2014北约自主招生数学试题及解答

合集下载

华约、北约、卓越2014大学自主招生模拟试题三数学含详细解答

华约、北约、卓越2014大学自主招生模拟试题三数学含详细解答

4 1 三.求证:16< Σ <17. i=1 k 四.)设 l,m 是两条异面直线,在 l 上有 A,B,C 三点,且 AB=BC,过 A,B,C 7 分别作 m 的垂线 AD, BE, CF, 垂足依次是 D, E, F, 已知 AD= 15, BE=2CF= 10, 求 l 与 m 的距离. 五.设 n 是自然数,fn(x)= xn+1-x-n-1 1 (x0,± 1),令 y=x+ x. -1 x-x
n 1 n-2 n-1 i i n-i n-2i n 1 n-2 n-1 i i n-i
n
模拟三 一 1. 解 : y=((n+1)x - 1)(nx - 1) , ∴ 1 1 |AnBn|= n - n+1 , 于 是
1992 |A1B1|+|A2B2|++|A1992B1992|=1993,选 B. 2. 解:(x 1-y2)=0 表示 y 轴右边的半圆,(y+ 1-x2)=0 表示 x 轴下方的半圆, 故选 D. 4 4 4 3. 解: Σ Si≤4S,故 Σ Si≤4,又当与最大面相对的顶点向此面无限接近时, Σ i=1 i=1 i=1 Si 接近 2S,故选 A. 4. 解: x2=4x-4. 根为 x=2. ∴ C=2A, B=180° -3A, sinB=2sinA. sin3A=2sinA, 2 3-4sin A=2.A=30° ,C=60° ,B=90° .选 B. 2z1 π π 1 3 5. 解: z =cos3± isin3.∴ |z2|=8,z1、z2 的夹角=60° .S=2· 4· 8·2 =8 3.选 A. 2 6. 解:f(20-x)=f[10+(10-x)]=f[10-(10-x)]=f(x)=-f(20+x). ∴ f(40+x)=f[20+(20+x)]=-f(20+x)=f(x).∴ 是周期函数;

北约自主招生数学题及解答

北约自主招生数学题及解答

北约自主招生数学题及解答∎1、已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线的长。

解:由对角线的平方和等于四边的平方和:所以36+x 2=2(9+25),x 2=32,∴x=4√2。

∎2求过抛物线y =2x 2−2x −1,y =−5x 2+2x +3交点的直线方程。

解:{y =2x 2−2x −1y =−5x 2+2x +3,{5y =10x 2−10x −52y =−10x 2+4x +6,7y=−6x+1,∴6x+7y −1=0为所求。

∎3、等差数列a 1,a 2,⋯满足a 3=−13,a 7=3,这个数列的前n 项和为S n ,数列S 1,S 2,⋯中哪一项最小,并求出这个最小值。

解:d=a 7−a 37−3=164=4,∴a 1=−21,S n =2n 2−23n ,当n=234,即n=6时S n 最小,最小为−66。

∎4、∆ABC 的三边a,b,c 满足a+b ≥2c ,A,B,C 为∆ABC 的内角,求证:C ≤60°。

解:ab ≤(a+b 2)2,cosC=a 2+b 2−c 22ab=(a+b)2−2ab−c 22ab≥(a+b)2−c 2(a+b)22−1=1−2c 2(a+b)2≥1−2c 24c 2=12,所以C ≤60°。

∎ 5、是否存有四个正实数,它们的两两乘积分别是2,3,5,6,10,16?解:设存有四个正实数分别为a<b<c<d ,依题意:ab=2,ac=3,ad=5,bc=6,bd=10,cd=16,∴a 2bc =6,∴a =1,b=2,c=3,d=5,而cd=15≠16,故不存有。

或解:∵abcd=32,而(abcd)3=1800×16,不满足,故不存有。

∎6、C 1和C 2是平面上两个不重合的固定圆,C 是该平面上的一个动圆,C 和C 1,C 2都相切,则C 的圆心的轨迹是何种曲线?说明理由。

一道北约自招试题的解法与源流研究

一道北约自招试题的解法与源流研究

摇 摇 摇 n … ·姨 姨 2 +x1x2…xn 姨 姨 2 ·姨 姨 2 · =
姨∏
i=1
n
n
( 姨 2 +x) i


n i=1
i=1

姨2 摇 姨 2 +xi


i ∑ ,i ∑ , i ∑ ,
m α1 m α2 m
ai ·
1
… · ai ·
2
Holder不等式).实际 ai (
n
i=1
i=1
i=1 摇 摇 n 摇 摇 摇 摇 摇

1 n
n i=1
( ∑ln 姨 2 +e
n i=1 摇

)≥ln ( 姨 2 +e n


1
n
∑a
i=1
i
)=ln ( 姨 2 +1),从
n i=1 摇

而 ln ∏ ( ( (姨 2 +xi)≥ 姨 2 +e a )≥ln 姨 2 +1)n,即 ∏
i
( 姨 2 +1)n.

( ( ( 较 ( 姨 2 +1) 姨 2 +x1xn)与 姨 2 +x1) 姨 2 +xn)的大小, 而(姨 2 +1) (姨 2 +x1xn) (姨 2 +x1) (姨 2 +xn) = 1+x1xn-x1-xn)= 姨 2( 1-x1) ( 1-xn)≤0,即∏ ( 姨 2( 姨2
i=1 摇 摇 n 摇 摇 摇 摇 摇
n
n
+xi)≥ ( 姨 2 +1)n圳
n

2014年3月北约自主招生数学试卷

2014年3月北约自主招生数学试卷

2014北约理科数学试题1、圆心角为3π的扇形面积为6,π求它围成圆锥的表面积. 2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.3、()()()()22,11,47,33f a f b a b f f f ++⎛⎫=== ⎪⎝⎭求()2014f . 4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围. 5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 6、()22arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 7、求证:tan3.Q ︒∉8、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.9、1213......a a a 是等差数列,{}|113,i j k M a a a i j k =++≤<<≤问:7160,,23是否可以同时在M中,并证明你的结论.10、()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏2014北约文科数学试题1、圆心角为3π的扇形面积为6,π求它围成圆锥的表面积. 2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.3、()()()()22,11,47,33f a f b a b f f f ++⎛⎫=== ⎪⎝⎭求()2014f . 4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围. 5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 6、()22arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 7、等比数列{}(){}()411200,631200n n m m +≤≤-≤≤的公共项之和.8、梯形的对角线长分别为5和7,高是3,求梯形的面积.9、求证:tan3.Q ︒∉10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.2014北约理科数学试题(参考答案)1、圆心角为3π的扇形面积为6,π求它围成圆锥的表面积. 【解析】21,6,2,2S R R l R ααπ=⇒===扇从而圆锥底面周长为222,,67.r S r S πππππππ=⇒===+=底2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.【解析】平均分堆问题.10634332100.2!C C C ⋅⋅=3、()()()()22,11,47,33f a f b a b f f f ++⎛⎫=== ⎪⎝⎭求()2014f . 【解析】观察等式可知,函数显然为线性一次函数,可设(),f x kx m =+()()11,47f f ==代入求得2,1,k m ==-从而()20144027.f =4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围. 【解析】值域问题.2440,1a a a ∆=-≥⇒≥或0.a ≤5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 【解析】均值不等式,对勾函数性质.()()110,4x y xy =-+-≥⇒<≤从而117.4xy xy +≥FEDBA6、()22arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 【解析】()00,arctan 2.f C =⇒=-下面证明:()()22224arctanarctan 2arctan 2arctan 20.14143x x f x f x C x x +-⎛⎫+-=++=--= ⎪-+⎝⎭7、求证:tan3.Q ︒∉【解析】反证法.假设tan3,Q ︒∈则tan6,tan12,tan 24,Q Q Q ︒∈⇒︒∈⇒︒∈从而tan30,Q ︒∈矛盾.tan3.Q ∴︒∉8、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.9、1213......a a a 是等差数列,{}|113,i j k M a a a i j k =++≤<<≤问:7160,,23是否可以同时在M中,并证明你的结论.【解析】数列中的项.分析M 中项的构成,若按照从小到大的顺序排列,最小的项为123a a a ++,第二项为124a a a ++,最大的项为111213,a a a ++设n a 公差为,d 则M 中项的公差也为d ,所以M 中共有111213123131++---+=项,假设7160,,23均为M 中的项,不妨设212121217167110,,,,030,23221k k d k d k k Z k k k -=-=⇒=∈<≤、、且1231,k k +≤这样的k 不存在,矛盾.所以7160,,23不可以同时在M 中.10、()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ≤=⎛⎫∑n i ≤∑n i ⎛⎫≤∑1n n i i n n ⎛⎫⎛⎫≤+=∑∑,即)1≤,即))1nni ix ≤∏法二:由11.n i ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n nii i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x⎫≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2014北约文科数学试题(参考答案)1、圆心角为3π的扇形面积为6,π求它围成圆锥的表面积. 【解析】21,6,2,2S R R l R ααπ=⇒===扇从而圆锥底面周长为222,,67.r S r S πππππππ=⇒===+=底2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.【解析】平均分堆问题.10634332100.2!C C C ⋅⋅=3、()()()()22,11,47,33f a f b a b f f f ++⎛⎫=== ⎪⎝⎭求()2014f . 【解析】观察等式可知,函数显然为线性一次函数,可设(),f x kx m =+()()11,47f f ==代入求得2,1,k m ==-从而()20144027.f =4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围. 【解析】值域问题.2440,1a a a ∆=-≥⇒≥或0.a ≤5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 【解析】均值不等式,对勾函数性质.()()110,4x y xy =-+-≥⇒<≤从而117.4xy xy +≥6、()22arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 【解析】()00,arctan 2.f C =⇒=-下面证明:()()22224arctanarctan 2arctan 2arctan 20.14143x x f x f x C x x +-⎛⎫+-=++=--= ⎪-+⎝⎭7、等比数列{}(){}()411200,631200n n m m +≤≤-≤≤的公共项之和. 【解析】此题考察数的同余问题;设公共项为a ,1mod(4),3mod(6).a a ≡≡易得a 最小的数为9.4和6的最小公倍数为12,则912,.a k k N =+∈91242001,66.k k +=⨯+⇒=∴公共项之和为()67980127135.2S +==8、梯形的对角线长分别为5和7,高是3,求梯形的面积.【解析】如图,梯形面积为()()1122S AB CD h DF EC h =+=+,易求得4,DF EC == ()(1143622S DF EC h =+=+=+9、求证:tan3.Q ︒∉【解析】反证法.假设tan3,Q ︒∈则tan6,tan12,tan 24,Q Q Q ︒∈⇒︒∈⇒︒∈从而tan30,Q ︒∈矛盾.tan3.Q ∴︒∉10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.FEDBA。

2014年北约自主招生数学试题评析

2014年北约自主招生数学试题评析

所以底面半径为 1 , 底面面积为 π, 故圆锥的 表面积为 6 π + π = 7 π 2 排练 组 合 基 础 题 型,部 分 均 匀 的 分 组 题2 10 个人分成 3 组, 一组 4 人, 两组 问题 每组各 3 人, 求共有几种分法? 解: 部分均匀的分组问题: 分法为:
3 3 C4 10 C 6 C 3 = 2100 种 A2 2
2014 年第 2 期
河北理科教学研究
考试指导
2014 年北约自主招生 数学试题评析
山东省滕州市第一中学新校 试题综述: 2014 年高水平大学自主选拔学业能力 )、 2014 年综合大学自主 测试( 俗称“华约 ” )、 2014 选拔录取招生联合考试 ( 俗称“北约 ” 年卓越人才培养合作高校联合自主选择录取 ( 俗称 “卓越 ” ) 三大高校联盟自主招生考试 落下帷幕. 从 2002 年以来, 自招走过了十几 年的风雨, 三大联盟试题整体难度趋于稳定 , “三分之一高考, 维持着 三分之一边缘, 三分 之一略超纲" 的基本难度. 2014 年北约试卷的结构和 2013 年保持 都是 6 道选择加上 4 道解答. 选择题( 1 一致, ~ 6 题) 偏常规, 难度不高, 大致相当于高考 中等或稍难一点的题目难度. 只是在个别题 目上考查学生是否有开放的数学思想, 比如 关于反三角函数的认知 ( 第 6 题 ) . 其他的选 比如空间几何体 择题也基本属于高考难度, 的表面积问题( 第一题 ) , 排列组合中的分组 分配问题( 第二题 ) . 解答题 ( 7 ~ 10 题 ) 保持 了一定难度. 问题往往来源于一些很基本的 数学常识 ( 比如 tan3° 是无理数 ) , 要求学生 , 给出证明 实际上是对学生分析问题解决问 题能力的考查, 不强调复杂的计算, 但是要给 , 出合理证明 则要求学生有一定的数学素养. 考题详析: 1 考查空间几何体表面积问题, 难度很低, π 的扇形面积为 6 π, 求 3 有利于稳定考生情绪 题1 圆心角为 张 彬 277500

2014北约自主招生数学试题及解答

2014北约自主招生数学试题及解答

2014年北约自主招生数学试题1.圆心角为60 的扇形面积为6π,求它围成的圆锥的表面积.2.将10个人分成3组,一组4人,两组各3人,有多少种分法.3.如果2()lg(2)f x x ax a =-+的值域为R ,求a 的取值范围.4.设2()2()()33a b f a f b f ++=,且(1)1,(4)7f f ==,求(2014)f .5.已知1x y +=-且,x y 都是负数,求1xy xy+的最值.6.已知22()arctan 14x f x c x +=+-在11(,)44-上是奇函数,求c .7.证明tan3 是无理数.8.已知实系数二次函数()f x 与()g x 满足3()()0f x g x +=和()()0f x g x -=都有双重实根,如果已知()0f x =有两个不同的实根,求证()0g x =没有实根.9.1213,,,a a a 是等差数列,{|113}i j k M a a a i j k =++≤<<≤,问:7160,,23是否可以同时在M 中,并证明你的结论.10.已知12,,,n x x x R +∈ ,且121n x x x = ,求证:12))1)n n x x x ≥ .2014年北约自主招生试题参考答案1.【解】设扇形的半径为r ,则由21623r ππ=⨯,得6r =.于是扇形的弧长为623l ππ=⨯=,其即为圆锥的底面周长,于是圆锥的底面半径为1,所以底面面积为21ππ⨯=,也所以圆锥的表面积为67S πππ=+=.2.【解】由题知所有分组方法有3341074222100C C C N A ==种. 3.【解】由题意22u x ax a =-+的值域包含区间(0,)+∞,则22u x ax a =-+与x 有交点, 故2(2)40a a ∆=--≥,解得1a ≥或0a ≤.4.【解】由(1)1,(4)7f f ==得421(4)2(1)(2)()333f f f f +⨯+===; 124(1)2(4)(3)()533f f f f +⨯+===,由数学归纳法可推导得*()21,f n n n N =-∈, 所以(2014)4027f =.5.【解】由0,0x y <<可知,1||1||||1x y x y x y +=-⇒+=⇒+=,所以2(||||)1||||||44x y xy x y +=⨯≤=,即1(0,]4xy ∈,令1(0,]4t xy =∈,则易知函数1y t t =+在(0,1]上递减,所以其在1(0,]4上递减,于是1xy xy +有最小值117444+=,无最大值.6.【解】奇函数(0)0f =,故arctan2c =-.7.【证明】由三角公式22tan tan tan tan 2,tan()1tan 1tan tan ααβααβααβ+=+=--⋅, 若tan3 是有理数,则tan6,tan12,tan 24 为有理数,再由tan 6 和tan 24 可得tan30 为有理数,这与tan30=!因此,tan3 是无理数. 8.【证】由题可设2211223()()(),()()()f x g x a x b f x g x a x b +=--=-,其中120,0a a ≠≠,则22221222112211()[()()],()[()3()]44f x a x b a x bg x a x b a x b =-+-=---,由()0f x =有两个不同的实根,则必有12,a a 异号,且120a a +≠,此时22212112211221()[()2()]4f x a a x a b a b x a b a b =+-+++,即2222112212112212124()4()()4()0a b a b a a a b a b a a b b ∆=+-++=-->,所以12b b ≠,故此时观察2211221()[()3()]4g x a x b a x b =---可知,12,3a a -同号,且1230a a -≠,12b b ≠,故()0g x >恒成立,即证明()0g x =没有实根.9.【解】不可以同时在M 中,下面给予证明.假设7160,,23同时在M 中,设*(113,)k a a kd k k N =+≤≤∈,其中d 为公差,则*{3()|113}{3|636,}M a i j k d i j k a md m m N =+++≤<<≤=+≤≤∈于是存在正整数6,,36x y z ≤≤,使得30,73,21633a xd a yd a zd ⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩从而7(),216()3y x d z x d ⎧-=⎪⎪⎨⎪-=⎪⎩也所以2132y x z x -=-,由于21,32互质,且,y x z x --为整数,则有||21,||32y x z x -≥-≥, 但||36630z x -≤-=,矛盾!假设错误,即证明7160,,3不可以同时在M中.10.【证】(一法:数学归纳法)①当1n =时,111x =≥=右边,不等式成立;②假设*(1,)nk k k N=≥∈时,不等式12))1)k k x x x ≥ 成立. 那么当1n k =+时,则1211k k x x x x += ,由于这1k +个正数不能同时都大于1,也不能同时都小于1,因此存在两个数,其中一个不大于1,另一个不小于1,不妨设11,01k k x x +≥<≤, 从而111(1)(1)01k k k k k kx x x x x x+++--≤⇒+≥+,所以1212)2(2)kk x xx x + 12112)2()]kk k k x x xx x x ++=+++11212)2(2(1)1)(21)k k k k x x x x ++≥≥= 其中推导上式时利用了1211()1k k k x x x x x -+= 及n k =时的假设,故1n k=+时不等式也成立.综上①②知,不等式对任意正整数n 都成立.(二法)左边展开得12))nx x x12121212111()()k k nn n n n k i i j i i i n i i j ni i i nx x x x x x x x x ---=≤<≤≤<<<≤=+++++∑∑∑由平均值不等式得1112121212111211()(())k kknn nk k k k C C C k k k i i i ni i i nn n i i i ni i i nx x x C x x x C x x x C --≤<<<≤≤<<<≤≥==∑∏故12))nx x x1122))2)(2)(21)n n n n k kn n n nnC C C C ---≥++++ ,即证. (三法)由平均值不等式有111(nnnk kn ==≥……①;111(nnnk k n==≥……②①+②得1()nkk nn x =≥,即12))1)n n x x x ≥ 成立.。

2014高中自主对外招生数学试卷和答案

2014高中自主对外招生数学试卷和答案

高中自主招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,22小题,试卷共4页,另有答题卡;2.答案一律写在答题卡上,否则不能得分.一.选择题(本题有6个小题,每小题4分,共24分.每小题只有一个选项是正确的.) 1. 如果1-=ab ,那么两个实数a ,b 一定是( )A .互为倒数B .-1和+1C .互为相反数D .互为负倒数 2.下列运算正确的是( ) A .()b a ab 33= B .1-=+--ba ba C .326a a a =÷ D .222)(b a b a +=+3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A .平均数是9B .中位数是9C .众数是5D .极差是5 4.长方体的主视图、俯视图如右图所示, 则其左视图面积为( )A .3B .4C .12D .16 5.在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、双曲线、圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是( ) A .16 B .13 C .12 D .236.如图,已知⊙O 的半径为r ,C 、D 是直径AB 的同侧圆周上的两点,100AOC ∠=,D 是BC 的中点,动点P 在线段AB 上,则PC +PD 的最小值为 ( ) A .r Br CDr CPDO BA(第6题)二.填空题(本题有8个小题,每小题5分.共40分) 7. 实数b a ,满足0132=+-b a ,则ba 的值为 .9. 在同一坐标系中,图形a 是图形b 向上平移3个单位长度,再向左平移2个单位得到,如果图形a 中A 点的坐标为(4,-2),则图形b 中与A 点对应的A '点的坐标为___ ____. 10.如图,在四边形纸片ABCD 中,∠A =130°,∠C =40°,现将其右下角向内折出∆FGE ,折痕为EF ,恰使GF ∥AD ,GE ∥CD ,则∠B 的度数为 .11.对于实数a 、b ,定义运算⊗如下:=⊗b a ⎪⎩⎪⎨⎧≠≤≠>-)0,()0,(a b a a a b a a b b, 例如1612424==⊗-. 计算 [][]=⊗-⨯⊗2)3(23 .13.已知直线1y x =,213y x =+,633+-=x y 的图象如图所示,无论x 取何值,当y 总取1y 、2y 、3y 中的最小值时, y 的最大值为14. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩恰好有三个整数解,则关于x 的一次函数14y x a=- 的图像与反比例函数32a y x+=的图像的公共点的个数为 . (第12题)G FE DCBA(第10题)三、解答题(本题有8个小题,共86分,解答应写出文字说明,证明过程或推演步骤.) 15.(本题满分7分)计算01( 3.14)(sin30)4cos 45π︒-︒-++-16.(本题满分9分)已知2)2()]2()()[(22=-÷-++--y y x y y x y x .求228242x x y x y---的值.17.(本题满分10分) 如图,直线AB 交双曲线()y 0kx x=>于A ,B 两点, 交x 轴于点C (4,0)a , AB =2BC ,过点B 作BM ⊥x 轴于点M , 连结OA ,若OM =3MC ,S △OAC =8,则k 的值为多少?18. (本题满分10分)如图,在菱形ABCD 中,AB =23,∠A =60°,以点D 为圆心的⊙D 与AB 相切于点E ,与DC 相交于点F . (1)求证:⊙D 与BC 也相切;(2)求劣弧EF 的长(结果保留π).19.(本小题满分12分)某商家计划从厂家采购A ,B 两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)求A 产品的采购数量与采购单价的函数关系式;(2)该商家分别以1760元/件和1700元/件的销售单价出售A ,B 两种产品,且全部售完,在A 产品的采购数量不小于11且不大于15的条件下,求采购A 种 产品多少件时总利润最大,并求最大利润.(第18题)(第17题)ABCCDDEE FFA20.(本小题满分12分)如图,在△ABC 中,∠CAB =90°,D 是斜边BC 上的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF .(1)若AB =AC ,BE +CF =4,求四边形AEDF 的面积。

“北约”自主招生数学试题及答案(2010-2014)

“北约”自主招生数学试题及答案(2010-2014)

2014年北约自主招生数学试题1.圆心角为60的扇形面积为6π,求它围成的圆锥的表面积.1.【解】设扇形的半径为r ,则由21623r ππ=⨯,得6r =. 于是扇形的弧长为623l ππ=⨯=,其即为圆锥的底面周长,于是圆锥的底面半径为1, 所以底面面积为21ππ⨯=,也所以圆锥的表面积为67S πππ=+=.2.将10个人分成3组,一组4人,两组各3人,有多少种分法.2.【解】由题知所有分组方法有3341074222100C C C N A ==种.3.如果2()lg(2)f x x ax a =-+的值域为R ,求a 的取值范围.3.【解】由题意22u x ax a =-+的值域包含区间(0,)+∞,则22u x ax a =-+与x 有交点, 故2(2)40a a ∆=--≥,解得1a ≥或0a ≤.4.设2()2()()33a b f a f b f ++=,且(1)1,(4)7f f ==,求(2014)f .4.【解】由(1)1,(4)7f f ==得421(4)2(1)(2)()333f f f f +⨯+===; 124(1)2(4)(3)()533f f f f +⨯+===,由数学归纳法可推导得*()21,f n n n N =-∈, 所以(2014)4027f =.5.已知1x y +=-且,x y 都是负数,求1xy xy+的最值.5.【解】由0,0x y <<可知,1||1||||1x y x y x y +=-⇒+=⇒+=,所以2(||||)1||||||44x y xy x y +=⨯≤=,即1(0,]4xy ∈,令1(0,]4t xy =∈,则易知函数1y t t =+在(0,1]上递减,所以其在1(0,]4上递减,于是1xy xy +有最小值117444+=,无最大值.6.已知22()arctan14x f x c x +=+-在11(,)44-上是奇函数,求c .6.【解】奇函数(0)0f =,故arctan2c =-.7.证明tan3是无理数.7.【证明】由三角公式22tan tan tan tan 2,tan()1tan 1tan tan ααβααβααβ+=+=--⋅, 若tan3是有理数,则tan 6,tan12,tan 24为有理数,再由tan 6和tan 24可得tan 30为有理数,这与3tan 30=!因此,tan3是无理数.8.已知实系数二次函数()f x 与()g x 满足3()()0f x g x +=和()()0f x g x -=都有双重实根,如果已知()0f x =有两个不同的实根,求证()0g x =没有实根.8.【证】由题可设2211223()()(),()()()f x g x a x b f x g x a x b +=--=-,其中120,0a a ≠≠, 则22221222112211()[()()],()[()3()]44f x a x b a x bg x a x b a x b =-+-=---, 由()0f x =有两个不同的实根,则必有12,a a 异号,且120a a +≠, 此时22212112211221()[()2()]4f x a a x a b a b x a b a b =+-+++,即2222112212112212124()4()()4()0a b a b a a a b a b a a b b ∆=+-++=-->,所以12b b ≠, 故此时观察2211221()[()3()]4g x a x b a x b =---可知,12,3a a -同号,且1230a a -≠,12b b ≠,故()0g x >恒成立,即证明()0g x =没有实根.9.1213,,,a a a 是等差数列,{|113}i j k M a a a i j k =++≤<<≤,问:7160,,23是否可以同时在M 中,并证明你的结论.9.【解】不可以同时在M 中,下面给予证明.假设7160,,23同时在M 中,设*(113,)k a a kd k k N =+≤≤∈,其中d 为公差,则*{3()|113}{3|636,}M a i j k d i j k a md m m N =+++≤<<≤=+≤≤∈于是存在正整数6,,36x y z ≤≤,使得30,73,21633a xd a yd a zd ⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩从而7(),216()3y x d z x d ⎧-=⎪⎪⎨⎪-=⎪⎩也所以2132y x z x -=-,由于21,32互质,且,y x z x --为整数,则有||21,||32y x z x -≥-≥, 但||36630z x -≤-=,矛盾!假设错误,即证明7160,,23不可以同时在M 中.10.已知12,,,n x x x R +∈,且121n x x x =,求证:12)(2)1)n n x x x +≥.10.【证】(一法:数学归纳法)①当1n =时,111x =≥=右边,不等式成立; ②假设*(1,)n k kk N =≥∈时,不等式12)(2)1)k k x x x +≥成立.那么当1n k =+时,则1211k k x x x x +=,由于这1k +个正数不能同时都大于1,也不能同时都小于1,因此存在两个数,其中一个不大于1,另一个不小于1,不妨设11,01k k x x +≥<≤, 从而111(1)(1)01k k k k k k x x x x x x +++--≤⇒+≥+,所以1212)(2(2)k kx x x x ++ 12112)[22()]kk kk x x xx x x ++=+++11212)(2(2(1)1)(21)k k k k x x x x ++≥+≥= 其中推导上式时利用了1211()1k k k x x x x x -+=及n k =时的假设,故1n k =+时不等式也成综上①②知,不等式对任意正整数n 都成立. (二法)左边展开得12)(2)n x x x+12121212111()(2)()k k nnn n n k i i j i i i n i i j ni i i nx x x x x x x x x ---=≤<≤≤<<<≤=+++++∑∑∑由平均值不等式得1112121212111211()(())k k knn nk k k k C C C k k ki i i nii i n n n i i i ni i i nx x x C x x x C x x x C --≤<<<≤≤<<<≤≥==∑∏故12)(2)n x x x +1122))2)(2)(21)n n n n kknnn n nnC C C C ---≥++++=+,即证. (三法)由平均值不等式有111()n nnk k n ==≥……①;111(n nn k k n ==≥……②①+②得1()nk k n n x =≥,即12)(2)1)n n x x x +≥成立.2013年北约自主招生数学试题与答案(时间90分钟,满分120分)1.和1A. 2B. 3C. 5D. 6解析:显然,多项式23()(2)(1)2f x x x ⎡⎤=---⎣⎦的系数均为有理数,且有两根分别为和1.和1-于5.若存在一个次数不超过4的有理系数多项式432()g x ax bx cx dx e =++++,其两根分别为和1,,,,a b c d e 不全为0,则:420(42)(2020a c e ga c eb d b d ++=⎧=++++=⇒⎨+=⎩(1(7)(232(630g a b c d e a b c d a b c =-+----+++++=702320a b c d e a b c d +---=⎧⇒⎨+++=⎩ 即方程组:420(1)20(2)70(3)2320(4)630(5)a c eb d a bcde a b c d a b c ++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解. 由(1)+(3)得:110a b c d ++-= (6) 由(6)+(2)得:1130a b c ++= (7) 由(6)+(4)得:13430a b c ++= (8) 由(7)-(5)得:0a =,代入(7)、(8)得:0b c ==,代入(1)、(2)知:0d e ==.于是知0a b c d e =====,与,,,,a b c d e 不全为0矛盾.所以不存在一个次数不超过4的有理系数多项式()g x和1和1为两根的有理系数多项式的次数最小为5.2. 在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法? A. 720 B. 20 C. 518400 D. 14400解析:先从6行中选取3行停放红色车,有36C 种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。

2014年自主招生北约模拟试题及解析

2014年自主招生北约模拟试题及解析

(2)设 M 为线段 AB 的中点,P 为奇质数,且点 M 到 x 轴的 距离和点 M 到准线 l 的距离均为非零整数, 求证点 M 到坐 标原点 O 的距离不可能是整数.
E O B F
M x
第 2 页 (共 11 页)
2014 年自主招生数学模拟试卷(北约)
【题 13】函数 y f ( x) , x N , y N ,满足:
第 4 页 (共 11 页)
2014 年自主招生数学模拟试卷(北约)
2014 年自主招生数学模拟试卷(北约)参考答案
【题 01】复数 Z1、Z2 满足|Z1|=2、|Z2|=3,若它们所对应向量的夹角为 60° ,则 A.
Z1 Z 2 ( Z1 Z 2
).
133 7
B. 5
C.
1 5
D. 133
x2 y 2 【题 06】 如图所示, 从双曲线 2 2 1(a 0, b 0) 的左焦点 F 引圆 x2 y 2 a 2 的切线, 切点为 T. 延 a b 长 FT 交双曲线的右支于 P 点.若 M 为线段 FP 的中点,O 为坐标原点,则 | MO | | MT | 与 b a 的

1 sin 2 ) 0 , 2

m
的取值范围是(
). C.[-1,1] D.[-1,6]
A.[-6,1] B. [4, 8] 【解析】选 A.由题意知 λ+2=2m①
2 cos2 m 2 sin ② 2 由①得 2 , m m 2 2 2 由①②得 4m 9m 2 sin cos 4 sin 2 sin 3 , 1 故-6≤4m2-9m≤-2,即 ≤m≤2. 4 2 从而 2 [ 6,1] . m m

2014北约自主招生数学试题(文科)

2014北约自主招生数学试题(文科)

12014年北约自主招生数学试题一、选择题1. 设扇形的圆心角为60︒,面积为6π,将它围成一个圆锥,则此圆锥的表面积是_______.A 、132πB 、7πC 、152πD 、8π2. 10个人分成3组,每组人数分别为3,3,4,则不同的方法有_______种.A 、1050B 、2014C 、2100D 、42003. 函数()f x 满足:对于任意的实数,a b 有()()2233f a f b a b f ++⎛⎫= ⎪⎝⎭,已知()()11,47f f ==,则()2014f 的值是_______.A 、4027B 、4028C 、4029D 、40304. 已知函数()()2lg 2f x x ax a =-+的值域是(),-∞+∞,则实数a 的取值范围是_______.A 、01a <<B 、01a ≤≤C 、0,1a a <>D 、0,1a a ≤≥5. 设,x y 均为负数,且满足1x y +=-,则1xy xy +具有_______. A 、最大值174- B 、最小值174- C 、最大值174 D 、最小值1746. 使得函数()22arctan 14x f x C x -=++成为区间11,44⎛⎫- ⎪⎝⎭上的奇函数的常数C 的值为_______. A 、0B 、arctan2-C 、arctan 2D 、不存在二、解答题 7. 求等差数列{}120041n n ≤≤+与{}120063n m ≤≤-的所有公共项的和.8. 设梯形的两条对角线的长分别是5和7,高为3,求该梯形的面积.9. 证明tan3︒为无理数.10. 设实二次函数()(),f x g x 满足方程()()()()30,0f x g x f x g x +=-=都只有一对重根,已知()0f x =有两个不同实根,证明()0g x =没有实根.。

2014年自主招生北约联盟数学真题解析

2014年自主招生北约联盟数学真题解析

【总结】从以上可以看出,北约的数学题目更多是从思维角度的考查,上述两个题目,其实 从自然语言入手, 如果你可以用很简单的语言解释清楚, 我们需要做到的是把这些语言转化 . 成数学表达,逻辑的阐述明白
三、 备考建议
1. 以基础为主,对于基础概念要重在从直观去理解,对于数论和组合数学问题不要花费太 多时间. 2. 复习要以历届真题为核心,多从思考的层面去刷题. 3. 辅导书要以联盟内部的题型为主,多思考,不要太依赖解析. 4. 避免抱佛脚的情况发生,其实对于数学思维或者技巧的训练,应该边学边练,最晚也要 从高二下学期开始.
则 4 f x 3 f x g x f x g x 0 ,则 4 f x 最多有二等实根, 同理若对于 x R , 3 f x g x 0 , f x g x 0 ,也会矛盾。 故二次函数 3 f x g x , f x g x 具有不同的开口方向. 则若 3 f x g x 0 , f x g x 0 两个方程具有相同的重根,设其为 x0 则 3 f x g x , f x g x 对称轴为 x x0 ,
k1 21 k 2 11
其中 k1 , k2 1, 2,3,..., 30 ,且 k1 k2 30 ,
7 16 7 k1d , k2 d ,则 2 3 2
显然不可能. 【评论】本题题号已经靠后,有两个问题,一.理解题目集合的意思,二.等差数列的条件怎 么应用,如果运用的好的话,北约考试的胜利就在眼前了.
3 是无理数,矛盾,故 tan3 是无理数,证毕. 3 【评论】 属于中档题,对于基本的三角公式以及有理数的基本性质有所把握的同学做这道 题问题会比较小。其实在早些年,外省市高考题中,出现过 cos 是有理数,证明 cos n 是

2014年重点大学自主招生“北约”“华约”数学试题详解

2014年重点大学自主招生“北约”“华约”数学试题详解

2014年重点大学自主招生“北约”“华约”数学试题详解
王芝平;王坤
【期刊名称】《高中数理化》
【年(卷),期】2014(0)9
【摘要】2014年“北约”“华约”“卓越”三大自主招生联盟的笔试于3月1
日同时进行.三大联盟的“数学与逻辑”试题的难度较往年都有不同程度的降低,更加注重对数学本质理解的考查,所以只要考生基础扎实,就能获得相当可观的分数.限于篇幅,下面笔者仅对“北约”和“华约”的数学试题给予详细解析,供同学们参考.
【总页数】5页(P42-46)
【作者】王芝平;王坤
【作者单位】北京宏志中学;北京市第八十中学
【正文语种】中文
【相关文献】
1.有趣的三角形外心、内心性质二三例——由2012年北约自主招生数学试题所想
2.2014年北约自主招生数学试题评析
3.返璞归真,函数为本——2014年华约自主
招生数学试题评析4.从一道2012年自主招生“北约”联考数学试题谈三角形“心”的性质5.2013年“北约”自主招生数学试题的解答攻略与评析
因版权原因,仅展示原文概要,查看原文内容请购买。

北京大学(北约)2010~2014自主招生试题及答案(全)

北京大学(北约)2010~2014自主招生试题及答案(全)

2014年北京大学自主招生数学试题1. 圆心角为3π的扇形面积为6π,求它围成圆锥的表面积. 2. 将10个人分成3组,一组4人,两组每组3人,共有几种分法. 3. 2()2()(),(1)1,(4)733a b f a f b f f f ++===,求()2014f . 4.2()lg(2)f x x ax a =-+的值域为R ,求a 的取值范围.5. 已知1x y +=-,且,x y 都为负实数,求1xy xy+的取值范围. 6. 22()arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 一、求证:tan3Q ∉二、已知实系数二次函数()f x 与()g x ,()()f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.三、1213,a a a 是等差数列,{}113i j k M a a a i j k =++≤<<≤,问:7160,,23是否同在M 中,并证明你的结论.四、()01,2,,i x i n >=,且11n i i x ==∏,求证1)1)nn i i x =≥∏.答案1.π7; 2.2100; 3.4027)2024(12)(=⇒-=f x x f ; 4.1 00≥≤⇒≥∆a or a ;5.⎪⎭⎫⎢⎣⎡+∞,417;6.2arctan 0)0(-=⇒=C f 一、求证:Q ∉︒3tan解:若Q aab Q a ∈-=︒=⇒∈=︒2126tan 3tan ,Q ab b a c ∈-+=︒=⇒19tan Q bc cb d ∈-+=︒=⇒115tan 52518tan 41518sin 2-=︒⇒-=︒ 于是Q d d ∈-=⇒=-=︒233215tan ,从而矛盾。

二.实系数二次函数)(),(x g x f ,)()(x g x f =和0)()(3=+x g x f 有两重根,)(x f 有两相异根,求证:)(x g 无实数根。

北约自主招生能力测试数学试题(含参考答案

北约自主招生能力测试数学试题(含参考答案

综合性大学自主选拔录取联合考试自然科学基础——理科试卷数学部分(北约)一、选择题(每小题8分,合计48分)1.圆心角为3π的扇形的面积为6π,则它围成的圆锥的表面积为( B ).A .B .7πC .D .解:由2166S R ππ==扇形得6R =,由263r ππ=⨯得1r =,故它围成的圆锥的表面积为267r πππ+=.2.将10个人分为3组,一组4人,另两组各3人,共有( C )种分法.A .1070B .2014C .2100D .4200解:433106321002C C C N ==. 3.已知2()2()()33a b f a f b f ++=,(1)1f =,(4)7f =,则(2014)f =( A ). A .4027 B .4028 C .4029 D .4030 解:421(4)2(1)(2)()333f f f f +⨯+===,124(1)2(4)(3)()533f f f f +⨯+===,猜想*()21()f n n n N =-∈,假设()21f n n =-对3(1)n k k ≤≥都成立,则(31)3(1)2(1)2(31)1f k f k f k +=+-=+-,(32)3(2)2(2)2(32)1f k f k f k +=+-=+-,(33)3(3)2(3)2(33)1f k f k f k +=+-=+-,所以*()21()f n n n N =-∈.4.若2()lg(2)f x x ax a =-+的值域为R ,则a 的取值范围是( D ).A .01a ≤≤B .C .D .0a ≤或1a ≥解:由题知,{}2(0,)2y y x ax a +∞⊆=-+,故2(2)40a a ∆=--≥,解得:0a ≤或1a ≥.5.已知1x y +=-,且x 、y 均为负实数,则1xy xy+有( B ). A .最大值174 B .最小值174 C .最大值174- D .最小值174-解:1()()x y =-+-≥104xy <≤,而函数1()f t t t=+在(0,1)上单调递减,在(1,)+∞单调递增,故1()()4f xy f ≥,即1174xy xy +≥,当且仅当12x y ==-时取等号. 6.已知22()arctan14x f x C x +=+-在(,)44ππ-上为奇函数,则C =( B ). A .0 B .arctan 2- C .arctan 2 D .不存有解:由()0f x =得arctan(2)arctan 2C =-=-,此时()()f x f x +-22arctan14x x +=-22arctan 214x C x -+++4arctan()2arctan 203=--=,故arctan 2C =-符合题意.二、解答题(每题18分,共72分)7.证明:0tan3R ∉.证明:设0tan 3Q ∈,则0tan 6tan12tan 24tan 30tan(624)Q Q Q Q ∈⇔∈⇔∈⇔=+∈,这与0tan 303Q =矛盾. 8.已知实系数二次函数()f x 和()g x ,若方程()()f x g x =和3()()0f x g x +=都只有一个偶重根,方程()0f x =有两个不等的实根,求证:方程()0g x =没有实根. 解:设2()f x ax bx c =++,2()g x dx ex f =++,0ad ≠,所以2()4()()b e a d c f -=--,2(3)4(3)(3)b e a d c f +=++,所以223124b e ac df +=+,又240b ac ->,所以22()44(4)0g x e df b ac ∆=-=--<,所以方程()0g x =没有实根.9.已知1a ,2a ,…,13a 成等差数列,{}113i j k M a a a i j k =++≤<<≤,问:0,72,163是否能够同时在M 中?并证明你的结论.解:设该数列的公差为d ,∴p ∃,q ,*r N ∈,130a pd +=,173()2a p q d ++=,1163()3a p q r d +++=,∴2111q r =,∴21q ≥,11p ≥,又0123p ≥++=,∴35p q r ++≥, 又12111033p q r ++≤++=,与上式矛盾,故0,72,163不能够同时在M 中.10.i x (1i =,2,…,n )为正实数,且11nii x==∏,求证:1)1)nn i i x =≥∏.解:由AM GM -不等式得:11(n i n =≥,11(ni n =≥两式相加得:1≥,故1)1)nn i i x =≥∏.。

2013、2014年华约北约卓越自主招生数学试题

2013、2014年华约北约卓越自主招生数学试题

2013年“华约”自主招生数学试题1. 已知集合{}10A x Z x =∈≥,B 是A 的子集,且B 中元素满足下列条件: (a )数字两两不等;(b)任意两个数字之和不等于9;试求: (1)B 中有多少个两位数?多少个三位数? (2)B 中是否有五位数?是否有六位数?(3)将B 中元素从小到大排列,第1081个元素是多少? 2. 已知实数,x y 满足sin x +sin y =13, cos cos x y - =15,求sin()x y -,cos().x y +3. 已知0k >,从直线y kx =和y kx =-上分别选取点(,),(,)A A B B A x y B x y ,0A B x x >,满足21OA OB k =+,其中O 为坐标原点,AB 中点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)抛物线22(0)x py p =>与曲线C 相切于两点,求证:两点在两条定直线上,并求出两条切线方程.4. 有7个红球8个黑球,从中任取四个. ⑴求恰有一个红球的概率;⑵设四个球中黑球个数为X ,求X 的分布列及数学期望Ex ; ⑶求当四个球均为一种颜色时,这种颜色为黑色的概率. 5. 已知数列{}n a 满足10a >,21n n n a a ca +=+,1,2...n =,,其中0c >, ⑴证明:对任意的0M >,存在正整数N ,使得对于n N >,n a M >;⑵设11n n b ca =+,n S 为n b 前n 项和,证明:{}n S 有界,且对0d >,存在正整数k ,当n k >时,110.n S d ca <-< 6. 已知,,x y z 是三个大于1的正整数,且xyz 整除(1)(1)(1),xy yz xz ---求,,x y z 的所有可能值.7. 已知()(1)1xf x x e =--, ⑴证明:当0x >时,()0f x <; ⑵若数列{}n x 满足11x =,11n n x x n x ee +=-.证明:数列{}n x 递减,且12nn x ⎛⎫> ⎪⎝⎭.2013年“华约”自主招生数学试题解析1.【试题分析】本题是集合元素的计数问题,需要用到排列组合的知识,对分步思维的理解要求较高。

2014年自招【数学】笔试真题与北京清华园教育讲义比较

2014年自招【数学】笔试真题与北京清华园教育讲义比较

2014年自主招生数学真题与《北京清华园自招讲义》相同或相近部分对照比较第一部分:北约联盟第2题:10个人分成3组(3、3、4),共有____种分法。

A.1070B.2014C.2100D.4200.解:43106222100C CA=(种)。

(这里有平均分组问题)。

在今年寒假讲义ppt第十三讲337页重点讲了排列组合中的“平均分组”问题:A.解:设,,1a x b y a b =-=-∴+=,14ab ≤21117)224xy xy ≥+=+≥或直接取12x y ==-又13,.44x y =-=-2014寒假讲义第十讲 ppt 第257页:2013年暑假讲义ppt 第259页:第7题. 证明:0tan3是无理数所以0000tan6,tan12,tan 24,tan30,Q Q Q Q ∈∈∈∈矛盾。

2014寒假讲义第十讲 ppt 第257页:有理数的四则运算仍是有理数,任何一个有理数都可设成qp的形式。

第8题:已知实二次函数()f x 和()g x 满足,()()f x g x =和()3()0f x g x +=都只有一对重根,()0f x =有两个不相等的实根,证明:()0g x =无实根。

证明:设()()22,,f x ax bx c g x dx ex f =++=++由()()2()()()0,f x g x a d x b e x c f =⇒-+-+-=因为上述一元二次方程有相等实数根 2()4()(),b e a d c f ∴-=--①同理有:2(3)4(3)(3)b e a d c f +=++,②⨯①3+②得:223124b e ac fd +=+ 注意到()()22240,4440g x b ac e df b ac ->∆=-=--<所以()0g x =无实根。

2013年暑假讲义PPT 第46、47页:解:没有.解法一:因为2()(1)0f x x ax b x c -=+-+=无实数根, 所以2(1)40b ac ∆=--<; (())0f f x x -=.222()()0a ax bx cb ax bxc c x ++++++-=22222()()0a ax bx c ax ax b ax bx c c x ++-+++++-=.2222()()(1)(1)(1)0a ax bx c x ax bx c x b ax b x c b ++-++++++-++=.3.(2008上海交大)已知函数2()f x ax bx c =++,(0)a ≠且()f x x = 没有实数根.那么(())f f x x =是否有实数根?并证明你的结论.222(1)(1)(1)(1)0a ax b x c ax b x c b ax b x c ⎡⎤⎡⎤⎡⎤+-+++++++-+=⎣⎦⎣⎦⎣⎦. 222(1)(1)10ax b x c a x a b x ac b ⎡⎤⎡⎤+-++++++=⎣⎦⎣⎦.于是有2(1)0ax b x c +-+=或22(1)10a x a b x ac b +++++=.21(1)40b ac ∆=--<; 2222(1)4(1)a b a ac b ∆=+-++222(1)4440a b ac a ⎡⎤=---<<⎣⎦。

2014北约自主招生数学试题及详解(含文、理)

2014北约自主招生数学试题及详解(含文、理)

今年北约自招笔试已落下帷幕,从试题的整体难度来看,它不像我们平时觉得的有竞赛的难度,与往年相比难度也是大有降低,具体体现在试题中的前六道,属于高考基本题型,只要准备过自招考试的基本能拿满分,但也要熟悉反三角函数的处理以及无理性的证明思路.有区分度的点在最后三道,最后一题属于不等式的延伸内容,北约的考试尤其是解答题从来都不是基于课内知识点的反复强调和训练,往往来源于一些很基本的甚至是近似于数学常识的知识,比如去年考试中“任意三个数的和都是质数”的理解,的理解,和今年证明是无理数这样和今年证明是无理数这样的问题,都属于不强调复杂的计算,都属于不强调复杂的计算,只求看清楚问题的本质的处理手法。

只求看清楚问题的本质的处理手法。

只求看清楚问题的本质的处理手法。

去年和今年也都考去年和今年也都考察了对数列的理解,去年考察奇偶项和的理解,去年考察奇偶项和的理解,今年考察对数项形式的分析,今年考察对数项形式的分析,今年考察对数项形式的分析,所以北约的数所以北约的数学试题做起来如果很繁琐,说明往往已经偏离了命题人的基本想法。

下面附上试题及解析,供考完的对照以及明年参加北约考试的孩子参考。

希望对同学们有所帮助.2014北约理科数学试题北约理科数学试题1、圆心角为3p的扇形面积为6,p 求它围成圆锥的表面积.【解析】21,6,2,2S R R l R a a p =Þ===扇从而圆锥底面周长为222,,67.r S r S p p p p p p p =Þ===+=底2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.【解析】平均分堆问题.10634332100.2!C C C ××=3、()()()()22,11,47,33f a f ba b f f f ++æö===ç÷èø求()2014f . 【解析】观察等式可知,函数显然为线性一次函数,可设(),f x kx m =+()()11,47f f ==代入求得2,1,k m ==-从而()20144027.f =4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围.【解析】值域问题.2440,1a a a D =-³Þ³或0.a £5、已知1,x y +=-且,x y 都为负实数,求1xy xy+的取值范围. 【解析】均值不等式,对勾函数性质.()()112,0,4x y xy xy =-+-³Þ<£从而11717..4xy xy +³6、()22arctan 14x f x C x +=+-在11,44æö-ç÷èø上为奇函数,求C 的值.【解析】()00,arctan 2.f C =Þ=-下面证明:()()22224arctanarctan 2arctan 2arctan 20.14143x x f x f x C x x +-æö+-=++=--=ç÷-+èø7、求证:tan3.Q °Ï【解析】反证法.假设tan3,Q °Î则tan6,tan12,tan 24,Q Q Q °ÎÞ°ÎÞ°Î从而tan30,Q °Î矛盾.tan3.Q \°Ï8、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b ea d c f -+-+-=D =----=由()()30f x g x +=可得 ()()()()()()223330,34330.a d xb e xc f b e ad c f +++++=D =+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df \-<()g x \没有实根.9、1213a a a 是等差数列,{}|113,i j k M a a a i j k =++£<<£问:7160,,23是否可以同时在M 中,并证明你的结论.【解析】数列中的项.分析M 中项的构成,若按照从小到大的顺序排列,最小的项为123a a a ++,第二项为124a a a ++,最大的项为111213,a a a ++设n a 公差为,d 则M 中项的公差也为d ,所以M 中共有111213123131++---+=项,假设7160,,23均为M 中的项,不妨设212121217167110,,,,030,23221kk d k d k k Z k k k -=-=Þ=Î<£、、且1231,k k +£这样的k 不存在,矛盾.所以7160,,23不可以同时在M 中.10、()01,2,...,i x i n >=1 1.nii x==Õ求证:()()1221.nni i x =+³+Õ【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值()212n nn n iniiin H G x x =£=+æöç÷ç÷+èøÕå,则()12222nni niiin x x £+æöç÷ç÷+èøÕå,()()1222nnnn i i n i ii i ii n x x x x x £+=+æöç÷ç÷+èøÕÕå可得()2222n niiniin x x æö£ç÷ç÷+èø+åÕ,()22n i niini ix nx x æö£ç÷ç÷+èø+åÕ 上述两式相加得()()212222nn in iii i niin x n x x x +æöæö£+=ç÷ç÷++èøèø+ååÕ,即()()212nni ix +£+Õ,即()()212nni ix +£+Õ法二:由11.n i i x ==Õ及要证的结论分析,由柯西不等式得()()212221ii x x æö++³+ç÷èø,从而可设1i i y x =,且111 1.n ni i i iy x ====ÕÕ从而本题也即证()()1221.n ni i y =+³+Õ从而()()212221nni ii x x æö++³+ç÷èøÕ,即()()()22221nnii ix y ++³+Õ,假设原式不成立,即()()1221,nni i x =+<+Õ则()()1221.nni i y =+<+Õ从而()()()22221nnii ix y ++<+Õ,矛盾.得证.2014北约文科数学试题北约文科数学试题1、圆心角为3p的扇形面积为6,p 求它围成圆锥的表面积.【解析】21,6,2,2S R R l R a a p =Þ===扇从而圆锥底面周长为222,,67.r S r S p p p p p p p =Þ===+=底2、将10个人分成3组,一组4人,两组各3人,求共有几种分法.【解析】平均分堆问题.10634332100.2!C C C ××=3、()()()()22,11,47,33f a f ba b f f f ++æö===ç÷èø求()2014f . 【解析】观察等式可知,函数显然为线性一次函数,可设(),f x kx m =+()()11,47f f ==代入求得2,1,k m ==-从而()20144027.f =4、()()2lg 2f x x ax a =-+的值域为,R 求a 的取值范围.【解析】值域问题.2440,1a a a D =-³Þ³或0.a £5、已知1,x y +=-且,x y 都为负实数,求1xy xy +的取值范围.【解析】均值不等式,对勾函数性质.()()112,0,4x y xy xy =-+-³Þ<£从而117.4xy xy +³6、()22arctan14x f x C x +=+-在11,44æö-ç÷èø上为奇函数,求C 的值. 【解析】()00,arctan 2.f C =Þ=-下面证明:()()22224arctan arctan 2arctan 2arctan 20.14143x x f x f x Cx x +-æö+-=++=--=ç÷-+èø7、等比数列{}(){}()411200,631200n n m m +££-££的公共项之和.【解析】此题考察数的同余问题;设公共项为a ,1mod(4),3mod(6).a a ºº易得a 最小的数为9.4和6的最小公倍数为12,则912,.a k k N =+Î91242001,66.k k +=´+Þ=\公共项之和为()67980127135.2S +==8、梯形的对角线长分别为5和7,高是3,求梯形的面积.【解析】如图,梯形面积为()()1122S AB CD h DF EC h =+=+,易求得210,4,DF EC ==()()11421036310.22S DF EC h =+=+=+9、求证:tan3.Q °Ï【解析】反证法假设tan3,Q °Î则tan6,tan12,tan 24,Q Q Q °ÎÞ°ÎÞ°Î从而tan30,Q °Î矛盾.tan3.Q \°Ï10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d xb e xc f b e ad c f -+-+-=D =----=由()()30f x g x +=可得()()()()()()223330,34330.a d xb e xc f b e ad c f +++++=D =+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df \-<()g x \没有实根.FEDCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.【解】由题意 u x2 2ax a 的值域包含区间 (0, ) ,则 u x2 2ax a 与 x 有交点, 故 (2a)2 4a 0 ,解得 a 1 或 a 0 .

1 2 r ,得 r 6 . 2 3
4 2 1 f (4) 2 f (1) ) 3; 3 3 1 2 4 f ( 1) f 2 ( 4 ) f(3) f ( ) ,由数学归纳法可推导得 5 f (n) 2n 1, n N * , 3 3 所以 f (2014) 4027 . 5.【解】由 x 0, y 0 可知, x y 1 | x y | 1 | x | | y | 1 ,
( 2 x1 ) ( 2 x 2 )
( x 2k
k
) ( xk 21 x2 ( kx 1
)
k k 1 k
( 2 x1 ) ( 2 x2 ) [ 2
x ) x
]
1 ( 2 x1 ) ( 2 x 2 ) ( x 2k xk 1 ) ( 2 1 ) ( 2 1 ) ( 2 1k) ( 2 1) 其中推导上式时利用了 x1 x2 xk 1 ( xk xk 1 ) 1 及 n k 时的假设,故 n k 1 时不等式也成 立. 综上①②知,不等式对任意正整数 n 都成立. (二法)左边展开得 ( 2 x1 )( 2 x2 )( 2 xn )

xi1 xi 2 xik Cnk (
1 i1 i2 ik n

xi x xik ) Cn Cnk (( x1 x2 xn ) Cnk
k
故 ( 2 x1 )( 2 x2 )( 2 xn )
n 2 k k n 2) ( 2n1 )Cn1 ( n 2 C )n 2 ( n 2 C ) C n n ( ,2 1. ) 即证 n (三法)由平均值不等式有 1 n n n n xk xk 2 2 1 n n n ( ) n ( ) ……① ; ……② 2 xk 2 xk 2 xk 2 xk k 1 k 1 k 1 k 1
理数,这与 tan 30
2014 年\北约自主招生·数学试题-3
设 ak a kd (1 k 13, k N * ) ,其中 d 为公差,则
M {3a (i j k )d |1 i j k 13} {3a md | 6 m 36, m N *}
( 2) n ( 2) n 1 xi ( 2) n 2 (
i 1
n
1 i j n

xi x j ) ( 2) n k (
1
1 i1 i2 ik n

xi1 xi2 xik ) x1 x2 xn
1
由平均值不等式得
1 i1 i2 ik n
4.【解】由 f (1) 1, f (4) 7 得 f (2) f (
(| x | | y |) 2 1 1 ,即 xy (0, ] , 4 4 4 1 1 1 令 t xy (0, ] ,则易知函数 y t 在 (0,1] 上递减,所以其在 (0, ] 上递减, 4 t 4 1 1 17 于是 xy 有最小值 4 ,无最大值. xy 4 4 6.【解】奇函数 f (0) 0 ,故 c arctan 2 . 2 tan tan tan 7.【证明】由三角公式 tan 2 , , tan( ) 2 1 tan 1 tan tan 若 tan3 是有理数,则 tan 6 , tan12 , tan 24 为有理数,再由 tan 6 和 tan 24 可得 tan30 为有
②假设 n k (k 1, k N * ) 时,不等式 ( 2 x1 )( 2 x2 )( 2 xk ) ( 2 1) k 成立. 那么当 n k 1 时,则 x1 x2 xk xk 1 1 ,由于这 k 1 个正数不能同时都大于 1,也不能同时 都小于 1,因此存在两个数,其中一个不大于 1,另一个不小于 1,不妨设 xk 1,0 xk 1 1 , 从而 ( xk 1)( xk 1 1) 0 xk xk 1 1 xk xk 1 ,所以
5.已知 x y 1 且 x, y 都是负数,求 xy
1 的最值. xy
6.已知 f ( x) arctan
2 2x 1 1 c 在 ( , ) 上是奇函数,求 c . 1 4x 4 4
2014 年\北约自主招生·数学试题-1
7.证明 tan3 是无理数.
8.已知实系数二次函数 f ( x) 与 g ( x) 满足 3 f ( x) g ( x) 0 和 f ( x) g ( x) 0 都有双重实根, 如果已知 f ( x) 0 有两个不同的实根,求证 g ( x) 0 没有实根.
所以 | xy || x | | y |
3 为无理数矛盾!因此, tan3 是无理数. 3 8.【证】由题可设 3 f ( x) g ( x) a1 ( x b1 )2 , f ( x) g ( x) a2 ( x b2 ) 2 ,其中 a1 0, a2 0 , 1 1 则 f ( x) [a1 ( x b2 )2 a2 ( x b2 ) 2 ], g ( x) [a1 ( x b1 ) 2 3a2 ( x b2 ) 2 ] , 4 4 由 f ( x) 0 有两个不同的实根,则必有 a1 , a2 异号,且 a1 a2 0 , 1 此时 f ( x) [(a1 a2 ) x 2 2(a1b1 a2b2 ) x a1b12 a2b22 ] , 4 即 4(a1b1 a2b2 )2 4(a1 a2 )(a1b12 a2b22 ) 4a1a2 (b1 b2 )2 0 ,所以 b1 b2 , 1 故此时观察 g ( x) [a1 ( x b1 ) 2 3a2 ( x b2 ) 2 ] 可知, 4 a1 , 3a2 同号,且 a1 3a2 0 , b1 b2 ,故 g ( x) 0 恒成立,即证明 g ( x) 0 没有实根. 7 16 9.【解】不可以同时在 M 中,下面给予证明.假设 0, , 同时在 M 中, 2 3
9. a1 , a2 ,, a13 是等差数列, M {ai a j ak |1 i j k 13} ,问: 0, ,
7 16 是否可以同时在 2 3
M 中,并证明你的结论.
10.已知 x1 , x2 ,, xn R ,且 x1 x2 xn 1 ,求证: ( 2 x1 )( 2 x2 )( 2 xn ) ( 2 1) n .
①+②得 n n
2 ( x1 x2 xn ) n ( 2 xk )
k 1 n 1 n
1
,即 ( 2 x1 )( 2 x2 )( 2 xn ) ( 2 1) n 成立.
2014 年\北约自主招生·数学试题-4
2014 年北约自主招生数学试题
1.圆心角为 60 的扇形面积为 6 ,求它围成的圆锥的表面积.
2.将 10 个人分成 3 组,一组 4 人,两组各 3 人,有多少种分法.
3.如果 f ( x) lg( x2 2ax a) 的值域为 R ,求 a 的取值范围.
4.设 f (
a 2b f (a) 2 f (b) ,且 f (1) 1, f (4) 7 ,求 f (2014) . ) 3 3
2014 年\北约自主招生·数学试题-2
2014 年北约自主招生试题参考答案 1.【解】设扇形的半径为 r ,则由 6 于是扇形的弧长为 l
6 2 ,其即为圆锥的底面周长,于是圆锥的底面半径为 1, 3 所以底面面积为 12 ,也所以圆锥的表面积为 S 6 7 . C 3 C 3C44 2.【解】由题知所有分组方法有 N 10 7 2100 种. A22
3a xd 0, 7 ( y x)d , 7 2 于是存在正整数 6 x, y, z 36 ,使得 3a yd , 从而 16 2 ( z x ) d 16 3 3a zd 3 y x 21 也所以 ,由于 21,32 互质,且 y x, z x 为整数,则有 | y x | 21,| z x | 32 , z x 32 7 16 但 | z x | 36 6 30 ,矛盾!假设错误,即证明 0, , 不可以同时在 M 中. 2 3 10.【证】(一法:数学归纳法)①当 n 1 时,左边 2 x1 2 1 2 1 右边,不等式成立;
相关文档
最新文档