DYNAMICCACHERECONFIGURATIONSTRATEGIES FOR A CLUSTER-BASED STREAMING PROXY
高速缓存存储器的优化方案与配置建议(十)
高速缓存存储器的优化方案与配置建议引言:随着计算机技术的飞速发展,现代电子设备对于计算速度和数据处理的要求越来越高。
高速缓存存储器作为一种常见的硬件优化方案,能够有效提升计算机的性能。
本文将探讨高速缓存存储器的优化方案,并提供一些建议来配置高性能的高速缓存存储器。
一、高速缓存存储器的概述高速缓存存储器是一种位于CPU与主存储器之间的中间存储器,其目的是减少CPU访问主存储器的时间,提高计算机的运行速度。
高速缓存存储器主要由三个层次组成,分别是一级缓存(L1 Cache)、二级缓存(L2 Cache)和三级缓存(L3 Cache)。
不同层次的缓存存储器具有不同的容量和访问速度。
二、高速缓存存储器的优化方案1. 提高高速缓存命中率高速缓存命中率是衡量高速缓存性能的重要指标。
提高高速缓存命中率可以有效减少对主存储器的访问,从而提高计算机的性能。
为了提高高速缓存命中率,可以采用以下方案:- 增加高速缓存的容量:增加高速缓存的容量可以提高数据的存储密度,减少缓存缺失率。
- 优化缓存算法:采用更加智能的缓存替换算法,如LRU(最近最少使用)算法,可以有效提高缓存命中率。
- 提高数据的局部性:程序设计中应充分利用数据的空间局部性和时间局部性,减少缓存缺失的发生。
2. 选择合适的高速缓存映射方式高速缓存映射方式是决定数据在高速缓存中存储位置的方法。
常见的高速缓存映射方式有直接映射、全相联映射和组相联映射。
不同的映射方式对性能有不同的影响。
为了选择合适的映射方式,可以考虑以下因素:- 直接映射:适用于对成本要求较高的场景,但是会出现缓存冲突的情况,从而降低性能。
- 全相联映射:适用于对性能要求较高的场景,但是相应的芯片面积会较大,成本较高。
- 组相联映射:适用于平衡成本和性能的场景,是常见的高速缓存映射方式。
三、高速缓存存储器的配置建议1. 根据应用场景选择高速缓存容量不同的应用场景对高速缓存容量有不同的需求。
对于计算密集型的应用程序,较大的高速缓存容量可以提供更大的数据集,减少缓存缺失。
ISM:新一代绿色机会网络设备的缓存管理策略
王 朕 王新华
( 山东师 范大学信息科学与工程学 院 山东 济南 2 0 1 ) 50 4
山东 济南 20 1 ) 50 4 ( 山东省分布式计算机软件新技术重点实验室
摘
要
由于机会 网络环境 中两个节 点连通 时间的限制 , 消息传输 数量往往不能达到理想值。对此 , 出一种缓存管理 策略 IM 提 S
。 S a dn rv c l e aoaoy o siue o p tr ow r N vl eh o g , ia 50 4,h n og C ia ( h nog Poi i yL brtrfr tbtdC m u f ae oe Tcnl y Jn n2 0 1 S a dn , hn ) naK Dir e St o
关键 词
中分类号
D N 机会 网络 T
T33 P 9
缓存 管理
文献标识码
路由
A
IM : S S A TRATEGY UF ER ANAGEM ENT F oF B F M oR NEXT- GENERATI oN GREEN
oP oRT NI T C NE W oR E I ME T P U S I T K QU P N
mo i t n a p o t nsi ew r . T i p p r i t d c s a n w t t g fb f r ma a e n a d I t l g n u s c in Ma a e n b l y i n o p r it n t o k i u c hs a e n r u e e s a e y o u f n g me tn me n el e tS b e t n g me t o r e i o
intersystems caché语法-概述说明以及解释
intersystems caché语法-概述说明以及解释1.引言1.1 概述概述部分的内容可以从以下角度入手:Intersystems Cache是一种高效的数据库管理系统,它具有强大的功能和灵活的语法。
它被广泛应用于医疗、金融、物流等领域,并且在数据处理和存储方面表现出色。
首先,Intersystems Cache具有一套独特的数据库管理系统,它采用了高性能的数据存储引擎和先进的数据结构,可以高效地处理大量的数据。
同时,Cache的语法非常灵活,支持多种数据类型和数据操作,可以满足各种应用的需求。
其次,Intersystems Cache还支持多种编程语言的接口,包括Java、C、Python等,使开发人员可以使用自己熟悉的语言进行数据库开发。
这种多语言支持大大提高了开发的灵活性和效率。
另外,Intersystems Cache还具有强大的并发处理能力和事务支持,可以保证数据的一致性和可靠性。
同时,Cache还提供了丰富的安全功能,包括用户认证、权限管理等,可以保护数据的安全性。
总之,Intersystems Cache是一种功能强大、性能高效的数据库管理系统,具有灵活的语法和多语言支持。
它在各个领域都有广泛应用,并且得到了用户的高度认可和好评。
在接下来的文章中,我们将详细介绍Cache的语法和使用方法,希望能够帮助读者更好地了解和使用这一优秀的数据库管理系统。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分旨在介绍整篇文章的组织架构,让读者能够清晰地了解文章的内容分布和逻辑顺序。
本文将按照以下几个部分进行讨论和展示。
首先,引言部分将以一个概述开始。
在这个部分,将对Intersystems Caché语法的基本特点进行简要介绍,并提出本文的目的和意义。
这将为读者提供一个整体的认识,并引导他们进一步了解和掌握该语言。
第二部分是正文部分,其中包含了要点1和要点2两个子部分。
Fortinet FortiNAC产品概述说明书
FORTINAC AND THE FORTINET SECURITY FABRIC EXECUTIVE SUMMARYOutdated endpoint access security solutions leave mobile and Internet of Things (IoT) devices vulnerable to targeted attacks that can put the entire network at risk.To protect valuable data, organizations need next-generation network access control (NAC). As part of the Fortinet Security Fabric, FortiNAC provides comprehensive device visibility, enforces dynamic controls, and orchestrates automated threat responses that reduce containment time from days to seconds. It enables policy-based network segmentation for controlling access to sensitive information.THE NEED FOR THIRD-GENERA TION NACEnterprise networks are undergoing dramatic change through the widespread adoptionof bring-your-own-device (BYOD) policies, loT, and multi-cloud technologies. When thisis coupled with a highly mobile workforce and geographically dispersed data centers,the security challenges multiply. With endpoint devices remaining a top attack target, organizations must address the outdated access controls that leave their networks exposed to undue risk.The first generation of NAC solutions authenticated and authorized endpoints (primarily managed PCs) using simple scan-and-block technologies. Second-generation NAC products solved the emerging demand for guest network access—visitors, contractors, and partners.But securing dynamic and distributed environments now requires security and networking that share intelligence and collaborate to detect and respond to threats. As part of the Fortinet Security Fabric architecture, FortiNAC offers a third-generation NAC solutionthat leverages the built-in commands of network switches, routers, and access points to establish a live inventory of network connections and enforce control over network access. FortiNAC identifies, validates, and controls every connection before granting access. COMPREHENSIVE DEVICE AND USER VISIBILITYAs a result of BYOD and IoT proliferation, security teams must now protect countless devices that aren’t owned, managed, or updated by corporate IT. FortiNAC addresses this challenge in a couple of different ways. First, it enables detailed profiling of even headless devices using multiple information and behavior sources to accurately identify everythingon the network. Comprehensive agentless scanning automatically discovers endpoints, classifies them by type, and determines if the device is corporate-issued or employee-owned. Second, the user is also identified in order to apply additional role-based policies. HIGHLIGHTSnn Comprehensive network visibilitynn Profiles and classifies all devices and usersnn Provides policy-based access controlsnn Extends dynamic segmentationto third-party devicesnn Orchestrates automated threat responsesnn Contains potential threats in seconds nn Simplifies guest access and onboardingnn Low TCO—maximizes existing security investmentsSOLUTION BRIEF: FORTINAC AND THE FORTINET SECURITY FABRICMacintosh HD:Users:bhoulihan:Documents:_Projects:Solution Brief:Solution Brief - FortiNAC:sb-fortiNAC:sb-fortiNACCopyright © 2018 Fortinet, Inc. All rights reserved. Fortinet , FortiGate , FortiCare and FortiGuard , and certain other marks are registered trademarks of Fortinet, Inc., and other Fortinet names herein may also be registered and/or common law trademarks of Fortinet. All other product or company names may be trademarks of their respective owners. Performance and other metrics contained herein were attained in internal lab tests under ideal conditions, and actual performance and other results may vary. Network variables, different network environments and other conditions may affect performance results. Nothing herein represents any binding commitment by Fortinet, and Fortinet disclaims all warranties, whether express or implied, except to the extent Fortinet enters a binding written contract, signed by Fortinet’s General Counsel, with a purchaser that expressly warrants that the identified product will perform according to certain expressly-identified performance metrics and, in such event, only the specific performance metrics expressly identified in such binding written contract shall be binding on Fortinet. For absolute clarity, any such warranty will be limited to performance in the same ideal conditions as in Fortinet’s internal lab tests. Fortinet disclaims in full any covenants, representations, and guarantees pursuant hereto, whether express or implied. Fortinet reserves the right to change, modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable. Fortinet disclaims in full any covenants, representations, and guarantees pursuant hereto, whether express or implied. Fortinet reserves the right to change, modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable.GLOBAL HEADQUARTERS Fortinet Inc.899 Kifer RoadSunnyvale, CA 94086United StatesTel: +/salesEMEA SALES OFFICE 905 rue Albert Einstein 06560 Valbonne FranceTel: +33.4.8987.0500APAC SALES OFFICE8 Temasek Boulevard #12-01Suntec Tower Three Singapore 038988Tel: +65-6395-7899Fax: +65-6295-0015LATIN AMERICA HEADQUARTERS Sawgrass Lakes Center13450 W. Sunrise Blvd., Suite 430Sunrise, FL 33323Tel: +1.954.368.9990August 31, 2018 12:32 PMDYNAMIC NETWORK CONTROLOnce devices and users are identified, FortiNAC assigns the appropriate level of access while restricting use of non-relatedcontent. This dynamic, role-based system logically creates detailed network segments by grouping applications and like data together to limit access to specific groups of users. In this manner, if a device is compromised, its ability to travel in the network and attack other assets will be limited. Security Fabric integration allows FortiNAC to implement segmentation policies and change configurations on switches and wireless products, including solutions from more than 70 different vendors.FortiNAC also streamlines the secure registration process of guest users while keeping them safely away from any parts of the network containing sensitive data. When appropriate, users can self-register their own devices (laptops, tablets, or smartphones), shifting the workload away from IT staff.AUTOMA TED RESPONSIVENESSAutomation is the “holy grail” of an integrated security architecture. Policy-based automated security actions help Security Fabric solutions share real-time intelligence to contain potential threats before they can spread. FortiNAC offers a broad and customizable set of automation policies that can instantly trigger containment settings in other Security Fabric elements such as FortiGate, FortiSwitch, or FortiAP when a targeted behavior is observed. This extends to all Fabric-integrated products, including third-party solutions.Potential threats are contained by isolating suspect users and vulnerable devices, or by enforcing a range of responsive actions. This in turn reduces containment times from days to seconds—while helping to maintain compliance with increasingly strict standards, regulations, and privacy laws.HOW IT WORKSAs an integrated Security Fabric solution, FortiNAC helps to provide additional layers of protection against device-borne threats. For example, if a customer is using FortiSIEM, FortiNAC providescomplete visibility and policy-based control for network, mobile, and IoT devices, while FortiSIEM provides the security intelligence. FortiNAC offers complete visibility into all of these devices, gathers the alerts, and provides the contextual information—the who, what, where, and when for the events. This increases the fidelity of the alerts and enables accurate triage.FortiNAC sends the event to FortiSIEM to ingest the alert, then FortiSIEM directs FortiNAC to restrict or quarantine the device if necessary. FortiSIEM and FortiNAC communicate back and forth to compile all relevant information and deliver it to a security analyst.。
存储HCIP模考试题与答案
存储HCIP模考试题与答案一、单选题(共38题,每题1分,共38分)1.某应用的数据初始容量是 500GB.,备份频率是每周 1 次全备,6 次增备,全备和增备的数据保存周期均为 4 周,冗余比为 20%。
则 4 周的后端存储容量为:A、3320GB.B、3504GB.C、4380GB.D、5256GB.正确答案:D2.以下哪个不是 NAS 系统的体系结构中必须包含的组件?A、可访问的磁盘阵列B、文件系统C、访问文件系统的接口D、访问文件系统的业务接口正确答案:D3.华为主备容灾方案信息调研三要素不包括哪一项?A、项目背景B、客户需求与提炼C、项目实施计划D、现网环境确认正确答案:C4.以下哪个不是华为 WushanFS 文件系统的特点A、性能和容量可单独扩展B、全对称分布式架构,有元数据节点C、元数据均匀分散,消除了元数据节点性能瓶颈D、支持 40PB 单一文件系统正确答案:B5.站点 A 需要的存储容量为 2543GB.,站点 B 需要的存储容量为3000GB.,站点 B 的备份数据远程复制到站点 A保存。
考虑复制压缩的情况,压缩比为 3,计算站点 A 需要的后端存储容量是多大?A、3543GB.B、4644GB.C、3865GB.D、4549GB.正确答案:A6.关于华为 Oceanstor 9000 各种类型节点下硬盘的性能,由高到低的排序正确的是哪一项?A、P25 Node SSD 硬盘-〉P25 Node SAS 硬盘-〉P12 SATA 硬盘-〉P36 Node SATA 硬盘-〉C36 SATA 硬盘B、P25 Node SSD 硬盘-〉P25 Node SAS 硬盘-〉P12 SATA 硬盘-〉C36 SATA 硬盘C、P25 Node SSD 硬盘-〉P25 Node SAS 硬盘-〉P36 Node SATA 硬盘-〉P12 SATA 硬盘-〉C36 SATA 硬盘D、P25 Node SSD 硬盘-〉P25 Node SAS 硬盘-〉P36 Node SATA 硬盘-〉C36 SATA 硬盘-〉P12 SATA 硬盘正确答案:C7.关于华为 Oceanstor 9000 软件模块的描述不正确的事哪一项?A、OBS(Object-Based Store)为文件系统元数据和文件数据提供可靠性的对象存储功能B、CA(Chent Agent)负责 NFS/CIFS/FTP 等应用协议的语义解析,并发送给底层模块处理C、快照、分级存储、远程复制等多种增值特性功能是由 PVS 模块提供的D、MDS(MetaData Service)管理文件系统的元数据,系统的每一个节点存储可所以元数据正确答案:D8.下面属于华为存储 danger 类型的高危命令的时哪个命令?A、reboot systemB、import configuration_dataC、show alarmD、chang alarm clear sequence list=3424正确答案:A9.华为 Oceanstor 9000 系统提供的文件共享借口不包括以下哪个选项?A、ObjectB、NFSC、CIFSD、FTP正确答案:A10.以下哪个选项不属于 oceanstor toolkit 工具的功能?A、数据迁移功能B、升级功能C、部署功能D、维护功能正确答案:A11.某用户用 Systemreporter 分析其生产设备 Oceanstor 9000 时发现某分区的部分节点 CPU 利用率超过 80%,但平均CPU 利用率约为 50%,另外发现某个节点的读写带宽始终保持在性能规格的 80%以上,其他节点则均在 60%以下,该场景下,推荐使用如下哪种负载均衡策略?A、轮循方式B、按 CPU 利用率C、按节点吞吐量D、按节点综合负致正确答案:D12.下列选项中关于对象存储服务(兼容 OpenStack Swift 接口) 概念描述错误的是:A、Account 就是资源的所有者和管理者,使用Account 可以对Container 进行增、删、查、配置属性等操作,也可以对 Object 进行上传、下载、查询等操作。
做RAID时Write Policy,Read Policy,Cache Policy如何配置
Read-ahead(预读)启用逻辑驱动器的SCSI预读功能。
可将此参数设为No-Read-Ahead(非预读)、Read-ahead(预读)或Adaptive(自适应)。
默认设置为Adaptive(自适应)。
*No-Read-Ahead(非预读)指定控制器在当前逻辑驱动器中不使用预读方式。
*Read-ahead(预读)指定控制器在当前逻辑驱动器中使用预读方式。
*Adaptive(自适应)指定如果最近两次的磁盘访问出现在连续的扇区内,则控制器开始采用Read-ahead(预读)。
如果所有的读取请求都是随机的,则该算法回复到No-Read-Ahead(非预读),但仍要判断所有的读取请求是否有按顺序操作的可能。
Cache Policy(高速缓存策略)适合在特定逻辑驱动器上读取。
它并不影响Read ahead(预读)高速缓存。
*Cached I/O(高速缓存I/O)指定所有读取数据在高速缓存存储器中缓存。
*Direct I/O(直接I/O)指定读取数据不在高速缓存存储器中缓存。
此为默认设置。
它不会代替高速缓存策略设置。
数据被同时传送到高速缓存和主机。
如果再次读取同一数据块,则从高速缓存存储器读取Write Policy(写入策略)将高速缓存方法设置为回写或通过写。
*在Write-back(回写)高速缓存中,当控制器高速缓存已接收到某个事务中的所有数据时,该控制器将数据传输完成信号发送给主机。
*在Write-through(通过写)高速缓存中,当磁盘子系统已接收到一个事务中的所有数据时,该控制器将数据传输完成信号发送给主机。
Write-through(通过写)高速缓存与Write-back(回写)高速缓存相比具有数据安全的优势,但Write-back(回写)高速缓存比起Write-through(通过写)又有性能上的优势。
ceph 集群配置iscsi的操作步骤 -回复
ceph 集群配置iscsi的操作步骤-回复Ceph是一种开源的分布式对象存储系统,它提供了高可靠性、高可扩展性以及高性能的存储解决方案。
在Ceph集群中,我们可以配置iSCSI (Internet Small Computer System Interface)来提供块级存储服务。
本文将提供一步一步的操作步骤,以帮助您配置Ceph集群以支持iSCSI。
在开始之前,确保您已经搭建好了一个Ceph集群,并配置好了适当的硬件设备。
如果您还没有完成这些步骤,您可以参考Ceph官方文档来进行安装和配置。
以下是配置Ceph集群以支持iSCSI的操作步骤:1. 检查iSCSI支持:首先,您需要确保Ceph集群的所有节点都支持iSCSI。
您可以通过运行以下命令来检查内核模块是否加载:lsmod grep rbdlsmod grep target如果返回的结果为空,则需要加载相应的内核模块。
您可以使用modprobe命令来加载内核模块:modprobe rbdmodprobe target_core_user2. 创建iSCSI池:要使用iSCSI,您需要先创建一个用于存储iSCSI卷的池。
您可以使用以下命令在Ceph集群中创建一个新的池:ceph osd pool create iscsi 128 128其中,"iscsi"是池的名称,"128"是最小数量的副本数,"128"是最大数量的副本数。
3. 创建iSCSI卷:一旦您创建了iSCSI池,就可以在其中创建iSCSI卷。
您可以使用以下命令在Ceph集群中创建一个新的iSCSI卷:rbd create iscsi/myvolume size 10G pool iscsi其中,"iscsi/myvolume"是卷的名称,"size 10G"表示卷的大小为10GB,"pool iscsi"表示卷将存储在名为"iscsi"的池中。
多Cache一致性目录协议监听协议
多Cache一致性目录协议监听协议协议名称:多Cache一致性目录协议监听协议1. 引言本协议旨在定义多Cache一致性目录协议(Multi-Cache Coherence Directory Protocol)的监听协议,以确保多个Cache之间的数据一致性和协同操作。
监听协议是指在多Cache系统中,各个Cache之间通过监听其他Cache的操作来实现一致性目录的更新和维护。
2. 监听协议的目的监听协议的目的是确保多Cache系统中的一致性目录能够及时更新,并保持一致性。
通过监听其他Cache的操作,可以实现以下目标:- 检测其他Cache的读写操作,以更新一致性目录中的数据状态- 监听其他Cache的写入操作,以更新本地Cache中的数据- 同步各个Cache之间的数据,保持数据的一致性3. 监听协议的基本原则本监听协议遵循以下基本原则:- 监听是异步的,各个Cache之间通过消息传递来实现监听- 监听的优先级是有序的,按照一定的优先级顺序处理监听消息- 监听的粒度是细粒度的,即对于每个数据块都进行监听- 监听的操作是可配置的,可以根据具体需求配置监听的操作类型(读、写、失效等)4. 监听协议的实现步骤本监听协议的实现步骤如下:4.1 注册监听每个Cache在加入多Cache系统时,需要向一致性目录注册自己,并申请监听其他Cache的权限。
注册时需要提供Cache的唯一标识符和监听权限的配置信息。
4.2 监听消息的传递4.2.1 监听消息的格式监听消息的格式包括:消息类型、源Cache标识符、目标Cache标识符、数据块地址等信息。
消息类型包括读请求、写请求、失效请求等。
4.2.2 监听消息的传递方式监听消息通过消息传递机制在各个Cache之间传递。
可以使用广播、点对点等方式传递消息,具体方式根据系统需求进行配置。
4.3 监听消息的处理4.3.1 监听消息的接收与解析每个Cache需要实现监听消息的接收和解析功能,根据接收到的消息类型进行相应的处理。
vsan参数
vsan参数VSAN(Virtual Storage Area Network)是一种虚拟化存储技术,提供分布式存储功能,并将多个物理存储设备组合成一个虚拟存储池。
这里主要介绍一些与VSAN相关的常见参数:1.存储策略(Storage Policy):VSAN提供了灵活的存储策略设置,可根据应用需求对存储资源进行分配和管理。
存储策略包括冗余级别、性能策略、缓存策略等参数。
2.冗余级别(RAID Level):冗余级别指定了数据在VSAN集群中的冗余方式。
常见的冗余级别包括RAID 1、RAID 5、RAID 6等。
不同的冗余级别提供不同的容错能力和性能特征。
3.缓存策略(Cache Policy):VSAN使用缓存来提高存储性能。
通过设置缓存策略,可以指定将哪些数据存储在缓存中,以加速对数据的访问。
4.存储容量(Storage Capacity):存储容量是指可用于存储数据的总空间。
VSAN允许将多个物理存储设备汇集为一个虚拟存储池,因此存储容量可以根据需要进行扩展和调整。
5.数据亲和性(Data Affinity):数据亲和性是指将特定的虚拟机与特定的存储设备相关联的能力。
通过设置数据亲和性,可以将关键应用的数据存储在性能更高的存储设备上,以提高应用的性能和可靠性。
6.QoS(Quality of Service):VSAN提供了QoS功能,可以对不同虚拟机、虚拟磁盘或虚拟机文件设置不同的性能限制,以确保关键应用的性能。
这些参数可以根据具体环境和需求进行配置和调整,以实现数据存储的可靠性、性能和灵活性。
华为 LACP主备模式
调试命令:
Displayinterfaceeth-trunkX查看汇聚组状态及组成员状态。
设置汇聚组模式为lacp静态模式
[quidway_9312-Eth-Trunk1]lacp timeout fast
开启lacp快速超时机机制
步骤二:
为汇聚组1添加组成员:
配置方法
命令注解
<quidway_9312>sys
进入系统视图
[quidway_9312]interface xg0/0/1
进入xg0/0/1接口视图
将xg0/0/2加入到eth-trunk 1组中
步聚三:
配置9312系统lacp优先级。
配置方法
命令注解
<quidway_9312>sys
进入系统视图
[quidway_9312]lacp priority100
配置9312 LACP系统优先级为100(高)
步聚四:
配置汇聚组1最大活路链路条目。
配置方法
命令注解
<quidway_9312>sys
进入系统视图
[quidway_9312]interface eth-trunk 1
进入汇聚组eth-trunk1接口视图
[quidway_9312-Eth-Trunk1]maxandwidth-affected-linknumber1
设置汇聚组1最大活跃链路数为1
LACP
网络调整方案
拟调制拓扑:
为实现网络带宽冗备及故障时快速收敛需做如下配置:
步骤一:
在9312上创建汇聚组1。
配置方法
命令注解
<quidway_9312>sys
2021年华为5G认证考试题库(含答案)
2021年华为5G认证考试题库(含答案)单选题(总共182题)1.NSA网络中,以下哪一层的统计最接近用户的体验速率?A、RRC层B、RLC层C、物理层D、PDCP层答案:D2.在NSA组网中,以下哪个定时器或常量不会用于下行链路检测?A、T301B、T310C、N300D、N310答案:C3.一NR小区SSB波束采用默认模式,天线挂高35米,机械下倾角为3°,数字下倾配置为0°,则此小区主覆盖波瓣的下沿(近点)距离基站大约是多少米?A、1200米B、330米C、150米D、670米答案:B4.NSA架构中,B1事件的门限值是如何发给UE的? A、通过Pss/SssB、通过RRC重配置信令C、通过OSI消息D、通过PBCH广播答案:B5.以下哪项是NR中的基本调度单位?A、REB、REGC、CCED、PRB答案:D6.如果出现了NSA接入失败,以下哪类问题可以通过性能指标做统计,并且可以统计相应的失败原因?A、eNodeB不发起gNodeB添加B、gNodeB拒绝添加请求C、UE无MR上报D、UE在eNodeB侧随机接入失败答案:B7.在切换准备过程中,源小区基于以下哪个参数确定切换的目标小区?A、频点B、NCGIC、PCID、TAC答案:C8.以下关于下行频率资源分配的描述,错误的是哪项?A、支持type0和type1两种分配方式B、type0是RBG粒度的分配方式,支持非连续分配和连续分配C、type0是RB粒度的分配方式,仅支持非连续分配D、type1是RB粒度的分配方式,仅支持连续分配答案:C9.5GRAN2.164T64R的AAU可以最多支持多少种广播波束场景配置?A、17B、3C、8D、5答案:A10.在NR用户上行速率测试中,对2T4R的终端,建议“上行最大MIMO层数”建议配置为以下哪项?A、Laver2B、Laver1C、Layer3D、Layer4答案:A11.以下哪种SRS的资源仅用于高频组网?A、NoncodebookB、BeammanagementC、CodebookD、Antennaswitching答案:D12.在NR辅站变更成功后,MeNodeB会通知MME以下哪条信令?A、PathUpdateProcedureB、RRCConnectionReconfigurationpleteC、SgNBInformationTransferD、SgNBReconfigurationplete答案:A13.做5G的C波段上行链路估算时,UE的发射功率一般为多少?A、26dBmB、30dBmC、33dBmD、23dBm答案:D14.如果需要开启干扰随机化调度,那么站内三个小区的PCI需要满足什么原则A、PCImod3错开B、PCImod8错开C、PCImod6错开D、PCImod4错开答案:A15.在NSA接入过程中,如果gNodeB收到了“additionrequest”消息,但是没有回复任何消息,以下哪项是可能的原因?(单选)A、gNodeB检测到X2链路故障B、无线资源不足C、gNodeB检测到s1链路故障D、License资源不足答案:A16.在同频切换的A3事件参数中,以下哪个参数不能基于QCI进行单独配置?A、A3偏置B、邻区偏置(CIO)C、A3幅度迟滞D、A3时间迟滞答案:B17.以下信道或信号中,发射功率跟随PUSCH的是哪项?A、PUCCHB、PUSCHC、PRACHD、SRS答案:A18.以下关于最小速率保障的描述,错误的是哪项?A、如果当前业务平均速率高于最小保障速率,基站会降低调度优先级B、如果当前业务平均速率低于最小保障速率,基站会提升调度优先级C、该参数不是3GPP规范的标准参数D、该参数是用于non-GBR业务答案:B19.Rel15版本中,5GPUSCH的最大码字数是多少个?A、4B、2C、1D、3答案:C20.以下关于SSB波束数量的描述,A、低频场景最个B、SA组网下,实际的波束数量通过SIB1消息下发C、最大的波束数量只和频段因素相关D、高频场景最4个答案:A21.在SIB1消息中,如果前导期望功率为-100dbm,SSB发射功率为18dbm,当前RSRP为-90dbm,那么终端第一个PRACH的前导发射功率是多少?A、10dBmB、-108dBmC、8dBmD、-118dBm答案:C22.针对60KHZ的SCS配置,一个无线帧中包含了多少个时隙?B、80C、160D、20答案:A23.RAN3.0,异频切换使用那个事件触发?A、A3B、A4C、A5D、A6答案:C24.在NR组网下,为了用户能获得接近上行最高速率,其MCS值最低要求应该是多少?A、16B、32C、25D、2025.以下关于PRACH的Scs描述,错误的是哪一项?A、短格式PRACH的SCS必须和PUSCHI的Scs一样B、长格式PRACH的SCs和PUSCH的scs一定不一样C、长格式PRACH采用固定的Scs,无法配置D、短格式PRACH的SCS可以配置,通过SIB1消息下发答案:A26.在5GC中,以下哪个模块用于用户的鉴权管理?A、ANFB、AUSFC、PCFD、SMF答案:B27.为了解决NR网络深度覆盖的问题,以下哪项措施是不可取的? A、采用低频段组网B、使用Lampsite提供室分覆盖C、增加NR系统带宽D、增加AAU发射功率答案:C28.NR触发A3事件的条件是以下哪项?A、Mn+Ofn-Hys>Ms+Ofs+OffB、Mn+Ofn+Ocn>Ms+Ofs+OcsC、Mn+Ofn+Ocn+HysD、Mn+Ofn+ocn-Hys>Ms+Ofs+Ocs+off答案:D29.在同频小区重选过程中,如果想实现终端从服务小区到某个特定邻区重选更容易,那么该如何修改参数?A、增加QoffsetB、增加QhystC、减小QoffsetD、诚小Qhyst答案:C30.以下哪种SCs不允许用于SSB?A、60KHzB、30KHzC、120KHzD、15KHz答案:A31.在NSA组网中,如果在eNodeb例配置的5GSSB频点和实际的不一致,会出现以下哪个问题?A、gnodeb拒地添加请求B、enodeb无法下发NR的测量配置C、UE随机接入失败D、UE无法上报5G测量结果答案:C32.以下关于PRACH虚警的描述,正确的是哪一项?A、U2020可以支持PRACH根序列冲突检测功能,降低虚警概率B、只要邻区之间PRACH信道时频位置相同,就会导致根序列冲突C、如有PRACH虚警问题,可以调整PRACH功控参数解决虚警问题D、只要邻区之间的PRACH前导序列有重复,就会导致根序列冲突答案:A33.5GCPE接收机的NoiseFigure(NF)典型值为哪项?A、1dBB、5dBC、7dbD、3dB答案:C34.gNOdeB通过PDCCH的DCI格式Uo/U1调整TPC取值,DCI长度是多少? A、4bitB、2bitC、3bitD、1bit答案:B35.64T64RAA支持的NR广播波束的水平3dB波宽,最大可以支持多少?A、65°B、90°C、45°D、110°答案:D36.每个终端最大可以配置多少个专用BWP?A、2个B、8个C、4个D、16个答案:C37.如果采用32T32R.100MHz带宽,MU-MIMO8流场景下,使用eCPRI接口所需要的带宽是多少?A、25GbpsB、50GbpsC、10GbpsD、100Gbps答案:C38.以下哪种UCI信息只能通过周期的PUCCH资源进行发送?A、PMIB、SRC、CQID、ACK-NACK答案:B39.NSA锚点切换流程中使用的是以下哪种事件报告?A、A4B、A3C、A5D、A6答案:B40.以下哪个参数不会出现在SCG的配置消息中?A、T304B、RSRP最小接收电平C、SSB发射功率D、SSB频点答案:C41.以下哪个场景属于NR基于非竞争的随机接入?A、初始RRC连接建立B、波束恢复C、RRC连接重建D、上行数据到达答案:B42.在NSA组网中,如果只有5G发送了掉话,那么终端收到的空口消息是以下哪条?A、RRCReleaseB、RRCReconfigurationC、SCGFailueInfoD、RRCReestablishment答案:C43.gNodeB根据UE上报的CQI,将其转换为几位长的MCS?A、4bitB、3bitC、2bitD、5bit44.在PDU会话建立过程中,以下哪个模块负责PCF的选择?A、AUSFB、SMFC、NSSFD、AMF答案:B45.在5G异频重选流程中,终端通过哪个消息获取异频的重选优先级?A、SIB2B、SIB3C、SIB4D、SIB5答案:C46.55SA组网中,以下哪种RC状态转换流程是不支持的?A、RC空闲到RRC连接B、RRC去激活到RRC空闲C、RRC空闲到RRC去激活D、RRC去激活到RRC连接答案:C47.5G中上行一共定义多少个逻辑信道组?A、4B、2D、8答案:D48.如果小区最大发射功率为100W,SCS=30kHZ,带宽为100MHZ,乘用64T64R 的AAU,那么小区基准功率大约为多少?A、31.9dBmB、-3.3dbmC、0dbmD、34dbm答案:B49.MIB消,息中的哪个参数指示了CORRESETO的时域位置?A、ssb-subcarrieroffsetB、systemframemumbetC、PDCCH-configSIB1高4位D、PDCCH-configSIB1低4位答案:C50.以下哪项不是对CPE做NR下行峰值调测时的建议操作?A、时隙配比设置为4:1B、调制阶数设置支持256QAMMIMO层数设置为4流D、把CPE终端放置在离AAU两米处答案:D51.以下几类数传问题中,哪一项不仅仅是空口质量的问题造成的?A、调度次数低B、IBLER高C、RAK低D、MCS低答案:A52.NR小区中,以下哪个指标可以反映UE业务态的覆盖情况?A、SSBRSRPB、CSIRSRPC、PDSCHRSRPD、CSISINR答案:B53.如果NR广播波束配置成水平3dB为65度波束,则对64T64R的AAU来说。
多核处理器cache一致性技术综述
多核处理器cache一致性技术综述摘要:本文介绍了实现多核处理器cache一致性的基本实现技术,并分析了其存在的问题。
根据存在的问题,介绍了几种最新的解决方案。
关键词:cache 一致性监听协议目录协议性能能耗1 基本实现技术:实现cache一致性的关键在于跟踪所有共享数据块的状态。
目前广泛采用的有以下2种协议,它们分别使用不同的技术跟踪共享数据:1.监听协议( Snooping)处理器在私有的缓存中保存共享数据的复本。
同时处理器对总线进行监听,如果总线上的请求与自己相关,则进行处理,否则忽略总线请求信号。
2.目录式(Directory based)使用目录来存放各节点cache中共享数据的信息,把cache一致性请求只发给存放有相应数据块的节点,从而支持cache的一致性。
下面分别就监听协议和目录协议做简单的介绍:1.1 监听协议监听协议通过总线监听机制实现cache和共享内存之间的数据一致性。
因为其可以通过内存的总线来查询cache的状态。
所以监听协议是目前多核处理器主要采用的一致性技术。
监听协议有两种。
一种称为写无效协议(write invalidate protocol) ,它在处理器写数据块之前通过总线广播使其它该数据的共享复本(主要存储在其它处理器的私有缓存中)变为无效,以保证该处理器能独占访问数据块,实现一致性。
另一种称为写更新(write update) ,它在处理器写入数据块时更新该数据块所有的副本。
因为在基于总线的多核处理器中总线和内存带宽是最紧张的资源,而写无效协议不会给总线和内存带来太大的压力,所以目前处理器实现主要都是应用写无效协议。
读请求:如果处理器在私有缓存中找到数据块,则读取数据块。
如果没有找到数据块,它向总线广播读缺失请求。
其它处理器监听到读缺失请求,则检查对应地址数据块状态:无效状态下,向总线发读缺失,总线向内存请求数据块;共享状态下,直接把数据发送给请求处理器;独占状态下,远端处理器节点把数据回写,状态改为共享,并将数据块发送给请求处理器。
bcache状态配置文件详细介绍(翻译自官网)
bcache状态配置⽂件详细介绍(翻译⾃官⽹)声明:⽂中斜体带下划线的段落为翻译不够准确的段落原⽂:官⽹:什么是bcache bcache是linux内核块层cache.它使⽤类似SSD来作为HDD硬盘的cache,从⽽起到加速作⽤。
HDD硬盘便宜并且空间更⼤,SSD速度快但更贵。
如果能两者兼得,岂不快哉?bcache能做到。
bcache使⽤SSD作为其他块设备cache.类似ZFS的L2Arc,但bcache还增加了写回策略,并且是与⽂件系统⽆关的。
bcache被设计成只需要最⼩的代价,⽆需配置就能在所有环境中⼯作。
默认状态下bcache不缓存顺序IO,只缓存随机读写。
bcache适⽤于桌⾯、服务器,⾼级存储阵列,甚⾄是嵌⼊式环境。
设计bcache⽬标是让被缓存设备与SSD⼀样快(包括缓存命中、缓存不命中、透写和回写)。
现在还未达到初衷,特别是顺序写。
同时测试结果表明离⽬标很接近,甚⾄有些情况下表现更好,例如随机写。
bcache是数据安全的。
对于写回策略缓存来说,可靠性是⾮常重要的,出错就意味着丢失数据。
bcache是⽤电池备份阵列控制器的替代选择,同时也要求bcache在异常掉电时也是数据安全的。
对于写⽽⾔,必须在所有数据写到可靠介质之后才能向上层返回写成功。
如果在写⼀个⼤⽂件时掉电了,则写⼊是失败的。
异常掉电数据安全是指 cache 中的脏数据是不会丢的,不像内存中的脏数据掉电就没了。
bcache性能设计⽬标是等同于SSD.最⼤程度上去最⼩化写放⼤,并避免随机写。
bcache将随机写转换为顺序写,⾸先写到SSD,然后回写缓存使⽤SSD缓存⼤量的写,最后将写有序写到磁盘或者阵列上。
对于RAID6阵列,随机写性能很差,还要花费不菲的价格购买带有电池保护的阵列控制器。
现在有了bcache,你就可以直接使⽤linux⾃带的优秀软RAID,甚⾄可以在更廉价的硬件上获取更⾼的随机写性能。
特性:1、⼀个缓存设备可以作为多个设备的缓存,并且可以在设备运⾏时动态添加和删除缓存。
iscsi缓存机制
iscsi缓存机制
iSCSI(Internet Small Computer System Interface)是一种用于在IP网络上传输SCSI命令的协议。
在iSCSI中,缓存机制是
指在数据传输过程中用于临时存储数据的一种技术。
iSCSI缓存机
制可以提高数据传输的效率和性能,同时也能减少对存储设备的访
问次数,从而减轻存储设备的负担。
在iSCSI中,缓存机制通常包括两种类型,主机端缓存和存储
设备端缓存。
主机端缓存是指在iSCSI Initiator(发起者)端用
于临时存储传输数据的缓存,而存储设备端缓存是指在iSCSI
Target(目标)端用于临时存储接收数据的缓存。
主机端缓存可以通过提前将数据存储在本地磁盘中,以减少对
网络的依赖,从而提高数据传输的效率。
此外,主机端缓存还可以
通过缓存最近访问的数据块来加速对存储设备的访问。
然而,需要
注意的是,主机端缓存也可能导致数据一致性和数据安全性的问题,因此在使用主机端缓存时需要谨慎处理。
存储设备端缓存则可以通过缓存接收到的数据来提高存储设备
的性能。
存储设备端缓存通常用于缓存热点数据,以加速对热点数
据的访问。
然而,存储设备端缓存也可能导致数据一致性和数据安全性的问题,因此在使用存储设备端缓存时同样需要谨慎处理。
总的来说,iSCSI缓存机制可以通过在数据传输过程中临时存储数据来提高数据传输的效率和性能,但同时也需要注意处理数据一致性和数据安全性的问题。
在实际应用中,需要根据具体的需求和环境来选择合适的缓存策略,以达到最佳的性能和可靠性。
如何优化服务器存储性能RAID配置和缓存策略
如何优化服务器存储性能RAID配置和缓存策略如何优化服务器存储性能:RAID配置和缓存策略在当今信息技术高速发展的背景下,服务器的存储性能优化显得尤为重要。
在服务器的存储性能优化中,RAID配置和缓存策略是两个关键要素。
本文将详细讨论如何优化服务器存储性能,包括RAID配置和缓存策略的选择和优化。
一、RAID配置优化RAID,即独立磁盘冗余阵列,是一种通过将多个磁盘驱动器组合起来以提供更高数据传输效率和数据冗余的技术。
以下是一些优化RAID配置的建议:1. 了解不同RAID级别的特点和适用场景:RAID 0、RAID 1、RAID 5、RAID 6等,不同的RAID级别在性能、容错能力和可用空间等方面有所不同。
根据实际需求选择最适合的RAID级别。
2. 均衡磁盘负载:将数据分散存储在多个硬盘上,可以提高数据的读写性能。
尽量避免将所有数据存储在同一块硬盘上,分散磁盘负载能够更好地利用存储设备的性能。
3. 选择高速磁盘驱动器:使用高速的固态硬盘(SSD)或者高转速的机械硬盘(HDD)可以显著提升RAID性能。
选择更快的硬盘驱动器能够加快数据的读写速度。
4. 合理管理RAID阵列的容量:不要将所有容量都用于数据存储,合理保留一部分容量供RAID控制器使用。
这可以提升系统的整体性能,确保RAID控制器能够更高效地运行。
二、缓存策略优化缓存是用于临时存储数据的高速存储器,可以提高数据读取和写入的效率。
以下是一些优化缓存策略的建议:1. 合理分配缓存空间:根据不同的应用程序需求,合理分配缓存空间,确保常用数据被缓存,从而提高读取性能。
不同的应用程序可能对缓存空间的需求有所不同,需要根据具体情况进行调整。
2. 使用读写缓存:通过使用读写缓存(read and write caching),可以将频繁访问的数据存储在缓存中,减少对主存储器的访问。
这可以显著提高读写操作的性能。
3. 考虑闪存缓存:闪存缓存是一种高速缓存技术,使用闪存作为缓存介质,可以提供更高的读写速度和更低的延迟时间。
一种基于磁盘块的持续数据保护系统
Micr ocomputer Applica tions Vol. 27, No. 4, 2011文章编号:1007-757X(2011)04-0030-04研究与设计微型电脑应用2011 年第 27 卷第 4期一种基于磁盘块的持续数据保护系统申远南,游录金,闫鹤,田怡萌摘 要:数据重要性不断提高,对数据保护提出了越来越高的要求。
基于数据的细粒度保护,以最小的时间代价和存储代价 来保护数据,并以最少的数据损失量来恢复数据,则是数据保护的追求目标。
针对此需求,提出并设计实现了一套基于磁盘 块的持续数据保护系统。
该系统高效而灵活地实现了 Windows 操作系统下的磁盘数据的保护。
测试表明,该系统在使用时 对正常的业务影响很小;在灾难发生后可以在较短的时候内将数据恢复至可用状态。
关键词:持续数据保护(CDP);iSCSI;Windows;快照 中图分类号:TP309.3 文献标识码:A0引言人类社会已进入信息时代, 越来越多的信息都以数字化 方式进行传输, 并由计算机进行处理和保存。
由于人为错误 操作、 计算机设备故障、 意外事故如火灾等都可能导致数据 的丢失,对数据进行保护则成为现代信息社会的根本需要。
目前数据备份仍然是使用最广泛的数据保护方式。
其基 本方法是定期把数据存储到后 备服务器。
由于这种以“ 固定 时间间隔” 进行备 份的保护方式的“ 间隔” 过长,会造成发生 事故时大量数据的丢失,而且恢复需时较长。
持续数据保护是一种最新发展的数据保护技术, 能够有 效克服传统备份技术的不足[1]。
它在不影响业务运行的前提 下,持续捕获目标数据所发生的改变, 并将其独立存放。
它 可以使系统将数据恢复到遭到破坏之前的任意一个时间点, 彻底消除 了传统备 份技术前一 次备份和 错误发生 时间中间 数据丢失的问题。
与传统技术相比, 它具有两个明显的优势: (1)可以 大大增加恢复时间点; (2)由于恢复 时间和恢复对象 的粒度更细,数据恢复也更加灵活。
高速缓存存储器的优化方案与配置建议(八)
高速缓存存储器的优化方案与配置建议在计算机系统中,高速缓存存储器(Cache)起着至关重要的作用。
它是位于处理器和主存之间的一层内存层次结构,用于存储最近被处理器访问过的数据和指令。
通过将数据和指令缓存到高速缓存中,可以大大加快数据访问速度,提高系统的整体性能。
然而,高速缓存的优化和合理的配置是一个复杂的问题,下面我将提出一些优化方案和配置建议。
一、缓存大小与命中率的关系高速缓存的大小对于系统性能有着重要的影响。
一般来说,缓存的大小越大,命中率(Cache Hit Rate)越高,系统性能越好。
但是,增大缓存的大小也会增加成本和能耗。
因此,在确定缓存大小时需要平衡性能需求和成本控制。
一种常见的做法是根据应用程序的访存特征和预算限制,通过实验和分析来确定合适的缓存大小。
二、高速缓存的替换策略当高速缓存已经满了,但需要缓存新的数据和指令时,就需要进行替换操作。
常见的替换策略有最近最少使用(LRU)、先进先出(FIFO)和随机替换(Random Replacement)等。
在实际应用中,选择合适的替换策略对于提高缓存的命中率至关重要。
最近最少使用是一种比较常用的替换策略。
它根据数据和指令的历史使用情况,将最近最少被使用的数据和指令替换出去。
这种策略可以很好地利用程序的局部性原理,提高缓存的命中率。
三、高速缓存的关联度与访问延迟的折衷高速缓存的关联度(Associativity)指的是数据和指令在缓存中的存储位置的选择空间。
一般有直接映射、全关联和组关联等不同的关联度选择方式。
不同的关联度选择方式对于缓存的性能和实现难度有不同的影响。
直接映射缓存是最简单的形式,它将数据和指令按照某种映射函数映射到缓存的某一块。
这种方式的优点是实现简单,但缺点是容易产生冲突,导致较低的缓存命中率。
全关联缓存是最理想的方式,但也是最昂贵的。
组关联缓存则是直接映射和全关联之间的折中选择,通过将缓存划分为多个组,每个组包含多个块,可以在一定程度上提高命中率。
dynamic_reconfigure机制
dynamic_reconfigure机制dynamic_reconfigure是一种在ROS(机器人操作系统)中使用的动态参数配置机制。
它允许开发人员在运行时动态地修改机器人的参数,而无需重新编译和重新启动程序。
本文将介绍dynamic_reconfigure机制的原理和使用方法,并探讨其在机器人开发中的应用。
一、dynamic_reconfigure原理dynamic_reconfigure基于ROS的参数服务器和ROS节点之间的通信机制实现。
在ROS中,参数服务器允许开发人员以键值对的形式存储和获取参数。
而ROS节点则可以从参数服务器中读取参数,并根据参数的值来改变自身的行为。
dynamic_reconfigure利用参数服务器的特性,在运行时通过回调函数的方式来实时修改参数。
当开发人员通过ROS的命令行工具或图形界面工具修改参数时,参数服务器会通知与之相关联的节点,并触发相应的回调函数。
节点会重新读取参数的值,并根据新的值来更新自身的行为。
二、dynamic_reconfigure使用方法1. 定义参数在使用dynamic_reconfigure之前,我们首先需要在ROS包中定义参数。
可以通过在cfg文件夹下创建一个参数配置文件来实现。
参数配置文件使用INI文件的格式,其中包含参数的名称、数据类型、默认值等信息。
2. 生成配置库在定义好参数配置文件后,我们需要使用ROS的动态参数配置库来生成对应的配置库文件。
配置库文件是C++代码,包含了生成参数配置界面所需要的相关函数。
3. 编写节点在编写ROS节点程序时,我们需要添加与dynamic_reconfigure相关的代码。
首先,需要引入相关的头文件,并创建一个DynamicReconfigureServer对象。
然后,需要创建一个回调函数,在回调函数中处理参数变化的逻辑。
4. 启动参数配置节点在启动ROS节点之前,我们需要启动参数配置节点。
raid缓存策略
raid缓存策略
RAID(冗余磁盘阵列)缓存策略是指在RAID系统中对数据进行缓存的一种策略。
RAID系统通常会配备一个缓存模块,用于临时存储读取或写入的数据,以提高存储系统的性能和响应速度。
常见的RAID缓存策略包括:
1. 读取缓存(Read Cache):在读取操作中,缓存模块会将经常访问的数据块缓存到高速缓存中,以加快读取速度。
当有读取请求时,系统首先检查缓存中是否存在所需数据,如果存在则直接从缓存中读取,避免了访问磁盘的时间延迟。
2. 写入缓存(Write Cache):在写入操作中,缓存模块会先将数据写入到缓存中,而不是直接写入磁盘。
这样可以提高写入的性能,因为缓存写入速度更快且不受磁盘的慢速度限制。
然后在适当的时机将缓存中的数据一次性写入到磁盘中。
3. 写入回写(Write Back):一种写入缓存策略,即当数据写入缓存后,系统立即通知应用程序数据已经写入,不需要等待数据写入到磁盘。
然后在闲时或合适的时机,将缓存中的数据批量写入磁盘。
这种策略可以最大程度地提高写入性能,但也存在数据丢失的风险。
4. 写入直通(Write Through):一种写入缓存策略,即当数据写入缓存后,系统必须立即将数据写入到磁盘,然后才通知应用程序数据已经写入完成。
这种策略可以保证数据的一致性和
持久性,但写入的性能相对较低。
根据具体的需求和应用场景,可以根据RAID控制器的配置来选择合适的缓存策略。
精简配置存储
精简配置存储
佚名
【期刊名称】《网管员世界》
【年(卷),期】2008(000)006
【摘要】Dell EqualLogic PS5000系列存储阵列作为虚拟化数据中心的支柱,能够共享一个革命性的架构。
这一动态架构能够提供高级的存储功能,同步提升的性能与容量以及企业级管理特性。
戴尔EqualLogic架构采用iSCSI的连通性能够在任何基于IP的数据中心中创建灵活的虚拟化环境,支持动态卷创建及移除、自动精简配置、远程复制等功能,
【总页数】1页(P12)
【正文语种】中文
【中图分类】TP333
【相关文献】
1.存储的自动精简配置技术应用研究 [J], 邱红飞
2.自动精简配置存储技术在民航信息系统中的应用 [J], 王丽;林恩爱;王欣
3.精简配置存储 [J],
4.基于USB存储设备的显示信息配置方法及精简文件协议的实现 [J], 邓春健;李文生;傅瑜;吕燚;黄杰勇
5.按需扩展,降低成本——华为赛门铁克存储虚拟化产品VIS6000新增自动精简配置功能 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DYNAMIC CACHE RECONFIGURATION STRATEGIES FOR A CLUSTER-BASED STREAMING PROXYYang Guo,Zihui Ge,Bhuvan Urgaonkar,Prashant Shenoy,and Don Towsley Department of Computer ScienceUniversity of Massachusetts at AmherstAmherst,MA01002yguo,gezihui,bhuvan,shenoy,towsley@Abstract The high bandwidth and the relatively long-lived characteristics of digital video are key limiting factors in the wide-spread usage of streaming content over theInternet.The problem is further complicated by the fact that video popularitychanges over time.In this paper,we study caching issues for a cluster-basedstreaming proxy in the face of changing video popularity.We show that thecache placement problem for a given video popularity is NP-complete,andpropose the dynamicfirstfit(DFF)algorithm that give the results close to theoptimal cache placement.We then propose minimum weight perfect match-ing(MWPM)and swapping-based techniques that can dynamically reconfigurethe cache placement to adapt to changing video popularity with minimum copy-ing overhead.Our simulation results show that MWPM reconfiguration can re-duce the copying overhead by a factor of more than two,and that swapping-based reconfiguration can further reduce the copying overhead compared toMWPM,and allow for the tradeoffs between the reconfiguration copying over-head and the proxy bandwidth utilization.Keywords:Streaming proxy,Cache reconfiguration,Cluster-based1.IntroductionThe high bandwidth and the relatively long-lived characteristics of digitalvideo are key limiting factors in the wide-spread usage of streaming contentover the Internet.The problem is further complicated by the fact that video popularity changes over time.The use of a content distribution network(CDN)is one technique to alleviate these problems.CDNs cache partial or entireThis research was supported in part by the National Science Foundation under NSF grants EIA-0080119,ANI-0085848,CCR-9984030,ANI-9973092,ANI9977635,ANI-9977555,and CDA-9502639.Any opin-ions,findings,and conclusions or recomendations expressed in this material are those of the authors and donot necessarily reflect the views of the funding agencies.2videos at proxies deployed close to clients,and thereby reduce network and server load and provide better quality of service to end-clients[1–3].Due to the relatively large storage space and bandwidth needs of streaming media,a streaming CDN typically employs a cluster of proxies at each physical loca-tion.Each such cluster can collectively cache a larger number of objects and also serve clients with larger aggregate bandwidth needs.In this paper,we study caching issues for such a streaming proxy cluster in the face of changing video popularity.Each proxy within the cluster contains two important resources:storage (cache)space and bandwidth.Each videofile requires a certain amount of storage and bandwidth determined by its popularity.Assuming that videofiles are divided into objects,we study the cache placement problem,i.e.,whether to cache an object,and if we do,which component proxy to place it on so that the aggregate bandwidth requirement posed on the servers and the network is minimized.Furthermore,since video popularities vary over time(e.g.,many people wanted to watch the movie The Matrix again in preparation of the re-lease of its sequel The Matrix Reloaded causing it to be very popular for a few weeks),the optimal cache placement also changes with time.The proxy must be able to deal with dynamically varying popularities of videos and reconfigure the placement accordingly.In this paper,wefirst consider the offline version of the cache placement problem.We show that it is an NP-complete problem and draw parallels with a closely related packing problem,the-dimensional multiple knapsack prob-lem(-MKP)[4].Taking inspiration from heuristics for-MKP,we propose two heuristics—staticfirst-fit(SFF)and dynamicfirst-fit(DFF)—to map ob-jects to proxies based on their storage and bandwidth needs.We then propose two techniques to dynamically adjust the placement to accommodate changing video popularities.Our techniques attempt to minimize the copying overheads incurred when adjusting the placement.The minimum weight perfect match (MWPM)reconfiguration method minimize the copying overhead associated with such a placement reconfiguration by solving a bipartite matching problem. In order to further reduce the copying overhead,we propose swapping-based reconfiguration,which mimics the hill climbing approach[5]used in solving optimization problems.The swapping-based reconfiguration also naturally al-lows us to trade off proxy bandwidth utilization against copying overhead.We evaluate our techniques using simulation.Wefind that DFF gives a placement that is very close to the optimal cache placement,and that both DFF and SFF outperform a placement method that does not take bandwidth and stor-age requirements into account.We then examine the performance of MWPM reconfiguration,and show that it can reduce the copying overhead by a factor of more than two.Finally,we show that swapping-based reconfiguration can further reduce copying overhead relative to MWPM,and that further copyingDynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy13 overhead reduction can be achieved by decreasing the proxy bandwidth utiliza-tion.In summary,we study the dynamic cache reconfiguration problem for a cluster-based streaming proxy in the face of changing video popularities.Our contributions are twofold:We propose MWPM and swapping-based techniques that can reconfig-ure the cache placement dynamically to adapt to changing video popu-larity with minimum copying overhead.The remainder of the paper is organized as follows.In Section1.2,we de-scribe the architecture of a cluster-based streaming proxy.We formulate the optimal cache placement problem and present the baseline strategies in Sec-tion1.3.The techniques for dynamic reconfiguration of cache placement are presented in Section1.4.Section1.5is dedicated to performance evaluation. Section1.6includes the related work,and Section1.7concludes the paper.2.Architecture of cluster-based streaming proxyA cluster-based streaming proxy consists of a set of component proxies as shown in Fig. 1.These individual proxies are connected through a LAN or SAN,and are controlled by a coordinator residing on one of the machines.The coordinator provides an interface for clients and servers so that the cluster-based streaming proxy acts as a single machine proxy from the perspec-tive of clients and servers.In addition,the coordinator provides the following functionalities to the component proxies inside a cluster-based proxy.Monitor and estimate the popularity(access frequency)of multimedia objects.4LAN/SAN Storage space Component proxy... ...CoordinatorFigure 1.A cluster-based streaming proxyefficiently coordinating component proxies to provide requested service are significant problems in their own right,and lie beyond the scope of this paper.3.Optimal Cache PlacementIn this section,we investigate the optimal cache placement problem for a cluster-based streaming proxy for a given video popularity.We formulate this problem as an integer linear programming problem,and show that the problem is NP-complete.We then present two baseline heuristics for it.In Section 1.4,we will show how these baseline heuristics can be enhanced to realize dynamic cache reconfiguration with minimum copying overhead.Optimal Cache Placement:Problem FormulationConsider a cluster-based proxy with component proxies.Let and denote the available storage space and bandwidth at the -th component proxy.Suppose that the cluster-based proxy services a set of videos that are divided into distinct objects.Let and denote the storage space and bandwidth requirement of object .The proxy caches a subset of the objects to reduce the network bandwidth consumption on the path from remote servers to the proxy cluster.We focus on the problem of which objects to cache and where.Letbe a selection parameter that denotes whether object is cached at proxy —equals 1if proxy holds a copy of object and is zero otherwise.Further,let denote the amount of bandwidth reserved for object at proxy (indicates how much of the aggregate demand for the object is handled by component proxy ).The objective of caching objects at the proxy is to minimize the bandwidth consumption on the network path from the remote servers to the proxy,or equivalently,to maximize the share of the aggregateDynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy25 client requests that can be serviced using cached videos.The resulting optimal cache placement(O.C.P.)problem can be formulated as follows:(1)subject to:(2)(3)(4) where,,and.denotes the allocated proxy bandwidth.The solution to this problem yields values of and that completely describe the placement of objects and the bandwidth reserved for that object ata proxy.The solution may involve object replication across component proxiesto meet bandwidth needs.Further,some objects may not be cached at any proxy,if it is not advantageous to do so.The optimal cache placement(O.C.P)problem is NP-complete. The problem is NP-complete even if all objects are of the same size.The proof is included in the Appendix.Cache Placement HeuristicsWe note that O.C.P.is similar to the-dimensional multiple knapsack prob-lem(-MKP)[4].-MKP has one or more knapsacks that have capacities along two dimensions,and a number of items that have requirements alongtwo dimensions.Each item has a profit associated with it.The goal is to pack items into the knapsacks so as to maximize the profit yielded by the packed items,while the capacity constraints along both dimensions are maintained. The component proxies and video objects in O.C.P.may be viewed as akin tothe knapsacks and the items in-MKP respectively;the profits associated withthe video objects are their bandwidth requirements.However there is an impor-tant difference between the two problems—the requirements of an item along both directions in-MKP are indivisible meaning the item may be packed in exactly one knapsack;the bandwidth requirement of a video object in O.C.P.is divisible and may be met by replicating the object on multiple component proxies.Heuristics based on per-unit weight are frequently used for knapsack prob-lems.Consequently,we define the bandwidth-space ratio of object to be6(the ratio of the required bandwidth and the object size),and the bandwidth-space ratio of proxy to be.Static First-fit algorithm(SFF).Staticfirst-fit sorts proxies and objects in descending order of their bandwidth-space ratios.Each object(in descending order)is assigned to thefirst proxy(also in descending order)that has sufficient space to cache this object.If this proxy has sufficient bandwidth to service this object,the corresponding amount of bandwidth is reserved at the proxy,and the object is removed from the uncached object pool.On the other hand,if the proxy does not have sufficient bandwidth to service the object,the available bandwidth at the proxy is reserved for this object.The object is returned back into the un-cached object pool with the reserved bandwidth subtracted from its required bandwidth.The proxy is removed from the proxy pool since all of its bandwidth has been consumed.The algorithm is illustrated in Fig.2.Dynamicfirst-fit algorithm(DFF).DFF is similar to SFF,except that the bandwidth-space ratio of a component proxy is recomputed after an object is placed onto that proxy and proxies are resorted by their new bandwidth-space ratios(in SFF,the ratio is computed only once,at the beginning).The intuition behind DFF is that the effective bandwidth-space ratio of a proxy changes after an object is cached,and recomputing this ratio may result in a better overall placement.In fact,as we will see in Section1.5,DFF does perform better than SFF,and gives results close to the optimal cache placement.So far we have focused on the optimal cache placement withfixed storage and bandwidth needs of a set of objects.In practice,bandwidth needs of ob-jects vary over time due to changes in object popularities.The cache placement needs to be dynamically reconfigured in order to adapt to the changing popu-larities,e.g.,newly popular objects may need to brought in from the servers, and cold objects may need to be ejected.We denote the number of objects that need to be transmitted among component proxies and from servers to proxy as the copying overhead of cache reconfiguration.In the following section, we study how to realize the cache reconfiguration with the minimum copying overhead.4.Dynamic Cache ReconfigurationA straightforward technique for dynamic cache reconfiguration is to recom-pute the entire placement from scratch using DFF or SFF based on the newly measured popularities,and bring in the objects from neighboring component proxies or remote servers.We denote such cache reconfiguration approaches as simple DFF reconfiguration or simple SFF reconfiguration.These approaches may yield close-to-optimal bandwidth utilization.However,they may cause many objects to be moved across proxies,resulting in excessive copying over-head as indicated by the simulation experiments in Section1.5.Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy37 STATIC-FIRST-FIT(,)1.sort in descending order of bandwidth-spaceratio2.while(is not empty)3.object with highest bandwidth-space ratio4.for(proxy in the sorted order)5.if()6.;//cache object7.;8.if()9.10.11.remove object from12.else13.14.remove proxy from15.;16.return modified obj.into17.break;18.//end of if19.//end of for loop20.//end of while loopFigure2.Static First-fit Placement Algorithm.Denote by the collection of proxies that have bandwidth and space resources to provide caching service,and by the collection of objects that have not been cached,or need additional bandwidth.8In the following,we propose two cache reconfiguration techniques that can reduce the copying overhead by exploring the existing cache placement. Wefirst present the minimum weight perfect matching reconfiguration method (MWPM reconfiguration)by formulating the minimum copying overhead re-configuration problem as a minimum weight perfect matching on a bipartite graph.We then describe the swapping-based reconfiguration method that mimics the hill-climbing approach[5]used in solving optimization problems. The swapping-based reconfiguration naturally allows us to trade the proxy bandwidth utilization for the copying overhead.MWPM cache reconfigurationLet denote the proxies in the cluster.Let denote the current placement of objects onto the proxy cluster and let denote the new placement that is desired.There can be as many as ways to reconfigure the placement.Ideally,we would like to reconfigure the placement such that the cost of moving(copying)objects from one proxy to another or from the server to a proxy is minimized.The above problem is identical to the problem of computing the minimum weight perfect matching on a bipartite graph.To see why,we model the recon-figuration problem using a bipartite graph with two sets of vertices.The first set of of vertices represents the current placement.The second set of vertices represent the new placement.We add an edge between ver-tex of thefirst set and vertex of the second set if has enough space and bandwidth to accommodate all the objects placed on in.The weight of an edge represents the cost of transforming the current placement on the proxy represented by to the new placement represented by(the cost is governed by the number of new objects that must be fetched from another proxy or a remote server to obtain the new placement).To illustrate this process,consider the example in Figure3with two identi-cal proxies andfive objects.In the current placement,thefirst three objects are placed on and the remaining two objects on.The new placement involves placing on one proxy and on the other proxy. Since the two proxies are identical,we add edges between both pairs of vertices in the bipartite graph.This is because either proxy can accommodate all the objects placed on the other proxy by the new placement.The weights on the edges indicate the cost of transforming each proxy’s cache to one of these sets (e.g.,transforming’s cache from to involves one copy whereas transforming it to involves three copies;deletions are assumed to in-cur zero overhead).It can be shown thatfinding a minimum weight perfect match(MWPM)for this bipartite graph yields a transformation with minimum copying cost.A perfect match is one where there is a one-to-one mappingDynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy49 from vertices in the former set to the latter;a minimum weight perfect match minimizes the weights on the edges for this one-one mapping.Thus,in Fig. 3,leaving’s cache as is,and transforming’s cache from tois the minimum weight perfect matching with a copying cost of1.1,2,3 4,51,2,31,5 0131Figure3.An example of using the minimum weight perfect matching tofind the placement which minimizes object movement in a2node proxy.Swapping-based cache reconfigurationMWPM cache reconfiguration can significantly reduce the copying over-head,as indicated by the simulation experiments in Section1.5.In this section, we describe a swapping-based reconfiguration technique that can further re-duce the reconfiguration overhead.The swapping-based reconfiguration takes the current placement as the initial point,and use the well-known hill-climbing method[5]to solve the optimal cache placement(O.C.P.)problem.The recon-figuration cost incurred in MWPM is used as a control parameter to limit the overhead incurred by the swapping-based technique.The hill-climbing method is characterized by an iterative algorithm that makes a small modification to the current solution at each step to come closer to the optimal solution.To apply the hill-climbing method to the cache re-configuration problem,two issues need to be properly addressed:(1)how to modify the existing cache placement at each step to improve the proxy band-width utilization,and(2)when to stop.In the following,we address the above two issues.Object swapping.We propose to swap the position of two objects at each step to modify the current placement.Our approach is to select a pair of ob-jects such that the utilized proxy bandwidth increases after swapping.In fact, we select the pair that maximally increases the bandwidth utilization so as to minimize the copying overhead of reconfiguration.Proxies are classified into two categories:overloaded proxies and under-loaded proxies,as shown in Fig. 4.A proxy is said to be overloaded if the total bandwidth needs of objects currently stored at the proxy exceed capacity;10under-loaded proxies have spare bandwidth.All objects not currently stored on any proxy are assumed to be stored on a virtual proxy with bandwidth capacity zero (thus,the virtual proxy is also overloaded).The abstraction of a virtual proxy enables us to treat cached and uncached objects in a uniform manner.In-tuitively,a “cold”object from an under-loaded proxy is selected and swapped with a “hot”object on an overloaded proxy,so that the total bandwidth utiliza-tion increases.We apply the following rules in selecting object:Hot object selection :Select the object with the highest bandwidth re-quirement cached in the overloaded proxies or the virtual proxy.These two objects are then swapped,and the corresponding proxies are re-labeled as under-loaded or overloaded based on the new cache contents.Randomization is introduced to overcome thrashing observed in experiments where two proxies repeatedly swap the same pair of objects,causing the algo-rithm to be stuck in a local minimum with no furtherimprovement.underloaded proxiesrequired bandwidthvirtual proxy spare bandwidthFigure 4.Selection of swapping objects in swapping-based reconfigurationTermination condition.We now examine the termination condition of theswapping-based reconfiguration algorithm.Letdenote the bandwidth utilization achieved by DFF and denote the copying overhead of achieving this placement as computed by the MWPM reconfiguration.The swapping-based reconfiguration uses as its bandwidth uti-lization target,where ()is a design parameter set by the proxy coordinator.Next,it runs the swapping-based heuristic to search for a place-ment that has a bandwidth utilization larger than but at a lower copying cost.The heuristic then chooses this placement,or reverts to the MWPM reconfiguration computed placement if the search yields no better placement.Thus,the swapping-based heuristic is run until one of the following occurs:Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy511 The cost of the swapping-based heuristic reaches but its band-width utilization is below.No better placement is found,so we revert to the one computed using MWPM DFF.By adjusting,we can trade the bandwidth utilization for the copying over-head.We will evaluate this in Section1.5.0.0.Amount of object movementFigure5.Swapping-based cache reconfiguration5.Performance EvaluationIn this section,we conduct simulation experiments to evaluate the perfor-mance of MWPM and swapping-based reconfiguration algorithms.We start by evaluating the cache placement algorithms,DFF and SFF.Wefind that DFF yields a placement very close to the optimal cache placement,and both DFF and SFF outperform a placement method that does not take the bandwidth and storage requirement of objects into account.We then examine the perfor-mance of MWPM reconfiguration,and show that it reduces copying overhead by a factor of more than two.Finally,we show that the swapping-based recon-figuration can further reduce copying overhead in comparison to MWPM,and further copying overhead reduction can be achieved by decreasing the proxy bandwidth utilization.12Simulation settingAssume that clients access a collection of100videos whose lengths are uni-formly distributed from60minutes to120minutes.The playback rate of these videos is1.5Mbps(CBR),and their popularity obeys the Zipf distribution,i.e., the-th most popular video attracts a fraction of requests that is proportional to,where is the Zipf skew parameter.Each video is divided into equal sized segments and each segment is an independent cachable object.We con-sider a streaming proxy that consists of5component proxies.The bandwidth available at component proxy,,is100Mbps for.We denote by the storage space at the-th proxy.We set to be a constant for ,and denote it as the space skew parameter,.The bandwidth-space ratios of component proxies can be tuned by adjusting. Evaluation of cache placement algorithmsWe use the lpsolve is more than two hours on a1GHz CPU,1GB memory Linux box,while it takes a couple of seconds for DFF and SFF.Fig.6depicts the allocated band-width and used storage space as a function of Zipf skew parameter.Here we set the component proxy space skew parameter,,to one,i.e.,the storage space is evenly distributed among the proxies.We observe that DFF,SFF,and SOC all achieve the optimal bandwidth utilization when the Zipf skew parameter is less than0.5.Intuitively,when the Zipf skew parameter is small,the client requests are evenly distributed among different videos.The number of client requests for different videos are comparable,and the required bandwidth is therefore nearly equal for all objects.The storage space at the proxy is the bottleneckDynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy613(a)Allocated bandwidth(b)Allocated storage spaceFigure6.Effect of Zipf distribution skew parameterresource,and the maximum proxy bandwidth utilization is achievable as long as the proxy caches the“hot”objects and uses up the entire storage space.DFF outperforms SFF and SOC as the Zipf skew parameter increases fur-ther.As the Zipf skew parameter increases,the discrepancy between the band-width required by“hot”and“cold”objects increases.As in the multi-knapsack problem,a right set of objects needs to be cached at each component proxy to fully utilize every component proxy’s bandwidth.SOC uses the storage space as the only resource constraint,and caches the hot objects on the com-ponent proxy with the largest storage space.Since thefirst component proxy consumes the hottest objects,the aggregate required bandwidth of these ob-ject surpasses this component proxy’s available bandwidth.Meanwhile,other component proxy’s bandwidth is wasted since only“lukewarm”or“cold”ob-jects are available.The aggregate utilized bandwidth decreases as the Zipf skew parameter increases further.SFF does a better job since it considers the bandwidth as another resource constraint and stops caching the objects into a component proxy once its bandwidth has been fully utilized.However,SFF fails to balance the bandwidth and storage space utilization at component prox-ies.For instance,when the Zipf skew parameter is0.7,two of the component proxies use up the bandwidth while having free storage space in SFF.On the other hand,the storage space is used up on the other three component proxies while bandwidth remains free.This is shown in Fig.6(b),where SFF doesn’t fully utilize the storage space.In contrast,DFF distributes the hot objects among component proxies,and fully utilizes the storage space(which is the bottleneck resource compared to bandwidth for Zipf skew parameter equal to 0.7)and maximizes the utilization of proxy bandwidth.14(a)Allocated bandwidth(b)Allocated storage spaceFigure7.Effect of proxy space skew parameter(zipf skew parameter=0.7) Effect of space skew parameter.We further evaluate the performance of DFF and SFF in the case of a large space skew parameter.The space skew parameter,,changes the storage space distribution among machines.For instance,when,the smallest storage space is1.29Gbytes.Hence the bandwidth-space ratios of proxies are widely skewed.Again,DFF outperforms SFF and SOC,and achieves a proxy bandwidth utilization close to the optimal cache placement.Fig.7depicts the allocated bandwidth and allocated space as a function of the space skew parameters when the Zipf skew parameter is0.7.We observe from Fig.7(a)that the bandwidth is not fully utilized by SFF when.Notice that the stor-age space is also not fully utilized by SFF,as shown in Fig.7(b).The failure of balancing the bandwidth and storage space utilization causes this behavior. However,as the space skew parameter increases,the performance of SFF im-proves.This is because the component proxy with large bandwidth-space ratio should cache more hot objects in order to achieve maximum proxy bandwidth utilization,and SFF happens to do that.Fig.8depicts the performance of DFF,SFF,and SOC with respect to the proxy bandwidth utilization with different space and Zipf skew parameter.We observe that the utilized proxy bandwidth of DFF is consistently larger than that of SFF and SOC.We will use DFF in the following subsections.Effect of object size.The object size may affect the utilization of proxy storage space;we investigate its impact in this section.In the results reported in the previous experiments,the object size is that of a one minute video seg-ment.When we increase the object size whilefixing the aggregate proxy stor-age space at40Gbytes,the proxy bandwidth utilization gradually decreases as shown in Fig.9(a)because the component proxy storage space is much larger。