【小初高学习】2018年高考数学总复习第九章平面解析几何第6讲双曲线课时作业
2018版高考数学复习第九章平面解析几何9.6双曲线教师用书文新人教版
2018版高考数学大一轮复习第九章平面解析几何 9.6 双曲线教师用书文新人教版1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1(mn <0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.(教材改编)若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2答案 A解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.2.若方程x 22+m -y 2m +1=1表示双曲线,则m 的取值范围是( )A .m >-1B .m <-2C .-2<m <-1D .m >-1或m <-2答案 D解析 由题意知(2+m )(m +1)>0,解得m >-1或m <-2,故选D.3.(2015·安徽)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1C.y 24-x 2=1 D .y 2-x 24=1答案 C解析 由双曲线性质知A 、B 项双曲线焦点在x 轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12x ,只有C 符合,故选C.4.(2016·江苏)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.答案 210解析 由已知,a 2=7,b 2=3,则c 2=7+3=10,故焦距为2c =210. 5.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线的一个顶点坐标为(2,0), 一条渐近线方程是y =12x ,即x -2y =0,则顶点到渐近线的距离d =|2-0|5=255.题型一 双曲线的定义及标准方程 命题点1 利用定义求轨迹方程例1 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 例2 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1. (3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1. 命题点3 利用定义解决焦点三角形问题例3 已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有|PF 1|-|PF 2| =|PF 2|=2a =22, ∴|PF 1|=2|PF 2|=42,则cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=22+22-422×42×22=34. 引申探究1.本例中将条件“|PF 1|=2|PF 2|”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=8, 所以12F PF S ∆=12|PF 1|·|PF 2|sin 60°=2 3.2.本例中将条件“|PF 1|=2|PF 2|”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2a =22, 由于PF 1→·PF 2→=0,所以PF 1→⊥PF 2→,所以在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16,所以|PF 1|·|PF 2|=4, 所以12F PF S ∆=12|PF 1|·|PF 2|=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.(3)待定系数法求双曲线方程具体过程中先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值,如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ(λ≠0),再由条件求出λ的值即可.(1)已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A在双曲线上,则|AP |+|AF 2|的最小值为( ) A.37+4 B.37-4 C.37-2 5D.37+2 5(2)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________. 答案 (1)C (2)x 24-y 2=1解析 (1)由题意知,|AP |+|AF 2|=|AP |+|AF 1|-2a , 要求|AP |+|AF 2|的最小值,只需求|AP |+|AF 1|的最小值, 当A ,P ,F 1三点共线时,取得最小值, 则|AP |+|AF 1|=|PF 1|=37,∴|AP |+|AF 2|的最小值为|AP |+|AF 1|-2a =37-2 5. 故选C.(2)由双曲线的渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y2=1.题型二 双曲线的几何性质例4 (1)(2016·浙江)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( ) A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1(2)(2015·山东)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 (1)A (2)32解析 (1)由题意可得m 2-1=n 2+1,即m 2=n 2+2,又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1. (2)由题意,不妨设直线OA 的方程为y =b a x ,直线OB 的方程为y =-b ax .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·bax ,∴x =2pb a,y =2pb 2a2,∴A ⎝ ⎛⎭⎪⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝ ⎛⎭⎪⎫0,p 2,∴k AF =2pb2a 2-p22pba.∵△OAB 的垂心为F ,∴AF ⊥OB ,∴k AF ·k OB =-1, ∴2pb2a 2-p22pb a·⎝ ⎛⎭⎪⎫-b a =-1,∴b 2a 2=54.设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2016·全国甲卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E上,MF 1与x 轴垂直,sin∠MF 2F 1=13,则E 的离心率为( )A. 2B.32 C.3 D .2答案 A解析 离心率e =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin∠MF 1F 2-sin∠MF 2F 1=2231-13= 2.故选A. 题型三 直线与双曲线的综合问题例5 (2017·兰州月考)已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左,右焦点分别是C 1的左,右顶点,而C 2的左,右顶点分别是C 1的左,右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4,再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3,②由①②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1). 思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.若双曲线E :x 2a2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点. (1)求k 的取值范围;(2)若|AB |=63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.解 (1)由⎩⎪⎨⎪⎧c a=2,a 2=c 2-1,得⎩⎪⎨⎪⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.(*) ∵直线与双曲线右支交于A ,B 两点,故⎩⎪⎨⎪⎧k >1,Δ=k2--k2-,即⎩⎨⎧k >1,-2<k <2,所以1<k < 2.故k 的取值范围是{k |1<k <2}. (2)由(*)式得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1, ∴|AB |=1+k 2·x 1+x 22-4x 1x 2=2+k2-k2k 2-2=63,整理得28k 4-55k 2+25=0,∴k 2=57或k 2=54,又1<k <2,∴k =52, ∴x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8.设C (x 3,y 3),由OC →=m (OA →+OB →),得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ). ∵点C 是双曲线上一点. ∴80m 2-64m 2=1,得m =±14.故k =52,m =±14.11.直线与圆锥曲线的交点典例 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点? 错解展示现场纠错解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).① ∴x 0=x 1+x 22=k-k2-k2. 由题意,得k-k2-k2=1,解得k =2. 当k =2时,方程①可化为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点. 纠错心得 (1)“点差法”解决直线与圆锥曲线的交点问题,要考虑变形的条件. (2)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法.1.(2015·福建)若双曲线E :x 29-y 216=1的左,右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A .11 B .9 C .5 D .3 答案 B解析 由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B.2.(2016·全国乙卷)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(-1,3) B .(-1,3) C .(0,3) D .(0,3)答案 A解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1, ∴-1<n <3,故选A.3.(2016·佛山模拟)已知双曲线x 216-y 29=1的左,右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A ,B 两点,若|AB |=5,则△ABF 1的周长为( ) A .16 B .20 C .21 D .26答案 D解析 由双曲线x 216-y 29=1,知a =4.由双曲线定义|AF 1|-|AF 2|=|BF 1|-|BF 2|=2a =8, ∴|AF 1|+|BF 1|=|AF 2|+|BF 2|+16=21, ∴△ABF 1的周长为|AF 1|+|BF 1|+|AB | =21+5=26. 故选D.4.(2016·庐江第二中学月考)已知椭圆x 2a 21+y 2b 21=1(a 1>b 1>0)的长轴长、短轴长、焦距成等比数列,离心率为e 1;双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)的实轴长、虚轴长、焦距也成等比数列,离心率为e 2,则e 1e 2等于( ) A.22B .1 C. 3 D .2 答案 B解析 由b 21=a 1c 1,得a 21-c 21=a 1c 1,∴e 1=c 1a 1=5-12. 由b 22=a 2c 2,得c 22-a 22=a 2c 2,∴e 2=c 2a 2=5+12. ∴e 1e 2=5-12×5+12=1. 5.(2015·课标全国Ⅰ)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,233答案 A解析 由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. 6.(2016·银川模拟)已知双曲线x 29-y 2m=1(m >0)的一个焦点在圆x 2+y 2-4x -5=0上,则双曲线的渐近线方程为( ) A .y =±34xB .y =±43xC .y =±53x D .y =±324x答案 B解析 由⎩⎪⎨⎪⎧y =0,x 2+y 2-4x -5=0,得x 2-4x -5=0,解得x =5或x =-1,又a =3,故c =5, 所以b =4,双曲线的渐近线方程为y =±43x ,故选B.7.(2016·北京)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________. 答案 1 2解析 由2x +y =0,得y =-2x ,所以b a=2. 又c =5,a 2+b 2=c 2,解得a =1,b =2.8.(2016·浙江)设双曲线x 2-y 23=1的左,右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 答案 (27,8) 解析 如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设P 在右支上, 设|PF 2|=m ,则|PF 1|=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧m +2<m 2+42,42<m +2+m 2,解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2, ∴27<2m +2<8.9.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________. 答案 53解析 由定义,知|PF 1|-|PF 2|=2a . 又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .在△PF 1F 2中,由余弦定理,得cos∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos∠F 1PF 2的最小值, ∴当cos∠F 1PF 2=-1时,得e =53,即e 的最大值为53.10.设双曲线C 的中心为点O ,若有且只有一对相交于点O 且所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是____________. 答案 ⎝⎛⎦⎥⎤233,2 解析 由双曲线的对称性知,满足题意的这一对直线也关于x 轴(或y 轴)对称.又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围大于30°且小于等于60°,即t an 30°<b a ≤tan 60°,∴13<b 2a 2≤3.又e 2=(c a )2=c 2a 2=1+b 2a 2,∴43<e 2≤4,∴233<e ≤2. 11.中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3∶7. (1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解 (1)由已知c =13,设椭圆长半轴长,短半轴长分别为a ,b , 双曲线实半轴长,虚半轴长分别为m ,n ,则⎩⎪⎨⎪⎧a -m =4,7·13a =3·13m ,解得a =7,m =3.∴b =6,n =2. ∴椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左,右焦点,P 是第一象限的一个交点, 则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6, ∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213, ∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=102+42-1322×10×4=45. 12.(2016·江西丰城中学模拟)一条斜率为1的直线l 与离心率为3的双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于P ,Q 两点,直线l 与y 轴交于R 点,且OP →·OQ →=-3,PR →=3RQ →,求直线和双曲线的方程.解 ∵e =3,∴b 2=2a 2, ∴双曲线方程可化为2x 2-y 2=2a 2. 设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,2x 2-y 2=2a 2,得x 2-2mx -m 2-2a 2=0,∴Δ=4m 2+4(m 2+2a 2)>0, ∴直线l 一定与双曲线相交. 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=2m ,x 1x 2=-m 2-2a 2.∵PR →=3RQ →,x R =x 1+3x 24=0,∴x 1=-3x 2,∴x 2=-m ,-3x 22=-m 2-2a 2. 消去x 2,得m 2=a 2.OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(x 1+m )(x 2+m ) =2x 1x 2+m (x 1+x 2)+m 2=m 2-4a 2=-3, ∴m =±1,a 2=1,b 2=2.直线l 的方程为y =x ±1,双曲线的方程为x 2-y 22=1.*13.已知双曲线C 的中心在坐标原点,焦点在x 轴上,离心率e =52,虚轴长为2. (1)求双曲线C 的标准方程;(2)若直线l :y =kx +m 与双曲线C 相交于A ,B 两点(A ,B 均异于左,右顶点),且以AB 为直径的圆过双曲线C 的左顶点D ,求证:直线l 过定点,并求出该定点的坐标.(1)解 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由已知,得c a =52,2b =2, 又a 2+b 2=c 2,解得a =2,b =1, ∴双曲线的标准方程为x 24-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24-y 2=1,得(1-4k 2)x 2-8mkx -4(m 2+1)=0,有⎩⎪⎨⎪⎧1-4k 2≠0,Δ=64m 2k 2+-4k2m 2+,x 1+x 2=8mk 1-4k 2,x 1x 2=-m 2+1-4k2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-4k 21-4k2,以AB 为直径的圆过双曲线C 的左顶点D (-2,0), ∴k AD k BD =-1,即y 1x 1+2·y 2x 2+2=-1, ∴y 1y 2+x 1x 2+2(x 1+x 2)+4=0,∴m 2-4k 21-4k 2+-m 2+1-4k2+16mk1-4k2+4=0, ∴3m 2-16mk +20k 2=0,解得m 1=2k ,m 2=10k 3.当m 1=2k 时,l 的方程为y =k (x +2), 直线过定点(-2,0),与已知矛盾; 当m 2=10k 3时,l 的方程为y =k (x +103),直线过定点(-103,0),经检验符合已知条件.∴直线l 过定点,定点坐标为(-103,0).。
2018届高三数学一轮复习 第九章 平面解析几何 第六节 双曲线夯基提能作业本 文
第六节双曲线A组基础题组1.(2016安徽安庆二模)双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=2x,则双曲线C的离心率是( )A. B. C.2 D.2.若实数k满足0<k<5,则曲线-=1与曲线-=1的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等3.已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为( )A.y=±xB.y=±xC.y=±xD.y=±x4.(2016天津,4,5分)已知双曲线-=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为( )A.-y2=1B.x2-=1C.-=1D.-=15.(2016课标全国Ⅱ,11,5分)已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )A. B. C. D.26.设双曲线-=1(a>0,b>0)的右焦点是F,左,右顶点分别是A1,A2,过F作A1A2的垂线与双曲线交于B,C 两点.若A1B⊥A2C,则该双曲线的渐近线的斜率为( )A.±B.±C.±1D.±7.(2016北京,12,5分)已知双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a= ;b= .8.设F1、F2分别是双曲线x2-=1的左、右焦点,A是双曲线上在第一象限内的点,若|AF2|=2且∠F1AF2=45°,延长AF2交双曲线右支于点B,则△F1AB的面积等于.9.中心在原点,焦点在x轴上的椭圆与双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求椭圆和双曲线的方程;(2)若P为该椭圆与双曲线的一个交点,求cos∠F1PF2的值.10.已知双曲线的中心在原点,左、右焦点F1、F2在坐标轴上,离心率为,且过点(4,-).(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:·=0;(3)在(2)的条件下,求△F1MF2的面积.B组提升题组11.(2016课标全国Ⅰ,5,5分)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A.(-1,3)B.(-1,)C.(0,3)D.(0,)12.(2016江南十校联考(一))已知l是双曲线C:-=1的一条渐近线,P是l上的一点,F1,F2分别是C的左,右焦点,若·=0,则点P到x轴的距离为( )A. B. C.2 D.13.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为( )A.(1,)B.(1,]C.(,+∞)D.[,+∞)14.(2015课标Ⅰ,16,5分)已知F是双曲线C:x2-=1的右焦点,P是C的左支上一点,A(0,6).当△APF 周长最小时,该三角形的面积为.15.(2016浙江,13,4分)设双曲线x2-=1的左、右焦点分别为F1、F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.16.设A,B分别为双曲线-=1(a>0,b>0)的左,右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线y=x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使+=t,求t 的值及点D的坐标.答案全解全析A组基础题组1.A 由双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=2x,可得=2,∴e===.故选A.2.D 若0<k<5,则5-k>0,16-k>0,故方程-=1表示焦点在x轴上的双曲线,且实半轴的长为4,虚半轴的长为,焦距2c=2,离心率e=;方程-=1表示焦点在x轴上的双曲线,实半轴的长为,虚半轴的长为,焦距2c=2,离心率e=.可知两曲线的焦距相等.故选D.3.C 由双曲线的离心率e==可知=,而双曲线-=1(a>0,b>0)的渐近线方程为y=±x,故选C.4.A 由题意可得解得a=2,b=1,所以双曲线的方程为-y2=1,故选A.5.A 解法一:由MF1⊥x轴,可得M或M,∴|MF1|=.由sin∠MF2F1=,可得cos∠MF2F1==,又tan∠MF2F1==,∴=,∴b2=ac,∵c2=a2+b2⇒b2=c2-a2,∴c2-a2-ac=0⇒e2-e-1=0,∴e=(舍负).故选A.解法二:由MF1⊥x轴,得M或M,∴|MF1|=,由双曲线的定义可得|MF2|=2a+|MF1|=2a+,又sin∠MF2F1===⇒a2=b2⇒a=b,∴e==.故选A.6.C 不妨令B在x轴上方,因为BC过右焦点F(c,0),且垂直于A1A2,即x轴,所以可求得B,C两点的坐标分别为,,又A1,A2的坐标分别为(-a,0),(a,0),所以=,=,因为A1B⊥A2C,所以·=0,即(c+a)(c-a)-·=0,即c2-a2-=0,所以b2-=0,故=1,即=1,又双曲线的渐近线的斜率为±,故该双曲线的渐近线的斜率为±1.故选C.7.答案1;2解析由题可知双曲线焦点在x轴上,故渐近线方程为y=±x,又一条渐近线为2x+y=0,即y=-2x,∴=2,即b=2a.又∵该双曲线的一个焦点为(,0),∴c=.由a2+b2=c2可得a2+(2a)2=5,解得a=1,b=2.8.答案 4解析由题意可得|AF2|=2,|AF1|=4,则|AB|=|AF2|+|BF2|=2+|BF2|=|BF1|.又∠F1AF2=45°,所以△ABF1是以AF1为斜边的等腰直角三角形,所以其面积为×4×2=4.9.解析(1)设椭圆的方程为+=1,双曲线的方程为-=1,则解得a=7,m=3,∴b=6,n=2.∴椭圆的方程为+=1,双曲线的方程为-=1.(2)不妨令F1、F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6,所以|PF1|=10,|PF2|=4,又|F1F2|=2,∴cos∠F1PF2===.10.解析(1)∵e=,∴可设双曲线的方程为x2-y2=λ(λ≠0).∵双曲线过点(4,-),∴16-10=λ,即λ=6,∴双曲线的方程为x2-y2=6.(2)证法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0),∴=,=,∴·==-.∵点M(3,m)在双曲线上,∴9-m2=6,m2=3,故·=-1,∴MF1⊥MF2,即·=0. 证法二:由证法一知=(-3-2,-m),=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2,∵点M在双曲线上,∴9-m2=6,即m2-3=0,∴·=0.(3)△F1MF2的底|F1F2|=4,由(2)知m=±.∴△F1MF2的高h=|m|=,∴=6.B组提升题组11.A ∵原方程表示双曲线,且焦距为4,∴①或②由①得m2=1,n∈(-1,3).②无解.故选A.12.C 由题意知F1(-,0),F2(,0),不妨取l的方程为y=x,设点P(x0,x0),由·=(--x0,-x0)·(-x0,-x0)=3-6=0,得x0=±,故点P到x轴的距离为|x0|=2,故选C.13.C 双曲线的一条渐近线方程为y=x,由题意得>2,∴e==>=.14.答案12解析由已知得双曲线的右焦点F(3,0).设双曲线的左焦点为F',则F'(-3,0).由双曲线的定义及已知得|PF|=2a+|PF'|=2+|PF'|.△APF的周长最小,即|PA|+|PF|最小.|PA|+|PF|=|PA|+2+|PF'|≥|AF'|+2=17,即当A、P、F'三点共线时,△APF的周长最小.设P点坐标为(x0,y0),y0>0,由得+6y0-96=0,所以y0=2或y0=-8(舍去).所以当△APF的周长最小时,该三角形的面积S=×6×6-×6×2=12.15.答案(2,8)解析△PF1F2为锐角三角形,不妨设P在第一象限,P点在P1与P2之间运动(如图).当P在P1点处时,∠F1P1F2=90°,=|F1F2|·||=|P1F1|·|P1F2|.由|P1F1|2+|P1F2|2=|F1F2|2,|P1F1|-|P1F2|=2,得|P1F1|·|P1F2|=6,此时|PF1|+|PF2|=2.当P在P2点处时,∠P2F2F1=90°,∴=2,易知=3,此时|PF1|+|PF2|=2|PF2|+2=8,∴当△PF1F2为锐角三角形时,|PF1|+|PF2|∈(2,8).16.解析(1)由题意知a=2,∴一条渐近线方程为y=x,即bx-2y=0,∴=,∴b2=3,∴双曲线的方程为-=1.(2)设M(x1,y1),N(x2,y2),D(x0,y0),∵+=t,∴x1+x2=tx0,y1+y2=ty0,将直线方程代入双曲线方程得x2-16x+84=0,则x1+x2=16,所以y1+y2=12,∵点D在双曲线的右支上,∴解得∴t=4,点D的坐标为(4,3).。
精选江苏专用2018版高考数学专题复习专题9平面解析几何第61练双曲线练习文
(江苏专用)2018版高考数学专题复习 专题9 平面解析几何 第61练 双曲线练习 文1.(2016·泰州一模)在平面直角坐标系xOy 中,双曲线x 2-y 2=1的实轴长为________.2.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________________.3.(2016·南京模拟)设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y=0,F 1、F 2分别是双曲线的左、右焦点,若PF 1=3,则PF 2=________.4.(2016·上饶二模)双曲线x 24-y 2=1的右顶点到该双曲线的渐近线的距离为________.5.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,以线段F 1F 2为直径的圆与双曲线渐近线的一个交点为(4,3),则此双曲线的方程为________________.6.(2016·湖北部分重点中学第一次联考)双曲线x 2a 2-y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,已知线段F 1F 2被点(b,0)分成3∶1的两段,则此双曲线的离心率为________.7.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3PF 1=4PF 2,则△PF 1F 2的面积为________.8.(2016·苏、锡、常、镇四市二模)在平面直角坐标系xOy 中,已知方程x 24-m -y 22+m =1表示双曲线,则实数m 的取值范围为________.9.(2016·南通一模)已知双曲线x 2-y 22=1的左,右焦点分别为F 1,F 2,点M 在双曲线上且MF 1→·MF 2→=0,则点M 到x 轴的距离d =________.10.过双曲线x 2a 2-y 2b2=1(b >a >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若A ,B ,C 三点的横坐标成等比数列,则双曲线的离心率为________. 11.如果x 2k -2+y 21-k=-1表示焦点在y 轴上的双曲线,那么它的半焦距c 的取值范围是________.12.(2016·安徽江南十校联考)以椭圆x 29+y 25=1的顶点为焦点,焦点为顶点的双曲线C ,其左,右焦点分别是F 1,F 2,已知点M 的坐标为(2,1),双曲线C 上的点P (x 0,y 0)(x 0>0,y 0>0)满足PF 1→·MF 1→|PF 1→|=F 2F 1→·MF 1→|F 2F 1→|,则S △PMF 1-S △PMF 2=________.13.(2016·扬州二模)圆x 2+y 2=4与y 轴交于点A ,B ,以A ,B 为焦点,坐标轴为对称轴的双曲线与圆在y 轴左边的交点分别为C ,D ,当梯形ABCD 的周长最大时,此双曲线的方程为________________.14.(2016·淮北一模)称离心率为e =5+12的双曲线x 2a 2-y2b2=1(a >0,b >0)为黄金双曲线,如图是双曲线x 2a 2-y 2b2=1(a >0,b >0,c =a 2+b 2)的图象,给出以下几个说法:①双曲线x 2-2y25+1=1是黄金双曲线; ②若b 2=ac ,则该双曲线是黄金双曲线;③若F 1,F 2为左,右焦点,A 1,A 2为左,右顶点,B 1(0,b ),B 2(0,-b ),且∠F 1B 1A 2=90°,则该双曲线是黄金双曲线;④若MN 经过右焦点F 2,且MN ⊥F 1F 2,∠MON =90°,则该双曲线是黄金双曲线. 其中正确命题的序号为________.答案精析1.2 2 2.x 24-y 25=1 3.7 4.2555.y 29-x 216=1解析 由题意可知c =32+42=5, ∴a 2+b 2=c 2=25,①又点(4,3)在y =a b x 上,故a b =34,②由①②解得a =3,b =4, ∴双曲线的方程为y 29-x 216=1. 6.233解析 由题意可得b +c c -b =3,c =2b ,则c 2=4b 2=4(c 2-a 2),2a =3c ,离心率e =c a =233. 7.24解析 双曲线的实轴长为2,焦距为F 1F 2=2×5=10. 据题意和双曲线的定义知,2=PF 1-PF 2=43PF 2-PF 2=13PF 2,∴PF 2=6,PF 1=8.∴PF 21+PF 22=F 1F 22,∴PF 1⊥PF 2, ∴S △PF 1F 2=12PF 1·PF 2=12×6×8=24.8.(-2,4) 解析 方程x 24-m -y 22+m=1表示双曲线, 则⎩⎪⎨⎪⎧4-m >0,2+m >0或⎩⎪⎨⎪⎧4-m <0,2+m <0,故-2<m <4.9.233解析 根据题意可知S △F 1MF 2=12|F 1F 2→|·d =12|MF 1→|·|MF 2→|,利用条件及双曲线定义得⎩⎪⎨⎪⎧||MF 1→|-|MF 2→||=2,|MF 1→|2+|MF 2→|2=12,解方程组可得|MF 1→|·|MF 2→|=4, 所以所求的距离d =423=233.10.10解析 由题意可知,经过右顶点A 的直线方程为y =-x +a ,联立⎩⎪⎨⎪⎧y =b ax ,y =-x +a ,解得x =a 2a +b.联立⎩⎪⎨⎪⎧y =-b a x ,y =-x +a ,解得x =a 2a -b.因为b >a >0,所以a 2a -b<0,且a 2a +b>0,又点B 的横坐标为等比中项,所以点B 的横坐标为a 2a -b,则a ·a 2a +b=(a 2a -b )2,解得b =3a ,所以双曲线的离心率e =c a =a 2+b 2a=10. 11.(1,+∞)解析 将原方程化成标准方程为y 2k -1-x 2k -2=1.由题意知k -1>0且k -2>0,解得k >2.又a 2=k -1,b 2=k -2,所以c 2=a 2+b 2=2k -3>1,所以c >1,故半焦距c 的取值范围是(1,+∞). 12.2解析 双曲线方程为x 24-y 25=1,PF 1-PF 2=4,由PF 1→·MF 1→|PF 1→|=F 2F 1→·MF 1→|F 2F 1→|,可得F 1P →·F 1M→|MF 1→||F 1P →|=F 1F 2→·F 1M→|MF 1→||F 1F 2→|,得F 1M 平分∠PF 1F 2.又结合平面几何知识可得, △F 1PF 2的内心在直线x =2上, 所以点M (2,1)就是△F 1PF 2的内心, 故S △PMF 1-S △PMF 2 =12(PF 1-PF 2)×1=12×4×1=2. 13.y 24-23-x 223=1 解析 设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),C (x ′,y ′)(x ′<0, y ′>0),BC =t (0<t <22).如图,连结AC , ∵AB 为直径, ∴∠ACB =90°, 作CE ⊥AB 于E , 则BC 2=BE ·BA , ∴t 2=4(2-y ′), 即y ′=2-14t 2.∴梯形的周长l =4+2t +2y ′ =-12t 2+2t +8=-12(t -2)2+10,∴当t =2时,l 最大. 此时,BC =2,AC =23,又点C 在双曲线的上支上,且A ,B 为焦点, ∴AC -BC =2a ,即2a =23-2, ∴a =3-1, ∴b 2=23,∴所求方程为y 24-23-x 223=1.14.①②③④解析 ①双曲线x 2-2y25+1=1, a 2=1,c 2=1+5+12=5+32, ∴e =ca=5+32=5+12, ∴命题①正确;②若b 2=ac ,c 2-a 2=ac ,∴e =5+12, ∴命题②正确;③B 1F 21=b 2+c 2,B 1A 2=c , 由∠F 1B 1A 2=90°, 得b 2+c 2+c 2=(a +c )2, 即b 2=ac ,e =5+12, ∴命题③正确; ④若MN 经过右焦点F 2, 且MN ⊥F 1F 2,∠MON =90°,则c =b 2a,即b 2=ac ,e =5+12, ∴命题④正确.综上,正确命题的序号为①②③④.。
2018年高考数学总复习课时作业第九章 平面解析几何 第6讲 双曲线 Word版含答案
基础巩固题组(建议用时:分钟)一、选择题.(·台州调研)设双曲线-=(>,>)的虚轴长为,焦距为,则双曲线的渐近线方程为( )=±=±=±=±解析因为=,所以=,因为=,所以=,所以==,所以双曲线的渐近线方程为=±=±,故选.答案.(·广东卷)已知双曲线:-=的离心率=,且其右焦点为(,),则双曲线的方程为( )-=-=-=-=解析因为所求双曲线的右焦点为(,)且离心率为==,所以=,=,=-=,所以所求双曲线方程为-=,故选.答案.(·浙江卷)已知椭圆:+=(>)与双曲线:-=(>)的焦点重合,,分别为,的离心率,则( )>且<>且><且<<且>解析由题意可得:-=+,即=+,又∵>,>,故>.又∵·=·=·==+>,∴·>.答案.已知,为双曲线:-=的左、右焦点,点在上,=,则∠=( )解析由-=,知==,=.由双曲线定义,-==,又=,∴=,=,在△中,==,由余弦定理,得∠==.答案.(·杭州调研)过双曲线-=的右焦点且与轴垂直的直线,交该双曲线的两条渐近线于,两点,则=( )解析由题意知,双曲线-=的渐近线方程为=±,将==代入得=±,即,两点的坐标分别为(,),(,-),所以=.答案二、填空题.(·浙江卷)双曲线-=的焦距是,渐近线方程是.解析由双曲线方程得=,=,∴=,∴焦距为,渐近线方程为=±.答案=±.(·北京卷)双曲线-=(>,>)的渐近线为正方形的边,所在的直线,点为该双曲线的焦点,若正方形的边长为,则=.解析取为双曲线右焦点,如图所示.∵四边形为正方形且边长为,∴==,又∠=,∴==,即=.又+==,∴=.答案.(·山东卷)已知双曲线:-=(>,>).若矩形的四个顶点在上,,的中点为的两个焦点,且=,则的离心率是.解析由已知得=,=,∴×=×.又∵=-,整理得:--=,两边同除以得--=,即--=,解得=或=-(舍去).答案三、解答题.(·宁波十校联考)已知双曲线的中心在原点,焦点,在坐标轴上,离心率为,且过点(,-).()求双曲线的方程;()若点(,)在双曲线上,求证:·=.()解∵=,∴可设双曲线的方程为-=λ(λ≠).∵双曲线过点(,-),∴-=λ,即λ=.∴双曲线的方程为-=.()证明法一由()可知,==,∴=,∴(-,),(,),。
2018高考数学文人教新课标大一轮复习配套文档:第九章
9.6 双曲线1.双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的________等于常数2a(2a______|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的________,两焦点间的距离叫做双曲线的________.※(2)另一种定义方式(见人教A版教材选修2-1 P59例5):平面内动点M到定点F的距离和它到定直线l的距离之比等于常数e(e>1)的轨迹叫做双曲线.定点F叫做双曲线的一个焦点,定直线l叫做双曲线的一条准线,常数e叫做双曲线的________.(3)实轴和虚轴相等的双曲线叫做_________.“离心率e=2”是“双曲线为等轴双曲线”的______条件,且等轴双曲线两条渐近线互相______.一般可设其方程为x2-y2=λ(λ≠0).2.双曲线的标准方程及几何性质自查自纠1.(1)绝对值<焦点焦距(2)离心率(3)等轴双曲线充要垂直2.(2)x2a2-y2b2=1(a>0,b>0)(5)A1(0,-a),A2(0,a)(7)F1(-c,0),F2(c,0) (9)e=ca(e>1)(10)y=±bax(2015·广东)已知双曲线C:x2a2-y2b2=1的离心率e=54,且其右焦点为F2(5,0),则双曲线C的方程为( )A.x24-y23=1 B.x29-y216=1C.x216-y29=1 D.x23-y24=1解:c=5,e=ca=5a=54,得a=4,b2=c2-a2=52-42=9,双曲线方程为x216-y29=1.故选C.(2015·福建)若双曲线x29-y216=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|(( (解:设双曲线方程为x 2a 2-y 2b2=1(a >0,在双曲线的右支上,如图,AB =BM 轴于H ,则∠MBH =60,3a ).将点M 的坐标代入双曲线a =b ,所以e =ca=·南昌调研)已知F 1,F 2是双曲线的两个焦点,P 是C 上一点,若F 2最小内角的大小为的渐近线方程是( )0 B .x ±0D .2x ±解:由题意,不妨设|PF |>|PF |,则根据双曲线=AE =1,则AD =BE ,双曲线实轴长为23,2a ′=3-1,所以= 3.故填3. )过双曲线x 2-y 23=轴垂直的直线,交该双曲线的两条渐近线于为坐标原点,动直线分别在第一、四象限试探究:是否存在总与直线E?若存在,求出双曲线程;若不存在,说明理由.因为双曲线E的渐近线分别为。
(浙江专用)高考数学大一轮复习第九章平面解析几何第6讲双曲线练习(含解析)
(浙江专用)高考数学大一轮复习第九章平面解析几何第6讲双曲线练习(含解析)[基础达标]1.若双曲线x2a2-y2b2=1(a>0,b>0)的离心率为3,则其渐近线方程为( ) A.y=±2x B.y=±2xC.y=±12x D.y=±22x 解析:选B.由条件e=3,即ca=3,得c2a2=a2+b2a2=1+b2a2=3,所以ba=2,所以双曲线的渐近线方程为y=±2x.故选B.2.已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=5k,则双曲线方程为( )A.x2a2-y24a2=1 B.x2a2-y25a2=1 C.x24b2-y2b2=1 D.x25b2-y2b2=1解析:选C.由已知得,⎩⎪⎨⎪⎧b a=k,ca=5k,a2+b2=c2,所以a2=4b2.3.(2019·杭州学军中学高三质检)双曲线M:x2-y2b2=1的左、右焦点分别为F1、F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与曲线M在第一象限的交点为P,若|PF1|=c+2,则点P的横坐标为( )A.3+12B.3+22 C.3+32D.332解析:选A.由点P在双曲线的第一象限可得|PF1|-|PF2|=2,则|PF2|=|PF1|-2=c,又|OP|=c,∠F1PF2=90°,由勾股定理可得(c+2)2+c2=(2c)2,解得c=1+ 3.易知△POF2为等边三角形,则x P =c2=3+12,选项A 正确. 4.(2019·杭州中学高三月考)已知F 1、F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若F 2关于渐近线的对称点恰落在以F 1为圆心,OF 1为半径的圆上,则双曲线C 的离心率为( )A . 3B .3C . 2D .2解析:选D.由题意,F 1(-c ,0),F 2(c ,0),一条渐近线方程为y =b ax ,则F 2到渐近线的距离为bcb 2+a 2=b . 设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,所以|MF 2|=2b ,A 为F 2M 的中点,又O 是F 1F 2的中点,所以OA ∥F 1M ,所以∠F 1MF 2为直角,所以△MF 1F 2为直角三角形, 所以由勾股定理得4c 2=c 2+4b 2, 所以3c 2=4(c 2-a 2),所以c 2=4a 2, 所以c =2a ,所以e =2. 故选D.5.(2017·高考全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )解析:选D.法一:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP ∥x 轴,又PF ⊥x 轴,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.故选D.法二:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP →=(1,0),PF →=(0,-3),所以AP →·PF →=0,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.故选D.6.(2019·浙江高中学科基础测试)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=20x有一个公共的焦点F ,且两曲线的一个交点为P ,若|PF |=17,则双曲线的离心率为( )A . 5B .53C .54D .52解析:选B.由题意知F (5,0),不妨设P 点在x 轴的上方,由|PF |=17知点P 的横坐标为17-5=12,则其纵坐标为20×12=415,设双曲线的另一个焦点为F 1(-5,0),则|PF 1|=(12+5)2+(415)2=23,所以2a =|PF 1|-|PF |=23-17=6,所以a =3,所以e =c a =53,故选B.7.(2019·宁波市余姚中学高三期中)已知曲线x 22+y 2k 2-k =1,当曲线表示焦点在y 轴上的椭圆时k 的取值范围是________;当曲线表示双曲线时k 的取值范围是________.解析:当曲线表示焦点在y 轴上的椭圆时,k 2-k >2, 所以k <-1或k >2;当曲线表示双曲线时,k 2-k <0, 所以0<k <1.答案:k <-1或k >2 0<k <18.(2019·金华十校联考)已知l 是双曲线C :x 22-y 24=1的一条渐近线,P 是l 上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→=0,则P 到x 轴的距离为________.解析:F 1(-6,0),F 2(6,0),不妨设l 的方程为y =2x ,则可设P (x 0,2x 0),由PF 1→·PF 2→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0,得x 0=±2,故P 到x 轴的距离为2|x 0|=2.答案:29.(2019·瑞安四校联考)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与直线x =a 2c分别交于A ,B 两点,F 为该双曲线的右焦点.若60°<∠AFB <90°,则该双曲线的离心率的取值范围是________.解析:双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,x =a 2c 时,y =±abc ,不妨设A ⎝ ⎛⎭⎪⎫a 2c ,ab c ,B ⎝ ⎛⎭⎪⎫a2c,-ab c ,因为60°<∠AFB <90°,所以33<k FB <1,所以33<ab c c -a 2c<1,所以33<a b <1,所以13<a 2c 2-a2<1,所以1<e 2-1<3,所以2<e <2.答案:(2,2)10.设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的左、右焦点,若△PF 1F 2的面积为12,则∠F 1PF 2=________.解析:由题意可知,F 1(-13,0),F 2(13,0),|F 1F 2|=213.设P (x 0,y 0),则△PF 1F 2的面积为12×213|y 0|=12.故y 20=12213,将P 点坐标代入双曲线方程得x 20=2513,不妨设点P ⎝⎛⎭⎪⎫51313,121313,则PF 1→=⎝ ⎛⎭⎪⎫-181313,-121313,PF 2→=⎝ ⎛⎭⎪⎫81313,-121313,可得PF 1→·PF 2→=0,即PF 1⊥PF 2,故∠F 1PF 2=π2. 答案:π211.已知椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程.解:椭圆D 的两个焦点坐标为(-5,0),(5,0), 因而双曲线中心在原点,焦点在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b2=1(a >0,b >0),所以渐近线方程为bx ±ay =0且a 2+b 2=25, 又圆心M (0,5)到两条渐近线的距离为r =3. 所以|5a |b 2+a 2=3,得a =3,b =4,所以双曲线G 的方程为x 29-y 216=1.12.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255.(1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP →=PB →,求△AOB 的面积.解:(1)依题意得⎩⎪⎨⎪⎧a b =2,|2×0+a |5=255,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线的方程为y 24-x 2=1.(2)由(1)知双曲线的渐近线方程为y =±2x ,设A (m ,2m ),B (-n ,2n ),其中m >0,n >0,由AP →=PB →得点P 的坐标为⎝ ⎛⎭⎪⎫m -n 2,m +n .将点P 的坐标代入y 24-x 2=1,整理得mn =1. 设∠AOB =2θ,因为tan ⎝⎛⎭⎪⎫π2-θ=2,则tan θ=12,从而sin 2θ=45.又|OA |=5m ,|OB |=5n ,所以S △AOB =12|OA ||OB |sin 2θ=2mn =2.[能力提升]1.(2019·舟山市普陀三中高三期中)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B 、C .若AB →=12BC →,则双曲线的离心率是( )A . 2B . 3C . 5D .10解析:选C.直线l :y =-x +a 与渐近线l 1:bx -ay =0交于B ⎝ ⎛⎭⎪⎫a 2a +b ,ab a +b ,l 与渐近线l 2:bx +ay =0交于C ⎝ ⎛⎭⎪⎫a 2a -b ,-ab a -b ,A (a ,0),所以AB →=⎝ ⎛⎭⎪⎫-ab a +b ,ab a +b ,BC →=⎝ ⎛⎭⎪⎫2a 2b a 2-b 2,-2a 2b a 2-b 2, 因为AB →=12BC →,所以b =2a , 所以c 2-a 2=4a 2,所以e 2=c 2a2=5,所以e =5,故选C.2.(2019·宁波高考模拟)如图,F 1、F 2是椭圆C 1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若AF 1⊥BF 1,且∠AF 1O =π3,则C 1与C 2的离心率之和为( )A .2 3B .4C .2 5D .2 6解析:选A.F 1、F 2是椭圆C 1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若AF 1⊥BF 1,且∠AF 1O =π3,可得A ⎝ ⎛⎭⎪⎫-12c ,32c ,B ⎝ ⎛⎭⎪⎫12c ,-32c ,代入椭圆方程可得c 24a 2+3c 24b 2=1,可得e 24+34e 2-4=1,可得e 4-8e 2+4=0,解得e =3-1.代入双曲线方程可得:c 24a 2-3c 24b2=1,可得:e 24-34-4e 2=1,可得:e 4-8e 2+4=0,解得e =3+1, 则C 1与C 2的离心率之和为2 3. 故选A.3.设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是__________.解析:由题意不妨设点P 在双曲线的右支上,现考虑两种极限情况:当PF 2⊥x 轴时,|PF 1|+|PF 2|有最大值8;当∠P 为直角时,|PF 1|+|PF 2|有最小值27.因为△F 1PF 2为锐角三角形,所以|PF 1|+|PF 2|的取值范围为(27,8).答案:(27,8)4.(2019·温州十五校联合体联考)过点M (0,1)且斜率为1的直线l 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两渐近线交于点A ,B ,且BM →=2AM →,则直线l 的方程为____________;如果双曲线的焦距为210,则b 的值为________.解析:直线l 的方程为y =x +1,两渐近线的方程为y =±b ax .其交点坐标分别为⎝ ⎛⎭⎪⎫a b -a ,b b -a ,⎝ ⎛⎭⎪⎫-a a +b ,b a +b .由BM →=2AM →,得x B =2x A .若a b -a =-2a a +b ,得a =3b ,由a 2+b 2=10b 2=10得b =1,若-aa +b =2ab -a,得a =-3b (舍去).答案:y =x +1 15.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离等于3,过右焦点F 2的直线l 交双曲线于A ,B 两点,F 1为左焦点.(1)求双曲线的方程;(2)若△F 1AB 的面积等于62,求直线l 的方程.解:(1)依题意,b =3,c a =2⇒a =1,c =2,所以双曲线的方程为x 2-y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由(1)知F 2(2,0).易验证当直线l 斜率不存在时不满足题意,故可设直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k (x -2),x 2-y 23=1,消元得(k 2-3)x 2-4k 2x +4k 2+3=0,k ≠±3,x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,y 1-y 2=k (x 1-x 2),△F 1AB 的面积S =c |y 1-y 2|=2|k |·|x 1-x 2|=2|k |·16k 4-4(k 2-3)(4k 2+3)|k 2-3|=12|k |·k 2+1|k 2-3|=6 2.得k 4+8k 2-9=0,则k =±1.所以直线l 的方程为y =x -2或y =-x +2.6.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的方程为y =3x ,右焦点F 到直线x =a 2c 的距离为32.(1)求双曲线C 的方程;(2)斜率为1且在y 轴上的截距大于0的直线l 与双曲线C 相交于B 、D 两点,已知A (1,0),若DF →·BF →=1,证明:过A 、B 、D 三点的圆与x 轴相切.解:(1)依题意有b a =3,c -a 2c =32,因为a 2+b 2=c 2,所以c =2a ,所以a =1,c =2,所以b 2=3,所以双曲线C 的方程为x 2-y 23=1.(2)证明:设直线l 的方程为y =x +m (m >0),B (x 1,x 1+m ),D (x 2,x 2+m ),BD 的中点为M ,由⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1得2x 2-2mx -m 2-3=0,所以x 1+x 2=m ,x 1x 2=-m 2+32,又因为DF →·BF →=1,即(2-x 1)(2-x 2)+(x 1+m )(x 2+m )=1,所以m =0(舍)或m =2,。
2018版高考数学(理)(人教)复习-第九章-平面解析几何9.6
∴|AB|=2 16-a2=4 3,
∴a=2,∴2a=4.∴C的实轴长为4.
3.(2015· 安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是
答案
2 y A.x2- 4 =1
解析
x2 2 B. 4 -y =1
y2 2 C. 4 -x =1
2 x D.y2- 4 =1
由双曲线性质知A、B项双曲线焦点在x轴上,不合题意; C、D项双曲线焦点均在y轴上,但D项渐近线为y=±1 x,只有C符合, 2 故选C.
2.等轴双曲线 C 的中心在原点,焦点在 x 轴上, C 与抛物线 y2 = 16x的准 线交于A,B两点,|AB|=4 3,则C的实轴长为
A. 2 B.2 2 C.4 D.8
x2 y2 设 C:a2-a2=1.
答案 解析
∵抛物线y2=16x的准线为x=-4,
x2 y2 联立a2-a2=1 和 x=-4, 得 A(-4, 16-a2), B(-4, - 16-a2),
x2 y2 4.(2016· 江苏 ) 在平面直角坐标系 xOy 中,双曲线 7 - 3 = 1 的焦距是
2 10 ________.
答案
解析
由已知,a2=7,b2=3,则 c2=7+3=10,故焦距为 2c=2 10.
2 5 x2 2 答案 5 5.双曲线 4 -y =1 的顶点到其渐近线的距离等于________.
解析
2018课标版理数一轮(9)第九章-平面解析几何(含答案)6 第六节 双曲线
.
y2 2 解析 根据题意,可设双曲线C: -x =λ(λ≠0),将(2,2)代入双曲线C的方 4 x2 y 2 程得λ=-3,∴C的方程为 - =1.渐近线方程为y=±2x. 3 12
栏目索引
考点突破
考点一 双曲线的定义及标准方程 典例1 (1)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1| =2|PF2|,则cos∠F1PF2= ( A.
答案 A
b2 b2 解析 解法一:由MF1⊥x轴,可得M c, ,∴|MF1|= .由sin∠MF2F1=1 , a a 3 1 b2 b2 2 2 2 | MF1 | a 1 = a = 3 , 可得cos∠MF2F1= 1 , 又 tan ∠ MF F = = , ∴ 2 1 3 2c 2 2 | F1F2 | 2 c 3 3 2 ac,∵c2=a2+b2⇒b2=c2-a2,∴c2-a2- 2 ac=0⇒e2- 2e-1=0,∴e= . ∴b2= 2 2 2 2
4 5
b a
4 3
栏目索引
命题角度三 离心率与渐近线的综合问题 典例4 设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与 该双曲线的一条渐近线垂直,那么此双曲线的离心率为 ( A. 2 答案 D
x2 y 2 b 解析 设双曲线的方程为 =1( a >0, b >0), 设 F ( c ,0), B (0, b ), 则 k = . BF a2 b2 c b b b 又双曲线渐近线的斜率k=± ,∵直线BF与一条渐近线垂直,∴- · =-1, a c a
b2 答案 B 不妨设点A在x轴上方,如图,由题意知A点的纵坐标为 ,若 a b2 △ABE是锐角三角形,则必有∠AEF<45°,∴tan∠AEF= a <1,则c2-ac-2a2 ac
高考数学一轮复习统考 第9章 平面解析几何 第6讲 双曲线课时作业(含解析)北师大版-北师大版高三全
双曲线课时作业1.双曲线x 236-m 2-y 2m2=1(0<m <3)的焦距为()A .6B .12C .36D .236-2m 2答案 B解析 c 2=36-m 2+m 2=36,∴c =6.双曲线的焦距为12. 2.双曲线8kx 2-ky 2=8的一个焦点是(0,3),则k 的值是() A .1 B .-1 C .653D .-63答案 B解析 ∵双曲线8kx 2-ky 2=8,焦点在y 轴上,∴双曲线的标准方程为y 2-8k -x 2-1k=1,又c =3,∴-8k -1k=9,解得k =-1.3.(2019·某某永州模拟)焦点是(0,±2),且与双曲线x 23-y 23=1有相同的渐近线的双曲线的方程是()A .x 2-y 23=1B .y 2-x 23=1C .x 2-y 2=2 D .y 2-x 2=2答案 D解析 由已知,双曲线焦点在y 轴上,且为等轴双曲线,故选D .4.(2019·某某凌源联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的顶点(a,0)到渐近线y=b a x 的距离为b2,则双曲线C 的离心率是() A .2 B .3 C .4 D .5答案 A解析 因为顶点(a,0)到渐近线y =bax 的距离d =ab a 2+b2=b 2,所以a c =12,所以e =ca =2.故选A .5.(2019·某某滕州月考)已知双曲线x 225-y 29=1的左、右焦点分别为F 1,F 2,若双曲线的左支上有一点M 到右焦点F 2的距离为18,N 是MF 2的中点,O 为坐标原点,则|NO |等于()A .23B .1C .2D .4答案 D解析 由双曲线x 225-y 29=1,知a =5,由双曲线定义,得|MF 2|-|MF 1|=2a =10,得|MF 1|=8,所以|NO |=12|MF 1|=4.6.虚轴长为2,离心率e =3的双曲线的两焦点为F 1,F 2,过F 1作直线交双曲线的一支于A ,B 两点,且|AB |=8,则△ABF 2的周长为()A .3B .16+ 2C .12+ 2D .24答案 B解析 由于2b =2,e =c a=3,∴b =1,c =3a , ∴9a 2=a 2+1,∴a =24. 由双曲线的定义知,|AF 2|-|AF 1|=2a =22,① |BF 2|-|BF 1|=22,② 由①+②,得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=2, 又|AF 1|+|BF 1|=|AB |=8, ∴|AF 2|+|BF 2|=8+2,则△ABF 2的周长为16+2,故选B .7.(2019·全国卷Ⅲ)已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |,则△OPF 的面积为()A .32B .52C .72D .92答案 B解析 由F 是双曲线x 24-y 25=1的一个焦点,知|OF |=3,所以|OP |=|OF |=3.不妨设点P在第一象限,P (x 0,y 0),x 0>0,y 0>0,则⎩⎪⎨⎪⎧x 20+y 20=3,x 204-y 205=1,解得⎩⎪⎨⎪⎧x 20=569,y 20=259,所以P ⎝⎛⎭⎪⎫2143,53,所以S △OPF =12|OF |·y 0=12×3×53=52.故选B .8.过双曲线x 2a 2-y 23=1(a >0)的右焦点F 作直线l 与双曲线交于A ,B 两点,使得|AB |=6,若这样的直线有且只有两条,则a 的取值X 围是()A .(0,1]∪(3,+∞)B .(0,1)∪(3,+∞)C .(0,1)D .(3,+∞)答案 B解析 若A ,B 在同一支上,则有|AB |min =2b 2a =6a;若A ,B 不在同一支上,则|AB |min =2a .依题意, 得6a 与2a 不可能同时等于6,所以⎩⎪⎨⎪⎧2a >6,6a <6或⎩⎪⎨⎪⎧2a <6,6a>6,解得a >3或0<a <1,故选B .9.已知点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是()A .6B .8C .10D .12答案 C解析 由题意可知点C 3,C 2分别是双曲线C 1:x 216-y 29=1的左、右焦点,点P 在双曲线的左支上,则|PC 2|-|PC 3|=8.|PQ |max =|PC 2|+1,|PR |min =|PC 3|-1,所以|PQ |-|PR |的最大值为(|PC 2|+1)-(|PC 3|-1)=|PC 2|-|PC 3|+2=8+2=10.故选C .10.(2019·某某豫南、豫北联考)已知直线y =x +1与双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,且线段AB 的中点M 的横坐标为1,则该双曲线的离心率为()A . 2B . 3C .2D . 5答案 B解析 由题意得M (1,2).设A (x 1,y 1),B (x 2,y 2),分别代入双曲线方程,两式相减并整理得y 21-y 22x 21-x 22=b 2a2=k AB ·k OM =2.∴b 2=2a 2,即c 2-a 2=2a 2,∴e = 3.故选B .11.(2020·某某某某联考)已知双曲线x 24-y 22=1的右焦点F ,P 为双曲线左支上一点,点A (0,2),则△APF 的周长的最小值为()A .4+ 2B .4(1+2)C .2(2+6)D .6+3 2答案 B解析 双曲线x 24-y 22=1的右焦点为F (6,0),设其左焦点为F ′.△APF 的周长l =|AF |+|AP |+|PF |=|AF |+|AP |+2a +|PF ′|,要使△APF 周长最小,只需|AP |+|PF ′|最小.如图,当A ,P ,F ′三点共线时l 取到最小值,且l min =2|AF |+2a =4(1+2).故选B .12.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为()A . 5B .2C . 3D . 2答案 C解析 由题可知|PF 2|=b ,|OF 2|=c ,∴|PO |=a . 在Rt △POF 2中,cos ∠PF 2O =|PF 2||OF 2|=bc, ∵在△PF 1F 2中,cos ∠PF 2O =|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc,∴b 2+4c 2-(6a )22b ·2c =b c⇒c 2=3a 2,∴e = 3.故选C .13.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.答案x 24-y 2=1解析 根据渐近线方程为x ±2y =0,可设双曲线方程为x 2-4y 2=λ(λ≠0).因为双曲线过点(4,3),所以42-4×(3)2=λ,即λ=4.故双曲线的标准方程为x 24-y 2=1.14.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2作与x 轴垂直的直线与双曲线一个交点为P ,且∠PF 1F 2=π6,则双曲线的渐近线方程为________.答案 y =±2x解析 根据已知可得,|PF 2|=b 2a 且|PF 1|=2b 2a ,故2b 2a -b 2a =2a ,所以b 2a 2=2,ba=2,双曲线的渐近线方程为y =±2x .15.(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若=,·=0,则C 的离心率为________.答案 2解析 解法一:由=,得A 为F 1B 的中点.又O 为F 1F 2的中点,∴OA ∥BF 2. 又·=0,∴∠F 1BF 2=90°. ∴|OF 2|=|OB |,∴∠OBF 2=∠OF 2B . 又∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B , ∴∠BOF 2=∠OF 2B =∠OBF 2, ∴△OBF 2为等边三角形.如图1所示,∵点B 在直线y =-bax 上,∴-b a =-3,∴离心率e =c a=1+⎝ ⎛⎭⎪⎫b a2=2.解法二:∵·=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c . 如图2,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=b a ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c,0). 又=,∴A 为F 1B 的中点. ∴OA ∥F 2B ,∴b a =bc -a,∴c =2a ,∴离心率e =c a=2.16.(2020·某某摸底)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b2a,P 为双曲线C 右支上一点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立,则双曲线的离心率为________,λ的值为________.答案5+125-12解析 由F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b2a,可得2c =2b 2a =2c 2-2a 2a ,化简得e 2-e -1=0.∴e >1,∴e =1+52.设△PF 1F 2的内切圆半径为r ,由双曲线的定义得|PF 1|-|PF 2|=2a ,|F 1F 2|=2c ,S △IPF 1=12|PF 1|·r ,S △IPF 2=12|PF 2|·r ,S △IF 1F 2=12·2c ·r =cr ,由S △IPF 1=S △IPF 2+λS △IF 1F 2得,12|PF 1|·r =12·|PF 2|·r+λcr ,故λ=|PF 1|-|PF 2|2c =a c =11+52=5-12.17.(2019·某某崇明模拟)已知点F 1,F 2为双曲线C :x 2-y 2b2=1的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,∠MF 1F 2=30°.(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1,P 2,求·的值.解 (1)设F 2,M 的坐标分别为(1+b 2,0),(1+b 2,y 0)(y 0>0),因为点M 在双曲线C 上,所以1+b 2-y 20b2=1,则y 0=b 2,所以|MF 2|=b 2.在Rt △MF 2F 1中,∠MF 1F 2=30°,|MF 2|=b 2, 所以|MF 1|=2b 2.由双曲线的定义可知,|MF 1|-|MF 2|=b 2=2, 故双曲线C 的方程为x 2-y 22=1.(2)由条件可知,两条渐近线分别为l 1:2x -y =0,l 2:2x +y =0.设双曲线C 上的点P (x 0,y 0),两条渐近线的夹角为θ,由题意知cos θ=13.则点P 到两条渐近线的距离分别为 |PP 1|=|2x 0-y 0|3,|PP 2|=|2x 0+y 0|3.因为P (x 0,y 0)在双曲线C :x 2-y 22=1上,所以2x 20-y 20=2.所以·=|2x 0-y 0|3·|2x 0+y 0|3·cos θ=|2x 20-y 20|3·13=29.18.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.解 (1)∵双曲线的渐近线为y =±b ax ,∴a =b , ∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2, ∴双曲线方程为x 22-y 22=1.(2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1, ∴x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程,得3y 20+y 20=c 2,即y 0=12c ,∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,c 2,将其代入双曲线方程,得34c 2a 2-14c 2b 2=1,即34b 2c2-14a 2c 2=a 2b 2.② 又a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式, 整理得34c 4-2a 2c 2+a 4=0,∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,∴(3e 2-2)(e 2-2)=0. ∵e >1,∴e =2,∴双曲线的离心率为 2.19.(2019·某某模拟)已知点M (-2,0),N (2,0),动点P 满足条件|PM |-|PN |=22,记动点P 的轨迹为W .(1)求W 的方程;(2)若A 和B 是W 上的不同两点,O 是坐标原点,求·的最小值.解 (1)由|PM |-|PN |=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,半实轴长a = 2.又焦距2c =4,所以半虚轴长b =c 2-a 2= 2. 所以W 的方程为x 22-y 22=1(x ≥2).(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 当AB ⊥x 轴时,x 1=x 2,y 1=-y 2, 从而·=x 1x 2+y 1y 2=x 21-y 21=2.当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m (k ≠±1),与W 的方程联立,消去y 得(1-k 2)x 2-2kmx -m 2-2=0,则x 1+x 2=2km 1-k 2,x 1x 2=m 2+2k 2-1, 所以·=x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m ) =(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)(m 2+2)k 2-1+2k 2m 21-k2+m 2=2k 2+2k 2-1=2+4k 2-1. 又因为x 1x 2>0,所以k 2-1>0.所以·>2. 综上所述,当AB ⊥x 轴时,·取得最小值2.20.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),某某数m 的取值X 围.解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由已知,得a =3,c =2.由a 2+b 2=c 2,得b 2=1. 故双曲线C 的方程为x 23-y 2=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 23-y 2=1,得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=12(m 2+1-3k 2)>0,可得m 2>3k 2-1且k 2≠13.①设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为B (x 0,y 0). 则x 1+x 2=6km 1-3k 2,x 0=x 1+x 22=3km1-3k2,y 0=kx 0+m =m1-3k2.由题意,知AB ⊥MN ,∴k AB =m1-3k 2+13km 1-3k2=-1k(k ≠0,m ≠0),整理得3k 2=4m +1.②将②代入①,得m 2-4m >0,∴m <0或m >4. 又3k 2=4m +1>0(k ≠0),∴m >-14,又k 2≠13,∴m ≠0,∴m 的取值X 围是⎝ ⎛⎭⎪⎫-14,0∪(4,+∞).。
2018版高考数学一轮复习 第九章 解析几何 9.6 双曲线真题演练集训 理 新人教a版
2018版高考数学一轮复习 第九章 解析几何 9.6 双曲线真题演练集训 理 新人教A 版1.[2016·新课标全国卷Ⅰ]已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)答案:A解析:由题意,得(m 2+n )(3m 2-n )>0,解得-m 2<n <3m 2,又由该双曲线两焦点间的距离为4,得m 2+n +3m 2-n =4,即m 2=1,所以-1<n <3.2.[2016·天津卷]已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1 答案:D解析:根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,故选D.3.[2016·新课标全国卷Ⅱ]已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .2答案:A解析:设F 1(-c,0),将x =-c 代入双曲线方程,得c 2a 2-y 2b 2=1,所以y 2b 2=c 2a 2-1=b 2a2,所以y =±b 2a.因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a2c=b 22ac =c 2-a 22ac =c 2a -a 2c =e 2-12e =24, 所以e 2-22e -1=0,所以e = 2.故选A. 4.[2016·浙江卷]已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1答案:A解析:由于m 2-1=c 2,n 2+1=c 2,则m 2-n 2=2,故m >n ,又(e 1e 2)2=m 2-1m 2·n 2+1n2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,所以e 1e 2>1.故选A. 5.[2016·北京卷]双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC的边长为2,则a =________. 答案:2解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,由已知可得两条渐近线方程互相垂直,由双曲线的对称性可得ba=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.6.[2016·山东卷]已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.答案:2解析: 如图,由题意不妨设|AB |=3,则|BC |=2.设AB ,CD 的中点分别为M ,N ,则在Rt △BMN 中,|MN |=2c =2, 故|BN |=|BM |2+|MN |2=⎝ ⎛⎭⎪⎫322+22=52. 由双曲线的定义可得2a =|BN |-|BM |=52-32=1,而2c =|MN |=2,所以双曲线的离心率e =2c2a=2.课外拓展阅读 求双曲线离心率的易错点[典例] [2016·天津模拟]已知双曲线x 2m -y 2n =1(mn >0)的一条渐近线方程为y =±43x ,则该双曲线的离心率为________.[易错分析] (1)未考虑m ,n 的取值,易漏掉焦点在另一坐标轴上的情况; (2)易将ba弄错,从而导致失分. [解析] 当m >0,n >0时, 则有n m =43,所以n m =169, e =1+⎝ ⎛⎭⎪⎫b a 2=1+169=53;当m <0,n <0时, 则有m n =43,所以m n =169, e =1+⎝ ⎛⎭⎪⎫b a 2=1+916=54, 综上可知,该双曲线的离心率为53或54.[答案] 53或54温馨提醒(1)对于方程x 2m -y 2n=1表示的曲线一定要视m ,n 的不同取值进行讨论,m ,n 的取值不同表示的曲线就不同.(2)对于双曲线x 2m -y 2n =1(mn >0)的焦点位置不同,则ba的值就不一样,一定要注意区分.。
2018年高考数学课标通用理科一轮复习配套教师用书:第
§9.6 双曲线考纲展示►1.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.2.了解圆锥曲线的简单应用、了解双曲线的实际背景、了解双曲线在刻画现实世界或解决实际问题中的作用.3.理解数形结合的思想.考点1 双曲线的定义双曲线的定义平面内与两个定点F 1,F 2的________等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做________,两焦点间的距离叫做________.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. (1)当________时,P 点的轨迹是双曲线; (2)当________时,P 点的轨迹是两条射线; (3)当________时,P 点不存在.答案:距离的差的绝对值 双曲线的焦点 双曲线的焦距 (1)a <c (2)a =c (3)a >c(1)[教材习题改编]已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0).双曲线上一点P 到F 1,F 2距离之差的绝对值等于6,则双曲线的标准方程为________.答案:x 29-y 216=1解析:由已知可知,双曲线的焦点在x 轴上,且c =5,a =3,∴b =4,故所求方程为x 29-y 216=1.(2)[教材习题改编]双曲线的方程为x 2-2y 2=1,则它的右焦点坐标为________. 答案:⎝⎛⎭⎪⎫62,0 解析:将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62,故右焦点坐标为⎝ ⎛⎭⎪⎫62,0.双曲线的定义:关注定义中的条件.(1)动点P 到两定点A (0,-2),B (0,2)的距离之差的绝对值等于4,则动点P 的轨迹是________.答案:两条射线解析:因为||PA |-|PB ||=4=|AB |,所以动点P 的轨迹是以A ,B 为端点,且没有交点的两条射线.(2)动点P 到点A (-4,0)的距离比到点B (4,0)的距离多6,则动点P 的轨迹是________. 答案:双曲线的右支,即x 29-y 27=1(x ≥3)解析:依题意有|PA |-|PB |=6<8=|AB |,所以动点P 的轨迹是双曲线,但由|PA |-|PB |=6知, 动点P 的轨迹是双曲线的右支,即x 29-y 27=1(x ≥3).[典题1] (1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________.[答案] x 2-y 28=1(x ≤-1)[解析] 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|.根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为________.[答案] 9[解析] 如图所示,设双曲线的右焦点为E ,则E (4,0).由双曲线的定义及标准方程得|PF |-|PE |=4, 则|PF |+|PA |=4+|PE |+|PA |. 由图可得,当A ,P ,E 三点共线时, (|PE |+|PA |)min =|AE |=5, 从而|PF |+|PA |的最小值为9.[点石成金] 双曲线定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|,|PF 2|的联系.考点2 双曲线的标准方程与性质双曲线的标准方程和几何性质(1)[教材习题改编]若实数k满足0<k<9,则曲线x225-y29-k=1与曲线x225-k-y29=1的( )A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等答案:A解析:由0<k<9,易知两曲线均为双曲线且焦点都在x轴上,由25+9-k=25-k+9,得两双曲线的焦距相等,故选A.(2)[教材习题改编]设双曲线x2a2-y29=1(a>0)的渐近线方程为3x±2y=0,则a的值为________.答案:a解析:双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0,与已知方程比较可得a =2.双曲线的标准方程:关注实轴的位置.双曲线的渐近线方程为y =±3x ,虚轴长为23,则双曲线方程为________. 答案:x 2-y 23=1或y 29-x 23=1解析:当实轴在x 轴上时,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知可知b a=3,b =3, 所以a 2=1,即所求方程为x 2-y 23=1.当实轴在y 轴上时,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0).由已知可得b =3,a b=3, 所以a 2=9,即所求方程为y 29-x 23=1.求双曲线的标准方程:待定系数法.对称轴为坐标轴,经过点P (3,2),Q (-6,7)的双曲线是________. 答案:5x 233-y211=1解析:由于不能确定双曲线的焦点在哪个轴上,故可设双曲线方程为Ax 2+By 2=1(AB <0). ∵所求双曲线经过P (3,2),Q (-6,7),∴⎩⎪⎨⎪⎧9A +4B =1,36A +49B =1,解得A =533,B =-111.故所求双曲线方程为5x 233-y211=1.[考情聚焦] 双曲线的标准方程和几何性质是每年高考命题的热点,尤其是渐近线与离心率问题,考查的力度比较大.主要有以下几个命题角度: 角度一求双曲线的标准方程[典题2] (1)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 [答案] A[解析] 由双曲线方程知右顶点为(a,0), 设其中一条渐近线方程为y =b ax , 可得点A 的坐标为(a ,b ).设右焦点为F (c,0),由已知可知c =4,且|AF |=4,即(c -a )2+b 2=16, 所以有(c -a )2+b 2=c 2,又c 2=a 2+b 2,则c =2a ,即a =c2=2,所以b 2=c 2-a 2=42-22=12. 故双曲线的方程为x 24-y 212=1,故选A.(2)[2017·辽宁沈阳四校联考]设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________.[答案]y 24-x 25=1 [解析] 解法一:椭圆x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),根据定义知2a =|15-2+-2-15-2++2|=4,故a =2.又b 2=32-a 2=5, 故所求双曲线的方程为y 24-x 25=1.解法二:椭圆x 227+y 236=1的焦点坐标是(0,±3).设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,又点(15,4)在双曲线上,所以16a 2-15b2=1,解得a 2=4,b 2=5.故所求双曲线的方程为y 24-x 25=1.解法三:设双曲线的方程为x 227-λ+y 236-λ=1(27<λ<36), 由于双曲线过点(15,4),故1527-λ+1636-λ=1, 解得λ1=32,λ2=0(舍去). 故所求双曲线方程为y 24-x 25=1.[点石成金] 求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a ,b ,c 的方程,并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. 角度二已知离心率求渐近线方程[典题3] 若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x [答案] B[解析] 在双曲线中离心率e =c a=1+⎝ ⎛⎭⎪⎫b a2 =3,可得b a=2,故所求的双曲线的渐近线方程是y =±2x .角度三已知渐近线求离心率[典题4] [2017·苏北四市联考改编]已知双曲线的一条渐近线方程为2x -y =0,则该双曲线的离心率为________.[答案]5或52[解析] 根据双曲线的渐近线方程知b a =2或a b=2.则e =1+⎝ ⎛⎭⎪⎫b a 2=5或52. 角度四由离心率或渐近线方程求双曲线方程[典题5] 下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1 C.y 24-x 2=1 D .y 2-x 24=1[答案] C[解析] 由双曲线焦点在y 轴上,排除选项A ,B ,选项C 中双曲线的渐近线方程为y =±2x ,故选C.角度五利用渐近线与已知直线位置关系求离心率范围[典题6] 已知双曲线x 2a 2-y 2b2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1, 5 ]C .(5,+∞)D .[5,+∞)[答案] C[解析] ∵双曲线的一条渐近线方程为y =b a x ,则由题意得b a>2, ∴e =c a=1+⎝ ⎛⎭⎪⎫b a 2 >1+4= 5.即双曲线离心率的取值范围为(5,+∞).[点石成金] 解决有关渐近线与离心率关系问题的两个注意点(1)已知渐近线方程y =mx ,若焦点位置不明确要分|m |=b a 或|m |=a b讨论. (2)注意数形结合思想在求渐近线夹角、离心率范围中的应用.考点3 直线与双曲线的位置关系[典题7] 若双曲线E :x 2a2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若|AB |=63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.[解] (1)由⎩⎪⎨⎪⎧c a=2,a 2=c 2-1,得⎩⎪⎨⎪⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.①∵直线与双曲线右支交于A ,B 两点,∴⎩⎪⎨⎪⎧k >1,Δ=k2--k 2-,即⎩⎨⎧k >1,-2<k <2,∴1<k < 2.故k 的取值范围为(1,2). (2)由①得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1, ∴|AB |=1+k 2·x 1+x 22-4x 1x 2=2+k2-k2k 2-2=63,整理得28k 4-55k 2+25=0, ∴k 2=57或k 2=54.又1<k <2,∴k =52, ∴x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8.设C (x 3,y 3),由OC →=m (OA →+OB →),得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ). ∵点C 是双曲线上一点,∴80m 2-64m 2=1,得m =±14.故k =52,m =±14. [点石成金] 研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),求双曲线E 的方程.解:设双曲线E 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式作差,得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b25a2, 又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5. 所以双曲线E 的标准方程是x 24-y 25=1.[方法技巧] 1.双曲线标准方程的求法(1)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y 2n=1(mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便;(2)当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(3)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0),据其他条件确定λ的值.2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线方程.3.双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).4.过双曲线的一个焦点且与实轴垂直的弦的长为2b2a.5.过双曲线焦点F 1的弦AB 与双曲线交在同支上,则AB 与另一个焦点F 2构成的△ABF 2的周长为4a +2|AB |.[易错防范] 1.在运用双曲线的定义解题时,应特别注意定义中的条件“差的绝对值”,弄清是指整条双曲线还是双曲线的某一支.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1(a >0,b >0)的渐近线方程是y =±a bx .3.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.4.要牢记在双曲线中c 2=a 2+b 2,离心率e >1这两点是不同于椭圆的.真题演练集训1.[2016·新课标全国卷Ⅰ]已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)答案:A解析:由题意,得(m 2+n )(3m 2-n )>0,解得-m 2<n <3m 2,又由该双曲线两焦点间的距离为4,得m 2+n +3m 2-n =4,即m 2=1,所以-1<n <3.2.[2016·天津卷]已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1 答案:D解析:根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,故选D.3.[2016·新课标全国卷Ⅱ]已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .2答案:A解析:设F 1(-c,0),将x =-c 代入双曲线方程,得c 2a -y 2b =1,所以y 2b =c 2a -1=b 2a ,所以y =±b 2a.因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a2c=b 22ac =c 2-a 22ac =c 2a -a 2c =e 2-12e =24, 所以e 2-22e -1=0,所以e = 2.故选A. 4.[2016·浙江卷]已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1答案:A解析:由于m 2-1=c 2,n 2+1=c 2,则m 2-n 2=2,故m >n ,又(e 1e 2)2=m 2-1m ·n 2+1n=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,所以e 1e 2>1.故选A. 5.[2016·北京卷]双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC的边长为2,则a =________. 答案:2解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,由已知可得两条渐近线方程互相垂直,由双曲线的对称性可得ba=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.6.[2016·山东卷]已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.答案:2解析: 如图,由题意不妨设|AB |=3,则|BC |=2.设AB ,CD 的中点分别为M ,N ,则在Rt △BMN 中,|MN |=2c =2, 故|BN |=|BM |2+|MN |2=⎝ ⎛⎭⎪⎫322+22=52. 由双曲线的定义可得2a =|BN |-|BM |=52-32=1,而2c =|MN |=2,所以双曲线的离心率e =2c2a=2.课外拓展阅读 求双曲线离心率的易错点[典例] [2016·天津模拟]已知双曲线x 2m -y 2n =1(mn >0)的一条渐近线方程为y =±43x ,则该双曲线的离心率为________.[易错分析] (1)未考虑m ,n 的取值,易漏掉焦点在另一坐标轴上的情况; (2)易将ba弄错,从而导致失分. [解析] 当m >0,n >0时, 则有n m =43,所以n m =169, e =1+⎝ ⎛⎭⎪⎫b a2=1+169=53;当m <0,n <0时, 则有m n =43,所以m n =169, e =1+⎝ ⎛⎭⎪⎫b a2=1+916=54, 综上可知,该双曲线的离心率为53或54.[答案] 53或54温馨提醒(1)对于方程x 2m -y 2n=1表示的曲线一定要视m ,n 的不同取值进行讨论,m ,n 的取值不同表示的曲线就不同.(2)对于双曲线x 2m -y 2n =1(mn >0)的焦点位置不同,则ba的值就不一样,一定要注意区分.提醒 完成课时跟踪检测(五十二)。
精选江苏专用2018版高考数学大一轮复习第九章平面解析几何9.6双曲线教师用书理苏教版
第九章平面解析几何 9.6 双曲线教师用书理苏教版1.双曲线定义平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M||MF1-MF2|=2a},F1F2=2c,其中a,c为常数且a>0,c>0.(1)当2a<F1F2时,P点的轨迹是双曲线;(2)当2a=F1F2时,P点的轨迹是两条射线;(3)当2a>F1F2时,P点不存在.2.双曲线的标准方程和几何性质【知识拓展】巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1(mn <0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.(教材改编)若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为________. 答案5解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,AB =43,则C 的实轴长为________.答案 4解析 由题设C :x 2a 2-y 2a2=1.∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a2=1和x =-4,得A (-4,16-a 2),B (-4,-16-a 2),∴AB =216-a 2=43, ∴a =2,∴2a =4.∴C 的实轴长为4.3.(2016·无锡一模)已知焦点在x 轴上的双曲线的渐近线方程为y =±13x ,那么双曲线的离心率为________. 答案103解析 根据题意,设双曲线的方程为x 2a 2-y 2b 2=1,则b a =13,所以ca=1+b a2=103,即双曲线的离心率为103. 4.(2016·江苏)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.答案 210解析 由已知,a 2=7,b 2=3,则c 2=7+3=10,故焦距为2c =210. 5.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线的一个顶点坐标为(2,0), 一条渐近线方程是y =12x ,即x -2y =0,则顶点到渐近线的距离d =|2-0|5=255.题型一 双曲线的定义及标准方程 命题点1 利用定义求轨迹方程例1 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得MC 1-AC 1=MA ,MC 2-BC 2=MB ,因为MA =MB , 所以MC 1-AC 1=MC 2-BC 2,即MC 2-MC 1=BC 2-AC 1=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于C 1C 2=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 例2 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.命题点3 利用定义解决焦点三角形问题例3 已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,PF 1=2PF 2,则cos∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有PF 1-PF 2 =PF 2=2a =22, ∴PF 1=2PF 2=42,则cos∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=22+22-422×42×22=34.引申探究1.本例中,若将条件“PF 1=2PF 2”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22, 在△F 1PF 2中,由余弦定理,得cos∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=12,所以PF 1·PF 2=8, 所以12F PF S △=12PF 1·PF 2·sin 60°=2 3.2.本例中,若将条件“PF 1=2PF 2”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22,由于PF 1→·PF 2→=0,所以PF 1→⊥PF 2→, 所以在△F 1PF 2中,有PF 21+PF 22=F 1F 22, 即PF 21+PF 22=16, 所以PF 1·PF 2=4, 所以12F PF S △=12PF 1·PF 2=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF 1-PF 2|=2a ,运用平方的方法,建立与PF 1·PF 2的联系.(3)待定系数法求双曲线方程具体过程中先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值,如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ(λ≠0),再由条件求出λ的值即可.(1)已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A在双曲线上,则AP +AF 2的最小值为__________.(2)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,双曲线上存在一点P 使得PF 1+PF 2=3b ,PF 1·PF 2=94ab ,则该双曲线的离心率为________.答案 (1)37-2 5 (2)53解析 (1)由题意知,AP +AF 2=AP +AF 1-2a ,要求AP +AF 2的最小值,只需求AP +AF 1的最小值,当A ,P ,F 1三点共线时,取得最小值, 则AP +AF 1=PF 1=[3--2+-2=37,∴AP +AF 2的最小值为AP +AF 1-2a =37-2 5.(2)不妨设P 为双曲线右支上一点,PF 1=r 1,PF 2=r 2.根据双曲线的定义,得r 1-r 2=2a , 又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a2.又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =ca =a 2+b 2a 2=b a2+1432+1=53.题型二 双曲线的几何性质例4 (1)(2016·盐城三模)若圆x 2+y 2=r 2过双曲线x 2a 2-y 2b2=1的右焦点F ,且圆与双曲线的渐近线在第一、四象限的交点分别为A ,B ,当四边形OAFB 为菱形时,双曲线的离心率为________.(2)(2015·山东)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 (1)2 (2)32解析 (1)若四边形OAFB 为菱形,且点A 在圆x 2+y 2=r 2上,则点A 坐标为(c 2,32c ),此时r =c .又点A 在渐近线上,所以32c =b a ·c 2,即ba=3,所以e = 1+ba2=2.(2)由题意,不妨设直线OA 的方程为y =b a x ,直线OB 的方程为y =-b ax .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·bax ,∴x =2pb a,y =2pb 2a2,∴A ⎝ ⎛⎭⎪⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝ ⎛⎭⎪⎫0,p 2,∴k AF =2pb2a 2-p22pba.∵△OAB 的垂心为F ,∴AF ⊥OB ,∴k AF ·k OB =-1, 即2pb2a 2-p22pb a·⎝ ⎛⎭⎪⎫-b a =-1,∴b 2a 2=54.设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2016·全国甲卷改编)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M在E 上,MF 1与x 轴垂直,sin∠MF 2F 1=13,则E 的离心率为________.答案2解析 离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin∠F 1MF 2sin∠MF 1F 2-sin∠MF 2F 1=2231-13= 2.题型三 直线与双曲线的综合问题例5 (2016·苏州模拟)已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左,右焦点分别是C 1的左,右顶点,而C 2的左,右顶点分别是C 1的左,右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4, 再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2有两个不同的交点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2 =3k 2+73k 2-1. 又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3,②由①②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1).思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.在平面直角坐标系xOy 中,已知双曲线C :x 24-y 23=1.设过点M (0,1)的直线l 与双曲线C 交于A ,B 两点.若AM →=2MB →,则直线l 的斜率为________. 答案 ±12解析 设A (x 1,y 1),B (x 2,y 2), 则x 214-y 213=1,x 224-y 223=1. 又AM →=2MB →,AM →=(-x 1,1-y 1),MB →=(x 2,y 2-1).所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-2,即⎩⎪⎨⎪⎧x 1=-2x 2,y 1=3-2y 2,代入双曲线方程联立解得⎩⎪⎨⎪⎧x 2=-2,y 2=0或⎩⎪⎨⎪⎧x 2=2,y 2=0,所以A (4,3),B (-2,0)或A (-4,3),B (2,0),故k =3-04+2=12或k =3-0-4-2=-12,即直线l 的斜率为±12.10.直线与圆锥曲线的交点典例 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点? 错解展示现场纠错解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0=x 1+x 22=k-k2-k2. 由题意,得k-k2-k2=1,解得k =2. 当k =2时,方程①可化为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点. 纠错心得 (1)“点差法”解决直线与圆锥曲线的交点问题,要考虑变形的条件. (2)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法.1.(2016·泰州联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的一条渐近线上,则C 的方程为________________. 答案x 220-y 25=1 解析 依题意⎩⎪⎨⎪⎧a 2+b 2=25,1=ba×2,解得⎩⎪⎨⎪⎧a 2=20,b 2=5,∴双曲线C 的方程为x 220-y 25=1.2.(2016·全国乙卷改编)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是________. 答案 (-1,3)解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3.3.(2016·盐城模拟)已知双曲线x 216-y 29=1的左,右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A ,B 两点,若AB =5,则△ABF 1的周长为________. 答案 26解析 由双曲线x 216-y 29=1,知a =4.由双曲线定义AF 1-AF 2=BF 1-BF 2=2a =8,∴AF 1+BF 1=AF 2+BF 2+16=21,∴△ABF 1的周长为AF 1+BF 1+AB =21+5=26.4.(2016·北京)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________,b =________. 答案 1 2解析 由2x +y =0,得y =-2x ,所以b a=2. 又c =5,a 2+b 2=c 2,解得a =1,b =2.5.已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是____________. 答案 (1,2)解析 由题意易知点F 的坐标为(-c,0),A (-c ,b 2a ),B (-c ,-b 2a),E (a,0),∵△ABE 是锐角三角形,∴EA →·EB →>0,即EA →·EB →=(-c -a ,b 2a)·(-c -a ,-b 2a)>0,整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0, ∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2).6.(2016·浙江)设双曲线x 2-y 23=1的左,右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则PF 1+PF 2的取值范围是________. 答案 (27,8)解析 如图,由已知可得a =1,b =3,c =2,从而F 1F 2=4,由对称性不妨设P 在右支上,设PF 2=m ,则PF 1=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧m +2<m 2+42,42<m +2+m 2,解得-1+7<m <3,又PF 1+PF 2=2m +2, ∴27<2m +2<8.7.(2016·南京三模)设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为________. 答案5解析 不妨设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),设F (-c,0),线段PF 的中点为(0,b ),则P (c,2b ).由点P 在双曲线上,得c 2a2-4=1,所以e = 5.8.设双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为双曲线上位于第一象限内的一点,且△PF 1F 2的面积为6,则点P 的坐标为____________. 答案 (655,2)解析 由双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,所以F 1F 2=6,设P (x ,y ) (x >0,y >0),因为△PF 1F 2的面积为6,所以12F 1F 2·y =12×6×y =6,解得y =2,将y =2代入x 24-y25=1得x=655.所以P (655,2). 9.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,若在双曲线的右支上存在一点M ,使得(OM →+OF 2→)·F 2M →=0(其中O 为坐标原点),且|MF 1→|=3|MF 2→|,则双曲线的离心率为______. 答案3+1解析 ∵F 2M →=OM →-OF 2→,∴(OM →+OF 2→)·F 2M →=(OM →+OF 2→)·(OM →-OF 2→)=0, 即OM →2-OF 2→2=0,∴|OF 2→|=|OM →|=c ,在△MF 1F 2中,边F 1F 2上的中线等于F 1F 2的一半,可得MF 1→⊥MF 2→. ∵|MF 1→|=3|MF 2→|,∴可设|MF 2→|=λ(λ>0),|MF 1→|=3λ,得(3λ)2+λ2=4c 2,解得λ=c , ∴|MF 1→|=3c ,|MF 2→|=c ,∴根据双曲线定义得2a =|MF 1→|-|MF 2→|=(3-1)c , ∴双曲线的离心率e =2c2a=3+1.10.(2015·课标全国Ⅰ改编)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是______________. 答案 ⎝ ⎛⎭⎪⎫-33,33 解析 由题意知a =2,b =1,c =3, ∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. 11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,则此双曲线的离心率e 的最大值为________.答案 53解析 由定义,知PF 1-PF 2=2a . 又PF 1=4PF 2,∴PF 1=83a ,PF 2=23a .在△PF 1F 2中,由余弦定理,得 cos∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos∠F 1PF 2的最小值,∴当cos∠F 1PF 2=-1时,得e =53,即e 的最大值为53.12.(2015·课标全国Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 的周长最小时,该三角形的面积为________.答案 12 6解析 设左焦点为F 1,PF -PF 1=2a =2,∴PF =2+PF 1,△APF 的周长为AF +AP +PF =AF +AP +2+PF 1,△APF 周长最小即为AP +PF 1最小,当A 、P 、F 1三点在一条直线时最小,过AF 1的直线方程为x -3+y66=1,与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S △APF =S △AF 1F -S △F 1PF =12 6.13.(2016·江西丰城中学模拟)一条斜率为1的直线l 与离心率为3的双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于P ,Q 两点,直线l 与y 轴交于R 点,且OP →·OQ →=-3,PR →=3RQ →,求直线和双曲线的方程.解 ∵e =3,∴b 2=2a 2, ∴双曲线方程可化为2x 2-y 2=2a 2. 设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,2x 2-y 2=2a 2,得x 2-2mx -m 2-2a 2=0,∴Δ=4m 2+4(m 2+2a 2)>0, ∴直线l 一定与双曲线相交. 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=2m ,x 1x 2=-m 2-2a 2.∵PR →=3RQ →,x R =x 1+3x 24=0,∴x 1=-3x 2,∴x 2=-m ,-3x 22=-m 2-2a 2. 消去x 2,得m 2=a 2.OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(x 1+m )(x 2+m ) =2x 1x 2+m (x 1+x 2)+m 2=m 2-4a 2=-3, ∴m =±1,a 2=1,b 2=2.直线l 的方程为y =x ±1,双曲线的方程为x 2-y 22=1.*14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),且b =3a .(1)求双曲线C 的方程;(2)设经过焦点F 2的直线l 的一个法向量为(m,1),当直线l 与双曲线C 的右支交于不同的两点A ,B 时,求实数m 的取值范围,并证明AB 中点M 在曲线3(x -1)2-y 2=3上; (3)设(2)中直线l 与双曲线C 的右支交于A ,B 两点,问是否存在实数m ,使得∠AOB 为锐角?若存在,请求出m 的取值范围;若不存在,请说明理由. 解 (1)由已知,得c =2,c 2=a 2+b 2,b =3a , ∴4=a 2+3a 2,∴a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.(2)由题意,得直线l :m (x -2)+y =0,由⎩⎪⎨⎪⎧y =-mx +2m ,x 2-y 23=1,得(3-m 2)x 2+4m 2x -4m 2-3=0. 由Δ>0,得4m 4+(3-m 2)(4m 2+3)>0, 12m 2+9-3m 2>0,即m 2+1>0恒成立. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4m 2m 2-3,x 1x 2=4m 2+3m 2-3.又⎩⎪⎨⎪⎧x 1+x 2>0,x 1·x 2>0,∴⎩⎪⎨⎪⎧4m2m 2-3>0,4m 2+3m 2-3>0,∴m 2>3,∴m ∈(-∞,-3)∪(3,+∞). ∵x 1+x 22=2m 2m 2-3,y 1+y 22=-2m 3m 2-3+2m=-6mm 2-3, ∴AB 的中点M (2m 2m 2-3,-6mm 2-3),∵3(2m 2m 2-3-1)2-36m 2m 2-2 =3×m 2+2m 2-2-36m 2m 2-2=3×m 4+6m 2+9-12m 2m 2-2=3,∴M 在曲线3(x -1)2-y 2=3上. (3)设A (x 1,y 1),B (x 2,y 2),假设存在实数m ,使∠AOB 为锐角,则OA →·OB →>0, ∴x 1x 2+y 1y 2>0.∵y 1y 2=(-mx 1+2m )(-mx 2+2m ) =m 2x 1x 2-2m 2(x 1+x 2)+4m 2, ∴(1+m 2)x 1x 2-2m 2(x 1+x 2)+4m 2>0, ∴(1+m 2)(4m 2+3)-8m 4+4m 2(m 2-3)>0,即7m 2+3-12m 2>0,∴m 2<35,与m 2>3矛盾,∴不存在实数m ,使得∠AOB 为锐角.。
2018届高三数学(理)一轮复习夯基提能作业本第九章 平面解析几何 第六节 双曲线 Word版含解析
第六节双曲线
组基础题组
.已知椭圆(>)与双曲线有相同的焦点,则的值为( )
.
.已知双曲线(>>)的一个焦点与圆的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为( )
.已知>>,椭圆的方程为,双曲线的方程为与的离心率之积为,则的渐近线方程为( )
±±±±
.(课标Ⅰ分)已知()是双曲线上的一点是的两个焦点.若·<,则的取值范围是( )
.
.
.设分别为双曲线(>>)的左,右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的离心率为( )
.
.(北京分)已知双曲线(>>)的一条渐近线为,一个焦点为(),则.
.设中心在原点的双曲线与椭圆有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是.
.已知为双曲线(>>)的焦点,过作垂直于轴的直线交双曲线于点和,且△为正三角形,则双曲线的渐近线方程为.
.已知双曲线的中心在原点,左,右焦点在坐标轴上,离心率为,且过点().
()求双曲线的方程;
()若点()在双曲线上,求证:·.
.已知双曲线(>>)的两条渐近线分别为.
()求双曲线的离心率;
()如图为坐标原点,动直线分别交直线于两点(分别在第一、四象限),且△的面积恒为.试探究:是否存在总与直线有且只有一个公共点的双曲线.若存在,求出双曲线的方程.
组提升题组。
【配套K12】2018年高考数学总复习第九章平面解析几何第6讲双曲线学案
第6讲 双曲线最新考纲 了解双曲线的定义、几何图形和标准方程及简单的几何性质(范围、对称性、顶点、离心率、渐近线).知 识 梳 理1.双曲线的定义平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离差的绝对值等于常数(小于|F 1F 2|且大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0: (1)若a <c 时,则集合P 为双曲线; (2)若a =c 时,则集合P 为两条射线; (3)若a >c 时,则集合P 为空集. 2.双曲线的标准方程和几何性质1.判断正误(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( )(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(4)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( )(5)等轴双曲线的渐近线互相垂直,离心率等于 2.( )解析 (1)因为||MF 1|-|MF 2||=8=|F 1F 2|,表示的轨迹为两条射线. (2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.(3)当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.答案 (1)× (2)× (3)× (4)√ (5)√2.(2016·全国Ⅰ卷)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A.(-1,3) B.(-1,3) C.(0,3)D.(0,3)解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A. 答案 A3.(2015·湖南卷)若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A.73B.54C.43D.53解析 双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,则点(3,-4)在直线y =-bax 上,即-4=-3b a ,所以4a =3b ,即b a =43,所以e =1+b 2a 2=53.故选D.答案 D4.(2015·全国Ⅱ卷)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析 根据渐近线方程为x ±2y =0,可设双曲线方程为x 2-4y 2=λ(λ≠0).因为双曲线过点(4,3),所以42-4×(3)2=λ,即λ=4.故双曲线的标准方程为x 24-y 2=1.答案x 24-y 2=15.(选修2-1P62A6改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________.解析 设双曲线的方程为:x 2-y 2=λ(λ≠0),把点A (3,-1)代入,得λ=8,故所求方程为x 28-y 28=1. 答案x 28-y 28=1 6.(2017·乐清调研)以椭圆x 24+y 2=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是________,离心率为________.解析 由题意可知所求双曲线方程可设为x 2a 2-y 2b 2=1(a >0,b >0),则a =4-1=3,c =2,∴b 2=c 2-a 2=4-3=1,故双曲线方程为x 23-y 2=1,其渐近线方程为y =±33x ,离心率为e =233. 答案 y =±33x 233考点一 双曲线的定义及其应用【例1】 (1)(2017·杭州模拟)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以B 为直角顶点的等腰直角三角形,则e 2=( ) A.1+2 2 B.4-2 2 C.5-2 2D.3+2 2(2)(2015·全国Ⅰ卷)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为________.解析 (1)如图所示,因为|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,|BF 1|=|AF 2|+|BF 2|,所以|AF 2|=2a ,|AF 1|=4a . 所以|BF 1|=22a ,所以|BF 2|=22a -2a .因为|F 1F 2|2=|BF 1|2+|BF 2|2, 所以(2c )2=(22a )2+(22a -2a )2, 所以e 2=5-2 2.(2)设左焦点为F 1,|PF |-|PF 1|=2a =2,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A ,P ,F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1.与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S =S △AF 1F -S △F 1PF =12 6.答案 (1)C (2)12 6规律方法 “焦点三角形”中常用到的知识点及技巧(1)常用知识点:在“焦点三角形”中,正弦定理、余弦定理、双曲线的定义经常使用. (2)技巧:经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立它与|PF 1||PF 2|的联系. 提醒 利用双曲线的定义解决问题,要注意三点①距离之差的绝对值.②2a <|F 1F 2|.③焦点所在坐标轴的位置.【训练1】 (1)如果双曲线x 24-y 212=1上一点P 到它的右焦点的距离是8,那么点P 到它的左焦点的距离是( ) A.4 B.12 C.4或12D.不确定(2)(2016·九江模拟)已知点P 为双曲线x 216-y 29=1右支上一点,点F 1,F 2分别为双曲线的左、右焦点,M 为△PF 1F 2的内心,若S △PMF 1=S △PMF 2+8,则△MF 1F 2的面积为( ) A.27B.10C.8D.6解析 (1)由双曲线方程,得a =2,c =4.设F 1,F 2分别为双曲线的左、右焦点,根据双曲线的定义|PF 1|-|PF 2|=±2a ,∴|PF 1|=|PF 2|±2a =8±4,∴|PF 1|=12或|PF 1|=4. (2)设内切圆的半径为R ,a =4,b =3,c =5, 因为S △PMF 1=S △PMF 2+8, 所以12(|PF 1|-|PF 2|)R =8,即aR =8,所以R =2, 所以S △MF 1F 2=12·2c ·R =10.答案 (1)C (2)B考点二 双曲线的标准方程及性质(多维探究) 命题角度一 与双曲线有关的范围问题【例2-1】 (2015·全国Ⅰ卷)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,233解析 因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33. 答案 A命题角度二 与双曲线的离心率、渐近线相关的问题【例2-2】 (1)(2016·全国Ⅱ卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D.2(2)(2016·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( ) A.x 24-y 2=1 B.x 2-y 24=1C.3x 220-3y25=1D.3x 25-3y220=1 解析 (1)设F 1(-c ,0),将x =-c 代入双曲线方程,得c 2a 2-y 2b 2=1,所以y 2b 2=c 2a 2-1=b 2a 2, 所以y =±b 2a .因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a 2c =b 22ac =c 2-a 22ac =c 2a -a 2c =e 2-12e =24,所以e 2-22e -1=0,所以e=2,故选A.(2)由题意得c =5,b a =12,则a =2,b =1,所以双曲线的方程为x 24-y 2=1.答案 (1)A (2)A规律方法 与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接变换转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决. 【训练2】 (1)(2017·慈溪调研)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤233,2B.⎣⎢⎡⎭⎪⎫233,2 C.⎝⎛⎭⎪⎫233,+∞D.⎣⎢⎡⎭⎪⎫233,+∞ (2)(2017·武汉模拟)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为________.解析 (1)因为有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,所以直线A 1B 1和A 2B 2关于x 轴对称,并且直线A 1B 1和A 2B 2与x 轴的夹角为30°,双曲线的渐近线与x 轴的夹角大于30°且小于等于60°,否则不满足题意.可得b a >tan 30°,即b 2a 2>13,c 2-a 2a 2>13,所以e >233.同样的,当b a ≤tan 60°,即b 2a 2≤3时,c 2-a 2a 2≤3,即4a 2≥c 2,∴e 2≤4,∵e >1,所以1<e ≤2.所以双曲线的离心率的范围是⎝⎛⎦⎥⎤233,2. (2)由题可知A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则PA 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),PA 1→·PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5.因为x ≥1,函数f (x )=4x 2-x -5的图象的对称轴为x =18,所以当x =1时,PA 1→·PF 2→取得最小值-2.答案 (1)A (2)-2 考点三 双曲线的综合问题【例3】 (1)已知椭圆x 2a 2+y 29=1(a >0)与双曲线x 24-y 23=1有相同的焦点,则a 的值为( )A. 2B.10C.4D.34(2)(2015·江苏卷)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.解析 (1)因为椭圆x 2a 2+y 29=1(a >0)与双曲线x 24-y 23=1有相同的焦点(±7,0),则有a 2-9=7,所以a =4.(2)设P (x ,y )(x ≥1),因为直线x -y +1=0平行于渐近线x -y =0,所以c 的最大值为直线x -y +1=0与渐近线x -y =0之间的距离,由两平行线间的距离公式知,该距离为12=22. 答案 (1)C (2)22规律方法 解决与双曲线有关综合问题的方法(1)解决双曲线与椭圆、圆、抛物线的综合问题时,要充分利用椭圆、圆、抛物线的几何性质得出变量间的关系,再结合双曲线的几何性质求解.(2)解决直线与双曲线的综合问题,通常是联立直线方程与双曲线方程,消元求解一元二次方程即可,但一定要注意数形结合,结合图形注意取舍.【训练3】 (2016·天津卷)已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1D.x 24-y 212=1解析 由双曲线x 24-y 2b 2=1(b >0)知其渐近线方程为y =±b2x ,又圆的方程为x 2+y 2=4,①不妨设渐近线与圆在第一象限的交点为B ,将y =b2x 代入方程①式,可得点B ⎝⎛⎭⎪⎫44+b2,2b 4+b 2.由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b2,4b4+b 2,故8×4b4+b 2=2b ,得b 2=12.故双曲线的方程为x 24-y 212=1.答案 D[思想方法]1.与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有公共渐近线的双曲线的方程可设为x 2a 2-y 2b2=t (t ≠0).2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b2=1 (a >0,b >0)的两条渐近线方程. [易错防范]1.双曲线方程中c 2=a 2+b 2,说明双曲线方程中c 最大,解决双曲线问题时不要忽视了这个结论,不要与椭圆中的知识相混淆.2.求双曲线离心率及其范围时,不要忽略了双曲线的离心率的取值范围是(1,+∞)这个前提条件,否则很容易产生增解或扩大所求离心率的取值范围致错.3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1 (a >0,b >0)的渐近线方程是y =±a bx .4.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.。
【K12教育学习资料】2018届高三数学一轮复习第九章平面解析几何第六节双曲线夯基提能
第六节双曲线A组基础题组1.(2016安徽安庆二模)双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=2x,则双曲线C的离心率是( )A. B. C.2 D.2.若实数k满足0<k<5,则曲线--=1与曲线--=1的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等3.已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为( )A.y=±xB.y=±xC.y=±xD.y=±x4.(2016天津,4,5分)已知双曲线-=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为( )A.-y2=1B.x2-=1C.-=1D.-=15.(2016课标全国Ⅱ,11,5分)已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )A. B. C. D.26.设双曲线-=1(a>0,b>0)的右焦点是F,左,右顶点分别是A1,A2,过F作A1A2的垂线与双曲线交于B,C 两点.若A1B⊥A2C,则该双曲线的渐近线的斜率为( )A.±B.±C.±1D.±7.(2016北京,12,5分)已知双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a= ;b= .8.设F1、F2分别是双曲线x2-=1的左、右焦点,A是双曲线上在第一象限内的点,若|AF2|=2且∠F1AF2=45°,延长AF2交双曲线右支于点B,则△F1AB的面积等于.9.中心在原点,焦点在x轴上的椭圆与双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求椭圆和双曲线的方程;(2)若P为该椭圆与双曲线的一个交点,求cos∠F1PF2的值.10.已知双曲线的中心在原点,左、右焦点F1、F2在坐标轴上,离心率为,且过点(4,-).(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:·=0;(3)在(2)的条件下,求△F1MF2的面积.B组提升题组11.(2016课标全国Ⅰ,5,5分)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n-的取值范围是( )A.(-1,3)B.(-1,)C.(0,3)D.(0,)12.(2016江南十校联考(一))已知l是双曲线C:-=1的一条渐近线,P是l上的一点,F1,F2分别是C的左,右焦点,若·=0,则点P到x轴的距离为( )A. B. C.2 D.13.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为( )A.(1,)B.(1,]C.(,+∞)D.[,+∞)14.(2015课标Ⅰ,16,5分)已知F是双曲线C:x2-=1的右焦点,P是C的左支上一点,A(0,6).当△APF 周长最小时,该三角形的面积为.15.(2016浙江,13,4分)设双曲线x2-=1的左、右焦点分别为F1、F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.16.设A,B分别为双曲线-=1(a>0,b>0)的左,右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线y=x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使+=t,求t 的值及点D的坐标.答案全解全析A组基础题组1.A 由双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=2x,可得=2,∴e===.故选A.2.D 若0<k<5,则5-k>0,16-k>0,故方程--=1表示焦点在x轴上的双曲线,且实半轴的长为4,虚半轴的长为-,焦距2c=2-,离心率e=-;方程--=1表示焦点在x轴上的双曲线,实半轴的长为-,虚半轴的长为,焦距2c=2-,离心率e=--.可知两曲线的焦距相等.故选D.3.C 由双曲线的离心率e==可知=,而双曲线-=1(a>0,b>0)的渐近线方程为y=±x,故选C.4.A 由题意可得解得a=2,b=1,所以双曲线的方程为-y2=1,故选A.5.A 解法一:由MF1⊥x轴,可得M-或M--,∴|MF1|=.由sin∠MF2F1=,可得cos∠MF2F1=-=,又tan∠MF2F1==,∴=,∴b2=ac,∵c2=a2+b2⇒b2=c2-a2,∴c2-a2-ac=0⇒e2-e-1=0,∴e=(舍负).故选A.解法二:由MF1⊥x轴,得M-或M--,∴|MF1|=,由双曲线的定义可得|MF2|=2a+|MF1|=2a+, 又sin∠MF2F1===⇒a2=b2⇒a=b,∴e==.故选A.6.C 不妨令B在x轴上方,因为BC过右焦点F(c,0),且垂直于A1A2,即x轴,所以可求得B,C两点的坐标分别为,-,又A1,A2的坐标分别为(-a,0),(a,0),所以=,=--,因为A1B⊥A2C,所以·=0,即(c+a)(c-a)-·=0,即c2-a2-=0,所以b2-=0,故=1,即=1,又双曲线的渐近线的斜率为±,故该双曲线的渐近线的斜率为±1.故选C.7.答案1;2解析由题可知双曲线焦点在x轴上,故渐近线方程为y=±x,又一条渐近线为2x+y=0,即y=-2x,∴=2,即b=2a.又∵该双曲线的一个焦点为(,0),∴c=.由a2+b2=c2可得a2+(2a)2=5,解得a=1,b=2.8.答案 4解析由题意可得|AF2|=2,|AF1|=4,则|AB|=|AF2|+|BF2|=2+|BF2|=|BF1|.又∠F1AF2=45°,所以△ABF1是以AF1为斜边的等腰直角三角形,所以其面积为×4×2=4.9.解析(1)设椭圆的方程为+=1,双曲线的方程为-=1,则-··解得a=7,m=3,∴b=6,n=2.∴椭圆的方程为+=1,双曲线的方程为-=1.(2)不妨令F1、F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14, |PF1|-|PF2|=6,所以|PF1|=10,|PF2|=4,又|F1F2|=2,∴cos∠F1PF2=-=-=.10.解析(1)∵e=,∴可设双曲线的方程为x2-y2=λ(λ≠0).∵双曲线过点(4,-),∴16-10=λ,即λ=6,∴双曲线的方程为x2-y2=6.(2)证法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0),,∴=,=-∴·==-.-∵点M(3,m)在双曲线上,∴9-m2=6,m2=3,故·=-1,∴MF1⊥MF2,即·=0.证法二:由证法一知=(-3-2=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2,∵点M在双曲线上,∴9-m2=6,即m2-3=0,∴·=0.(3)△F1MF2的底|F1F2|=4,由(2)知m=±.∴△F1MF2的高h=|m|=,∴△=6.B组提升题组11.A ∵原方程表示双曲线,且焦距为4,∴-①-②或----由①得m2=1,n∈(-1,3).②无解.故选A.12.C 由题意知F1(-,0),F2(,0),不妨取l的方程为y=x,设点P(x0,x0),由·=(--x0,-x0)·(-x0,-x0)=3-6=0,得x0=±,故点P到x轴的距离为|x0|=2,故选C.13.C 双曲线的一条渐近线方程为y=x,由题意得>2,∴e==> = .14.答案 12解析 由已知得双曲线的右焦点F(3,0).设双曲线的左焦点为F',则F'(-3,0).由双曲线的定义及已知得|PF|=2a+|PF'|=2+|PF'|.△APF 的周长最小,即|PA|+|PF|最小.|PA|+|PF|=|PA|+2+|PF'|≥|AF'|+2=17,即当A 、P 、F'三点共线时,△APF 的周长最小.设P 点坐标为(x 0,y 0),y 0>0,由--得+6 y 0-96=0,所以y 0=2 或y 0=-8 (舍去). 所以当△APF 的周长最小时,该三角形的面积S= ×6×6 -×6×2 =12 .15.答案 (2 ,8)解析 △PF 1F 2为锐角三角形,不妨设P 在第一象限,P 点在P 1与P 2之间运动(如图).当P 在P 1点处时,∠F 1P 1F 2=90°, △ = |F 1F 2|·| |=|P 1F 1|·|P 1F 2|. 由|P 1F 1|2+|P 1F 2|2=|F 1F 2|2,|P 1F 1|-|P 1F 2|=2, 得|P 1F 1|·|P 1F 2|=6, 此时|PF 1|+|PF 2|=2 当P 在P 2点处时,∠P 2F 2F 1=90°, ∴ =2,易知 =3,此时|PF 1|+|PF 2|=2|PF 2|+2=8,∴当△PF 1F 2为锐角三角形时,|PF 1|+|PF 2|∈(2 ,8). 16.解析 (1)由题意知a=2 ,∴一条渐近线方程为y= x,即bx-2 y=0,∴= ,∴b 2=3,∴双曲线的方程为 -=1. (2)设M(x 1,y 1),N(x 2,y 2),D(x 0,y 0), ∵ + =t ,∴x 1+x 2=tx 0,y 1+y 2=ty 0, 将直线方程代入双曲线方程得x 2-16 x+84=0,则x 1+x 2=16 ,所以y 1+y 2=12,∵点D 在双曲线的右支上, ∴-解得∴t=4,点D的坐标为(4。
2018届高三数学一轮复习 第九章 平面解析几何 第六节 双曲线夯基提能作业本 理
第六节双曲线A组基础题组1.已知椭圆+=1(a>0)与双曲线-=1有相同的焦点,则a的值为( )A. B. C.4 D.2.已知双曲线-=1(a>0,b>0)的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为( )A.-=1B.-=1C.-=1D.-=13.已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为( )A.x±y=0B.x±y=0C.x±2y=0D.2x±y=04.(2015课标Ⅰ,5,5分)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )A. B.C. D.5.设F1,F2分别为双曲线-=1(a>0,b>0)的左,右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为( )A. B. C. D.6.(2016北京,12,5分)已知双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a= ;b= .7.设中心在原点的双曲线与椭圆+y2=1有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是.8.已知F1,F2为双曲线-=1(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P和Q,且△F1PQ 为正三角形,则双曲线的渐近线方程为.9.已知双曲线的中心在原点,左,右焦点F1,F2在坐标轴上,离心率为,且过点(4,-).(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:·=0.10.已知双曲线E:-=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E.若存在,求出双曲线E的方程.B组提升题组11.(2016安徽江南十校3月联考)已知l是双曲线C:-=1的一条渐近线,P是l上的一点,F1,F2是C 的两个焦点,若·=0,则P到x轴的距离为( )A. B. C.2 D.12.(2016吉林长春二模)过双曲线x2-=1的右支上一点P分别向圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1作切线,切点分别为M,N,则|PM|2-|PN|2的最小值为( )A.10B.13C.16D.1913.(2016北京,13,5分)双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B 为该双曲线的焦点.若正方形OABC的边长为2,则a= .14.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为.15.已知椭圆C1的方程为+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O为坐标原点.(1)求双曲线C2的方程;(2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且·>2,求k的取值范围.16.设A,B分别为双曲线-=1(a>0,b>0)的左,右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线y=x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使+=t,求t 的值及点D的坐标.答案全解全析A组基础题组1.C 因为椭圆+=1(a>0)与双曲线-=1有相同的焦点(±,0),则有a2-9=7,所以a=4.2.A 由题意知圆心坐标为(5,0),即c=5,又e==,所以a=,所以a2=5,b2=20,所以双曲线的标准方程为-=1.3.A 设椭圆C1和双曲线C2的离心率分别为e1和e2,则e1=,e2=.因为e1·e2=,所以=,即=,∴=.故双曲线的渐近线方程为y=±x=±x,即x±y=0.4.A 若·=0,则点M在以原点为圆心,半焦距c=为半径的圆上,则解得=.可知:·<0⇒点M在圆x2+y2=3的内部⇒<⇒y0∈.故选A.5.B |PF2|=|F1F2|=2c,所以由双曲线的定义知|PF1|=2a+2c,因为F2到直线PF1的距离等于双曲线的实轴长,所以(a+c)2+(2a)2=(2c)2,即3c2-2ac-5a2=0,两边同除以a2,得3e2-2e-5=0,解得e=或e=-1(舍去).6.答案1;2解析由题可知双曲线焦点在x轴上,故渐近线方程为y=±x,又一条渐近线为2x+y=0,即y=-2x,∴=2,即b=2a.又∵该双曲线的一个焦点为(,0),∴c=.由a2+b2=c2可得a2+(2a)2=5,解得a=1,b=2.7.答案2x2-2y2=1解析∵椭圆的焦点为(±1,0),∴双曲线的焦点为(±1,0).∵椭圆的离心率e=,∴双曲线的离心率e'=.∴双曲线中c2=2a2,∴1=2a2,∴a2=,又双曲线中b2=c2-a2,∴b2=,∴所求双曲线的方程为2x2-2y2=1.8.答案y=±x解析解法一:设F2(c,0)(c>0),P(c,y0),代入双曲线方程得y0=±,∵PQ⊥x轴,∴|PQ|=.在Rt△F1F2P中,∠PF1F2=30°,∴|F1F2|=|PF2|,即2c=·.又∵c2=a2+b2,∴b2=2a2或2a2=-3b2(舍去),∵a>0,b>0,∴=.故所求双曲线的渐近线方程为y=±x.解法二:∵在Rt△F1F2P中,∠PF1F2=30°,∴|PF1|=2|PF2|.由双曲线定义知|PF1|-|PF2|=2a,∴|PF2|=2a,由已知易得|F1F2|=|PF2|,∴2c=2a,∴c2=3a2=a2+b2,∴2a2=b2,∵a>0,b>0,∴=,故所求双曲线的渐近线方程为y=±x.9.解析(1)∵e=,∴可设双曲线的方程为x2-y2=λ(λ≠0).∵双曲线过点(4,-),∴16-10=λ,即λ=6,∴双曲线的方程为x2-y2=6.(2)证法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0),∴=,=,∴·==-.∵点M(3,m)在双曲线上,∴9-m2=6,m2=3,故·=-1,∴MF1⊥MF2,即·=0.证法二:由证法一知=(-3-2,-m),=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2,∵点M在双曲线上,∴9-m2=6,即m2-3=0,∴·=0.10.解析(1)因为双曲线E的渐近线方程分别为y=2x,y=-2x,所以=2,所以=2,故c=a, 从而双曲线E的离心率e==.(2)由(1)知,双曲线E的方程为-=1.设直线l与x轴相交于点C.当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,又因为△OAB的面积为8,所以|OC|·|AB|=8,因此a·4a=8,解得a=2,此时双曲线E的方程为-=1.B组提升题组11.C F1(-,0),F2(,0),不妨设l的方程为y=x,则可设P(x0,x0),由·=(--x0,-x0)·(-x0,-x0)=3-6=0,得x0=±,故P到x轴的距离为|x0|=2,故选C.12.B 由题意可知,|PM|2-|P N|2=(|PC1|2-4)-(|PC2|2-1)=|PC1|2-|PC2|2-3=(|PC1|-|PC2|)·(|PC1|+|PC2|)-3=2(|PC1|+|PC2|)-3≥2|C1C2|-3=13,故选B.13.答案 2解析由OA、OC所在的直线为渐近线,且OA⊥OC,知两条渐近线的夹角为90°,从而双曲线为等轴双曲线,则其方程为x2-y2=a2.OB是正方形的对角线,且点B是双曲线的焦点,则c=2,根据c2=2a2可得a=2.14.答案-2解析由已知可得A1(-1,0),F2(2,0),设点P的坐标为(x,y)(x≥1),则·=(-1-x,-y)·(2-x,-y)=x2-x-2+y2,因为x2-=1,所以·=4x2-x-5,当x=1时,·有最小值-2.15.解析(1)设双曲线C 2的方程为-=1(a>0,b>0),则a2=4-1=3,c2=4,再由a2+b2=c2,得b2=1,故双曲线C2的方程为-y2=1.(2)将y=kx+代入-y2=1,得(1-3k2)x2-6kx-9=0.由直线l与双曲线C2交于不同的两点,得∴k2<1且k2≠.①设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.∴·=x1x2+y1y2=x1x2+(kx1+)(kx2+)=(k2+1)x1x2+k(x1+x2)+2=.又∵·>2,∴>2,即>0,解得<k2<3.②由①②得<k2<1,故k的取值范围为∪.16.解析(1)由题意知a=2,∴一条渐近线方程为y=x,即bx-2y=0,∴=,∴b2=3,∴双曲线的方程为-=1.(2)设M(x1,y1),N(x2,y2),D(x0,y0),∵+=t,∴x1+x2=tx0,y1+y2=ty0,将直线方程代入双曲线方程得x2-16x+84=0,则x1+x2=16,y1+y2=12,∵点D在双曲线的右支上,∴解得∴t=4,点D的坐标为(4,3).。
高三数学一轮复习 第九章 平面解析几何 第六节 双曲线夯基提能作业本 文(2021年整理)
2018届高三数学一轮复习第九章平面解析几何第六节双曲线夯基提能作业本文2018届高三数学一轮复习第九章平面解析几何第六节双曲线夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届高三数学一轮复习第九章平面解析几何第六节双曲线夯基提能作业本文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届高三数学一轮复习第九章平面解析几何第六节双曲线夯基提能作业本文的全部内容。
2018届高三数学一轮复习第九章平面解析几何第六节双曲线夯基提能作业本文第六节双曲线A组基础题组1。
(2016安徽安庆二模)双曲线C:—=1(a〉0,b〉0)的一条渐近线方程为y=2x,则双曲线C的离心率是()A.B。
C.2 D.2。
若实数k满足0<k<5,则曲线-=1与曲线—=1的( )A。
实半轴长相等 B.虚半轴长相等C.离心率相等D.焦距相等3。
已知双曲线C:—=1(a〉0,b>0)的离心率为,则C的渐近线方程为( )A。
y=±x B.y=±xC。
y=±x D。
y=±x4.(2016天津,4,5分)已知双曲线—=1(a〉0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.-y2=1B.x2-=1C.—=1D.-=15。
(2016课标全国Ⅱ,11,5分)已知F1,F2是双曲线E:—=1的左,右焦点,点M在E 上,MF1与x轴垂直,sin∠M F2F1=,则E的离心率为()A。
B. C. D.26.设双曲线-=1(a>0,b>0)的右焦点是F,左,右顶点分别是A1,A2,过F作A1A2的垂线与双曲线交于B,C两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲 双曲线基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·台州调研)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A.y =±12xB.y =±22x C.y =±2xD.y =±2x解析 因为2b =2,所以b =1,因为2c =23,所以c =3,所以a =c 2-b 2=2,所以双曲线的渐近线方程为y =±b a x =±22x ,故选B. 答案 B2.(2015·广东卷)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( ) A.x 24-y 23=1B.x 29-y 216=1 C.x 216-y 29=1D.x 23-y 24=1 解析 因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选C.答案 C3.(2016·浙江卷)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<1解析 由题意可得:m 2-1=n 2+1,即m 2=n 2+2, 又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1.答案 A4.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.45解析 由x 2-y 2=2,知a =b =2,c =2. 由双曲线定义,|PF 1|-|PF 2|=2a =22, 又|PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.答案 C5.(2017·杭州调研)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B.2 3C.6D.4 3解析 由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,即A ,B 两点的坐标分别为(2,23),(2,-23),所以|AB |=4 3. 答案 D 二、填空题6.(2015·浙江卷)双曲线x 22-y 2=1的焦距是________,渐近线方程是________.解析 由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22x . 答案 2 3 y =±22x 7.(2016·北京卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________.解析 取B 为双曲线右焦点,如图所示.∵四边形OABC 为正方形且边长为2,∴c =|OB |=22,又∠AOB =π4,∴b a =tan π4=1,即a =b . 又a 2+b 2=c 2=8,∴a =2. 答案 28.(2016·山东卷)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b2a=3×2c .又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝ ⎛⎭⎪⎫c a 2-3⎝ ⎛⎭⎪⎫c a -2=0,即2e 2-3e-2=0,解得e =2或e =-1(舍去). 答案 2 三、解答题9.(2017·宁波十校联考)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0. (1)解 ∵e =2,∴可设双曲线的方程为x 2-y 2=λ(λ≠0). ∵双曲线过点(4,-10), ∴16-10=λ,即λ=6. ∴双曲线的方程为x 2-y 2=6.(2)证明 法一 由(1)可知,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0), ∴k MF 1=m 3+23,k MF 2=m3-23,k MF 1·k MF 2=m 29-12=-m 23. ∵点M (3,m )在双曲线上,∴9-m 2=6,m 2=3, 故k MF 1·k MF 2=-1, ∴MF 1⊥MF 2.∴MF 1→·MF 2→=0.法二 由(1)可知,a =b =6,∴c =23, ∴F 1(-23,0),F 2(23,0),MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2, ∵点M (3,0)在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0.10.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1. 能力提升题组 (建议用时:30分钟)11.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1D.x 212-y 24=1 解析 由双曲线方程知右顶点为(a ,0),不妨设其中一条渐近线方程为y =b ax ,因此可得点A 的坐标为(a ,b ).设右焦点为F (c ,0),由已知可知c =4,且|AF |=4,即(c -a )2+b 2=16,所以有(c -a )2+b2=c 2,又c 2=a 2+b 2,则c =2a ,即a =c2=2,所以b 2=c 2-a 2=42-22=12.故双曲线的方程为x 24-y 212=1,故选A.答案 A12.若双曲线x 2a 2-y 2b2=1(a >0,b >0)上存在一点P 满足以|OP |为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤1,52 B.⎝ ⎛⎦⎥⎤1,72 C.⎣⎢⎡⎭⎪⎫52,+∞D.⎣⎢⎡⎭⎪⎫72,+∞ 解析 由条件,得|OP |2=2ab ,又P 为双曲线上一点,从而|OP |≥a ,∴2ab ≥a 2,∴2b ≥a ,又∵c 2=a 2+b 2≥a 2+a 24=54a 2,∴e =c a ≥52.答案 C13.(2016·浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.解析 如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设点P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2, 解得-1+7<m <3, 又|PF 1|+|PF 2|=2m +2, ∴27<2m +2<8. 答案 (27,8)14.已知双曲线y 2a -x 2b=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255. (1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP →=PB →,求△AOB 的面积.解 (1)依题意得⎩⎪⎨⎪⎧a b =2,|2×0+a |5=255,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线的方程为y 24-x 2=1. (2)由(1)知双曲线的渐近线方程为y =±2x ,设A (m ,2m ),B (-n ,2n ),其中m >0,n >0,由AP →=PB →得点P 的坐标为⎝ ⎛⎭⎪⎫m -n 2,m +n . 将点P 的坐标代入y 24-x 2=1, 整理得mn =1.设∠AOB =2θ,∵tan ⎝ ⎛⎭⎪⎫π2-θ=2, 则tan θ=12,从而sin 2θ=45.又|OA |=5m ,|OB |=5n , ∴S △AOB =12|OA ||OB |sin 2θ=2mn =2.15.(2017·浙大附中模拟)已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3. (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 左支交于A 、B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,m ),求m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)设A (x A ,y A )、B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=36(1-k 2)>0,x A +x B =62k 1-3k 2<0,x A x B =-91-3k 2>0,解得33<k <1. ∴当33<k <1时,l 与双曲线左支有两个交点. (3)由(2)得:x A +x B =62k1-3k 2,∴y A +y B =(kx A +2)+(kx B +2) =k (x A +x B )+22=221-3k 2.∴AB 的中点P 的坐标为⎝⎛⎭⎪⎫32k 1-3k 2,21-3k 2. 设直线l 0的方程为:y =-1kx +m ,将P 点坐标代入直线l 0的方程,得m =421-3k 2.∵33<k <1,∴-2<1-3k 2<0. ∴m <-2 2.∴m 的取值范围为(-∞,-22).。