计算机组成原理课程设计报告完整版

合集下载

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。

实验一,逻辑门电路实验。

在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。

逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。

在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。

实验二,寄存器和计数器实验。

在本次实验中,我们学习了寄存器和计数器的原理和应用。

寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。

通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。

实验三,存储器实验。

在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。

通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。

实验四,指令系统实验。

在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。

通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。

实验五,CPU实验。

在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。

通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。

实验六,总线实验。

在本次实验中,我们学习了计算机的总线结构和工作原理。

通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。

结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。

通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。

希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。

课程设计报告(计算机组成原理)

课程设计报告(计算机组成原理)

课程设计(大作业)报告一、题目分析本次课程设计课题是设计基于微程序控制器的简单计算机设计与实现,宏观上利用CPU、cache、存储器以及一些外设设备来组成一台简单计算机,微观上由运算器、译码电路、和存储器指令用的控制存储器构成。

此次设计要求完成各个指令的格式以及编码的设计,实现各个机器指令的微代码。

本计算机实现的功能有:IN(输入),OUT(输出),ADD(加法),SUB(减法),STA(存数),JMP(跳转)。

设计进行开始,在了解微程序的基本格式, 及各个字段值的作用后, 按微指令格式参照指令流程图,设计出程序以及微程序,将每条微指令代码化,译成二进制代码表,并将二进制代码转换为联机操作时的十六进制格式文件。

根据机器指令系统要求,设计微程序流程图及确定微地址。

设计的加法和减法中, 被加数和被减数都由调试人员输入, 而加数和减数都从存储器中读取. 最后上机调试,各个功能运行结果正确。

二、基本理论计算机原理图(一)、ALU1、功能及组成它是数据加工处理部。

执行所有的算术运算执行所有的逻辑运算,并进行逻辑测试,通常,一个算术操作产生一个运算结果,而一个逻辑操作则产生一个判决。

2、设计图(二)、CPU1、如何执行指令(1)MOV指令a. 程序计数器PC中装入第一条指令地址101b. PC的内容被放到指令总线ABUS上,对指存进行译码,并启动读命令。

c. 从101号地址读出的MOV指令通过指令总线IBUS装入指令寄存器IR。

d. 程序计数器内容加1,变成102,为取下一条指令做好准备。

e. 指令寄存器中的操作码被译码。

f. CPU识别出是MOV指令。

至此,取值周期结束。

g. 操作控制(OC)器送出控制信号到通用寄存器,选择R1作源寄存器,选择R0作目标寄存器。

h. OC送出控制信号到ALU,制定ALU做传送操作。

i. OC送出控制信号,打开ALU输出三态门,将ALU输出送到数据总线DBUS 上。

(任何时候DBUS上只能有一个数据)j. OC送出控制信号,将DBUS上的数据打入到数据缓冲寄存器DR。

《计算机组成原理》课程设计报告-格式 2

《计算机组成原理》课程设计报告-格式 2

计算机组成原理课程设计
报告
姓名:
班级:
学号:
指导老师:
二〇一一年月日
目录
第一章实训任务概述 (1)
1.1实训目的 (1)
1.2 实训任务 (1)
第二章设计内容 (2)
第三章图表格式 (3)
3.1 图表格式 (3)
第四章个人总结 (4)
4.1 主要结论 (4)
4.2 对实训的认识 (4)
参考文献 (5)
致谢 (6)
第一章实训任务概述
1.1实训目的
通过实训,掌握计算机系统软硬件维护的方法,并能利用所学知识,完成实训内容。

1.2 实训任务
第二章设计内容
第三章图表格式3.1 图表格式
图2-1 论文页面设置图
表2-1 高频感应加热的基本参数
第四章个人总结4.1 主要结论
本文主要……
4.2 对实训的认识
通过本次实训,我学到了……
参考文献
[1] 彭革新,谢胜利,张剑.战术Ad Hoc网络研究[J].现代军事通信,1999:751-755
致谢本文需要感谢……。

计算机组成原理课程设计报告

计算机组成原理课程设计报告

计算机组成原理课程设计实验报告目录一、程序设计 (1)1、程序设计目的 (1)2、程序设计基本原理 (1)二、课程设计任务及分析 (6)三、设计原理 (7)1、机器指令 (7)2、微程序流程图 (9)3、微指令代码 (10)4、课程设计实现步骤 (11)四、实验设计结果与分析 (15)五、实验设计小结 (15)六、参考文献 (15)一、程序设计1、程序设计目的(1)在掌握部件单元电路实验的基础上,进一步将其组成系统构造一台基本模型计算机。

(2使用简单模型机和复杂模型机的部分机器指令,并编写相应的微程序,具体上机调试掌握整机概念。

(3)掌握微程序控制器的组成原理。

(4)掌握微程序的编写、写入,观察微程序的运行。

(5)通过课程设计,使学生将掌握的计算机组成基本理论应用于实践中,在实际操作中加深对计算机各部件的组成和工作原理的理解,掌握微程序计算机中指令和微指令的编码方法,深入理解机器指令在计算机中的运行过程。

2、程序设计基本原理(1)实验模型机结构[1] 运算器单元(ALU UINT)运算器单元由以下部分构成:两片74LS181构成了并-串型8位ALU;两个8位寄存器DR1和DR2为暂存工作寄存器,保存参数或中间运算结果。

ALU的S0~S3为运算控制端,Cn为最低进位输入,M为状态控制端。

ALU的输出通过三态门74LS245连到数据总线上,由ALU-B控制该三态门。

[2] 寄存器堆单元(REG UNIT)该部分由3片8位寄存器R0、R1、R2组成,它们用来保存操作数用中间运算结构等。

三个寄存器的输入输出均以连入数据总线,由LDRi和RS-B根据机器指令进行选通。

[3] 指令寄存器单元(INS UNIT)指令寄存器单元中指令寄存器(IR)构成模型机时用它作为指令译码电路的输入,实现程序的跳转,由LDIR控制其选通。

[4] 时序电路单元(STATE UNIT)用于输出连续或单个方波信号,来控制机器的运行。

计算机组成原理课程设计报告书

计算机组成原理课程设计报告书

计算机组成原理课程设计报告书计算机组成原理课程设计报告书目录一.实验计算机设计 1 1.整机逻辑框图设计1 2.指令系统的设计2 3.微操作控制部件的设计5 4.设计组装实验计算机接线表 13 5.编写调试程序 14 二.实验计算机的组装 14 三.实验计算机的调试 15 1.调试前准备 15 2.程序调试过程16 3.程序调试结果16 4.出错和故障分析16 四.心得体会17 五.参考文献 17 题目研制一台多累加器的计算机一实验计算机设计1.整机逻辑框图设计此模型机是由运算器,控制器,存储器,输入设备,输出设备五大部分组成。

1.运算器又是有299,74LS181完成控制信号功能的算逻部件,暂存器LDR1,LDR2,及三个通用寄存器R0,R1,R2等组成。

2.控制器由程序计数器PC、指令寄存器、地址寄存器、时序电路、控制存储器及相应的译码电路组成。

3.存储器RAM是通过CE和W/R两个微命令来完成数据和程序的的存放功能的。

4输入设备是由置数开关SW控制完成的。

5.输出设备有两位LED数码管和W/R控制完成的LR0 LR1 LR2 寄存器Ax Bx Cx R0-G R1-G R2-G 数据总线(D_BUS)ALU-G ALU M CN S3S2S1S0 暂存器LT1 暂存器LT2 LDR1 LDR2 移位寄存器 M S1 S0 G-299 输入设备 DIJ-G 微控器脉冲源及时序指令寄存器 LDIR 图中所有控制信号 LPC PC-G 程序计数器 LOAD LAR 地址寄存器存储器 6116 CE WE 输出设备 D-G W/R CPU 图 1 整机的逻辑框图图1-1中运算器ALU由U7--U10四片74LS181构成,暂存器1由U3、U4两片74LS273构成,暂存器2由U5、U6两片74LS273构成。

微控器部分控存由U13--U15三片2816构成。

除此之外,CPU的其他部分都由EP1K10集成。

计算机组成原理课程设计实验报告

计算机组成原理课程设计实验报告

计算机组成原理课程设计实验报告(1-3)山东大学计算机组成原理课程设计实验一------利用ispEXPERT SYSTEM软件设计四位全加器(一)实验环境:windows 98上的ispEXPERTSYSTEM(二)实验目的:熟悉ispEXPERTSYSTEM的初步使用(三)实验要求:用门电路设计一个一位二进制全加器。

二个加数为a,b,地位进位ci,向高位进位co.进而使用层次化设计思想设计一个四位全加器。

(四)实验步骤:4.1创建新项目4.1.1启动ISPEXPERTSYSTEM。

在windows下,选Lattice Semiconductor 项的ispEXPERTSYSTEM Project Navigator.4.1.2.建立新项目:选择菜单 File选择New Project键入项目名D:\EXP1\wuyupeng.syn4.1.3项目命名:用鼠标双击Untitled。

在 Title 文本框中输入“EXP1 Project”, 并选 OK。

4.2 选择器件:双击ispLSIispLSI5384V-125LB388,你会看到Choose Device 对话框 ( 如下图所示)在 Choose Device 窗口中选择 ispLSI1000 项按动器件目录中的滚动条,直到找到并选中器件 ispLSI 1032E-70LJ84揿 OK 按钮,选择这个器件(各种参数的设置)4.3设计输入:首先设计一个一位全加器,然后以这个器件作为本地器件来使用设计一个四位全加器4.3.1设计一个一位全加器:4.3.1.1原理图命名:选中Source下的NEW选项选中Schematic(确认按OK)输入文件名ADD.SCH进入原理图编辑窗口。

4.3.1.2 在图纸上添加器件:根据逻辑电路知识可知:s=a b ci; co=a*b+(a)*ci;接下来就是根据逻辑原理选择相信的器件来完成逻辑电路的设计,具体方法是:选择Add菜单下的Symbol)然后在各种库中选择所需要的器件4.3.1.3 添加连线:选择Add菜单下的wire项,进入画线状态,单击左键定义连线的左端,将光标移至线的另一端,在此单击左键即可定义这根线。

计算机组成原理课程设计总结报告[优秀范文5篇]

计算机组成原理课程设计总结报告[优秀范文5篇]

计算机组成原理课程设计总结报告[优秀范文5篇]第一篇:计算机组成原理课程设计总结报告大庆师范学院计算机组成原理课程设计总结报告设计题目:基本模型机的模拟设计与实现子题目:外部中断控制流水灯、蜂鸣器学生姓名:院别:专业:班级:学号:指导教师:2011 年 7 月 5日大庆师范学院课程设计任务书题目基本模型机的模拟设计与实现主要内容:对基本模型机的设计与实现,能够自己设计机器指令并且能够翻译为微程序,并能将机器指令和微程序分别打入模拟机的内存和控制存储其中,并通过程序调试能将所编写的程序正确运行。

参考资料:《计算机组成原理》唐朔飞著《计算机组成原理》白中英著《计算机组成原理实验指导》完成期限:一周指导教师签名:2011年 7 月5日大庆师范学院本科毕业论文(设计)大庆师范学院本科毕业论文(设计)目录一、设计目标 (1)二、采用设备 (1)三、设计的原理 (1)3.1 单片机..............................................................................1 3.2中断方式...........................................................................2 3.3实现控制LED 和蜂鸣器的原理 (3)四、逻辑电路图 (3)4.1LED小灯原理图..................................................................... 3 4.2扬声器原理图..................................................................... 3 4.3单片机的独立按键原理图 (4)五、程序代码...........................................................................4 5.1C语言的特点及选择...............................................................4 5.2 程序代 (5)六、调试情况 (5)6.1在keil环境下,编写外部中断的程序…………………………………6 6.2软件调试的步骤 (6)七、心得体会 (6)八、参考文献 (7)大庆师范学院本科毕业论文(设计)摘要:本文介绍了在89c51单片机系统中设计外部中断流水灯、蜂鸣器的一种方法。

计组实验报告(共10篇)

计组实验报告(共10篇)

计组实验报告(共10篇)计组实验报告计算机组成原理实验报告一一、算术逻辑运算器1. 实验目的与要求:目的:①掌握算术逻辑运算器单元ALU(74LS181)的工作原理。

②掌握简单运算器的数据传输通道。

③验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。

④能够按给定数据,完成实验指定的算术/逻辑运算。

要求:完成实验接线和所有练习题操作。

实验前,要求做好实验预习,掌握运算器的数据传送通道和ALU 的特性,并熟悉本实验中所用的模拟开关的作用和使用方法。

实验过程中,要认真进行实验操作,仔细思考实验有关的内容,把自己想得不太明白的问题通过实验去理解清楚,争取得到最好的实验结果,达到预期的实验教学目的。

实验完成后,要求每个学生写出实验报告。

2. 实验方案:1.两片74LS181(每片4位)以并/串联形式构成字长为8为的运算器。

2.8为运算器的输出经过一个输入双向三态门(74LS245)与数据总线相连,运算器的两个数据输入端分别与两个8位寄存器(74LS273)DR1和DR2的输出端相连,DR1和DR2寄存器是用于保存参加运算的数据和运算的结果。

寄存器的输入端于数据总线相连。

3.8位数据D7~D0(在“INPUT DEVICE”中)用来产生参与运算的数据,并经过一个输出三态门(74LS245)与数据总线相连。

数据显示灯(BUS UNIT)已与数据总线相连,用来显示数据总线上所内容。

4.S3、S2、S1、S0是运算选择控制端,由它们决定运算器执行哪一种运算(16种算术运算或16种逻辑运算)。

5.M是算术/逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算。

6.Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。

逻辑运算与进位无关。

7.ALU-B是输出三态门的控制端,控制运算器的运算结果是否送到数据总线BUS上。

低电平有效。

计算机组成原理课程设计报告

计算机组成原理课程设计报告

计算机组成原理课程设计报告姓名:班级:学号:指导老师:赵孟德二〇一一年5 月31 日目录第一章实训任务概述 ------------------------------------------------------------------------------------------------ 11.1实训目的 ------------------------------------------------------------------------------------------------------ 11.2 实训任务------------------------------------------------------------------------------------------------------ 1 第二章题目结果------------------------------------------------------------------------------------------------------- 32.1 指令的执行流程 -------------------------------------------------------------------------------------------- 32.11“异或”指令 ----------------------------------------------------------------------------------------- 32.12 读取指令 --------------------------------------------------------------------------------------------- 32.2 储存器--------------------------------------------------------------------------------------------------------- 32.3 运算器--------------------------------------------------------------------------------------------------------- 42.4 硬件系统------------------------------------------------------------------------------------------------------ 42.5 运算器的组成及设计 -------------------------------------------------------------------------------------- 6 第三章图表格式------------------------------------------------------------------------------------------------------- 73.1 “异或”指令 ----------------------------------------------------------------------------------------------- 73.2 读取指令------------------------------------------------------------------------------------------------------ 73.3 “OUT”指令 ----------------------------------------------------------------------------------------------- 83.4 储存器--------------------------------------------------------------------------------------------------------- 83.5 设计计算机运算器 ----------------------------------------------------------------------------------------- 93.6 运算器的组成及设计 -------------------------------------------------------------------------------------11 第四章个人总结 --------------------------------------------------------------------------------------------------- 124.1 主要结论---------------------------------------------------------------------------------------------------- 124.2 对实训的认识 --------------------------------------------------------------------------------------------- 12 参考文献 --------------------------------------------------------------------------------------------------------------- 14 致谢 ----------------------------------------------------------------------------------------------------------------- 15第一章实训任务概述1.1实训目的通过本周的实训,使我们对计算机组成与体系结构这门课有一个更深入的了解。

计算机组成原理实验报告精品9篇

计算机组成原理实验报告精品9篇

计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。

2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。

3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。

实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。

4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。

5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告计算机组成原理实验报告引言:计算机组成原理是计算机科学与技术专业的重要课程之一,通过实验可以更好地理解和掌握计算机的组成原理。

本篇实验报告将介绍我们在计算机组成原理实验中所进行的实验内容和实验结果。

实验一:逻辑门电路设计在这个实验中,我们学习了逻辑门电路的设计和实现。

通过使用门电路,我们可以实现与门、或门、非门等基本逻辑运算。

我们首先学习了逻辑门电路的真值表和逻辑代数的基本运算规则,然后根据实验要求,使用逻辑门电路设计了一个简单的加法器电路,并通过仿真软件进行了验证。

实验结果表明,我们设计的加法器电路能够正确地进行二进制数的加法运算。

实验二:数字逻辑电路实现在这个实验中,我们进一步学习了数字逻辑电路的实现。

通过使用多路选择器、触发器等数字逻辑元件,我们可以实现更复杂的逻辑功能。

我们首先学习了多路选择器的原理和使用方法,然后根据实验要求,设计了一个4位二进制加法器电路,并通过数字逻辑实验板进行了搭建和测试。

实验结果表明,我们设计的4位二进制加法器能够正确地进行二进制数的加法运算。

实验三:存储器设计与实现在这个实验中,我们学习了存储器的设计和实现。

存储器是计算机中用于存储和读取数据的重要组成部分。

我们首先学习了存储器的基本原理和组成结构,然后根据实验要求,设计了一个简单的8位存储器电路,并通过实验板进行了搭建和测试。

实验结果表明,我们设计的8位存储器能够正确地存储和读取数据。

实验四:计算机硬件系统设计与实现在这个实验中,我们学习了计算机硬件系统的设计和实现。

计算机硬件系统是计算机的核心部分,包括中央处理器、存储器、输入输出设备等。

我们首先学习了计算机硬件系统的基本原理和组成结构,然后根据实验要求,设计了一个简单的计算机硬件系统,并通过实验板进行了搭建和测试。

实验结果表明,我们设计的计算机硬件系统能够正确地进行指令的执行和数据的处理。

结论:通过这些实验,我们深入学习了计算机组成原理的相关知识,并通过实践掌握了计算机组成原理的基本原理和实现方法。

计算机组成原理实验报告

计算机组成原理实验报告

实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。

2.了解通用寄存器的构成和运用。

二、实验要求掌握通用寄存器R3~R0的读写操作。

三、实验原理实验中所用的通用寄存器数据通路如下图所示。

由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。

图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。

RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。

DRCK信号为寄存器组打入脉冲,上升沿有效。

准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。

图2-3-3 通用寄存器数据通路四、实验内容1.实验连线2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表。

通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表。

通用寄存器“手动/搭接”源编码④通用寄存器的读出五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。

实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能。

二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。

三、实验原理实验中所用的运算器数据通路如图2-3-1所示。

ALU运算器由CPLD描述。

运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。

计算机组成原理课程设计完整版

计算机组成原理课程设计完整版

目录1 需求分析 (1)1.1课程设计目的 (1)1.2课程设计内容及要求 (1)1.3TDN-CM++计算机组成原理实验教学系统特点 (2)1.4微指令格式分析 (2)1.5指令译码电路分析 (5)1.6寄存器译码电路分析 (6)1.7时序分析 (7)2 总体设计 (9)2.1数据格式和机器指令描述 (9)2.2机器指令设计 (11)3 详细设计 (16)3.1控制台微程序流程的详细设计 (16)3.2运行微程序流程的详细设计 (19)4 实现阶段 (31)4.1所用模型机数据通路图及引脚接线图 (31)4.2 测试程序及结果 (33)心得体会 (35)参考资料 (36)1 需求分析1.1 课程设计目的本课程设计是计算机科学与技术专业重要的实践性教学环节之一,是在学生学习完《计算机组成原理》课程后进行的一次全面的综合设计。

目的是通过一个完整的8位指令系统结构(ISA)的设计和实现,加深对计算机组成原理课程内容的理解,建立起整机系统的概念,掌握计算机设计的基本方法,培养学生科学的工作作风和分析、解决实际问题的工作能力。

1.2 课程设计内容及要求基于TDN-CM++计算机组成原理实验教学系统,设计和实现一个8位指令系统结构(ISA),通过调试和运行,使设计的计算机系统能够完成指定的功能。

设计过程中要求考虑到以下各方面的问题:(1)指令系统风格(寄存器-寄存器,寄存器-存储器,存储器-存储器);(2)数据类型(无符号数,有符号数,整型,浮点型);(3)存储器划分(指令,数据);(4)寻址方式(立即数寻址,寄存器寻址,直接寻址等);(5)指令格式(单字节,双字节,多字节);(6)指令功能类别(算术/逻辑运算,存储器访问,寄存器操作,程序流控制,输入/输出)。

要求学生综合运用计算机组成原理、数字逻辑和汇编语言等相关课程的知识,理解和熟悉计算机系统的组成原理,掌握计算机主要功能部件的工作原理和设计方法,掌握指令系统结构设计的一般方法,掌握并运用微程序设计(Microprogramming)思想,在设计过程中能够发现、分析和解决各种问题,自行设计自己的指令系统结构(ISA)。

计算机组成原理课程设计3篇

计算机组成原理课程设计3篇

计算机组成原理课程设计第一篇:CPU设计计算机中心处理器(Central Processing Unit, CPU)是计算机的心脏,它负责执行指令,完成计算和控制计算机的所有运算和数据传输。

在计算机组成原理课程设计中,设计一块CPU是非常重要的一步。

CPU的设计与制作需要有一定的基础和经验。

首先,需要了解CPU的工作原理和基本组成,包括寄存器、ALU、控制器和数据通路等。

其次,需要掌握数字逻辑、硬件描述语言和电子工艺制作等知识和技能,以实现CPU的具体功能。

设计一块CPU可分为以下几个步骤:1.确定CPU的整体架构和指令集。

根据需求和实际应用,确定CPU的整体架构和指令集。

可以参考现有的CPU设计,并根据实际情况进行优化和改进。

2.编写CPU的硬件描述语言代码。

使用硬件描述语言(如VHDL)编写CPU的硬件描述语言代码,包括寄存器、ALU、控制器和数据通路等。

3.使用仿真工具进行验证。

使用仿真工具模拟CPU的运行过程,验证硬件描述语言代码的正确性和功能实现。

4.设计和制作PCB电路板。

将CPU的硬件描述语言代码转换为PCB电路板设计,并制作出实际的电路板。

5.测试CPU的性能和功能。

对制作出的CPU进行测试,验证其性能和功能可靠性。

CPU的设计和制作是计算机组成原理课程设计中非常关键的一步,它直接影响到完成整个计算机系统的可靠性和性能。

因此,设计和制作一块优秀的CPU需要耐心和实践经验的积累。

第二篇:存储器设计存储器是计算机系统中重要的组成部分,用于存储数据和程序。

存储器需要具有读、写、删等常见操作,设计一块性能良好和容量适中的存储器是计算机组成原理课程设计的核心内容之一。

存储器的设计和制作需要掌握数字电路设计、电子工艺制作和人机交互等知识和技能。

下面是存储器设计的主要步骤:1.确定存储器的类型和容量。

根据实际需要和使用场景,确定存储器的类型和容量,包括SRAM、DRAM、FLASH等。

2.设计存储器的电路和控制线路。

计算机组成原理(毕业设计报告)

计算机组成原理(毕业设计报告)

《计算机组成原理》课程设计报告实验计算机的设计学院:班级:学号:姓名:完成时间:目录一、设计目的 (2)二、设计内容 (2)三、设计要求 (2)四、设计原理 (2)五、调试程序 (6)六、应用程序 (6)七、心得体会 (8)一. 设计目的:巩固和深刻理解"计算机组成原理"课程所讲解的原理,加深对计算机各模块协同工作的认识,掌握微程序设计的思想和具体方法,培养我们独立思考和创新思维的能力,取得设计与调试的实践经验.二. 设计内容:按照要求设计一指令系统,该指令系统能够实现数据传送,进行加,减运算和逻辑左移和右移,具有累加器寻址,寄存器寻址,寄存器间接寻址,存储器直接寻址,立即数寻址等五种寻址方式.三. 设计要求:仔细复习所学过的理论知识,掌握微程序设计的思想,并根据掌握的理论写出要设计的指令系统的微程序.运算器采用多累加器结构.指令系统至少要包括六条指令,具有上述功能和寻址方式.将所设计的微程序在虚拟环境中进行调试,并给出测试思路和具体程序段(1)运算器:采用单累加器多寄存器结构(开关KA,KB,KC,KR分别置左,右,右,左)(2)指令系统:多于16条指令,外设和内存统一编址,统一操作指令(3)内存寻址方式:寄存器直接寻址寄存器间接寻址直接寻址立即数寻址(4)微程序设计微操作信号发生器四. 设计原理用FD-CES-B型试验仪的硬件资源,实验者可自行设计指令系统以及相应的微程序,研制一台微程序控制的试验计算机。

把微程序输入控存,在给定具体的程序后,用汇编语言编出算法。

手工编译为微指令,输入主存,调试得到预期结果。

部分接线图如下所示:接线:SA 接 X0 接 M16 SB 接 X1 接 M17 P0、SR、SL 接CYP1 接 A0P2 接 A7CA、CC、RCP、CI 接ΦS3~S0 接 M23~M20Cn 接M19M 接M18CG 接M11OB 接M8OT 接 M10CT 接+5VRR 接M1A 接 I0B 接 I1P+1 接M6GI 接 M7CK 接ΦCLR 接+5VOI 接M15B1、B3 接RFKA 接IAB0PA 接 IAB1DR 接 M5MLD 接 M4MP+1 接 +5VMCLR 接 ROMCLK 接POMIG 接地MD10~MD6 接地MD5 接 I7MD4 接 I6MD3 接 I5MD2 接 I2MD1~MD0 接+5V根据设计要求,实验计算机属多累加器结构.因此,应将实验仪上的KA,KB,KC,KR四组开关分别置为右,左,左,上的位置.另外,实验计算机和外设不仿采用I/O查询方式.下图是整机逻辑框图:微指令格式和指令微程序:五. 调试程序(一)准备工作:1、测试控制台的复位功能:加电按RET键,应显示CPU READY字样,表示实验仪监控程序开始工作。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理课程设计报告班级:06计算机 6 班姓名:李凯学号:20063007完成时间:2009年1月3日一、课程设计目的1.在实验机上设计实现机器指令及对应的微指令(微程序)并验证,从而进一步掌握微程序设计控制器的基本方法并了解指令系统与硬件结构的对应关系;2.通过控制器的微程序设计,综合理解计算机组成原理课程的核心知识并进一步建立整机系统的概念;3.培养综合实践及独立分析、解决问题的能力。

二、课程设计的任务针对COP2000实验仪,从详细了解该模型机的指令/微指令系统入手,以实现乘法和除法运算功能为应用目标,在COP2000的集成开发环境下,设计全新的指令系统并编写对应的微程序;之后编写实现乘法和除法的程序进行设计的验证。

三、课程设计使用的设备(环境)1.硬件●COP2000实验仪●PC机2.软件●COP2000仿真软件四、课程设计的具体内容(步骤)1.详细了解并掌握COP 2000模型机的微程序控制器原理,通过综合实验来实现该模型机指令系统的特点:COP2000模型机包括了一个标准CPU所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右移门R、寄存器组R0-R3、程序计数器PC、地址寄存器MAR、堆栈寄存器ST、中断向量寄存器IA、输入端口IN、输出端口寄存器OUT、程序存储器EM、指令寄存器IR、微程序计数器uPC、微程序存储器uM,以及中断控制电路、跳转控制电路。

其中运算器和中断控制电路以及跳转控制电路用CPLD来实现,其它电路都是用离散的数字电路组成。

微程序控制部分也可以用组合逻辑控制来代替。

模型机为8位机,数据总线、地址总线都为8位,但其工作原理与16位机相同。

相比而言8位机实验减少了烦琐的连线,但其原理却更容易被学生理解、吸收。

模型机的指令码为8位,根据指令类型的不同,可以有0到2个操作数。

指令码的最低两位用来选择R0-R3寄存器,在微程序控制方式中,用指令码做为微地址来寻址微程序存储器,找到执行该指令的微程序。

而在组合逻辑控制方式中,按时序用指令码产生相应的控制位。

在本模型机中,一条指令最多分四个状态周期,一个状态周期为一个时钟脉冲,每个状态周期产生不同的控制逻辑,实现模型机的各种功能。

模型机有24位控制位以控制寄存器的输入、输出,选择运算器的运算功能,存储器的读写。

24位控制位分别介绍如下:XRD :外部设备读信号,当给出了外设的地址后,输出此信号,从指定外设读数据。

EMWR:程序存储器EM写信号。

EMRD:程序存储器EM读信号。

PCOE:将程序计数器PC的值送到地址总线ABUS上。

EMEN:将程序存储器EM与数据总线DBUS接通,由EMWR和EMRD决定是将DBUS数据写到EM中,还是从EM读出数据送到DBUS。

IREN:将程序存储器EM读出的数据打入指令寄存器IR和微指令计数器uPC。

EINT:中断返回时清除中断响应和中断请求标志,便于下次中断。

ELP: PC打入允许,与指令寄存器的IR3、IR2位结合,控制程序跳转。

MAREN:将数据总线DBUS上数据打入地址寄存器MAR。

MAROE:将地址寄存器MAR的值送到地址总线ABUS上。

OUTEN:将数据总线DBUS上数据送到输出端口寄存器OUT里。

STEN:将数据总线DBUS上数据存入堆栈寄存器ST中。

RRD:读寄存器组R0-R3,寄存器R?的选择由指令的最低两位决定。

RWR:写寄存器组R0-R3,寄存器R?的选择由指令的最低两位决定。

CN:决定运算器是否带进位移位,CN=1带进位,CN=0不带进位。

FEN:将标志位存入ALU内部的标志寄存器。

X2: X2、X1、X0三位组合来译码选择将数据送到DBUS上的寄存器。

X1:X0:COP2000中有7个寄存器可以向数据总线输出数据, 但在某一特定时刻只能有一个寄存器输出数据. 由X2,X1,X0决定那一个寄存器输出数据.WEN:将数据总线DBUS的值打入工作寄存器W中。

AEN:将数据总线DBUS的值打入累加器A中。

S2: S2、S1、S0三位组合决定ALU做何种运算。

S1:S0:COP2000中的运算器由一片EPLD实现. 有8种运算, 通过S2,S1,S0来选择.运算数据由寄存器A及寄存器W给出, 运算结果输出到直通门D。

模型机的寻址方式分五种:①累加器寻址:操作数为累加器A,例如“CPL A”是将累加器A值取反,还有些指令是隐含寻址累加器A,例如“OUT”是将累加器A的值输出到输出端口寄存器OUT。

②寄存器寻址:参与运算的数据在R0-R3的寄存器中,例如“ADD A,R0”指令是将寄存器R0的值加上累加器A的值,再存入累加器A中。

③寄存器间接寻址:参与运算的数据在存储器EM中,数据的地址在寄存器R0-R3中,例如“MOV A,@R1”指令是将寄存器R1的值做为地址,把存储器EM中该地址的内容送入累加器A中。

④存储器直接寻址:参与运算的数据在存储器EM中,数据的地址为指令的操作数。

例如“AND A,40H”指令是将存储器EM中40H单元的数据与累加器A的值做逻辑与运算,结果存入累加器A。

⑤立即数寻址:参与运算的数据为指令的操作数。

例如“SUB A,#10H”是从累加器A中减去立即数10H,结果存入累加器A。

模型机的缺省的指令集分几大类:算术运算指令、逻辑运算指令、移位指令、数据传输指令、跳转指令、中断返回指令、输入/输出指令。

该模型机微指令系统的特点(包括其微指令格式的说明等):模型机有24位控制位以控制寄存器的输入、输出,选择运算器的运算功能,存储器的读写。

微程序控制器由微程序给出24位控制信号,而微程序的地址又是由指令码提供的,也就是说24位控制信号是由指令码确定的。

该模型机的微指令的长度为24位,其中微指令中只含有微命令字段,没有微地址字段。

其中微命令字段采用直接按位的表示法,哪位为0,表示选中该微操作,而微程序的地址则由指令码指定。

2。

计算机中实现乘法和除法的原理(1)无符号乘法①实例演示(即,列4位乘法具体例子演算的算式):②硬件原理框图:③算法流程图:(2)无符号除法①实例演示(即,列4位除法具体例子演算的算式):②硬件原理框图:③算法流程图:3.对应于以上算法如何分配使用COP2000实验仪中的硬件(初步分配,设计完成后再将准确的使用情况填写在此处)乘法:寄存器R0:初值为0,运行时累加每次循环的结果,运行后R0中即为乘法的积。

寄存器R1:存放被乘数。

寄存器R2:存放乘数。

除法:寄存器R0:存放被除数寄存器R1:存放除数寄存器R2:初值为0,每次循环如符合条件就将其左移并加1,否则仅左移,最终结果即为商寄存器R3:计数器。

初值为0,左移时将其移至最高位为1,R3记录移动次数。

作除法时,商每上一位时R3即自减1。

因左移次数与最终右移次数相等,故当R3减至负数(FF)时即终止程序运行。

4.在COP2000集成开发环境下设计全新的指令/微指令系统设计结果如表所示(可按需要增删表项)(1)新的指令集(设计两个不同指令集要分别列表)(2)新的微指令集PC5.用设计完成的新指令集编写实现无符号二进制乘法、除法功能的汇编语言程序(1)乘法4位乘法的算法流程图与汇编语言程序清单:MOV R0,#00HMOV R1,#09HMOV R2,#0AHBEGIN: AND R2, #0FHJZ EXITAND R2,#01HJZ LOOPMOV A,R1ADD R0,ALOOP: SHL R1SHR R2JMP BEGINEXIT: OVER(2)除法4位除法的算法流程图与汇编语言程序清单:MOV R0,#0AAHMOV R1,#0DHMOV R2,#0HMOV R3,#0HAND R1, #0FHJZ EXITENTER: CMP R1,#80HJC INCREJMP BEGININCRE: SHL R1ADD R3,#1HJMP ENTERBEGIN: MOV A,R0CMP R1,AJC RIGHTSHL R2JMP DECRERIGHT: SHL R2ADD R2,#1HMOV A,R1SUB R0,ADECRE: SHR R1SUB R3,#1HJC EXITJMP BEGINEXIT: OVER6.上述程序的运行情况(跟踪结果)程序运行的过程:乘法:PC除法:PC7.设计结果说明调试运行程序时是否出现问题,是否有重新调整指令/微指令系统设计的情况出现?请在此做具体说明。

在课程设计的开始我更多的只是考虑了程序功能的实现,没有考虑程序的时间空间效率,因此在后来的优化过程中对指令微指令系统设计做了部分调整,简要叙述如下:1.在设计开始时乘法的算法设计为一个初始值为4的计数器,每次加法操作后减一直至计数器为零结束,后来考虑到当乘数的操作位为零时,没有必要进行加零操作,于是设计了跳转指令及程序,由此想到乘数开始可能是零,所以又添加了在开始判断乘数是否为零的操作。

关于这个操作,开始时设计了一个(TES R?)指令,让数据与零比较,后来考虑可以用(AND R?#0FH)取代。

除法指令一开始考虑老师推荐的加减交替算法,但后来考虑被除数需要位数大于八位才能实现该算法,不适合八位模型机,后改为模拟笔算算法。

2.关于程序的可拓展性:8位被除数除以4位除数中的时候,因为如(0101)这样的四位数实际上只有3位有效,但同样属于4位数的范畴。

此时如果被除数的有效位数与除数的有效位数之差大于4的时候,就会出现结果为5位或更多位的情况。

如果一个算法只能计算8位除以4位结果也一定是4位的情况,那局限性也未免太大了。

于是在思考、实验后增设一个计数器,在运算前对除数的最高位进行测试,如果是0,则左移1位,计数器加1。

直至最高位非0再继续转入后续运算。

因为按此算法,最后一次循环中被除数中减去的应该是除数本身,也就是说,除数左移的次数与后来的次数相同。

于是在后面的除法运算中,商每上一位计数器则自减1,直到减为0。

此时用标志位就可以很方便的判断出来,结束程序。

这样一来,无论除数是多少位,甚至超过4位(不大于8位)时,提高了程序的性能,但是溢出判断功能显得难以实现。

3.进而优化乘法算法:之前的乘法只能算被乘数和乘数均为4位(包括小于4位),结果为8位(包括小于8位)的情况,但如果有例如5位乘以3位结果是8位的情况就无法处理,优化之前移位4位后就停止,改动后我把结束条件改为了判断乘数后乘数是否为0,此时程序可以处理任何结果低于8位的无符号整数乘法。

4.关于指令微指令的优化:设计开始时我设计了可能用到的指令微指令,在后来的优化过程中发现,一些指令可以被其他指令取代,这样减少了指令集中的指令数目,达到优化的目的,但是从时间空间效率综合考虑,并没有将指令集合优化到数目尽可能少的程度,指令少提高了空间效率,但是将增加程序长度从而降低时间效率。

相关文档
最新文档