RLC串连电路的幅频特性与谐振现象实验报告 4
rlc串联电路频率特性实验报告
竭诚为您提供优质文档/双击可除rlc串联电路频率特性实验报告篇一:RLc串联电路的幅频特性与谐振现象实验报告_-_4(1)《电路原理》实验报告实验时间:20XX/5/17一、实验名称RLc串联电路的幅频特性与谐振现象二、实验目的1.测定R、L、c串联谐振电路的频率特性曲线。
2.观察串联谐振现象,了解电路参数对谐振特性的影响。
1.R、L、c串联电路(图4-1)的阻抗是电源频率的函数,即:Z?R?j(?L?1)?Zej??c三、实验原理当?L?1时,电路呈现电阻性,us一定时,电流达最大,这种现象称为串?c联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。
即?0?1Lc或f0?12?LcR无关。
图4-12.电路处于谐振状态时的特征:①复阻抗Z达最小,电路呈现电阻性,电流与输入电压同相。
②电感电压与电容电压数值相等,相位相反。
此时电感电压(或电容电压)为电源电压的Q倍,Q称为品质因数,即Q?uLuc?0L11ususR?0cRRc在L和c为定值时,Q值仅由回路电阻R的大小来决定。
③在激励电压有效值不变时,回路中的电流达最大值,即:I?I0?usR3.串联谐振电路的频率特性:①回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图形称为串联谐振曲线。
电流与角频率的关系为:I(?)?us1??R2??L???c??2?us0??R?Q2?0??I00??1?Q2?0?2当L、c一定时,改变回路的电阻R值,即可得到不同Q 值下的电流的幅频特性曲线(图4-2)图4-2有时为了方便,常以?I为横坐标,为纵坐标画电流的幅频特性曲线(这称?0I0 I下降越厉害,电路的选择性就越好。
I0为通用幅频特性),图4-3画出了不同Q值下的通用幅频特性曲线。
回路的品质因数Q越大,在一定的频率偏移下,为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性的幅值从峰值1下降到0.707时所对应的上、下频率之间的宽度称为通频带(以bw表示)即:bw??2?1??0?0由图4-3看出Q值越大,通频带越窄,电路的选择性越好。
rlc串联电路实验报告
rlc串联电路实验报告篇一:RLC串联谐振电路。
实验报告二、RLC串联谐振电路目的及要求:(1)设计电路(包括参数的选择)(2)不断改变函数信号发生器的频率,测量三个元件两端的电压,以验证幅频特性(3)不断改变函数信号发生器的频率,利用示波器观察端口电压与电流相位,以验证发生谐振时的频率与电路参数的关系(4)用波特图示仪观察幅频特性(5)得出结论进行分析并写出仿真体会。
二阶动态电路的响应(RLC串联)可用二阶微分方程描述的电路成为二阶电路。
此电路在输入为零值时的响应称为零输入相应,在零值初始条件下的响应称为零状态响应。
欠阻尼情况下的衰减系数? 为:??R .2L.其震荡频率?d为:?d?;RLC串联谐振电路条件是:电压U与电流I同相。
z?R?jX?R?j(?L?11?C);当?L??C时,谐振频率为f?f0?1;在电路参数不变的情况下,可调整信号源的频率使电路产生串联谐振;在信号源频率不变的情况下,改变L或C使电路产生串联谐振是。
电路的频率特性,电路的电流与外加电压角频率的关系称为电流的幅频特性。
串联谐振电路总阻抗Z=R,其值最小,如电源电压不变,回路电流I=U/R,其值最大;改变信号源的频率时,可得出电流与频率的关系曲线;三.设计原理:一个优质电容器可以认为是无损耗的(即不计其漏电阻),而一个实际线圈通常具有不可忽略的电阻。
把频率可变的正弦交流电压加至电容器和线圈相串联的电路上。
若R、L、C和U的大小不变,阻抗角和电流将随着信号电压频率的改变而改变,这种关系称之为频率特性。
当信号频率为f=f0?现象,且电路具有以下特性:(1)电路呈纯电阻性,所以电路阻抗具有最小值。
(2)I=I。
=U/R即电路中的电流最大,因而电路消耗的功率最大。
同时线圈磁场和电容电时,即出现谐振厂之间具有最大的能量互换。
工程上把谐振时线圈的感抗压降与电源电压之比称之为线圈的品质因数Q。
四.RLC串联谐振电路的设计电路图:自选元器件及设定参数,通过仿真软件观察并确定RLC 串联谐振的频率,通过改变信号发生器的频率,当电阻上的电压达到最大值时的频率就是谐振频率。
RLC串联电路的幅频特性和谐振
一、实验目的 ห้องสมุดไป่ตู้、研究RLC 串联电路的幅频特性(也就是谐
振曲线) 2、研究串联谐振现象及电路参数对谐振特性
的影响。
二、实验说明
在RLC串联电路中,阻抗值是:
三 实验内容
测量幅频特性的实验电路如下,信号发生器 输出正弦电压,频率可在20赫到20千赫范 围内变化
四、实验报告要求 1、实验目的 2、原理简述 3、实验内容:含实验步骤、实验电路、表
格、数据等 4、绘制幅频特性曲线。 5、Q值的相对误差分析。
1、测量RLC串联电路的幅频特性I(f),并测出 谐振频率f。
具体方法:采用电阻取样法测定回路电流,取样电 阻采用Ro=10Ω。调整信号源频率,取样电阻两 端接的交流毫伏表指示值最大时,调整信号源幅度, 使Us=1V,重新调整频率使电流最大,此时f即为 f0,电流为I0。Q2>Q1
)
2.改变电阻R=100Ω,重复1
3.改变L==200mH,重复1。计算值,并 测定该值所对应的f值通频带Δf
4.谐 电 上Q振 阻 面值时 档 的的的测公测L电式定的压,,直,看用流此 它毫也值 们伏阻即 的表rQQ(测值 值RL; 误0(或=用 差RC数 有+)字多上r)万大两带用。端入表的 3在3具调电用在 4计实改2改改 调电在改4用调电具具用用33计改在实、 、 、 、 、 、 、R体整流数R算验变变变整流R变数整流体体数数算变R验实实绘研绘实实LLLL方 信 为 字 值 七 电 电 L信 为 L字 信 为 方 方 字 字 值 电 七CCCC==验验制究制验验串法号I万串 ,阻阻号I串万号I法法万万,阻串==0R00R内内幅串幅内内22。。。联:源用联 并RR源联用源::用用并R联LL00CC容容频联频容容===00电采频表电 测频电表频采采表表测电串串111mm::特谐特::000路用率电路 定率路电率用用电电定路HH联联000含含性振性含含, ,ΩΩΩ中电,阻中 该,中阻,电电阻阻该中电电实实曲现曲实实,,,重 重,阻取档, 值取,档取阻阻档档值,路路验验线象线验验重重重复 复阻取样测阻 所样阻测样取取测测所阻的的步 步 。 及 。 步 步复复复11抗样电抗对电抗电样样对抗LLLL幅幅。 。骤骤电骤骤的的的的111值法阻值 应阻值阻法法应值频频、、路、、直直直直是测两是 的两是两测测的是特特实实参实实流流流流:定端: 端:端定定:ff性性值值验验数验验也也也也回接接接回回和和通通电电对电电阻阻阻阻路的的的路路谐谐频频路路谐路路rrrr((((电交交交电电振振带带、、振、、RRRR流流流流流流ΔΔ表表特表表0000ff,毫毫毫,,====格格性格格RRRR取伏伏伏取取++++、、的、、样表表表样样rrrr))))数数影数数电指指指电电带带带带据据响据据阻示示示阻阻入入入入等等。等等采值值值采采上上上上用最最最用用面面面面大大大RRR的的的的ooo时时时===公公公公111,,,式式式式000ΩΩΩ调调调,,,,。。。整整整看看看看信信信它它它它号号号们们们们源源源的的的的幅幅幅QQQQ度度度值值值值,,,误误误误使使使差差差差UUU有有有有sss多多多多===111大大大大VVV,,,。。。。重重重新新新调调调整整整频频频率率率使使使电电电流流流最最最大大大,,,此此此时时时fff即即即为为为fff000,,,
RLC串联谐振电路的实验研究
RLC串联谐振电路的实验研究在含有电感L、电容C和电阻R的串联谐振电路中,需要研究在不同频率正弦激励下响应随频率变化的情况,即频率特性。
Multisim 1O仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。
1 RLC串联的频率响应 RLC二阶电路的频率响应电路。
设输出电压取自电阻,则转移电压比为:由式(2)可知,当1-ω2LC=O时,|Au|达到最大值;当ω等于某一特定值ω0时,即:|Au|达到最大值为1,在ω=ω0时,输出电压等于输入电压,ω0称为带通电路的中心频率。
当|Au|下降为其最大值的70.7%时,两个频率分别为上半功率频率和下半功率频率,高于中心频率记为ω2,低于中心频率记为ω1,,频率差定义为通频带BW,即:衡量幅频特性是否陡峭,就看中心频率对通带的比值如何,这一比值称为品质因数,记为Q,即:,给出不同R值的相频特性曲线。
串联回路中的电阻R值越大,同曲线越平坦,通频带越宽,反之,通频带越窄。
RLC串联电路的输入阻抗Z为:式(6)中的实部是一常数,而虚部则为频率的函数。
在某一频率时(ω0),电抗为零,阻抗的模为最小值,且为纯电阻。
在一定的输入电压作用下,电路中的电流最大,且电流与输入电压同相。
2 Multisim的特点 Multisim能帮助专业人员分析电路,采用直观、易用的软件平台将原理图输入,并将工业标准的Spice仿真集成在同一环境中,即可方便地仿真和分析电路。
同时Multisim为教育工作者的教学和专业设计人员分别提供相应的软件版本。
实验五RLC串联电路的幅频特性与谐振现象
电路分析》实验实验一简单万用表线路计算和校验一、实验目的1.了解万用表电流档、电压档及欧姆档电路的原理与设计方法。
2.了解欧姆档的使用方法。
3.了解校验电表的方法。
二、实验说明万用表是测量工作中最常见的电表之一,用它可以进行电压、电流和电阻等多种物理量的测量,每种测量还有几个不同的量程。
万用表的内部组成从原理上分为两部分:即表头和测量电路。
表头通常是一个直流微安表,它的工作原理可归纳为:“表头指针的偏转角与流过表头的电流成正比”。
在设计电路时,只考虑表头的“满偏电流Im”和“内阻Ri”值就够了。
满偏电流是指表针偏转满刻度时流过表头的电流值,内阻则是表头线圈的铜线电阻。
表头与各种测量电路连接就可以进行多种电量的测量。
通常借助于转换开关可以将表头与这些测量电路分别连接起来,就可以组成一个万用表。
本实验分别研究这些实验。
1.直流电流档多量程的分流器有两种电路。
图1-1的电路是利用转换开关分别接入不同阻值的分流器来改变它的电流量程的。
这种电路计算简单,缺点是可能由于开关接触不太好致使测量不准。
最坏情况(在开关接触不通或带电转换量程时有可能发生)是开关断路,这时全部被测电流都流过表头造成严重过载(甚至损坏)。
因此多量程分流器都采用图1-2的电路,以避免上述缺点。
计算时按表头支路总电阻r0’=2250Ω来设计,其中r’是一个“补足”电阻,数值视r0大小而定。
图1-1 利用转换开关的分流器图1-2 常用的多量程分流器电路图1-3 实验用万用表直流电流档电路给定表头参数:Ω='μ=2250r A 100I 0m , 由图1-3得知:1m 10m R )I I (r I -=' 1110m R I )R r (I =+' 1101m I )R r (R I +'=同理,可推得:2102m I )R r (R I +'=合并上两式1101I )R r (R +'=2102I )R r (R +'将10R r +'消去有:2211R I R I = 现将已知数据代入计算如下:)I I (r I R m 10m 1-'=Ω==-⨯⨯=---250922501010225010100R 4361 2211R I R I =1212R I I R =Ω=⨯=5025051R 2 Ω==Ω=50R r 200r 221,2.直流电压档图1-4为实验用万用表直流电压档线路,给定表头参数同上。
rlc谐振实验报告
rlc谐振实验报告RLC谐振实验报告引言:RLC谐振电路是电工学中的重要实验之一,通过该实验可以深入了解电路的谐振现象及其应用。
本实验旨在通过搭建RLC谐振电路,观察和分析电路中电流和电压的变化规律,进一步探讨谐振电路的特性和应用。
一、实验目的本实验的主要目的是掌握RLC谐振电路的基本原理和特性,了解电流和电压在谐振频率下的变化规律,并通过实验数据分析验证理论计算结果的准确性。
二、实验原理1. RLC谐振电路的组成RLC谐振电路由电阻(R)、电感(L)和电容(C)三个元件组成。
电阻用于限制电流大小,电感储存电能,电容存储电荷。
当电路中的电流和电压达到谐振频率时,电路呈现出最大的振幅。
2. 谐振频率的计算RLC谐振电路的谐振频率可以通过以下公式计算:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。
三、实验步骤1. 搭建RLC谐振电路根据实验要求,选取合适的电阻、电感和电容元件,按照电路图搭建RLC谐振电路。
2. 连接电源将电源连接到电路中,确保电路正常工作。
3. 调节频率通过信号发生器调节频率,逐渐接近理论计算得到的谐振频率。
4. 测量电压和电流使用万用表测量电路中的电压和电流数值,并记录下来。
5. 绘制电流和电压的变化曲线根据测量数据,绘制电流和电压随频率变化的曲线图。
四、实验结果与讨论1. 实验数据分析根据实验测量得到的电流和电压数值,可以计算得到电路的阻抗、电流和电压的相位差等参数。
通过对数据的分析,可以验证实验结果与理论计算结果的一致性。
2. 曲线分析根据绘制的电流和电压的变化曲线,可以观察到在谐振频率附近,电流和电压的振幅达到最大值。
此外,可以进一步分析曲线的形状和变化趋势,探讨电路中能量的传递和损耗情况。
3. 谐振电路的应用RLC谐振电路在实际应用中有广泛的用途,例如在无线电通信中,谐振电路可以用于频率选择和滤波器的设计。
此外,在电力系统中,谐振电路可以用于电力传输和配电系统中的功率因数校正。
rlc串联电路的谐振实验报告
rlc串联电路的谐振实验报告一、实验目的二、实验原理1. RLC串联电路的基本概念2. 谐振现象及其特点三、实验器材和仪器1. 实验器材清单2. 实验仪器清单四、实验步骤1. 实验前准备工作2. 测量电路中各元件的参数值3. 测量谐振频率和带宽五、实验数据处理与分析1. 计算电路品质因数Q和谐振频率f0的理论值2. 绘制电路的幅频特性曲线和相频特性曲线,并分析其特点。
六、实验结论与思考七、参考文献一、实验目的本次实验主要是通过对RLC串联电路进行谐振实验,掌握测量RLC串联电路中各元件参数值以及谐振频率和带宽的方法,了解谐振现象及其特点,掌握计算电路品质因数Q和谐振频率f0理论值的方法,并绘制出幅频特性曲线和相频特性曲线。
二、实验原理1. RLC串联电路的基本概念RLC串联电路是由电阻R、电感L和电容C三种元件串联而成的电路。
当交流电源接入这个电路时,由于电感和电容的存在,会产生阻抗,从而影响电路中的电流和电压。
在RLC串联电路中,当交流信号频率等于某一特定值时,会出现谐振现象。
2. 谐振现象及其特点谐振是指在某一特定频率下,RLC串联电路的阻抗达到最小值或最大值的现象。
当交流信号频率等于谐振频率f0时,RLC串联电路中的阻抗为纯阻抗,即只有R存在。
此时,如果在该频率下加入一个外加信号,则可以得到最大幅度的响应。
谐振现象具有以下特点:(1)在谐振频率f0处,RLC串联电路中的阻抗为纯阻抗。
(2)在谐振频率f0处,输入信号与输出信号之间相位差为0。
(3)当输入信号频率偏离f0时,输出信号幅度将随着频率增加而降低。
三、实验器材和仪器1. 实验器材清单:电阻箱、电容箱、电感箱、万用表、示波器等。
2. 实验仪器清单:Tektronix TDS2002C数字示波器等。
四、实验步骤1. 实验前准备工作(1)检查实验仪器是否正常工作。
(2)连接RLC串联电路,调整各元件的参数,使其符合实验要求。
(3)将示波器连接到电路中,以便观察信号的变化情况。
rlc串联谐振电路研究实验报告
rlc串联谐振电路研究实验报告RLC串联谐振电路研究实验报告引言:本文旨在研究RLC串联谐振电路的特性和性能。
RLC串联谐振电路是一种常见的电路结构,它由电阻(R)、电感(L)和电容(C)组成。
在特定频率下,RLC串联谐振电路能够表现出共振现象,这对于电子工程领域的应用具有重要意义。
实验目的:1. 研究RLC串联谐振电路的频率响应特性;2. 探究电阻、电感和电容对谐振频率和带宽的影响;3. 分析RLC串联谐振电路的相位差和频率之间的关系;4. 理解RLC串联谐振电路的功率传输和能量转换机制。
实验步骤:1. 搭建RLC串联谐振电路实验装置,包括电源、电阻、电感和电容等元件;2. 测量不同频率下电压和电流的数值;3. 绘制电压-频率和相位差-频率曲线,并找出谐振频率和带宽;4. 分析实验数据,总结RLC串联谐振电路的性能特点。
实验结果:通过实验测量和数据处理,我们得到了以下结果:在RLC串联谐振电路中,当输入信号频率等于谐振频率时,电路中的电流和电压达到最大值。
此时,电容的电压和电感的电流互相抵消,只有电阻消耗能量。
在谐振频率附近,电路的带宽较小,能够保持较高的品质因数。
而当频率远离谐振频率时,电路的电流和电压将会衰减。
讨论:通过实验数据和分析,我们可以得出以下结论:RLC串联谐振电路具有选择性放大特性,在谐振频率附近,电路能够对特定频率的信号进行放大,而对其他频率的信号进行衰减。
这种特性使得RLC串联谐振电路在无线通信、音频放大和滤波等领域有着广泛的应用。
实验结果还显示,电阻、电感和电容对RLC串联谐振电路的性能有着重要影响。
电阻的增加会减小电路的品质因数,降低谐振频率和带宽;电感值的增加会提高电路的品质因数,增大谐振频率和带宽;而电容的变化则会对谐振频率产生较大影响。
结论:通过本次实验,我们深入了解了RLC串联谐振电路的特性和性能。
该电路在电子工程领域具有重要应用,能够对特定频率的信号进行放大和滤波。
RLC串联谐振电路。实验报告
RLC串联谐振电路。
实验报告
RLC串联谐振电路是一种基于抗性、电感和电容的并联谐振电路,它具有高通过率和低损耗。
RLC串联谐振电路由电阻R、电感L和电容C三部分组成。
它们之间形成一个AC回路,可以在特定频率处产生振荡,使电流在此频率处循环。
由于电阻、电感和电容都有反应时间,所以RLC串联谐振电路的反应时间要长于单个元件的反应时间。
因此,RLC串联谐振电路的输出信号的幅值和相位会发生变化,这对了解电路的特性非常重要。
RLC串联谐振电路的谐振频率可以通过调整电阻、电感和电容的大小而调节。
调节不同的参数可以改变振荡器的谐振频率,从而改变振荡器的工作性能。
实验步骤:
1. 首先,将电阻、电感和电容连接成RLC串联谐振电路。
2. 用实验装置接好串联谐振电路,将频率表调节到最小,然后慢慢增加频率,观察输出信号的幅值变化。
3. 记录输出信号的幅值随频率变化的曲线,以及谐振频率处的幅值。
4. 调整电阻、电感和电容的大小,观察谐振频率的变化情况,并绘制电路参数与谐振频率的关系曲线。
5. 根据实验结果,总结RLC串联谐振电路的特性。
RLC串联电路的幅频特性与谐振现象实验报告
RLC串联电路的幅频特性与谐振现象实验报告
RLC串联电路的幅频特性实验是在一定的RLC串联电路的构型,了解其特性的实验。
其中,RLC串联电路也可以理解为RC滤波器和L中反馈放大器的组合。
实验材料有示波器,可调电源,示波器探头,可调电容,可调变压器,电阻表等。
首先,实验者连接RLC串联电路,并根据实验要求调节电源和电容,调节变压器输出
或输出,调节电流。
然后,实验者根据实验要求检测RLC串联电路的输出波形,并分析其
特性,在幅频特性实验中,从谐振特性中可以看出。
当输出波形的最大值达到最大值时,
由于薛定谔方程的输出而产生谐振现象,在此情况下,调节电源和电容大小可以调节谐振
的最大值。
此外,RLC串联电路在一定的振荡或输入频率时,谐振波形的重整也可以检测到,它也可以调节谐振特性。
总之,RLC串联电路的幅频特性实验是通过调节电源大小和电容大小来检测其特性的
实验,并从谐振特性中检测出谐振现象,从而检测出精确的频率响应特性,调节和准确使
用RLC串联电路,可以应用在遥控、超声波、电动机和电子等多个领域。
RLC实验报告
R L C串联电路特性的研究实验报告电阻、电容及电感是电路中的基本元件,由RC、RL、RLC构成的串联电路具有不同的特性,包括暂态特性、稳态特性、谐振特性.它们在实际应用中都起着重要的作用。
一、实验目的1.通过研究RLC串联电路的暂态过程,加深对电容充、放电规律,电感的电磁感应特性及振荡回路特点的认识。
2.掌握RLC串联电路的幅频特性和相频特性的测量方法。
3.观察RLC串联电路的暂态过程及其阻尼振荡规律。
二、实验仪器FB318型RLC电路实验仪,双踪示波器三、实验原理串联电路的稳态特性如图1所示的是RLC串联电路,电路的总阻抗|Z|、电压U、U R和i之间有如下关系:|Z|=√R2+(ω?L−1ω?C)2,Φ=arctan[ω?L−1ω?CR],i=√R2+(ω?L−1ω?C)2式中:ω为角频率,可见以上参数均与ω有关,它们与频率的关系称为频响特性,详见图2阻抗特性幅频特性相频特性图2 RLC串联电路的阻抗特性、幅频特性和相频特性由图可知,在频率f0处阻抗z值最小,且整个电路呈纯电阻性,而电流i达到最大值,我们称f0为RLC串联电路的谐振频率(ω0为谐振角频率);在f1-f0—f2的频率范围内i值较大,我们称为通频带。
下面我们推导出f0(ω0)和另一个重要的参数品质因数Q。
当ω?L−1ω?C时,从公式基本知识可知:|Z|=R,Φ=0,i m =U R ,ω=ω0=√L?C ,f=f 0=2π√L?C这时的电感上的电压: U L =i m ·|Z L |=ω0?LR ·U电容上的电压: U C =i m ·|Z C |=1R?ω0?C ·UU C 或U L 与U 的比值称为品质因数Q 。
可以证明:Q=U L U =U C U =ω0?L R =1R?ω0?C△f=f 0Q ,Q=f 0△f串联电路的暂态过程在电路中,先将K 打向“1”,待稳定后再将K 打向“2”,这称为RLC 串联电路的放电过程,这时的电路方程为:L ·C d 2U C dt 2+R ·C dU C dt+U C =0 初始条件为t=0,U C =E ,dU Cdt =0,这样方程解一般按R 值的大小可分为三种情况:(1)R<2√L C 时为欠阻尼,U C =√(1−C 4R ?R 2)·E ·e −1τ·cos(ωt +Φ)。
rlc串联谐振电路研究实验报告
rlc串联谐振电路研究实验报告RLC串联谐振电路研究实验报告引言:RLC串联谐振电路是电路中常见的一种电路结构,其具有频率选择性。
在该电路中,电感、电阻和电容依次串联,形成一个振荡回路。
在特定的频率下,电路的阻抗会达到最小值,从而使电流达到最大值。
本实验旨在研究RLC串联谐振电路的特性,并通过实验验证理论计算结果。
实验目的:1. 研究RLC串联谐振电路中电感、电阻和电容的作用;2. 测量RLC串联谐振电路的频率响应曲线;3. 验证理论计算结果与实验结果的一致性。
实验仪器与材料:1. RLC串联谐振电路实验箱;2. 可调频函数信号发生器;3. 数字存储示波器;4. 电压表;5. 电流表;6. 电感、电阻和电容器。
实验步骤:1. 按照电路图连接RLC串联谐振电路实验箱,确保电路连接正确并稳定;2. 调节可调频函数信号发生器的频率范围,并设定初始频率;3. 调节函数信号发生器的输出电压,保持稳定;4. 通过示波器观察电路中电压波形,并测量电压的幅值;5. 测量电路中电流的幅值;6. 依次改变函数信号发生器的频率,记录电压和电流的测量值;7. 绘制RLC串联谐振电路的频率响应曲线。
实验结果与分析:根据实验测量数据,绘制了RLC串联谐振电路的频率响应曲线。
从曲线上可以看出,在某一特定频率下,电路的阻抗达到最小值,电流达到峰值。
这个特定的频率就是电路的共振频率。
在共振频率附近,电路的阻抗较小,电流较大,电路呈现出谐振的特性。
实验结果与理论计算结果的比较表明,在实验误差范围内,测量结果与理论计算结果吻合良好。
这验证了RLC串联谐振电路的特性以及理论模型的准确性。
同时,实验还发现,改变电感、电阻或电容的数值,会导致共振频率的变化,从而改变电路的谐振特性。
这进一步说明了电感、电阻和电容在RLC串联谐振电路中的作用。
结论:通过本实验,我们深入研究了RLC串联谐振电路的特性,并通过实验验证了理论计算结果的准确性。
实验结果表明,RLC串联谐振电路在特定频率下具有最小阻抗和最大电流的特性。
rlc串联谐振电路实验报告
rlc串联谐振电路实验报告RLC串联谐振电路实验报告引言在电路实验中,RLC串联谐振电路是一个非常重要的实验对象。
它由电感、电阻和电容三个元件组成,通过调节电感和电容的数值,可以实现对电路的频率响应进行调控。
本实验旨在通过搭建RLC串联谐振电路,观察和分析其频率响应特性,并对谐振频率进行测量。
实验装置本次实验所使用的装置包括:信号发生器、示波器、电感、电阻和电容等元件。
其中,信号发生器用于提供输入信号,示波器用于观测电路的输出波形。
实验步骤1. 搭建电路根据实验要求,按照电路图搭建RLC串联谐振电路。
需要注意的是,要确保电感、电阻和电容的数值与实验要求相符,并保证电路的连接正确无误。
2. 调节信号发生器将信号发生器连接到电路的输入端,通过调节信号发生器的频率,使其逐渐从低频到高频扫描。
同时,观察示波器上电路的输出波形,并记录下谐振频率对应的信号发生器频率数值。
3. 测量电压幅值在谐振频率附近,记录下电路输出端的电压幅值,可以通过示波器的测量功能进行读数。
注意,要选择合适的测量范围,以保证测量结果的准确性。
4. 分析实验结果根据实验数据,绘制电路的频率响应曲线。
可以采用频率作为横坐标,电压幅值作为纵坐标,通过绘制曲线来展示电路在不同频率下的响应情况。
实验结果与分析根据实验数据,我们可以得到RLC串联谐振电路的频率响应曲线。
在谐振频率附近,电路的电压幅值达到最大值,这是因为在谐振频率下,电感和电容的阻抗相互抵消,形成谐振现象。
而在谐振频率之外,电路的电压幅值逐渐减小,这是因为电感和电容的阻抗不再抵消,导致电压幅值下降。
通过测量谐振频率,我们可以得到电路的共振频率。
共振频率是电路响应最强烈的频率,也是电路的特征频率。
在实际应用中,共振频率的测量对于电路的设计和优化具有重要意义。
讨论与总结RLC串联谐振电路是一种常用的电路结构,在电子技术领域具有广泛的应用。
本次实验通过搭建RLC串联谐振电路,观察和分析了其频率响应特性,并测量了谐振频率。
rlc谐振电路实验报告
rlc谐振电路实验报告RLC谐振电路实验报告引言在电路实验中,RLC谐振电路是一种重要的电路结构,它在通信、电子设备和电源等领域中具有广泛的应用。
本实验旨在通过搭建RLC谐振电路,研究其特性和性能,并对实验结果进行分析和讨论。
一、实验目的本实验的主要目的是研究RLC谐振电路的频率响应和幅频特性,通过实验数据的采集和分析,掌握RLC谐振电路的基本原理和工作特性。
二、实验原理RLC谐振电路是由电感、电容和电阻组成的串联电路。
当电路中的电感、电容和电阻参数满足一定条件时,电路的输出电压将达到最大值,此时电路处于谐振状态。
谐振频率可以通过以下公式计算得出:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。
三、实验步骤1. 按照实验要求,搭建RLC谐振电路。
2. 连接信号发生器和示波器,将信号发生器的输出接入到电路的输入端,示波器的输入接入到电路的输出端。
3. 调节信号发生器的频率,从低频到高频逐渐扫描,观察示波器上的波形变化。
4. 记录示波器上波形的特点和频率值,并绘制频率与幅度的关系曲线。
四、实验结果与分析通过实验数据的采集和分析,我们得到了RLC谐振电路的频率响应曲线。
根据实验结果,我们发现在谐振频率附近,电路的输出电压达到了最大值,表明电路处于谐振状态。
而在谐振频率之外,输出电压逐渐减小,表明电路的谐振特性开始衰减。
根据实验原理可知,RLC谐振电路的谐振频率与电感和电容的数值有关。
当电感和电容的数值增大时,谐振频率会变小;反之,当电感和电容的数值减小时,谐振频率会变大。
因此,通过调节电感和电容的数值,我们可以改变电路的谐振频率,以适应不同的应用需求。
此外,实验中我们还观察到了谐振峰的现象。
谐振峰是指在谐振频率附近,电路的输出电压达到最大值的状态。
谐振峰的宽度取决于电路中的电阻值,电阻值越小,谐振峰越尖锐;反之,电阻值越大,谐振峰越平缓。
这是因为电阻对电路的阻尼特性起到了调节作用,影响了电路的谐振特性。
rlc串联谐振电路的实验报告
rlc串联谐振电路的实验报告实验报告:RLC串联谐振电路引言:RLC串联谐振电路是一种重要的电路结构,广泛应用于通信、电力系统和电子设备中。
它的特点是在特定频率下,电路中的电感、电阻和电容元件形成共振,使得电路的电流和电压呈现出特殊的波形和相位关系。
本实验旨在通过实际搭建RLC串联谐振电路并测量其频率响应和相位差,验证理论模型并深入理解电路的工作原理。
实验设备:1. 功率供应器:用于提供电源电压,保证电路正常工作;2. 信号发生器:产生可调频率的正弦信号,作为输入信号;3. 示波器:用于测量电路中的电压和电流信号。
实验步骤:1. 搭建电路:根据实验原理,按照电路图搭建RLC串联谐振电路。
电路中包括一个电感L、一个电阻R和一个电容C,它们依次串联连接。
请注意正确连接元件的正负极性。
2. 连接示波器:将示波器的探头分别连接到电阻上和电容的两端,用于测量电路中的电压和电流信号。
3. 设置信号发生器:将信号发生器的输出端连接到电路的输入端,调节信号发生器的频率范围和输出幅度。
4. 调节频率:开始时将信号发生器的频率调至较低的值,逐渐增加频率,记录下电压和电流的数值。
5. 测量电压和电流:通过示波器测量电路中的电压和电流信号,并记录下其数值。
6. 绘制频率响应曲线:根据测量的数据,绘制RLC串联谐振电路的频率响应曲线,横轴为频率,纵轴为电压和电流的幅值。
实验结果:根据实验数据,我们得到了RLC串联谐振电路的频率响应曲线。
在特定频率下,电路中的电压和电流幅值达到最大值,呈现出谐振现象。
此时,电路中的电感、电阻和电容元件之间的能量转换达到最大效率。
讨论与分析:通过实验数据和频率响应曲线的绘制,我们可以进一步分析RLC串联谐振电路的特性和工作原理。
在谐振频率附近,电路中的电感和电容元件形成了一个能量存储和释放的闭环,能量在元件之间来回转换,使得电路中的电流和电压呈现出特殊的相位关系。
这种现象在通信系统中有着重要的应用,例如调谐电路、滤波器和天线。
RLC串联谐振电路的实验报告
RLC串联谐振电路的实验研究一、摘要:从RLC 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于Multisim仿真软件创建RLC 串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。
其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。
二、关键词:RLC;串联;谐振电路;三、引言谐振现象是正弦稳态电路的一种特定的工作状态。
通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。
由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。
比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。
所以研究串联谐振有重要的意义。
在含有电感L 、电容C 和电阻R 的串联谐振电路中,需要研究在不同频率正弦激励下响应随频率变化的情况,即频率特性。
Multisim 仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。
四、正文(1)实验目的:1.加深对串联谐振电路条件及特性的理解。
2.掌握谐振频率的测量方法。
3.理解电路品质因数的物理意义和其测定方法。
4.测定RLC串联谐振电路的频率特性曲线。
(2)实验原理:RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。
该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。
RLC电路谐振特性的研究 实验报告
课程名称:大学物理实验(二)
实验名称:RLC电路谐振特性的研究
图2.2 电流和电源的频率的关系曲线
有一极大值,此时的圆频率称为谐振圆频率
ω0=1
(2.3)
√LC
相等,且相位相反
图3.1 DH4503型RLC电路实验仪实物图
图4.1 RLC串联谐振曲线测量电路图4.2串联谐振电路的带宽测定共振频率和共振时的UR、 UC和UL
注意:需要将R和C(L)的位置互换以保证共地
图4.3 串联谐振特性测量电路
将电感、电容调到合适的值,参考值为:L=100mH ,C=4.4×10−8
从电源负极连线接到电阻,电阻连接到电容,电容连接到电感,电感连接回电源正极。
RLC串联谐振电路实验报告-.
实验报告院系:----------------年级:2010级日期:20110428学号:----------------------实验名称:RLC串联谐振电路的研究U O=f(f),U L=f(f),U C=f(f)三条幅频特性曲线如下所示(图像由origin8.1非线性拟合)其中输入电压Ui=1.5/√2V≈1.06V,C=0.01μF,R=200Ω。
2.从第二张表可知,当电路发生串联谐振是,对应的频率f0=8931Hz,对应的电阻两端电压为U0max=0.644V。
通频带宽Δf=9835-1695=1695(Hz),其中,9835Hz和1695Hz对应的电阻电压为U0max/√2=0.455V。
3.Q值的计算:方法一:由origin软件得出的数据得,当频率达到f0=8931Hz时,Q1=Uc/U=5.26/(1.5/√2)=4.9,Q2=UL/U=5.14/(1.5/√2)=4.8,Q1≈Q2方法二:Q=f0/Δf=8931/1695=5.304.R值对通频带宽和Q值的影响。
R值越小,Q值越大,谐振曲线越尖锐,通频带宽越窄。
反之Q值越小,谐振曲线越平缓,通频带宽越宽。
5.两种计算Q值的方法的比较。
方法一中,用电容或电感两端电路谐振时的电压计算Q值,容易受到电路其他部件的影响。
比如,导线上的电阻和电感,和电感原件上的电阻对都有分压作用。
另外,电容的充放电电压也会作用在电阻上面,导致实际测得的电阻并不精确。
方法二,利用图像计算Q值,误差主要由读数误差导致。
并且,图像的拟合效果越接近真实的曲线,则误差越小。
6.谐振的时候,输出电压和输入电压不相等。
原因在于,电感和电容上的电阻不可忽略,并且电容的充放电电压和电源电压一起作用在电阻两端。
所以测量的结果小于电源电压。
7.串联谐振的电路的特性:电阻,电感,电容两端的电压和电路的频率有关。
当频率达到一定值的时候,电路呈现纯电阻状态,此时电阻两端的电压达到最大值,电感和电容两端的电压大小相等,方向相反,为电源电压的Q倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性的幅值从峰值 1 下降到 0.707 时所对应的上、下频率之间的宽度称为通频带
(以 BW 表示)即:
BW 2 1 0 0
由图 4-3 看出 Q 值越大,通频带越窄,电路的选择性越好。
③ 激励电压与响应电流的相位差 角和激励电源角频率 的关系称为相频
特性,即:
显然,当电源频率
2
1 LC
C
形称为串联谐振曲线。电流与角频率的关系为:
I ()
US
R 2 L 1 2 c
R
1
Q
2
当 L、C 一定时,改变回路的电阻 R 值,即可得到不同 Q 值下的电流的幅 频特性曲线(图 4-2)。显然 Q 值越大,曲线越尖锐。
I
0
¦Ø0
图 4-2
US
实验时间:2012/5/17
Z R j(L 1 ) Z e j C
联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。
即
0
1 LC
上式表明谐振频率仅与元件参数 L、C 有关,而与电阻 R 无关。
.+
US-
. I
L
R
或
图 4-1 2.电路处于谐振状态时的特征: ① 复阻抗 Z 达最小,电路呈现电阻性,电流与输入电压同相。 ② 电感电压与电容电压数值相等,相位相反。此时电感电压(或电容电压) 为电源电压的 Q 倍,Q 称为品质因数,即
从
( )
0
arctg
变到 0
L Leabharlann R时,电抗到 0,电路为容性。当 从0 增大到 时,电抗 X 由 0 增到 , 角从 0 增到
,电路为感性。相角 与 的关系称为通用相频特性,如图 4-4 所示。
2
0
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
《电路原理》
实验报告
一、实验名称 RLC串联电路的幅频特性与谐振现象
二、实验目的
1.测定 R、L、C 串联谐振电路的频率特性曲线。 2.观察串联谐振现象,了解电路参数对谐振特性的影响。
三、实验原理
1.R、L、C 串联电路(图 4-1)的阻抗是电源频率的函数,即:
当 L
1 C
时,电路呈现电阻性,U s
0
Q1¡µQ2
Q1 Q2
有时为了方便,常以 为横坐标, I 为纵坐标画电流的幅频特性曲线(这
0
称为通用幅频特性),图 4-3 画出了不同 Q 值下的通用幅频特性曲线。回路的品
质因数 Q 越大,在一定的频率偏移下, I 下降越厉害,电路的选择性就越好。
I0
I0
为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特
Q UL UC 0L 1 1 L U S U S R 0CR R C
在 L 和 C 为定值时,Q 值仅由回路电阻 R 的大小来决定。
③ 在激励电压有效值不变时,回路中的电流达最大值,即:
3.串联谐振电路的频率特性:
I
I0
一定时,电流达最大,这种现象称为串
f0
US R
① 回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。