当系统达到平衡时,系统的吉布斯自由能达到最小值。

3. 推导过程下面我们以准静态过程为例,推导内能和吉布斯自由能的变化表达式。

假设系统经历了一个准静态过程,初始状态为A,最终状态为B。

热力学基础中的等压过程与等压过程的特性

热力学基础中的等压过程与等压过程的特性

热力学基础中的等压过程与等压过程的特性热力学是研究能量转化与传递规律的学科,其中等压过程是热力学中重要的基本过程之一。

本文将以等压过程为主题,介绍等压过程的定义、特性和应用。

一、等压过程的定义等压过程,顾名思义,是指在恒定的压力下进行的热力学过程。

在等压过程中,系统与外界保持恒定的压力,并对外界做功。

这种过程常常发生在实验室中使用开放容器的情况下,如加热容器中的气体或液体时,通常会保持外界的压力不变,以保证容器内的压强恒定。

二、等压过程的特性1. 温度变化:在等压过程中,系统的温度会发生变化。

由于外界的压力恒定,系统对外界做功时会发生能量传递,导致系统温度的升高或降低。

2. 体积变化:不同于等容过程,等压过程中系统的体积是可以发生变化的。

当系统对外界做功时,系统的体积会随之改变。

3. 熵变:熵是热力学中衡量系统混乱程度的物理量。

在等压过程中,系统的熵会发生改变。

对于理想气体,根据熵的定义可以得知,在等压过程中,系统的熵变与温度变化成正比。

4. 等压过程图像:在PV图中,等压过程对应于直线。

在等压过程中,由于系统的压强恒定,可以通过测量体积和温度的变化来确定该过程的特性。

三、等压过程的应用1. 热机工作过程:在内燃机等热机中,燃烧室内的燃料在等压条件下燃烧,推动活塞做功,从而驱动汽车等机械运动。

2. 物理实验:等压过程常常用于实验室中进行物理实验。

通过控制外界压力的恒定,可以研究气体或液体在恒定压力下的热力学特性。

3. 工业应用:在化工工艺中,等压过程也经常被使用。

例如,在恒压条件下进行化学反应可以提高反应速率和产物收率。

总结:等压过程是热力学基础中的重要概念,它在实验和工业应用中发挥着重要的作用。

通过对等压过程的研究,我们可以更深入地理解热力学的规律和能量转化的本质。

理解等压过程的特性,有助于我们在科学研究和工程实践中更好地利用和控制能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对热运动研究
宏观
实验与逻辑推理
热力学基 本规律
从能量的观点出发,运用逻辑推理的 方法,分析研究物质状态变化过程中热、 功转换的关系和条件问题。
2019/5/10Βιβλιοθήκη 5思考:生活中热现象
热现象
1、一壶水开了,水变成了水蒸气。
2、温度降到0℃以下,液体的水变成了固体的冰块。 3、气体被压缩,压强增大。 4、物体被加热,物体的温度升高。
温度升高一度所需要吸收的热量。
C p,m


dQ dT
p,mol


i 2
1 R
( i 为分子的自由度数)
单原子气体: i = 3 , 氦、氖
双原子气体:i = 5 ,氢、氧、氮
多原子气体:i = 6 ,水蒸汽、二氧化碳、甲烷
2019/5/10
35
2013年8月28日11时26分
2019/5/10
10
课堂讨论题
关于平衡态
( 1)什么叫平衡态?如图所示,将金属棒一端插入盛有冰水
混合物的容器,另一端与沸水接触,当金属棒各处温度稳定
时,它是否处于平衡态?
100 ºC
0 ºC
答:否。不受外界影响条件下,一个系统的宏 观性质不随时间而变
2019/5/10
11
热力学过程
热力学系统从一个状态变化到另 一个状态 ,称热力学过程.
x
比热:单位质量物质热容量。
c 1 dQ m dT
单位: J K 1 kg1
2019/5/10
33 2013年8月28日11时26分
摩尔热容量:1 mol 物质的热容量。
Cx
1

(
Q T
)
x
Cx
1 lim Q
T 0 T
p
讨论:热量也是一个程量
QV

T2 T1
才可使灯上升;加热过程中不可避免存
在热交换,所以要尽量减小m,增大S。
2019/5/10
20
§9-2 热力学第一定律
永 动 机 的 设 想 图
2019/5/10
21
§9-2 热力学第一定律
第一类永动机试图在不获取能 源的前提下使体系持续地向外界 输出能量。历史上最著名的第一 类永动机是法国人亨内考在十三 世纪提出的“魔轮”,十五世纪, 著名学者达芬奇也曾经设计了一 个相同原理的类似装置,1667年 曾有人将达芬奇的设计付诸实践, 制造了一部直径5米的庞大机械, 但是这些装置经过试验均以失败 告终。
2019/5/10
烤火 —— 通过热量 传递提高物体内能。
25 2013年8月28日11时26分
热量(Q) : 系统之间由于热相互作用而传递的能量。
注意:功和热量都是过程量,
而内能是状态量,通过做功或 传递热量的过程使系统的状态 (内能)发生变化。
热功当量: 1卡 = 4.186 焦耳
2019/5/10
大学物理(下)
综合实验楼
2019/5/10
1
第9章 热力学基础
§1 热力学基本概念 §2 热力学第一定律 §3 热力学第一定律的应用 §4 循环过程 §5 热力学第二定律
作业:
课后习题 课堂例题
2019/5/10
2
十七世纪以前,人们对热现象已有了一些认识和经验, 并在生活中得到广泛应用,但由于缺乏量的概念和实验 手段,热学长期未能从生活中独立出来形成一门科学。
PV RT
其中, m
M
W V2 PdV V2 RT dV RT ln V2
V1
V V1
V1
2019/5/10
32
(2)准静态过程中热量的计算
热容量:物体温度升高一度所需要吸收的热量。
Cx

(
Q T
)
x
Cx

lim (
T 0
Q T
)
x

(
dQ dT
)
Q

m M
CV ,m (T2
T1)

E
内能增量:
E

m M
i 2
RT2
T1
注意:内能是状态量,内能的增量与过程无关,因 此上式适合于任一过程。
原平衡态
非平衡态
新平衡态
热力学中研究过程时,为了在理论上能利用 系统处于平衡态时的性质,引入准静态过程的概念.
2019/5/10
12
准静态过程(理想化的过程)
准静态过程:如果一个系统在其变化过程中所经历的 每一中间状态都无限接近于热平衡态,这个过程称为准平衡 过程或准静态过程。当系统实际过程时间大于系统弛豫时间
理想气体:在任何情况下都严格遵守“波-马定律”、 “盖-吕定律”以及“查理定律”的气体。
P1V1 P2V2 恒量
T1
T2
(质量不变)
P,V ,T Po ,Vo ,To (标准状态)
2019/5/10
14
理想气体 (忽略分子间相互作用力)
爬墙不靠吸盘靠引力 壁虎手套帮你飞檐走壁
2019/5/10
Q
系统吸热 系统放热
U2 U1
内能增加 内能减少
W
系统对外界做功 外界对系统做功
27
热力学第一定律说明:外界对系统传递的热量, 一部分使系统的内能增加,一部分用于系统对 外界作功。
第一类永动机: 不需要外界提供能量,但可以 继续不断地对外做功的机器。
热力学第一定律: “不可能制造出第一类永动机”。
Q E V2 pdV V1 29
9-2-3 准静态过程中热量、功和内能
宏观运动能量
热运动能量
功是能量传递和转换的量度,它引起系统热运动
状态的变化 .
准静态过程功的计算
dW Fdl pSdl
dW pdV
2019/5/10
W V2 pdV V1
注意:作功与过程有关 .
开放系统?
2019/5/10
9
9-1-2 平衡态 准静态过程
平衡态:一个孤立系统,其宏观性质在经过充分
长的时间后保持不变(即其状态参量不再随时间改
变)的状态。
注意:如果系统与外
界有能量交换,即使
系统的宏观性质不随
时间变化,也不能断
定系统是否处于平衡
态。
思考:两个封闭系统相互接触,温度相同,并其
他状态参量不随时间改变时,是否是平衡态?
2019/5/10
8
热平衡、热力学第零定律
两热力学系统相互接触,与外界没有热量交换, 当经过了足够长的时间后,它们的冷热程度不再发 生变化,则我们称两系统达到了热平衡。 热力学第零定律: 如果两个系统分别与第三个系统 达到热平衡,则这两个系统彼此也处于热平衡。
A BC
思考:
A
孤立系统?
BC
封闭系统?
15
标准状态:
V0

m M
Vmol
P0 1.01325105 Pa To 273.15 K Vmol 22.4 103 m3
其中:
m 为气体的总质量。 M 为气体的摩尔质量。
PV P0V0 m P0Vmol T T0 M T0
2019/5/10
16
令 R P0Vmol 8.31 (J mol1 K 1 )
内能:系统内分子热运动的动能和分子之间的相互 作用势能之总和。
E E(V ,T )
理想气体内能: 理想气体的内能只与分子热运动 的动能有关,是温度的单值函数。
E E(T )
2019/5/10
24 2013年8月28日11时26分
改变系统内能的两种不同方法:
钻木取火 —— 通过做 功的方式将机械能转换 为物体的内能。
例:若汽缸内气体为系统,
其它(如:活塞、缸壁)为外界。
2019/5/10
7
状态参量:描述热力学系统状态的物理量。
描述气体的状态参量:温度、压强和体积
温度(T): 温度是表征在热平衡物态下系统宏观性
质的物理量。
压强(P): 垂直作用在单位容器壁面积上的气体压力。
体积(V ): 气体分子自由活动的空间。
即可认为是准静态过程。
砂子 活塞 气体
2019/5/10
p
p1 2 ( p1,V1,T1)
p2
1 ( p2 ,V2 ,T2 )
o V1
V V2
13
9-1-3 理想气体状态方程
把处于平衡态的某种物质的热力学参量(如压强、体 积、温度)之间所满足的函数关系称为该物质的物态 方程或称状态方程。
T T ( p,V )或f (T , p,V ) 0
2019/5/10
28 2013年8月28日11时26分
热力学第一定律
Q (E2 E1) W
p
1*
系统从外界吸收的热量,一部 分增加系统的内能, 另一部分用来 对外界做功 .
o V1
*2
V2 V
Q E W
微小过程
dQ dE dW
准静态过程 dQ dE pdV
2019/5/10
n0 2.69 1025 (m3 ) 称为洛喜密脱数
2019/5/10
19
将孔明灯简化为圆柱:设灯的质 量为M,体积为V,底面积为S, 大气压强为P,温度为T;
P1V1 P2V2 恒量
T1
T2
若要孔明灯上升,则:
PS mg
P

P1

P2

P(T 'T ) T
由此可见,内部气体温度至少达到T' 时
相关文档
最新文档