第二章微积分0

合集下载

maple课件

maple课件

1.Maple概述什么是Maple, 怎么学习Maple?Maple软件是加拿大Waterloo大学在1980年开始开发,到现在最新的版本是Maple11, Maple具有强大的数值计算能力,图形处理能力,特别是符号计算能力。

常用的数学软件除Maple外,有Matlab等, 统计软件: SAS,SPSS,运筹学软件:Lingo, WINQSB.1. 数值计算与符号计算的区别a*x^2+b*x+c=0求这方程的跟, 来说明数值计算与符号计算的区别数值计算:切线法符号计算:Maple功能非常之强大, 不仅适合数学家, 还适合物理学家, 工程师,化学家,生物学家, 总之,它适合所有需要科学计算的人.举例:1) 求PI的前100位2) 求X的范围3) 求积分演示1.1.2界面介绍1.工具栏在Maple界面上说明2. 工作区每一个“>”是一个执行块. 表示命令提示符。

9-95 1.2基本运算能精确计算整数、有理数或者实数、复数的四则运算, 以及模算术、硬件浮点数和任意精度的浮点数甚至于矩阵的计算等等.总之, Maple可以进行任意数值计算.10-95 1.2.1数值计算问题关键符号问号(?) 帮助分号(;) 表示表达式结束,显示内容冒号(:) 表示表达式结束,不显示内容字符(\) 表示内容连续井号(#) 表示注释百分号(%) 表示上一步(I) 表示虚数单位演示11-951.2.1.2复数运算函数作用格式Re 返回实部function(co mplex)Im返回虚部conjugate 共轭复数argument 幅角abs模演示1.2.1.3数的进制转换convert 函数●b inary二进制●d ecimal 十进制●o ctal 八进制●h ex十六进制演示1.2.1.4常用函数●isprime素数isprime(n)●max/min最值max(a1,a2,…);●mod/modp/mods余a mod b; modp(a,b); mods(a,b);●rand随机数rand();rand(a..b)();14-95 1.2.1.5整数计算函数abs 求绝对值ifactor 求因子iquo 求商iquo(a,b,’r’)irem 余数irem(a,b,’q’)isqrt 近似的平方跟整数15-95 1.2.1.6精确与非精确运算在精确运算中,必须所有的数是整数或恒数(如, Pi), Maple不会对该表达式进行浮点运算.如果你想得到非精确值, 用浮点数进行该表达式计算.演示1.2.2初等函数初等数学是数学的基础之一, 也是数学中最有魅力的一部分内容. 通过下面的内容我们可以领略Maple对初等数学的驾驭能力, 也可以通过这些实验对Maple产生一些感性认识. 指数函数:exp自然函数:ln一般对数:log[a]常用对数: log101.2.2.1重要函数连乘函数: product/Product 连加函数: sum/Sum展开函数:expand合并函数:combine1.2.2.2简单函数定义Maple定义简单的函数有2种方法:•函数法:unapply(expr,vars);expr为任意表达式,vars为变量组•箭头法: (vars)->expr;expr为任意表达式,vars为变量组重要函数floorceilopnopsmap演示1.3求值1.3.1赋值在Maple中,不需要申明变量类型,直接对变量赋值,其赋值格式为.变量明:=表达式;例如:y:=5;f:=x^2+3*x+2;1.3.2变量代换在表达式化简中, 变量代换是一个得力工具. 我们可以利用函数subs根据自己的意愿进行变量代换, 最简单的调用这个函数的形式是这样的:单个变量替换subs ( x= a, expr);多个变量替换subs ( x = a,y=b, expr);调用的结果是将表达式expr中所有变量var出现的地方替换成变量的值.演示subs命令●顺序替换subs(var1=val1,var2=val2,…,expr);subs((var1=val1,var2=val2,…),expr);●同步替换subs({var1=val1,var2=val2,…},expr);演示1.3.3 假设机制解决某些问题的时候,我们必须要对其变量进行假设,格式如下:assume(x1::prop1,x2::prop2,…);assume(x1>val,x2<val);其中xi表示变量,propi表示属性,val表示值例如:sin(n*Pi),如果n是整数,这个表达式值为0assume(n::interger)演示1.3.4 求值规则●eval 命令格式:eval(e, x=a); #求表达式e在x=a处的值eval(e, vars); #对方多个变量求值●evalc #对复数求值●evalf #求浮点数●evala #对表达式或未求值函数求值●value #对惰性表达式求值1.4 数据结构●变量类型(数字,字符串,复合表达式)integer, float, list, set, exprseq,…●运算符: +, -, *, /, ^●关系表达式:=, <>, <, <=注意“>”●逻辑表达式: and, or ,not26-95 1.4.1 数据及变量类型查询●whattype(expr)其中expr是任何表达式●type(expr,t)其中expr是任何表达式,t为有效表达式1.4.2 序列,列表和集合1.4.2.1序列所谓序列(Sequence), 就是一组用逗号隔开的表达式列.如:s:=1,4,9,16,25;一个序列也可以由若干个序列复合而成s:=s,s;该值为:1,4,9,16,25,1,4,9,16,25;产生序列的函数为seq(f,i=m..n)其中f是函数,可以是i的函数,也可以不是.判断序列的函数为:nops演示1.4.2.2 列表简单的说, 就是序列加上方括号如:L:=[1,2,3,4];L1:=[[1,2,3],[2,3,4]];对序列和列表操作的函数nops:个数sort:排序op:解开操作extracts operands from an expression1.4.2.3 集合集合(set)也是把对象(元素)放在一起的数据结构, 与列表不同的是集合中不可以有相同的元素(如果有, Maple也会自动将其当作同一个元素), 另外, 集合中的元素不管次序. 用花括号表示集合.s:={x,1,1-z,x};集合的基本运算函数:交(intersect),并(union),差(minus)格式:函数(集合,集合);1.4.3 数组和表arraytableS := table([(2)=45,(4)=61]);1.4.4 数据类型的转换与合并convert 这个功能强大的类型转换函数,可以实现列表和数组的类型转换将array转换为list将array转换为set1.5 高级输入与输出操作Maple提供了良好的接口来编辑与计算数学式. 许多时候, 我们可能需要把Maple的运算结果输出到一个文件中, 或者在一个文本编辑器里先编好一个较大的Maple程序, 再将它加载到Maple的环境里.1.5.1 fprintffprintf函数是用来输出到文件中,在使用该函数前,先用fopen打开一个文件,再使用fprintf函数输出到fopen打开的文件中,最后用fclose关闭文件。

第二章 一元函数的导数和微分

第二章 一元函数的导数和微分

第二章 一元函数的导数和微分微分学是微积分的重要组成部分,它的基本概念是导数与微分,其中导数反映出函数相对于自变量的变化而变化的快慢程度,而微分则指明当自变量有微小变化时,函数值变化的近似值.第一节 导数的概念在科学研究和工程技术中,常常遇到求变量的变化率的问题。

例如,物体作匀速直线运动时,其速度为物体在时刻t 0到t 的位移差s (t )-s (t 0) 与相应的时间差t -t 0的商00()()--s t s t v =t t .如果物体作变速直线运动,则上面的公式就不能用来求物体在某一时刻的瞬时速度了.不过,我们可先求出物体从时刻t 0到t 的平均速度,然后假定t →t 0,求平均速度的极限00()()lim→--t t s t s t t t ,并以此极限作为物体在t 0时刻的瞬时速度.从数学角度来看,00()()--f x f x x x 叫做函数y =f (x )在x 0与x 的差商,而把x →x 0时,该差商的极限值(如果存在的话)叫做函数f (x )在x 0处的导数.一般说来,工程技术中一个变量相对于另一个变量的变化率问题,可以化成求导数的问题进行处理.一、导数的定义定义 设函数y =f (x )在U (x 0)内有定义.如果极限00()()lim→--x x f x f x x x存在,则称该极限值为f (x )在点x 0处的导数,记为000()()()lim→-'=-x x f x f x f x x x , (2-3-1)此时也称函数f (x )在点x 0可导.函数f (x )在点x 0处的导数还可记为0d d =y x x x ;0d ()d =f x x x x ;0'=y x x .导数f ′(x 0)可以表示为下面的增量形式00000()()()limlim ∆→∆→+∆-∆'==∆∆x x f x x f x yf x x x. (2-3-2)如果(2-3-1)式和式(2-3-2)中右边的极限不存在,则称f (x )在点x 0不可导.当00()()lim→--x x f x f x x x = ∞时,我们通常说函数y = f (x )在点x 0处的导数为无穷大.如果函数y =f (x )在开区间(a ,b )内的每一点处都可导,则称f (x )在此开区间(a ,b )内可导.这时,∀x ∈(a ,b ),对应着f (x )的一个确定的导数值,这是一个新的函数关系,称该函数为原来函数f (x )的导函数,记为f ′(x ),y ′,d ()d f x x ,d d yx等,此时 0()()()lim ∆→+∆-'=∆x f x x f x f x x, x ∈(a ,b ).显然,f (x )在点x 0∈(a ,b )的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值:00()()''==f x f x x x .为方便起见,我们简称函数的导函数为导数.由函数y =f (x )在点x 0处的导数f ′(x 0)的定义可知,它是一种极限:000()()()lim→-'=-x x f x f x f x x x ,而极限存在的充要条件是左、右极限都存在且相等.因此f ′(x 0)存在(即f (x )在点x 0可导)的充要条件应是下面的左、右极限00()()lim -→--x x f x f x x x ,000()()lim +→--x x f x f x x x 都存在且相等.我们将这两个极限分别称为函数f (x )在x 0处的左导数和右导数,记为f ′-(x 0)和f ′+(x 0),即000()()()lim --→-'=-x x f x f x f x x x ,000()()()lim ++→-'=-x x f x f x f x x x或写成增量形式:0000()()()lim --∆→+∆-'=∆x f x x f x f x x,0000()()()lim ++∆→+∆-'=∆x f x x f x f x x.定理1 函数y =f (x )在点x 0可导的充要条件是f ′-(x 0)及f ′+(x 0)存在且相等.该定理实际上是第一章第四节中定理2的推论. 例1 函数f (x )=|x |在点x =0处是否可导? 解 因为(0)(0)sgn()∆-+∆-==∆∆∆x f x f x x x,所以0(0)lim sgn()1++∆→'=∆=x f x ,0(0)lim sgn()1--∆→'=∆=-x f x ,由于f ′+(0)≠f ′-(0),因此f (x )=|x |在x =0处不可导.例2 研究函数,0,()ln(1),0<⎧=⎨+≥⎩x x f x x x 在点x =0处的可导性.解 易知f (x )在点x =0处连续,而0()(0)(0)lim ++→-'=x f x f f x0ln(1)0lim +→+-=x x x1lim ln(1)1+→=+=xx x , 00()(0)0(0)lim lim 1---→→--'===x x f x f x f x x, 由于f ′+(0)=f ′-(0)=1,故f (x )在点x =0处可导,且f ′(0)=1.例3 求函数f (x )=C ,x ∈(-∞,+∞)的导数,其中C 为常数.解 00()()()limlim 0∆→∆→+∆--'===∆∆x x f x x f x C Cf x x x, 即(C )′=0.通常说成:常数的导数等于零.例4 设y =x n ,n 为正整数,求y ′.解 0()lim ∆→+∆-'∆n nx x x x y =x12210lim(C ()())---∆→+∆++∆ n n n n x =nxxx x 1-=n nx ,即 (x n )′=nx n -1.特别地,n =1时,有(x )′=1. 例5 设y =sin x ,求y ′.解 0sin()sin limx x x xy x∆→+∆-'=∆022cos sin22limx x x x x∆→+∆=∆ 022cos 22lim cos x x x x x x∆→∆+∆⋅==∆即 (sin x )′=cos x .例6 设y =cos x ,x ∈(-∞,+∞),求y ′.解 0cos()cos limx x x xy x∆→+∆-'=∆02sin()sin 22limx x x x x∆→∆∆-+=∆ 02sin()22limsin x x x x x x∆→∆∆-⋅+==-∆, 即 (cos x )′=-sin x .例7 设y =a x ,x ∈(-∞,+∞),a >0,求y ′. 解 注意到u →0时,e u -1~u ,从而00(1)lim lim x x x x x x x a a a a y x x+∆∆∆→∆→--'==∆∆ln 00e 1ln limlim ln x a xx x x x x aa a a a x x∆∆→∆→-∆===∆∆, 即(a x )′=a x ln a (a >0).特别地 (e x )′=e x . 例8 设y =log a x ,x ∈(0,+∞),a >0且a ≠1,求y ′.解 00log (1)log ()log limlima a a x x xx x xx y xx∆→∆→∆++∆-'==∆∆00111lim log (1)lim log e =ln x x a a x x x x x x x a∆∆→∆→∆=+=,即 (log a x )′=1ln x a. 特别地 1(ln )x x'=.例9 设y =x 3,求y ′|x =2.解 因为 y ′=(x 3)′=3x 3-1=3x 2, 所以 y ′|x =2 =3x 2|x =2 =3×22=12.下面我们讨论可导与连续的关系.定理2 若y =f (x )在点x 0可导,则f (x )在点x 0必连续. 证 因为f (x )在点x 0可导,即000()()lim()x x f x f x f x x x →-'=-存在.由无穷小量与函数极限的关系得000()()()f x f x f x x x α-'=+-,其中α→0(x →x 0),于是0000()()()()()f x f x f x x x x x α'-=-+-故 [][]00000lim ()()lim ()()()0x x x x f x f x f x x x x x α→→'-=-+-=.即f (x )在点x 0连续.例10 研究函数1sin ,0,()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 在点x =0处的连续性和可导性.解 因为1lim ()lim sin0(0)x x f x x f x→→===, 所以f (x )在点x =0处连续,但是0001sin 0()(0)1lim lim limsin 0x x x x f x f x x x x→→→--==- 不存在,故f (x )在点x =0处不可导.此例说明“连续不一定可导”,连续只是可导的必要条件. 二、导数的几何意义连续函数y =f (x )的图形在直角坐标系中表示一条曲线,如图2-1所示.设曲线y =f (x )上某一点A 的坐标是(x 0,y 0),当自变量由x 0变到x 0+Δx 时,点A 沿曲线移动到点B (x 0+Δx ,y 0+Δy ),直线AB 是曲线y =f (x )的割线,它的倾角记作β.从图形可知,在直角三角形AB C 中,tan CB y AC x β∆==∆,所以yx∆∆的几何意义是表示割线AB 的斜率.图2-1当Δx →0时,B 点沿着曲线趋向于A 点,这时割线AB 将绕着A 点转动,它的极限位置为直线AT ,这条直线AT 就是曲线在A 点的切线,它的倾角记作α.当Δx →0时,既然割线趋近于切线,所以割线的斜率yx∆∆=tan β必然趋近于切线的斜率tan α,即 00()lim tan x yf x xα∆→∆'==∆.由此可知,函数y =f (x )在x 0处的导数f ′(x 0)的几何意义就是曲线y =f (x )在对应点A (x 0,y 0)处的切线的斜率.曲线y =f (x )在点A (x 0,y 0)的切线方程可写成:(1) f ′(x 0)存在,切线方程为y -f (x 0)= f ′(x 0)(x -x 0);(2) f (x )在点x 0处连续,f ′(x 0)=∞,则切线方程为x =x 0.例11 求过点(2,0)且与曲线y =1x 相切的直线方程. 解 显然点(2,0)不在曲线y =1x上.由导数的几何意义可知,若设切点为(x 0,y 0),则y 0=1x ,且所求切线的斜率k 为 02011()x x k xx ='==-, 故所求切线方程为020011(2)y x x x -=--. 又切线过点(2,0),所以有020011(2)x x x -=--. 于是得x 0=1,y 0=1,从而所求切线方程为y -1= -(x -1),即y =2-x .例12 在曲线32y x =上求一点,使该点处的曲线的切线与直线y =3x -1平行. 解 在32y x =上的任一点M (x ,y )处切线的斜率k 为32()k y x ''===而已知直线y =3x -1的斜率k 1=3.令k =k 13=,解之得x =4,代入曲线方程得 3248y ==.故所求点为(4,8).三、函数四则运算的求导法定理3设函数u =u (x ),v =v (x )在点x 处可导,k 1,k 2为常数,则下列各等式成立: (1) [k 1u (x )+k 2v (x )]′=k 1u ′(x )+k 2v ′(x ); (2) [(u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );(3) 2()()()()()()()u x u x v x u x v x v x v x '''⎡⎤-=⎢⎥⎣⎦[v (x )≠0]. 证 仅以(3)为例进行证明.记g (x )=()()u x v x ,且v (x )≠0,则01()()()lim()()x u x x u x g x x v x x v x ∆→⎡⎤+∆'=-⎢⎥∆+∆⎣⎦ 01()()()()lim()()()()x u x x u x v x x v x v x u x v x v x x x x ∆→+∆-+∆-⎡⎤=-⎢⎥+∆∆∆⎣⎦ 0001()()()()lim()lim ()lim ()()x x x u x x u x v x x v x v x u x v x v x x x x ∆→∆→∆→+∆-+∆-⎡⎤=-⎢⎥+∆∆∆⎣⎦ 2()()()()()u x v x u x v x v x ''-=.定理中的(1)式和(2)式均可推广至有限多个函数的情形.读者不难自行完成. 例13 设52434y x x =-+,求y ′.解 52(434)y x x ''=-+52(4)(3)(4)x x '''=-+4206x x =-.例14 设y =x 3cos x sin x ,求y ′.解 3(c o s s i n )y x x x''= 333()cos sin (cos )sin cos (sin )x x x x x x x x x '''=++232323cos sin sin cos x x x x x x x =-+.例15 设y =tan x ,求y ′.解 sin (tan )()cos xy x x'''== 2(sin )cos sin (cos )cos x x x x x''-=2222cos sin 1cos cos x x x x+==,即 (tan x )′=21cos x=sec 2x =1+tan 2x . 类似可得2221(cot )csc (1cot )sin x x x x'=-=-=-+. 例16 设y =sec x ,求y ′.解 在定理3的(3)中,取u (x )≡1,则有21()()()v x v x v x ''⎛⎫=- ⎪⎝⎭. 于是y ′=(sec x )′=21(cos )cos cos x x x ''⎛⎫=- ⎪⎝⎭2sin sec tan cos xx x x==,即 (sec x )′=sec x tan x .类似可得 (csc x )′=-csc x cot x .第二节 求导法则一、复合函数求导法定理1(链导法) 若u =φ(x )在点x 处可导,而y =f (u )在相应点u =φ(x )处可导,则复合函数y =f (φ(x ))在点x 处可导,且d d d d d d y y u x u x=⋅,或记为 [f (φ(x ))]′=f ′(φ(x ))·φ′(x ). (2-2-1)证 因为y =f (u )在u 的导数0()limu yf u x∆→∆'=∆存在,所以()yf u xα∆'=+∆,其中α→0(Δu →0), 故 ()y f u x x α'∆=∆+∆,从而 00limlim ()x x y u u f u x x x α∆→∆→∆∆∆⎛⎫'=+ ⎪∆∆∆⎝⎭000()limlim lim x x x u uf u x xα∆→∆→∆→∆∆'=+∆∆.又u =φ(x )在点x 处可导,故φ(x )必在点x 处连续,因此Δx →0时必有Δu →0.于是000lim()()lim lim x u x y uf u x x xϕα∆→∆→∆→∆∆''=+∆∆()()(())()f u x f x x ϕϕϕ''''==,而[]0lim(())x yf x xϕ∆→∆'=∆,定理证毕.例1 设f (x )=x μ,μ ∈R ,x >0,求f ′(x ). 解 由于x μ=e μln x ,x >0.令u =μln x ,则x μ系由y =e u 及u =μln x 复合而成.d(e )d(ln )()d d u x f x u xμ'=⋅ln 11e e u x x x xμμμμμ-===, 即 (x μ)′=μx μ-1,μ∈R ,x >0.例2 设y =e -x ,求y ′.解 令u = -x ,则y =e u ,从而d d d d(e )d()d d d d d u y y u x x u x u x-=⋅=⋅ e (1)e u x -=-=-.即 (e -x )′= -e -x .对复合函数的分解熟练后,就不必再写出中间变量,而可按下列各题的方式进行计算.例3 设1sin1y x=+,求y ′. 解 21111cos()cos 11(1)1y x x x x''==++++. 例4设y =y ′.解2)x y '''==22(e )x x '=222e ()x x x '=⋅22e 2x x x =⋅22x x=.例5设ln(y x =,求y ′. 解ln(y x x '⎡⎤''==+⎣⎦21⎡⎤'==⎢⎢⎣=.二、反函数求导法定理2 设函数y =f (x )与x =φ(y )互为反函数,f (x )在点x 可导,φ(y )在相应点y 处可导,且d ()0d xy yϕ'=≠,则 d 1d d d x y yx=,或1()()f x y ϕ'='. 简单地说成:反函数的导数是其直接函数导数的倒数.证 由x =φ(y )=φ(f (x ))及y =f (x ),x =φ(y )的可导性,利用复合函数的求导法,得1=φ′(f (x ))f ′(x )=φ′(y )f ′(x ),故 1(),()0()f x y y ϕϕ''=≠'. 例6 设y =arcsin x ,求y ′. 解 由定理2及x =sin y 可知11(sin )cos y y y y '====' 这里记号(sin )y y '表示求导是对变量y 进行的.由上式得(arcsin )x '=.同理可得:(arccos )x '=,21(arctan )1x x '=+,21(arccot )1x x-'=+. 三、参数方程求导法若方程x =φ(t )和y =ψ(t )确定y 与x 间的函数关系,则称此函数关系所表达的函数为由参数方程(),(),x t y t ϕψ=⎧⎨=⎩t ∈(α,β) (2-2-2) 所确定的函数.下面我们来讨论由参数方程所确定的函数的导数.设t =φ-1(x )为x =φ(t )的反函数,在t ∈(α,β)中,函数x =φ(t ),y =ψ(t )均可导,这时由复合函数的导数和反函数的导数公式,有111d (())(())(())d y x x x x ψϕψϕϕ---'''⎡⎤==⎣⎦ 11()(())()()t x t t ψψϕϕϕ-''=='' (φ′(t )≠0). 于是由参数方程(2-2-2)所确定的函数y =y (x )的导数为d d ()d d d ()d yy t t x x t tψϕ'=='(φ′(t )≠0). (2-2-3) 例7 设33cos ,sin ,x a t y a t ⎧=⎨=⎩求d d yx .解 3232(cos )d 3sin cos tan d (sin )3cos (sin )t t a t y a t tt x a t a t t '===-'-(2n t π≠,n 为整数).例8 设2223,13,1at x t aty t ⎧=⎪⎪+⎨⎪=⎪+⎩ -∞<t <+∞,求d d yx.解 222222223()d 6(1)6213d 3(1)61()1t taty at t at tt at x a t at t t '+-+===+--'+ (t ≠±1).例9 求极坐标方程r =e a θ(0<θ<π/4,a >1)所确定的函数y =y (x )的导数.解 由极坐标与直角坐标的关系,得cos e cos ,sin e sin ,a a x r y r θθθθθθ⎧==⎨==⎩故 (e cos )d e sin +e cos sin cos d (e sin )e cos e sin cos sin a a a a a a y a a x a a θθθθθθθθθθθθθθθθθθ'+==='--.例10 求椭圆cos ,sin x a t y bt =⎧⎨=⎩在t =π/4处的切线方程和法线方程.解 d (sin )cot d (cos )yb t bt x a t a '==-',所以在椭圆上对应于t =π/4的点处的切线和法线的斜率为4d cot d 4t=ybbk x a a ππ==-=-切,a kb =法.切线方程和法线方程分别为bx +ay =和ax -by =a 2-b 2).四、隐函数求导法如果在含变量x 和y 的关系式F (x ,y )= 0中,当x 取某区间I 内的任一值时,相应地总有满足该方程的惟一的y 值与之对应,那么就说方程F (x ,y )=0在该区间内确定了一个隐函数y =y (x ).这时y (x )不一定都能用关于x 的表达式表示.例如方程e y +xy -e -x =0和y =cos(x +y )都能确定隐函数y =y (x ).如果F (x ,y )=0确定的隐函数y =y (x )能用关于x 的表达式表示,则称该隐函数可显化.例如x 3+y 5-1=0,解出y =,就把隐函数化成了显函数.若方程F (x ,y )=0确定了隐函数y =y (x ),则将它代入方程中,得F (x ,y (x ))≡0.对上式两边关于x 求导(若可导),并注意运用复合函数求导法则,就可以求出y ′(x )来. 例11 求方程y =cos(x +y )所确定的隐函数y =y (x )的导数.解 将方程两边关于x 求导,注意y 是x 的函数,得y ′= -sin(x +y )(1+y ′),即 sin()1sin()x y y x y -+'=++ , 1+sin(x +y )≠0. 例12 求由方程e y +xy -e -x = 0所确定的隐函数y = y (x )的导数.解 将方程两边关于x 求导,得e y y ′+y +xy ′+e -x =0,故 e exy y y x -+'=-+ (x +e y ≠0). 在计算幂指函数的导数以及某些乘幂、连乘积、带根号函数的导数时,可以采用先取对数再求导的方法,简称对数求导法.它的运算过程如下:在y =f (x )(f (x )>0)的两边取对数,得ln y =ln f (x ).上式两边对x 求导,注意到y 是x 的函数,得y ′=y (ln f (x ))′.例13 求2242(2)(1)(1)x y x x +=+++的导数. 解 先在两边取对数,得242ln 2ln(2)ln(1)ln(1)y x x x =+-+-+.上式两边对x 求导,注意到y 是x 的函数,得3242442211y x x x y x x x '=--+++, 于是 3242442211x x x y y x x x ⎛⎫'=-- ⎪+++⎝⎭,即22342242(2)442(1)(1)211x x x x y x x x x x ⎛⎫+'=-- ⎪+++++⎝⎭.例14 设()()v x y u x =,u (x )>0,其中u (x ),v (x )均可导,求y ′.解 两边取对数得ln y =v (x )ln u (x ),两边对x 求导,得()()ln ()()()y u x v x u x v x y u x '''=+, 于是 ()()()()()ln ()()v x v x u x y u x v x u x u x '⎛⎫''=+ ⎪⎝⎭. 特别地,当()()u x v x x ==时,()(1ln )x x x x x '=+.例15 求y =x sin x (x >0)的导数.解 两边取对数得ln y =sin x ln x .两边对x 求导,得sin cos ln y x x x y x'=+. 于是 sin sin cos ln x x y x x x x ⎛⎫'=+ ⎪⎝⎭. 第三节 函数的微分一、微分的概念定义1 设函数y =f (x )在U (x 0)内有定义,若∃A ∈R ,使Δy =A Δx +o (Δx ) (2-3-1)成立,则称函数y =f (x )在点x 0处可微分(简称可微),线性部分A Δx 称为f (x )在x 0处的微分,记为d y =A Δx (其中Δx =x -x 0),A 称为微分系数.定义中的式(2-3-1)可写为0000000()()()()()lim lim 0x x x x f x f x A x x f x f x A x x x x →→⎛⎫----=-= ⎪--⎝⎭, (2-3-2) 即式(2-3-1)成立的充要条件为 000()()limx x f x f x A x x →-=-. 于是便有下面的定理.定理1 函数y =f (x )在点x 0可微的充要条件是函数y =f (x )在点x 0可导.当f (x )在点x 0处可微时,必有d y =f ′(x 0)Δx . 该定理说明函数的可微性与可导性是等价的.函数y =f (x )在任意点x 的微分,称为函数的微分,记为d y =f ′(x )Δx . (2-3-3)例1 设y =x ,求d y .解 因为y ′=(x )′=1,所以d y =1×Δx =Δx .为方便起见,我们规定:自变量的增量称为自变量的微分,记为d x =Δx .于是式(2-3-3)可记为d y =f ′(x )d x . (2-3-4)例2 求y =sin x 当x =π/4,d x =0.1时的微分.解 d y =(sin x )′d x =cos x d x .当x =π/4,d x =0.1时,有d cos 0.10.07074y π=⨯=≈. 在几何上,y =f (x )在x 0处的微分d y =f ′(x 0)d x 表示曲线y =f (x )在点M (x 0,f (x 0))处切线MT 的纵坐标相应于Δx 的改变量PQ (见图2-2),因此d y =Δx tan α.图2-2二、微分的运算公式1.函数四则运算的微分设u =u (x ),v =v (x )在点x 处均可微,则有d(Cu )=C d u (C 为常数),d(u +v )=d u +d v ,d(uv )=u d v +v d u ,2d()=,0u vdu udv v v v -≠. 这些公式由微分的定义及相应的求导公式立即可证得.2.复合函数的微分若y =f (u )及u =φ(x )均可导,则复合函数y =f (φ(x ))对x 的微分为d y =f ′(u )φ′(x )d x . (2-3-5)注意到d u =φ′(x )d x ,则函数y =f (u )对u 的微分为d y =f ′(u )d u . (2-3-6)将(2-3-6)式与(2-3-4)式比较可知,无论u 是自变量还是另一个变量的可微函数,微分形式d y =f ′(u )d u 保持不变.此性质称为一阶微分的形式不变性.由此性质,我们可以把导数记号d d y x ,d d y u等理解为两个变量的微分之商了,因此,导数有时也称微商.用微商来理解复合函数的导数以及求复合函数的导数就方便多了.例3 设y =d y .解 记u =a 2+x 2,则yd du y y u u '==.又 d u =u ′x d x =2x d x ,故d 2d y x x x ==.为了读者使用的方便,我们将一些基本初等函数的导数和微分对应列表如下.表2-1第四节 高阶导数与高阶微分一、高阶导数若函数y =f (x )在U (x )内可导,其导函数为f ′(x ),且极限0()()lim x f x x f x x∆→''+∆-∆ 存在,则称该极限值为函数f (x )在点x 处的二阶导数,记为f ″(x ), 22d d y x,y ″等. 函数y =f (x )的二阶导数f ″(x )仍是x 的函数,如果它可导,则f ″(x )的导数称为原函数f (x )的三阶导数,记为()f x ''',33d d y x,y '''等. 一般说来,函数y =f (x )的n -1阶导数仍是x 的函数,如果它可导,则它的导数称为原来函数f (x )的n 阶导数,记为()()n f x ,d d n n y x,()n y 等.通常四阶和四阶以上的导数都采用这套记号,而不用“′”.一阶、二阶和三阶导数则采用“′”的记号.由以上叙述可知,求一个函数的高阶导数,原则上是没有什么困难的,只需运用求一阶导数的法则按下列公式计算()(1)()n n y y -'= (n =1,2,…)或写成11d d d d d d n n-n n y y x x x -⎛⎫= ⎪⎝⎭,()(1)()(())n n f x f x -'=. 如果函数y =f (x )在区间I 上有直到n 阶的连续的导数,我们使用记号f (x )∈C n (I )来表示. 例1 设y =x n ,n 为正整数,求它的各阶导数.解 1()n n y x nx -''==,12()(1)n n y nx n n x --'''==-,……()(1)(1)k n k y n n n k x -=--+ ,……()(1)321!n y n n n =⨯-⨯⨯⨯⨯= ,(1)()()(!)0n n y y n +''===.显然,y =x n 的n +1阶以上的各阶导数均为0.例2 设y =sin x ,求它的n 阶导数()n y .解 cos sin()2y x x π'==+,()cos()sin(2)22y y x x ππ''''==+=+⨯,设 ()sin()2k y x k π=+⋅,则 (1)()()cos()sin (1)22k k y y x k x k +ππ⎡⎤'==+=++⎢⎥⎣⎦.由数学归纳法,知()(sin )sin()2n nx x =+π,n =1,2,….由此式我们可得到y =cos x 的高阶导数公式:()(1)1(cos )(sin )sin()cos()22n n n nx x x x --=-=-+π=+π,即 ()(cos )cos()2n nx x =+π,n =1,2,….例3 设y =ln(1+x ),求()n y .解 11y x '=+,211()()1(1)y y x x '''''===-++,2312()(1)(1)y y x x '⎡⎤''''''==-=⎢⎥++⎣⎦,运用数学归纳法可知()1(1)!(1)(1)n n n n y x --=-+,n =1,2,3,….例4 设y =a x (a >0),求()n y .解 ()ln x x y a a a ''==,2(ln )ln x x y a a a a '''==.设 ()ln k x k y a a =,则 ()(1)1ln ln k x k x k+y a a a a +'==.故 ()()ln x n x n a a a =, n =1,2,….特别地,有 ()(e )e x n x =, n =1,2,….对于高阶导数,有下面的运算法则:设函数u =u (x )和v =v (x )在点x 处都具有直到n 阶的导数, 则u (x )±v (x ),u (x )v (x )在点x 处也具有n 阶导数,且(u ±v )(n )=u (n )±v (n ), (2-4-1)()()(1)(2)(1)()2!n n n n n n u v u v n u v u v ---'''⋅=⋅+⋅⋅++ ()(1)(1)!n n n n k uv k --++ =()()0C n i n i i ni u v -=⋅⋅∑, (2-4-2) 其中u (0)=u ,v (0)= v ,(1)(1)C !i n n n n i i --+= .(2- 4-2)式称为莱布尼茨(Leibniz)公式,将它与二项展开式对比,就很容易记住. (2-4-1)式由数学归纳法易证.(2-4-2)式证明如下:当n =1时,由(uv )′=u ′v +uv ′知公式成立.设当n =k 时公式成立,即()()()()(1)(2)()(1)C 2!kk i k i i k k k k k i k k y u v u v ku v u v uv ---=-'''=⋅⋅=++++∑ .两边求导,得(1)(1)()()(1)k k k k k y u v u v k u v u v ++-''''⎡⎤⎡⎤=+++⎣⎦⎣⎦(1)(2)()(1)(1)2!k k k k k k u v u v u v uv --++''''''⎡⎤⎡⎤+++++⎣⎦⎣⎦1(1)()10C k i k i i k i u v ++-+==⋅⋅∑,即n =k +1时公式(2-4-2)也成立,从而(2-4-2)成立.例5 设y =x 2·e 2x ,求y (20).解 设u =e 2x ,v =x 2,则u (i )=2i ·e 2x (i =1,2,…,20),v ′=2x ,v ″=2,v (i )=0 (i =3,4,…,20).代入莱布尼茨公式,得y (20)=(x 2·e 2x )(20)202219218220192e 202e 22e 22!x x x x x ⋅=⋅⋅+⋅⋅⋅+⋅⋅⋅20222e (2095)x x x =⋅⋅++.例6 设e x +y -xy =1,求y ″(0).解 方程两边对x 求导,得(1+y ′)e x +y -y -xy ′=0.上式两边再对x 求导,得(1+y ′)2e x +y +y ″e x +y -2y ′-xy ″=0.令x =0,可得y =0,y ′(0)= -1,将这些值代入上式得y ″(0)= -2.例7已知cos,sin,x a ty b t=⎧⎨=⎩求22ddyx.解d(sin)coscot d(cos)siny b t b t bt x a t a t a'==-=-'.注意dcotdy btx a=-,x=a cos t仍是参数方程,所以仍须用参数方程求导法则,从而22d d cot()d d ddd(cos)dby ty at xxx a tt'⎛⎫- ⎪⎝⎭=='2321csc cscsinb bt ta a t a=⋅⋅=-⋅-.*二、高阶微分对于函数y=f(x),类似于高阶导数可以定义高阶微分.设f(x)有直至n阶的导数,自变量的增量仍为d x,则二阶微分定义为d2y=d(d y)=d(f′(x)d x)=d(f′(x))d x=f″(x)d x·d x=f″(x)d x2;三阶微分定义为d3y=d(d2y)=d(f″(x)d x2)=d(f″(x))d x2=f'''(x)d x d x2=f'''(x)d x3;一般地,定义n阶微分为d n y=d(d n-1y)=f(n)(x)d x n. (2-4-3) 以上公式中的x都是自变量,d x n表示n个d x的乘积(n=2,3,4,…).对于复合函数来说,二阶及二阶以上的微分已不再具有公式(2-4-3)的形式了.例如,设y=f(u),u=φ(x),且都具有相应的可微性,则d y=f′(u)d u,而d2y=d(f′(u)d u)=d(f′(u))d u+f′(u)d(d u)=f″(u)d u2+f′(u)d2u. (2-4-4)这是因为d u不再是固定的了,它依赖于自变量x,即d u=φ′(x)d x.(2-4-4)式说明高阶微分已不再具有形式不变性了.这是高阶微分与一阶微分的重要区别之一.例8 设y=x sin x,求d2y.解d y=(x sin x)′d x=(sin x+x cos x)d x;d2y=d(d y)=(sin x+x cos x)′d x2=(cos x+cos x-x sin x)d x2=(2cos x-x sin x)d x2.例9设u=u(x),v=v(x)均有二阶导数,y=u(x)v(x),求d2y.解d y=y′d x=[u(x)v(x)]′d x=[u′(x)v(x)+u(x)v′(x)]d xd 2y =d(d y )=d [(u ′(x )v (x )+u (x )v ′(x ))d x ]=[u ′(x )v (x )+u (x )v ′(x )]′d x 2=[u ″(x )v (x )+2u ′(x )v ′(x )+ u (x )v ″(x )]d x 2.第五节 微分中值定理本节介绍微分学中有重要应用的反映导数更深刻性质的微分中值定理.定理1 [罗尔(Ro lle)定理] 若f (x )∈C ([a ,b ]),f (x )在(a ,b )内可导,且f (a )=f (b ),则∃ξ∈(a ,b )使得f ′(ξ)=0.证 由f (x )∈C ([a ,b ])知f (x )在[a ,b ]上必取得最大值M 与最小值m .若M >m ,则M 与m 中至少有一个不等于f (x )在区间端点的值.不妨设M ≠f (a ).由最值定理,∃ξ∈(a ,b ),使f (ξ)=M .又0()()()lim 0x f x f f xξξξ++∆→+∆-'=≤∆,0()()()lim 0x f x f f x ξξξ--∆→+∆-'=≥∆, 故 f ′(ξ)=0.若M =m ,则f (x )在[a ,b ]上为常数,故(a ,b )内任一点都可成为ξ,使f ′(ξ)=0. 罗尔定理的几何意义是:若y =f (x )满足定理的条件,则其图像在[a ,b ]上对应的曲线弧AB 上一定存在一点具有水平切线,如图2-3所示.图2-3定理2[拉格朗日(L ag r ang e)中值定理] 若f (x )∈C ([a ,b ]),f (x )在(a ,b )内可导,则∃ξ∈(a ,b )使得f (b )-f (a )=f ′(ξ)(b -a ). (2-5-1)证 考虑辅助函数Φ(x )=f (x )-λx (其中λ待定),为了使Φ(x )满足定理1的条件,令Φ(a )=Φ(b )得 λ=()()f b f a b a--, 即 Φ(x )=f (x )-()()f b f a b a --x . 于是由定理1,∃ξ∈(a ,b ),使Φ′(ξ)=0,即f (b )-f (a )=f ′(ξ)(b -a ).如图2-4所示,连结曲线弧 AB 两端的弦AB ,其斜率为()()f b f a b a--.因此,定理的几何意义是:满足定理条件的曲线弧 AB 上一定存在一点具有平行于弦AB 的切线.图2-4显然,罗尔定理是拉格朗日中值定理的特殊情形.式(2-5-1)称为拉格朗日中值公式,显然,当b <a 时,式(2-5-1)也成立.设x 和x +Δx 是(a ,b )内的两点,其中Δx 可正可负,于是在以x 及x +Δx 为端点的闭区间上有f (x +Δx )-f (x )=f ′(ξ)Δx ,其中ξ为x 与x +Δx 之间的某值,记ξ = x +θΔx ,0<θ<1,则f (x +Δx )-f (x )=f ′(x +θΔx )Δx (0<θ<1). (2-5-2)(2-5-2) 式称为有限增量公式.推论1 若函数f (x )在区间I 上的导数恒为零,则f (x )在区间I 上为一常数. 证 x 1,x 2∈I ,x 1<x 2,在[x 1,x 2]上应用定理2,得f (x 2)-f (x 1) =f ′(ξ)(x 2-x 1),ξ∈(x 1,x 2).由于f ′(ξ)=0,故f (x 2)=f (x 1).由x 1,x 2的任意性可知,函数f (x )在区间I 上为一常数.在第一节我们知“常数的导数为零”,推论1就是其逆命题.由推论1立即可得以下结论. 推论2 若∀x ∈I ,f ′(x )=g ′(x ),则在I 上f (x )=g (x )+C (C 为常数).例1 求证arcsin x +arccos x =π2,x ∈[-1,1]. 证 令f (x )=arcsin x +arccos x ,则f ′(x )=,x ∈(-1,1).由推论1得f (x )=C ,x ∈(-1,1).又 因f (0)=π2,且f (±1)= π2. 故 f (x )=arcsin x +arccos x =π2,x ∈[-1,1].例2 证明不等式arc tan x 2-arc tan x 1≤x 2-x 1(其中x 1<x 2).证 设f (x )=arc tan x ,在[x 1,x 2]上利用拉格朗日中值定理, 得 arc tan x 2-arc tan x 1=211ξ+(x 2-x 1),x 1<ξ<x 2. 因为211ξ+≤1,所以 arc tan x 2-arc tan x 1≤x 2-x 1.例3 设函数f (x )=x (x -2)(x -4)(x -6),说明方程f ′(x )=0在(-∞,+∞)内有几个实根,并指出它们所属区间.解 因为f ′(x )是三次多项式,所以方程f ′(x )=0在(-∞,+∞)内最多有3个实根.又由于f (0)=f (2)=f (4)=f (6)=0,f (x )在区间[0,2],[2,4],[4,6]上满足罗尔定理的条件.故 ξ1∈(0,2),ξ2∈(2,4),ξ3∈(4,6),使f ′(ξ1)=0,f ′(ξ2)=0,f ′(ξ3)=0.即方程f ′(x )=0在(-∞,+∞)内有3个实根,分别属于区间(0,2),(2,4),(4,6).例4 若f (x )>0在[a ,b ]上连续,在(a ,b )内可导,则∃ξ∈(a ,b ),使得()()ln()()()f b f b a f a f ξξ'=-. 证 原式即()ln ()ln ()()()f f b f a b a f ξξ'-=-. 令φ(x )=ln f (x ),有 φ′(x )=()()f x f x '.显然φ(x )在[a ,b ]上满足拉格朗日中值定理的条件,在[a ,b ]上应用定理可得所证. 下面再考虑由参数方程x =g (t ),y =f (t ),t ∈[a ,b ]给出的曲线段,其两端点分别为A (g (a ),f (a )),B (g (b ),f (b )).连结A ,B 的弦AB 的斜率为()()()()f b f ag b g a -- (见图2-5),而曲线上任何一点处的切线斜率为d ()d ()x f t y g t '='.图2-5若曲线上存在一点C [对应参数t =ξ∈(a ,b )],在该点曲线的切线与弦AB 平行,则可得()()()()()()f b f a fg b g a g ξξ'-='-.定理3[柯西(CaUchy )中值定理] 若f (x ),g (x )∈C ([a ,b ])均在(a ,b )内可导,且g ′(x )≠0,则∃ξ∈(a ,b )使得()()()()()()f b f a fg b g a g ξξ'-='-.证 由g ′(x )≠0和拉格朗日中值定理得g (b )-g (a )=g ′(η)(b -a )≠0, η∈(a ,b ).由此有g (b )≠g (a ),考虑辅助函数Φ(x )=f (x )-λg (x )(λ待定).为使Φ(x )满足罗尔中值定理的条件,令Φ(a )=Φ(b ),得λ=()()()()f b f ag b g a --.取λ的值如上,由罗尔定理知∃ξ∈(a ,b ),使Φ′(ξ)=0,即()()()()0()()f b f a fg g b g a ξξ-''-=-,即()()()()()()f b f a fg b g a g ξξ'-='-. 由此定理得证.显而易见,若取g (x )≡x ,则定理3成为定理2,因此定理3是定理1,2的推广,它是这三个中值定理中最一般的形式.例5 设函数f (x )在[x 1,x 2]上连续,在(a ,b )内可导,且x 1·x 2>0,证明∃ξ∈(x 1,x 2),使112212()()()()x f x x f x f f x x ξξξ-'=--.证 原式可写成122121()()()()11f x f x x x f f x x ξξξ-'=--. 令φ(x )=()f x x ,ψ(x )=1x.它们在[x 1,x 2]上满足柯西中值定理的条件,且有 ()()x x ϕψ''=f (x )-xf ′(x ). 应用柯西中值定理即得所证.第六节 泰勒公式在本章前面已知道,如果f (x )在点x 0处可微,则f (x )=f (x 0)+f ′(x 0)(x -x 0)+o (x -x 0).此式表明:对于任何在x 0处有一阶导数的函数,在U (x 0)内能用关于(x -x 0)的一个一次多项式来近似表示它,多项式的系数就是该函数在x 0处的函数值和一阶导数值,这种近似表示的误差是比(x -x 0)高阶的无穷小.于是,人们猜想:如果函数f (x )在点x 0处有n 阶导数,则可以用一个关于(x -x 0)的n 次多项式来近似表示f (x ),该多项式的系数仅与函数f (x )在点x 0的函数值和各阶导数值有关,这种近似表示的误差是比(x -x 0)n 高阶的无穷小.泰勒(Tayl o r)对这个猜想进行了研究,并得到了下面的结论.定理1(泰勒中值定理) 若f (x )在U (x 0)内具有n +1阶导数,则∀x ∈U (x 0),有f (x )=()000()()()!k nk n k f x x x R x k =-+∑, (2-6-1) 其中R n (x )=o ((x -x 0)n ),且(1)1000(())()()(1)!n n n f x x x R x x x n θ+++-=-+, 0<θ<1. (2-6-2)公式(2-6-1)称为f (x )在点x 0的n 阶泰勒公式,式中R n (x )称为余项.式(2-6-2)表示的余项称为拉格朗日余项,而R n (x )=o ((x -x 0)n )称为皮亚诺(Peano)余项.()000()()()!k nk n k f x P x x x k ==-∑称为n 阶泰勒多项式.运用泰勒多项式近似表示函数f (x )的误差可由余项进行估计.例如,若∀x ∈U (x 0),有|f (n +1)(x )|≤M ,则可得误差估计式10()()()(1)!n n n M R x f x P x x x n +=-≤-+.特别地,当公式(2-6-1)中的x 0=0时,通常称为麦克劳林(MaclaUrin)公式,即f (x )=∑nk =0f (k )(0)k !xk +Rn (x ), (2-6-3)其中 (1)1()()(1)!n n n f x R x x n θ++=+,0<θ<1.很显然,拉格朗日中值公式是带拉格朗日余项的零阶泰勒公式,泰勒中值定理也是拉格朗日中值定理的推广.例1 求f (x )=e x 的n 阶麦克劳林公式.解 f (k )(x )=e x ,f (k )(0)=1(k =0,1,2,…).e x=21()2!!nn x x x o x n +++++. 其拉格朗日余项为1e ()(1)!xn n R x x n θ+=+,θ∈(0,1).例2 求f (x )=sin x 的n 阶麦克劳林公式.解 f (k )(x )=πsin()2x k +⋅ (k =0,1,2,…),故()0,2(0)(1),21k jk jf k j =⎧=⎨-=+⎩ (j=0,1,2,…). 取n =2m ,得sin x =352112(1)()3!5!(21)!m m m x x x x o x m ---+-+-+- .其拉格朗日余项为212(21)πsin 2()(21)!m m m x R x x m θ++⎡⎤+⎢⎥⎣⎦=+21cos (1)(21)!mm x xm θ+=-+, θ∈(0,1). 类似地有cos x =242211(1)()2!4!(2)!mm m x x x o x m +-+-+-+ , 其拉格朗日余项为12221cos ()(1)(22)!m m m x R x x m θ+++=-+, θ∈(0,1).例3 求f (x )=ln(1+x )的n 阶麦克劳林展开式. 解 ()1(1)!()(1)(1)k k kk fx x --=-+ ,(k =1,2,…), 故f (k )(0)=(-1)k -1(k -1)! (k =1,2,…,n ).又 f (0)=0,f (n +1)(ξ)1!(1)(1)n n ξ+=-+, 其中,ξ在0与x 之间.于是,当x ∈(-1,+∞)时,ln(1+x )=234111(1)(1)2!3!4!(1)(1)nn n nn x x x x x x n n ξ+-+-+-++-+-++ , 其中ξ在0与x 之间.利用泰勒公式可以求极限.例4 求极限2240cos e limx x x x -→-.解 利用泰勒公式,有cos x =2441()2!4!x x o x -++, 2222421e1()2!2!2!x x x o x -⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭,于是 24421cos e ()12x x x o x --=-+. 所以244244001()cos e 112limlim 12x x x x o x x x x -→→-+-==-. 第七节 洛必达法则本节我们将利用微分中值定理来考虑某些重要类型的极限.由第二章我们知道在某一极限过程中,f (x )和g (x )都是无穷小量或都是无穷大量时,f (x )/g (x )的极限可能存在,也可能不存在.通常称这种极限为不定式(或待定型),并分别简记为00或∞∞. 洛必达(L’H ospital)法则是处理不定式极限的重要工具,是计算00型、∞∞型极限的简单而有效的法则.该法则的理论依据是柯西中值定理.一、型不定式 定理1设f (x ),g (x )满足: (1) 0lim x x →f (x )=0,0lim x x →g (x )=0;(2)在U ︒(x 0)内可导,且g ′(x )≠0; (3) 0limx x →()()f xg x ''存在(或为∞), 则 0limx x →()()f xg x = 0lim x x →()()f x g x ''. 证 由于极限0limx x →()()f xg x 与f (x )和g (x )在x =x 0处有无定义没有关系,不妨设f (x 0)=g (x 0)=0.这样,由条件(1)、(2)知f (x )及g (x )在U (x 0)连续.设x ∈U (x 0),则在[x ,x 0]或[x 0,x ]上,柯西中值定理的条件得到满足,于是有00()()()()()()()()f x f x f x fg x g x g x g ξξ'-=='-, 其中ξ在x 与x 0之间.令x →x 0(从而ξ→x 0),上式两端取极限,再由条件(3)就得到limx x →()()f x g x =0lim x ξ→()()f g ξξ''= 0lim x x →()()f xg x '', 对于当x →∞时的型不定式,洛必达法则也成立. 推论1 f (x ),g (x )满足 (1)lim x →∞f (x )=0,lim x →∞g (x )=0;(2) 当|x |>X 时可导,且g ′(x )≠0; (3) limx →∞()()f xg x ''存在(或为∞), 则 ()()limlim()()x x f x f x g x g x →∞→∞'='. 证 令t =1x,则x →∞时t →0,从而 01lim ()lim ()0t x f f x t →→∞==,1lim ()lim ()0x x g g x t→∞→∞==. 由定理1,得2002111()()()()()lim lim lim lim 111()()()()()x t t x f f f x f x t t t g x g x g g t t t→∞→→→∞'-'===''-. 显然,若lim ()()f xg x ''仍为00型不定式,且f ′(x ),g ′(x )满足定理条件,则可继续使用洛必达法则而得到()()()limlim lim ()()()f x f x f xg x g x g x '''==''',且仍然可以依此类推.例1 求33221216lim 248x x x x x x →-+--+.解 32322222121631263lim lim lim 248344642x x x x x x x x x x x x x →→→-+-===--+---.例2 求πarctan 2lim x x x→+∞-. 解 2221πa r c t a n 12l i m l i m l i m 1111x x x x xx x x x→+∞→+∞→+∞--+===+-. 二、∞∞型不定式定理2设f (x ),g (x )满足 (1) 0lim x x →f (x )=∞,0lim x x →g (x )=∞;(2) 在U ︒(x 0)内可导,且g ′(x )≠0;(3) 0limx x →()()f xg x ''存在(或为∞), 则 00()()limlim()()x x x x f x f x g x g x →→'='. 该定理也是应用柯西中值定理来证明的,因过程较繁,故略. 推论2若f (x ),g (x )满足 (1) lim x →∞f (x )=∞,lim x →∞g (x )=∞;(2) 当|x |>X 时可导,且g ′(x )≠0; (3) limx →∞()()f xg x ''存在(或为∞), 则 ()()limlim ()()x x f x f x g x g x →∞→∞'='. 例3 求ln limax xx →+∞ (α>0).解 11l n 1l i m l i m l i m 0a a a x x xxx x a x a x-→+∞→+∞→+∞===. 例4 求lim eax x x →+∞ (α>0).解 1lim lim e e a a x xx x x ax -→+∞→+∞=.若0<α≤1,则上式右端极限为0;若α>1,则上式右端仍是∞∞型不定式,这时总存在自然数n 使n -1<α≤n ,逐次应用洛必达法则直到第n 次有1lim lim e ea a x x x x x ax -→+∞→+∞== (1)(1)lim 0e a nxx a a a n x n -→+∞--+= (次). 故 lim 0eax x x →+∞= (α>0).例5 求π2tan limtan 3x xx →.。

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第2章

《微积分》课后答案(复旦大学出版社(曹定华_李建平_毛志强_著))第2章
而 , 使当n N时,有
xn a xn a
由数列极限的定义得 考察数列

xn a
lim xn a
n
n n
xn (1) n ,知 lim xn 不存在,而 xn 1 , lim xn 1 ,
n
xn 0
由数列极限的定义可得 4. 利用夹逼定理证明:
即 xn
即 xn 0
lim xn 0
n
1
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
微积分 复旦大学出版社 曹定华主编 课后答案
微积分 复旦大学出版社 曹定华主编 课后答案
又 所以
xn 1 xn xn ( 2 xn ) ,而 xn 0 , xn 2 , xn 1 xn 0

xn 1 xn ,
即数列是单调递增数列。 综上所述,数列 xn 是单调递增有上界的数列,故其极限存在。 (3)由数列 xn 单调递增, yn 单调递减得 xn x1 , yn y1 。 又由 lim( xn yn ) 0 知数列 xn yn 有界,于是存在 M >0,使 xn yn M ,
即xn 1 xn
所以 xn 为单调递减有下界的数列,故 xn 有极限。 (2)因为 x1
2 2 ,不妨设 xk 2 ,则
xk 1 2 xk 22 2
故有对于任意正整数 n,有 xn 2 ,即数列 xn 有上界,
2
本文档由天天learn提供,查看其他章节请点击/html/69/n-69.html
lim
2n 0 n n !

微积分定理归纳.doc

微积分定理归纳.doc

第一章函数与极限1、函数的有界性在定义域内有f(x) 2则K1函数f(x)在定义域上有下界,K1为下界;如果有f(x)W, K2则有上界,K2称为上界。

函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}—定有界。

如果数列{xn}无界,那么数列{xn}—定发散;但如果数列{xn}有界,却不能断定数列{xn}—定收敛,例如数列1, -1, 1, -1, (-l)n+l该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1, 1,-1, (-l)n+l中子数列{x2k-l}收敛于1, {xnk}收敛于-1, {xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<lx-x0l表示xH xO,所以x—xO时f(x)有没有极限与f(x)在点xO有没有定义无关。

定理(极限的局部保号性)如果lim(x ->x0)时f(x)=A,而且A>0(或A<0),就存在着点那么xO的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。

函数f(x)当x-*xO时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(xO-O)=f(xO+O),若不相等则limf(x)不存在。

一般的说,如果lim(x —00 )f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。

如果lim(x -*xO)f(x)= ,00则直线x=xO是函数y=f(x)图形的铅直渐近线。

4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果Fl(x)2F2(x),而limF 1 (x)=a, limF2(x)=b,那么a2b.5、极限存在准则两个重要极限lim(x f O)(sinx/x)=l ;lim(x -*00 )(l + l/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:ynW xnW且znlimyn=a, limzn=a,那么limxn=a,对于函数该准则也成立。

微积分知识点

微积分知识点

微积分知识点微积分是现代数学的一个重要分支,它主要研究函数的变化和无穷小量的运算。

微积分的应用广泛,不仅在数学中有重要地位,在物理、工程、经济学等领域也都发挥着重要的作用。

本文将按照逐步思考的方式,介绍微积分的一些基本知识点。

1.极限极限是微积分的基本概念之一,它描述了函数在某一点或无穷远处的趋势。

当自变量趋近于某一值时,函数的取值是否有限或者趋于无穷大,就可以通过极限来刻画。

例如,当自变量 x 趋近于 0 时,函数 f(x)=sin(x)/x 的极限可以用极限符号表示为lim(x→0) sin(x)/x = 1。

2.导数导数是函数在某一点的变化率,它描述了函数曲线在该点的切线斜率。

导数可以通过极限的概念来定义,即函数在某一点的导数等于该点的函数值在该点的极限。

例如,函数 f(x)=x^2 在 x=2 的导数可以表示为f’(2) =lim(x→2) (f(x)-f(2))/(x-2) = 4。

3.积分积分是导数的反运算,它描述了函数在某一区间上的累积。

积分可以看作是将一个函数从一个点到另一个点的面积或曲线长度加总的过程。

例如,函数 f(x)=2x在区间 [0, 3] 上的积分可以表示为∫[0,3] 2x dx = x^2∣[0,3] = 9。

4.泰勒展开泰勒展开是一种将函数表示为幂级数的方法,通过利用函数在某一点的导数来近似计算函数在其他点的值。

泰勒展开可以将复杂的函数表达式近似为简单的多项式形式,从而简化计算。

例如,函数 f(x)=e^x 的泰勒展开形式为f(x)=1+x+x2/2!+x3/3!+…。

5.偏导数偏导数是多元函数的导数推广,它描述了函数在某一点关于其中一个自变量的变化率。

偏导数将函数的其他自变量视为常数,只关注某一自变量的变化对函数值的影响。

例如,函数 f(x, y)=x2+y2 的关于 x 的偏导数可以表示为∂f/∂x = 2x。

6.线性代数与微积分的关系微积分与线性代数密切相关。

第二章 电容器的串并联以及微积分电路ppt课件

第二章 电容器的串并联以及微积分电路ppt课件
你还记得吗?
• 电阻串联的特点? • 电阻并联的特点?
呵呵, 太简单 了!!!
精品课件
高等教育出版社
电工技术基础与技能
一、电容器串联电路
1.电容器的串联
电容器的串联是将两个或两个以上电容器的极板首尾 依次相连,中间无分支的连接方式。
电容器串联的特点?
精品课件
高等教育出版社
电工技术基础与技能
一、电容器串联电路
解:CC 1C2 20F=20F C 1C2 2010 3
q q 1 q 2 C U 2 3 0 1 0 6 3 6 C 2 .4 1 0 4 C
U1C q11C q122.04 110064 12V U2C q22C q22 1.04 11006424V C1和C2都会被击穿,因此电路不能正常工作。
解:串联后的等效电容为 CC 1C 2 105 F =10 F = 3.3 F C 1C 2 105 3
精品课件
高等教育出版社
电工技术基础与技能
【例现2】有两个电容器,其中电容器C1的容量为20 F,额定工作电压为
25V,电容器C2的容量为10F,额定工作电压为16V。若将这两个电
容器串联后接到电压为36V的电路Байду номын сангаас,问电路能否正常工作?
⑵ 电荷量特点 qq1q2q3
总电荷量等于各个电容器的带电荷量之和。
⑶ 电容特点
CC1C2C3
总电容等于各个电容器的电容之和。
精品课件
高等教育出版社
电工技术基础与技能
二、电容器并联电路
2.电容器的并联电路的特点
(4)电荷与电容的关系
Q1/Q2=C1/C2
(5)若有几只电容量均为C0的电容器并联, 等效电容为C=n C0

第二章 Maple微积分运算

第二章 Maple微积分运算

1 函数的极限和连续
1.1 函数和表达式的极限
在 Maple 中, 利用函数 limit 计算函数和表达式的极限. 如果要写出数学表达式, 则 用惰性函数 Limit. 若 a 可为任意实数或无穷大时, 求 lim f ( x) 命令格式为: limit(f,x=a);
xa
f ( x ) 时的命令格式为 limit(f, x=a, right); 求 lim f ( x ) 时的命令格式为 limit(f, 求 lim
- 37 -
x 2 y 20 otherwise
4 2 2 4 x 6 x y y 3 ( x 2 y 2 ) 0
x 2 y 20 otherwise
函数 diff 求得的结果总是一个表达式, 如果要得到一个函数形式的结果, 也就是求 导函数, 可以用 D 算子. D 算子作用于一个函数上, 得到的结果也是一个函数. 求 f 的导 数的命令格式为: D(f); 值得注意的是, f 必须是一个可以处理为函数的代数表达式, 它可以包含常数、已知 函数名称、未知函数名称、箭头操作符、算术和函数运算符. 复 合 函 数 表 示 为 f@g, 而 不 是 f(g), 因 此 D(sin(y)) 是 错 误 的 , 正 确 的 应 该 是 D(sin@y). D 运算符也可以求高阶导数, 但此时不用$, 而用两个@@. D 运算符并不局限于单变量函数, 一个带指标的 D 运算符 D[i](f)可以用来求偏导函 数, D[i](f)表示函数 f 对第 i 个变量的导函数, 而高阶导数 D[i,j](f)等价于 D[i](D[j](f)). > g:=x->x^n*exp(sin(x));
2 x 2 y
> f(x,y):=piecewise(x^2+y^2<>0,x*y/(x^2+y^2));

微积分》第二篇第二章讲义定积分

微积分》第二篇第二章讲义定积分

dx
1 e4 1 x4 e 1 3e4 1 4 4 1 16
28
(4) 求定积分 2 xcos2xdx. 0
【解】
2
xcos2xdx
1
2 x(sin2x)dx
0
20
1 2
x
sin
2x
2 0
2 0
1
s
in
2
xdx
1 2
0
1 2
2 0
(c
os2
x)dx
1 2
0
1 cos2x 2
0 excosxdx 0 ex cosxdx
a
a
excosx 0 0 exsinxdx aa
1 eacosa 0 ex sinxdx a
37
即 0 excosxdx a
1 eacosa exsinx 0 0 excosxdx aa
1 eacosa 0 easina 0 excosxdx a
39
21
2 22 1
1 e2 1 4 24
【例7】求定积分 4 1 xex dx. 0
解: 原式
4
1dx
4 xexdx.
0
0
x 4
4
x
ex
dx.
0
0
4
xex
4 0
4 0
x
e
xdx
.
4 4e4 4 exdx 0
4 4e4 ex 4 5 5e4 0
25
课本P-274,题2,(1)—(4)
广义积分 f (x)dx收敛或存在. a 相反,如果极限 lim b f (x)dx不存在, b a
我们就称广义积分 f (x)dx发散或不存在. a 我们的目标:计算一些函数的广义积分

微积分第二章复习资料

微积分第二章复习资料
lim f (x) = A ⇔ f (x) = A+α,其中α是无穷小量。
§1.6 极限的四则运算法则
lim 定理:若 lim f ( x ) = A 、 g ( x ) = B,则有:
1. lim[ f ( x ) ± g ( x )] = lim f ( x ) ± lim g ( x ) = A ± B
半年后的本利和 A0 (1 + )
r m 如一年分m期计息,则一年后的本利和 A0 (1 + ) m
由于资金运转过程是持续不断进行的,所以计息分 期越细越合理 ,也就是让m→∞(也就是利息随时 计入本金),于是一年后的本利和
2. lim (1+ f (x))
f ( x)→0 1 f ( x)
1
f ( x)
=e
=e
3 x+4 2 5x 2.lim(1− ) 例:1.lim(1+ ) x→∞ x→∞ 2x 3x 注:碰到幂指函数,可以考虑用第二个重要极限求
解,方法是凑指数。
x +1 3.lim x→∞ x − 2
选证2
2x2 − x + 2 例:lim x→2 x2 + 4
注1:求初等函数在 x → x 0 时的极限,如果把 x = x0 代入函数有意义,则函数值就是极限值。
2x − 3 例:lim 2 x →1 x − 5 x + 4
注2:运用无穷小与无穷大的关系求极限。
5x2 + 2x −1 例:lim x →∞ 3x 2 − 1
练习: 1.lim sin 5x = 5 : x→0 3x 3 sin( x −1) 1 2.lim 2 = x→ 1 2 x −1 sin 2x 2 3.lim = x→ tg3x 0 3

【知识】微积分知识点概要

【知识】微积分知识点概要

【关键字】知识微积分 (知识点概要)第一章函数、极限与连续1.1函数定义与符号1.2极限概念与运算法则1.3求极限的方法1.4函数的连续性1.1函数的定义(P1)1函数的定义1.若变量x、y之间存在着确定的对应关系,即当x的值给定时,唯一y值随之也就确定,则称y是x的函数,记为y=f(x)。

2.确定函数有两个要素:函数的定义域和对应关系。

例如:y=lgx2 与y =2lgx 就不是相同的函数,因为它们的定义域不同。

2函数记号一旦在问题中设定函数y=f(x),记号“f”就是表示确定的对应规则,f(3)就是表示按此对应规则在x=3时所对应的函数值y等。

3初等函数(P6)称幂函数xk(k为常数),指数函数ax ,对数函数logax (a为常数,a﹥0,a≠1)三角函数及反三角函数为基本初等函数。

凡由基本初等函数经有限次加、减、乘、除及有限次复合且能用一个式子表达的函数,称为初等函数。

4函数的简单性质(1)有界性:(P5)对于函数f(x),若存在常数M、m对定义域内所有xf(x)≤M 称f(x)有上界f(x)≥m 称f(x)有下界,既有上界又有下界简称有界。

(2)奇偶性:(P3)若函数f(x)的定义域关于x=0的对称区间,又对于定义域内的任意x均有f(-x)=f(x) 则称f(x)为偶函数。

f(-x)=-f(x) 则称f(x)为奇函数。

(3)单调性:(P4)若函数f(x)在[a、b]上有定义对∀x∊[a、b]x1﹤x2 时f(x1)≤f(x2) f(x) 在[a、b]上↗f(x1)≥f(x2) f(x) 在[a、b]上↘(4)周期性:(P5)若存在常数a(a≠0),使对任意x且有f(x)= f(x+a)则称f(x)为周期函数,称常数a 为f(x)的周期。

1.2极限概念与运算法则1极限的直观定义(P11)当一个变量f(x)在x→a的变化过程中变化趋势是无限地接近于一个常数b,则称变量f(x)在x→a的过程中极限存在。

微积分第二章课件

微积分第二章课件

the curve y=f(x) if at least one of the following statements
3
In order to understand the precise meaning of a function
in Definition , let us begin to consider the behavior of a
function
0.5x 1, x 1
f (x) as x approaches 1.
Chapter 2 Limits and Derivatives
2.1The tangent and velocity problems 2.1.1 The tangent problem Example 1 Find an equation of the tangent line to the parabola y x2 at the point P(1,1). SOLUTION We will be able to find an equation of the tangent line t as soon as we know its slope m. The difficulty is that we know only one point , P, on t, whereas we need two points to compute the slope. But observe that we can compute an approximation to m by choosing a nearby Q(x,x2) on the parabola and computing the slope mPQ of the secant line PQ.

微积分课后题答案第二章习题详解

微积分课后题答案第二章习题详解
解:函数在其第二类间断点处的左、右极限不一定均不存在.
例如是其的一个第二类间断点,但即在处左极限存在,而,即在处右极限不存在.
4.求下列函数的间断点,并说明间断点的类型:
(1) f(x)= ;(2) f(x)=;
(3) f(x)= ;(4) f(x)= ;
(5) f(x)= .
解: (1)由得x=-1, x=-2
证:
,由极限的保号性知.
,使当时有,此时与同号,因为n为奇数,所以(2X)n与(-2X)n异号,于是与异号,以在上连续,由零点存在定理,至少存在一点,使,即至少有一实根.
(7)正确,见教材§2.3定理5;
(8)错误,只有非零的无穷小量的倒数才是无穷大量。零是无穷小量,但其倒数无意义。
3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量.
(1) f(x)= ,x→2;(2) f(x)=lnx,x→0+,x→1,x→+∞;
(3) f(x)= ,x→0+,x→0-;(4) f(x)= -arctanx,x→+∞;
也即,所以当时,.
再证必要性:
若当时,,则,
所以==.
综上所述,当x→x0时,(x)~β(x)的充要条件是
=0.
2. 若β(x)≠0,β(x)=0且存在,证明(x)=0.
证:
即.
3. 证明: 若当x→0时,f(x)=o(xa),g(x)=o(xb),则f(x)·g(x)=o(),其中a,b都大于0,并由此判断当x→0时,tanx-sinx是x的几阶无穷小量.
解: ∵f(0)=a,
要f(x)在x=0处连续,必须.
即a=1.
6※.设f(x)= ,讨论f(x)的连续性.

第二章 微积分的研究对象 PPT课件

第二章  微积分的研究对象  PPT课件
1 x 1
2
的定义域为
X X 1 X 2 [2,0] [(,1) (1, )] [2,1)
2.1构建函数模型的步骤和方法
构建数学模型的一般步骤和方法是: (1)对实际问题的现实原型进行分析,判断其所属 的系统,如力学系统、电学系统、生态系统、市场供销 系统、心理学系统等。分析量的主要矛盾,摒弃次要矛 盾,保留两个主要变量与有关常量。判断所在系统是否 可借用的公式、定理等,如果没有,还要通过观察、实 验等科学方法探寻有关量之间的依赖关系。
例4 测定生物体年龄 碳14是放射性物质,随时间而衰 减,碳12是非放射性物质,活性人体因吸纳食物和空气, 恰好补偿碳14衰减损失量而保持碳14和碳12含量不变,因而 所含碳14与碳12之比常数。已测知一古墓中遗体所含碳14 的数量为原有碳14数量的80%,试求遗体的死亡年代。 解 放射性物质的衰减速度与该物质的含量成比例,它符 p0 , 合指数函数的变化规律。设遗体当初死亡时碳14的含量为 t 时的含量为p=f(t),于是碳14含量的函数模型为ຫໍສະໝຸດ 所以在该区间上存在反函数。称为
反正弦函数,记作 y arcsinx 。定义
2
2
域为[-1,1],值域为 [ 2 , 2 ] 显然 sin(arcsinx) x
如图2.5所示

(2)反余弦函数 函数 y cos x 在区间[0, ] 上单调减少,存在反函数, 称为反余弦函数, 记作 y arccos x 。 定义域为 [-1,1], 值域为[0, ]。 显然 cos(arccos x ) x 如图2.6所示
解 以x表恩格尔系数, 对富裕程度分别适当赋 值,以y表之,则国民富 裕程度如图2.2所示。
1.2逆向思维一例——反函数

微积分第二章习题参考答案

微积分第二章习题参考答案

,
y
3 2(1)3 (t 2)4
3 2(1)3 (t 1)4
,
y(n)
n!(1)n (t 2)n1
n!(1)n (t 1)n1
n!(1)n ( (t
1 2)n1
(t
1 1)n1
).
四.求下列函数所指定阶的导娄数.
1. y sh , y(100) . y sh ch , y 2ch sh , y 3sh ch , y(4) 4ch sh,
五.(1)
1 dy dx d arctan y dx 1 y2 dy,
x0
x0
x
x
2时,f ( x)在x 0处连续.
六.
设f
(
x
)存在,
求下列函数y的二阶时数
d2y dx 2
.
(1) y f (e x ).
y e x f (e x ),
y e x f (e x ) e2x f (e x ),
(2) f ( x) 0, y ln f ( x).
y f ( x) . f (x)
2.当 1时,函数在x 0处可导,
当 1时,函数在x 0处不可导.
三.解. f (1) f (1 0) 1, f (1 0) a b,
b 1 a;

f(1)
lim
x10
x2 1 x1
2,
f
(1)
lim
x 1 0
(ax b) x1
1
(ax 1 a) 1
lim
a,
2. tan t ;
3. 2 ln(1 x) dx; 1 x
4. 8tan(1 2 x2 )sec2(1 2 x2 ) xdx;
(t )(1 t ) (t )

微积分上第二章习题参考答案

微积分上第二章习题参考答案
2 2 dy sin x 2. (1 x 2 )sin x 2 x[cos x 2 ln(1 x 2 ) ] ; 2 dx 1 x
微积分第二章习题参考答案
16
x e x sin e x cos 0 x 三.解: , 2 3 2 0 y
1 S | 2 x0 | | 2 y0 | 2a 2为常数,与切点无关. 2
微积分第二章习题参考答案 6
§2.2求导法则(21-22)
一.1. 2cos x sec x, 3cos x 2sec x; x e sin 2. cos e , ; 2x 1 e
2 2
x 2 x cos2 x sin2 x 1 2 3. , e ( cos3 x 3sin3 x ); 2 x 2
微积分第二章习题参考答案 26

(n)
2
n 1

2. y xe .
x x x x y e xe e ( x 1),
y e x ( x 1) e x e x ( x 2),
t2 2 t2
3. y
1 1 x
2
, y
x (1 x )
2 3 2
;
4. y ( n ) n ! 2n e 2 x 1 ;
5. y e (sin cos ) 2e sin(


4
);
微积分第二章习题参考答案

20
2 dy d y 2 2 2 2 6. 2tf ( t ) , 2 2 f ( t ) 4t f ( t ) ; dt dx
lim f (cos x )( sin x )
x 0

微积分 第二章 第三节 无穷小量和无穷大量

微积分 第二章 第三节 无穷小量和无穷大量
记作 ~ .
6
ቤተ መጻሕፍቲ ባይዱ 说明:
1.称一个变量为高阶或同阶无穷小量,是没有意义
的,只有在同一个变化过程中的两个无穷小量比较时,
才能说它们阶的高低或是否同阶.
2.在同一极限过程中的两个无穷小量,并不是总能
比较阶的高低的.
3. 如果 lim x0
xk
C(C
0, k
0), 则称是x的k阶
无穷小量.
4. 利用等价无穷小量,可简化某些极限的求解过程.
M
即证得 lim f (x)g(x) 0 . x x0 3
例1 求 lim sin x . x x
解 当x 时, 1 为无穷小, x
而sin x是有界函数.
y sin x x
lim sin x 0. x x
错误解法: lim x sin 1 lim x limsin 1 0 .
3. lim f (x) A _______ f (x) A , x x0 ( 其中 lim 0 ) . x x0
4.在同一过程中,若 f (x) 是无穷大,
则 ______是无穷小.
17
二、根据定义证明:当 x 0 时,函数 y 1 2x x
是无穷大,问 x 应满足什么条件,能使 y 104 . 三、证明函数 y 1 sin 1 在区间 ( 0 , 1 ] 上无界 ,但当
13
五、小结 思考题
无穷小与无穷大是相对于过程而言的. 1. 主要内容: 三个定义;一个定理;三个性质. 2. 几点注意: (1) 无穷小( 大)是变量,不能与很小(大) 的数混淆,零是唯一的无穷小的数; (2)无穷多个无穷小的代数和(乘积)未必是 无穷小; (3) 无界变量未必是无穷大.
14

微积分定理和公式

微积分定理和公式

一、函数定义 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D 或记f D 与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.二函数的几何特性 1.单调性1定义 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增或单增;若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性定义 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.定义 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.定义 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇偶函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律: 设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数; )()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助. 4.周期性定义 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数考纲不要求,除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1a 和图1-1b 所示.三初等函数 1.基本初等函数1常数函数 C y =,定义域为-∞,+∞,图形为平行于x 轴的直线.在y 轴上的截距为c .2幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在1,+∞内有定义,且图形过点1,1.当α>0时,函数图形过原点图1-2a b图1-23指数函数 )1,0(≠=ααα xy ,其定义域为-∞,+∞.当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点0,1.微积分中经常用到以e 为底的指数函数,即xe y =图1-34对数函数 )1,0(log ≠=ααα x y ,其定义域为1,+∞,它与xy α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点1,0图1-4图1-3 图1-4 另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 1f ′)(x 在),(b a 内严格单调减少;2)(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明1、2均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在-∞,∞+上严格单调递减,但y ″=-122x ≤0,因此1,2均不充分,故选E.此题若把题干改成f ″)(x ≤0,则1,2均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数定义 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作并称其为)(x f y =反函数.习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x f y ∈=-),(1.函数)(x f y =与反函数)(1x fy -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a xlog ==与互为反函.∈=x x y ,20,+∞的反函数为x y =,而∈=x x y ,2-∞,0的反函数为x y -=图1-2b.3.复合函数定义 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若ff R D 非空,则称函数为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.四隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =不论这个函数是否能表示成显函数,将其代入所设方程,使方程变为恒等式: 其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数.如方程1=+y x 可以确定一个定义在0,1上的隐函数.此隐函数也可以表示成显函数的形式,即但并不是所有隐函数都可以用x 的显函数形式来表示,如0=++y x exy因为y 我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如0122=++y x .五分段函数有些函数,对于其定义域内的自变量x 的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如 都是定义在-∞,+∞上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限不在考试大纲内,只需了解即可极限是微积分的基础. 一数列极限按照一定顺序排成一串的数叫做数列,如n n a a a a ⋅ 21,称为通项. 1.极限定义定义 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作否则称数列{}n a 发散或n n a ∞→lim 不存在. 2.数列极限性质1四则极限性质 设b y a x n n n n ==∞→∞→lim ,lim ,则2a x a x k n n n n =⇔=+∞→∞→lim lim k 为任意正整数.3若a x n n =∞→lim ,则数列{}n x 是有界数列.4夹逼定理 设存在正整数0N ,使得0N n ≥时,数列{}{}{}n n n z y x ,,满足不等式n n n y x z ≤≤.若a z y n n n n ==∞→∞→lim lim ,则a x n n =∞→lim .利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim =,是一个无理数. 5单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1或n n x x ≥+1,则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim =,是一个无理数. 二函数的极限 1.∞→x 时的极限 定义 设函数)(x f 在)0(||>≥a ax 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作当+∞→x 或-∞→x 时的极限当x 沿数轴正负方向趋于无穷大,简记+∞→x -∞→x 时,)(x f 无限接近常数A ,则称)(x f 当+∞→x -∞→x 时以A 为极限,记作3.0x x →时的极限定义 设函数)(x f 在0x 附近可以不包括0x 点有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作4.左、右极限若当x 从0x 的左侧0x x <趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧0x x >趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0三函数极限的性质 1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 0则A=B . 2.局部有界性 若A x f x x =→)(lim 0.则在0x 的某邻域内点0x 可以除外,)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0或A <0=,则存在0x 的某邻域点0x 可以除外,在该邻域内有)(x f >0或)(x f <0=;若A x f x x =→)(lim 0;且在0x 的某邻域点0x 可以除外有)(x f >0或)(x f <0=,则必有A≥0或A ≤0;4.不等式性质若A x f x x =→)(lim 0,B x g x x =→)(lim 0,且A>B ,则存在0x 的某邻域点0x 可以除外,使)(x f >)(x g .若A x f x x =→)(lim 0,B x g x x =→)(lim 0.且在0x 的某邻域点0x 可以除外有)(x f <)(x g 或)(x f ≤)(x g ,则A ≤B ;5.四则运算 同数列四无穷小量与无穷大量 1.无穷小量的定义定义 若0)(lim 0=→x f x x ,则称)(x f 是0x x →时的无穷小量;若,)(lim 0∞=→x g x x 则称)(x f 是0x x →时的无穷大量;2.无穷小量与无穷大量的关系无穷小量的倒数是无穷大量;无穷大量的倒数是无穷小量; 3.无穷小量的运算性质i 有限个无穷小量的代数和仍为无穷小量; ii 无穷小量乘有界变量仍为无穷小量; iii 有限个无穷小量的乘积仍为无穷小量; 4.无穷小量阶的比较设0)(lim,0)(lim 0==→→x x a x x x x β,5.等价无穷小常用的等价无穷小:0→x 是,)0(~1)1(,1~1,~)1(1,~1≠-+-+-ααααaxx n x x x n x e xx等价无穷小具有传递性,即)(~)(x x βα,又)(~)(x x γβ; 等价无穷小在乘除时可以替换,即)(~)(),(~)(**x x x x ββαα,则)()(lim )()(lim **)()(0x x x x x x x x x x βαβα∞→→∞→→=或或第二讲 函数的连续性、导数的概念与计算重点:闭区间上连续函数的性质、导数的定义、几何意义、基本初等函数的求导公式、复合函数求导公式、导数的四则运算;三、函数的连续性一函数连续的概念 1.两个定义定义 设函数)(x f y =的定义域为D x D ∈0,;若)()(lim 00x f x f x x =→,则称0)(x x f 在点连续;若D x f 在)(中每一点都连续,则称0)(x x f 在点右连续;定义 若)()(lim 00x f x f x x =+→,则称0)(x x f 在点右连续; 若)()(lim 00x f x f x x =-→,则称0)(x x f 在点左连续;0)(x x f 在点连续0)(x x f 在⇔点既左连续又右连续;2.连续函数的运算连续函数经过有限次四则运算或复合而得到的函数仍然连续,因而初等函数在其定义区间内处处连续;二间断点1.若)(lim )(lim 00x f x f x x x x -+→→与都存在,且不全等于)(0x f ,则称0x 为)(x f 的第一类间断点; 其中若)(lim 0x f x x →存在,但不等于)(0x f 或)(x f 在0x 无定义,则0x 为)(x f 的可去间断点;若)(lim )(lim 0x f x f x x x x -+→→与都存在,但不相等,则称0x 为)(x f 的跳跃间断点;2.若)(lim )(lim 0x f x f x x x x -+→→与中至少有一个不存在,则称0x 为)(x f 的第二类间断点;三闭区间上连续函数的性质若)(x f 在区间],[b a 内任一点都连续,又)()(lim ),()(lim b f x f f x f bx x ==-+→→αα,则称函数)(x f 在闭区间],[b a 上连续;1.最值定理设)(x f 在],[b a 上连续,则)(x f 在],[b a 上必有最大值M 和最小值m ,即存在],[,21b a x x ∈,使],[,)(,)(,)(11b a x M x f m m x f M x f ∈≤≤==且;2.价值定理设)(x f 在],[b a 上连续,且m,M 分别是)(x f 在],[b a 上最小值与最大值,则对任意的],[M m k ∈,总存在一点k c f b a c =∈)(],,[使;推论1 设)(x f 在],[b a 上连续,m,M 分别为最小值和最大值,且mM <0,则至少存在一点0)(],,[=∈c f b a c 使;推论1 设)(x f 在],[b a 连续,且0)()(<⋅b f a f ,则一定存在],,[b a c ∈使0)(=c f ; 推论1,推论2又称为零值定理;第二章 导数及其应用一、导数的概念1.导数定义定义 设y=fx 在x 0的某邻域内有定义,在该邻域内给自变量一个改变量x ∆,函数值有一相应改变量)()(00x f x x f y -∆+=∆,若极限存在,则称此极限值为函数y=fx 在x 0点的导数,此时称y=fx 在x 0点可导,用⎥⎦⎤⎢⎣⎡===''000)(,,)(x x dx x df x x dyx dyx x y x f 或或或表示.若)(x f y =在集合D 内处处可导这时称fx 在D 内可导,则对任意D x ∈0,相应的导数)(0x f '将随0x 的变化而变化,因此它是x 的函数,称其为y=fx 的导函数,记作⎪⎭⎫⎝⎛''dx x df dxdy y x f )(,,)(或或或. 2.导数的几何意义若函数fx 在点x 0处可导,则)(0x f '就是曲线y=fx 在点x 0,y 0处切线的斜率,此时切线方程为))((000x x x f y y -'=-.当)(0x f '=0,曲线y=fx 在点x 0,y 0处的切线平行于x 轴,切线方程为)(00x f y y ==. 若fx 在点x 0处连续,又当0x x →时∞→')(x f ,此时曲线y=fx 在点x 0,y 0处的切线垂直于x 轴,切线方程为x=x 0.3.左、右导数定义 设fx 在点x 0点的左侧邻域内有定义,若极限 存在,则称此极限值为fx 在点x 0处的左导数,记为)(0x f -')(0x f -'=xx f x x f ∆-∆+-→∆)()(lim 000类似可以定义右导数.fx 在点x 0点处可导的充要条件是fx 在点x 0点处的左、右导数都存在且相等,即)()()(000x f x f x f +-'='⇔'存在存在.若fx 在a,b 内可导,且)(a f +'及)(b f -'都存在,则称fx 在a,b 上可导. 4.可导与连续的关系若函数0)(x x f y 在=点可导,则)(x f 在点0x 处一定连续. 此命题的逆命题不成立.邮导数定义,极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(limlim0000存在可知,)(x f 在0x 点可导, 必有0→∆y ,故)(x f 在0x 点连续.但)(x f 在0x 点连续只说明当0→∆x 时,也有0→∆y ,而当y ∆的无穷小的阶低于x ∆时,极限即不存在,故)(x f 在0x 点不可导.只有y ∆与x ∆是同阶无穷小,或y ∆是比x ∆高阶的无穷小时,)(x f 在0x 点才可导. 例如,0||,31===x x y x y 在点连续,但不可导.二、导数的运算1.几个基本初等函数的导数 1.0='=y c y 2.,1-='=a aax y x y3x x x x e y e y na a y x y ='=='=,;1,4.1,1;11,log xy nx y na x y x y a ='=='=2.导数的四则运算 1)(])([x u c x u c '⋅='⋅; 2)()(])()([x v x u x v x u '+'='±;3)()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;4)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡; 3.复合函数的导数设函数)(x u ϕ=在x 处可导,而函数)(u f y =在相应的点)(x u ϕ=处可导,则复合函数)]([x u f y =在点x 处可导,且dxdudu dy dx dy x x f dxdy⋅='⋅'=或)()]([ϕϕ.4.高阶导数二阶导数若函数 区间a,b 内可导,一般说来,其导数)(x f y '='仍然是x 的函数,如果)(x f y '=' 也是可导的,则对其继续求导数,所得的导函数称为)(x f 的二阶导数,记为2222)(,),(,dxx f d dx d x f y y ''''. 注 更高阶的导数MBA 大纲不要求,二阶导数主要用来判定极值、函数凹凸区间及拐点.导数的计算要求非常熟练、准确第三讲 微分、导数的应用重点:微分的概念及运算、求曲线切线方程的方法、函数单调区间、极值、最值的求法 三、微分1.微分的概念定义 设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此由此可以看出,微分的计算完全可以借助导数的计算来完成.2微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧.2.微分运算法则 设)(),(x v x u 可微,则 一阶微分形式不变性:设)]([x f y ϕ=是由可微函数)(u f y =和)(x u ϕ=复合而成,则)]([x f y ϕ=关于x 可微,且由于du u f dy )('=,不管u 是自变量还是中间变量,都具有相同的形式,故称一阶微分形式不变.但导数就不同了:若u 是自变量,)(u f y '='.若u 是中间变量,x u u f y x u u '⋅'='=则),(.四、利用导数的几何意义求曲线的切线方程求切线方程大致有四种情况,最简单的一种是求过曲线)(x f y =上一点))(,(00x f x 的切线方程,此时只需求出)(0x f ',切线方程为))(()(000x x x f x f y -'=-.第二种情况是过曲线)(x f y =外一点a,b ,求曲线的切线方程,此时)(a f b ≠.设切点为))(,(00x f x ,切线方程为))(()(000x x x f x f y -'=-,将点a,b 代入方程中,有))(()(000x a x f x f b -'=-从中求出0x ,化成第一种情况的切线方程,若得到0x 惟一,则切线也不惟一.第三种情况是求两条曲线的公共切线,这两条曲线可能相离,也可能相交.设两曲线为)()(x g y x f y ==与解题方法是设在两条曲线上的切点分别为))(,()),(,(b g b a f a 这两点的切线斜率相等,从而有方程).()(b g a f '=' ①另外过点)(,a f a 的切线方程))(()(a x a f a f y -'=-也过点b,gb ,故有))(()()(a b a f a f b g -'=- ②由①、②求出a,b ,有了切点,切线方程也就可以写出来了. 第四种情况是求两条曲线在某公共点处的公切线.设曲线)()(x g y ax f y ==与在某点处相切,求a 的值与切线方程.则可设切点为))(,(0x g x ,从而有)())(()()(0000x g x x ax f x g ax f '=='=,由两方程联和可得a 的值及切点横坐标0x .即切点))(,(00x g x ,再由第一种情况,写出切线方程.五、函数的增减性、极值、最值1.函数的增减性的判定设函数)(x f 在闭区间],[b a 上连续,在a,b 内可导,若)0)((0)(<'>'x f x f 或,则)(x f 在a,b 上单调增加或单调减少.反之,若)(x f 在a,b 上单调增加或单调减少且可导,则)0)((0)(≤'≥'x f x f 或.二者的差异在于有没有等号.2.极值概念与判定定义 设)(x f 在0x 的某邻域内有定义,对该邻域内任意点x ,都有)(x f ≥)(0x f 或)(x f ≥)(0x f ,则称)(0x f 为极大值或极小值0x 为极大值点或极小值点.需要注意的是,极值点一定是内点,极值不可能在区间的端点取到.1极值存在的必要条件:若)(x f 在0x 点可导,且0x 为极值点,则)(0x f '=0.因此,极值点只需在)(x f '=0的点驻点或)(x f '不存在的点中去找,也就是说,极值点必定是)(x f '=0或)(x f '不存在的点,但这种点并不一定都是极值点,故应加以判别.2极值存在的充分条件,即极值的判别法,分为第一判别法和第二判别法.第一判别法用一阶导数判定.高)(x f 在0x 点连续,且)(0x f '=0或)(0x f '不存在.若存在0>δ,使得当),(00x x x δ-∈时,有)(x f >0或)(x f 不存在,当),(00δ+∈x x x 时,有)(x f '<0或)(x f '>0,此时0x 为极大极小值点.)(0x f 为极大极小值.若)(x f '在0x 的左右不变号,则0x 不是极值点.第二判别法需用二阶导数判定,只适用于二阶导数存在且不为零的点,因此有局限性. 当)(0x f '=0,若0)(0>''x f ,则0x 为极小值点,若0)(0<''x f ,0x 为极大值点,0)(0=''x f 判别法失效,仍需用第一判别法.3.函数在闭区间a,b 上的最大值与最小值.极值是函数的局部性质.最值是函数的整体性质.求最大值与最小值只需找出极值的可疑点驻点和不可导点,把这些点的函数值与区间的端点函数值比较,找出最大的与最小的即为最大值和最小值,相应的点为最大值点和最小值点.第四讲 函数图形的凹凸性、拐点、不定积分重点:函数图形凹凸区间及拐点求法、找原函数的换元积分法和分部积分法六、函数图形的凹凸性、拐点及其判定1.概念定义 若在某区间内,曲线弧上任一点处的切线位于曲线的下方,则称曲线在此区间内是上凹的,或称为凹弧简记为 ;反之,切线位于曲线上方,则称曲线是上凸的,亦称凸弧简记为,曲线凹、凸的分界点称为拐点.2.凹凸的判定设函数)(x f y =在区间a,b 内二阶可导,若在a,b 内恒有)(x f ''>0或)(x f ''<0,则曲线)(x f y =在a,b 内是凹弧或凸弧.3.拐点的求法与判定拐点存在的必要条件是)(0x f ''=0或)(0x f ''不存在请与极值比较其共性.设)(x f 在a,b 内二阶可导,)(0)(),,(000x f x f b a x ''=''∈或不存在,若)(x f ''在0x 点的左右变号,则点))(,(00x f x 是曲线)(x f y =的拐点,否则就不是拐点.由以上可以看出,要求函数的单调区间和极值点,只要找出其一阶导数等于零和一阶导不存在的点,设这种点一共有k 个,则这个k 个点把整个区间分成k+1个子区间,在每一个子区间内)(x f '不变号,由)(x f '>0或0)(<'x f 判定fx 在该子区间内单调递增或递减,同时也可以将极大值点和极小值点求出.求函数曲线的凹凸区间与拐点.只需求二阶导数等于零或二阶导数不存在的点,然后用上面的方法加以判定.第三章 定积分及其应用一、不定积分1.不定积分概念定义原函数 若对区间I 上的每一点x ,都有 则称Fx 是函数fx 在该区间上的一个原函数.原函数的特性 若函数fx 有一个原函数F x ,则它就有无穷多个原函数,且这无穷多个原函数可表示为Fx+C 的形式,其中C 是任意常数.定义不定积分 函数fx 的原函数的全体称为fx 的不定积分,记作⎰dx x f )(.若Fx 是fx的一个原函数,则定义原函数的存在性 在区间I 上连续的函数在该区间上存在原函数;且原函数在该区间上也必连续.2.不定积分的性质1积分运算与微分运算互为逆运算. 2⎰⎰≠=)0()()(k dx x f k dx x kf 常数3⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f3.基本积分公式4.求不定积分的基本方法和重要公式 1直接积分法所谓直接积分法就是用基本积分公式和不定积分的运算性质,或先将被积函数通过代数或三角恒等变形,再用基本积分公式和不定积分的运算性质可求出不定积分的结果.2换元积分法 I 第一换元积分法 公式 若⎰+=C u F du u f )()(,则=C u F +)( C x F +))((ϕ. 说明 1°运算较熟练后,可不设中间变量)(x u ϕ=,上式可写作2°第一换元积分法的实质正是复合函数求导公式的逆用.它相当于将基本积分公式中的积分变量x 用x 的可微函数)(x ϕ替换后公式仍然成立.用第一换元积分法的思路 不定积分⎰dx x f )(可用第一换元积分法,并用变量替换)(x u ϕ=,其关键是被积函数gx可视为两个因子的乘积且一个因子)())((x x f ϕϕ是的函数是积分变量x 的复合函数,另一个因子)(x ϕ'是)(x ϕ的导数可以相差常数因子.有些不定积分,初看起来,被积函数不具有上述第一换元积分法所要求的特征,在熟记基本积分公式的前提下,注意观察被积函数的特点,将其略加恒等变形:代数或三角变形,便可用第一换元积分法.II 第二换元积分法 公式⎰dx x f )( ⎰'dt t t f )())((ϕϕ C t F +)( 说明 第二换元积分法与第一换元积分法实际上正是一个公式从两个不同的方向运用用第二换元积分法的思路 若所给的积分⎰dx x f )(不易积出时,将原积分变量x 用新变量t 的某一函数)(t ϕ来替换,化成以t 为积分变量的不定积分⎰'dt t t f )())((ϕϕ,若该积分易于积出,便达到目的;被积函数是下述情况,一般要用第二换元积分法:1°被积函数含根式t b ax b a b ax n n =+≠+令时可以是,)0,0(,求其反函数;作替换)(1b t ax n -,可消去根式,化为代数有理式的积分; 变量替换令)(t x ϕ=变量替换令)(t x ϕ=第一换元法令令第一换元法ux x u ==)()(ϕϕ2°被积函数含根式a e x ±时,令t a e x =±,求其反函数,作替换)(12a t n x ±=可消去根式;被积函数含指数函数)(xxe a 或,有时也要作变量替换:令)(t e t a xx==或,设)1(111nt x nt nax ==或,以消去)(x x e a 或; 3分部积分法 公式⎰⎰'-='或dx x u x v x v x u dx x v x u )()()()()()(说明 分部积分法是两个函数乘积求导数公式的逆用; 用分部积分法的思路 I 公式的意义 欲求⎰'dx v u求⎰'.dx u vII 关于选取u 和v '用分部积分法的关键是,当被积函数看作是两个函数乘积时,选取哪一个因子为)(x u u =,哪一个因子为)(x v v '='.一般来说,选取u 和v '应遵循如下原则:1°选取作v '的函数,应易于计算它的原函数;2°所选取的u 和v ',要使积分⎰'dx u v 较积分⎰'dx v u 易于计算;3°有的不定积分需要连续两次或多于两次运用分部积分法,第一次选作v '或u 的函数,第二次不能选由v '或u 所得到的v 或v '.否则,经第二次运用,被积函数又将复原.Ⅲ分部积分法所适用的情况由于分部积分法公式是微分法中两个函数乘积的求导数公式的逆用,因此,被积函数是两个函数乘积时,往往用分部积分法易见效.5.求不定积分需要注意的问题1由于初等函数在其有定义的区间上是连续的,所以每个初等函数在其有定义的区间上都有原函数,但初等函数的原函数并不都是初等函数.例如nxe e e xx x 11,,,122-等的原函数就无法用初等函数表示.2对同一个不定积分,采用不同的计算方法,往往得到形式不同的结果.这些结果至多相差一个常数,这是由于不定积分的表达式中含有一个任意常数所致.第五讲重点:定积分的概念、性质、变限求导、牛顿-菜布尼兹公式、定积分的换元积方法和分部积分法二、定积分1.定积分的定义定义定积分 函数)(x f 在区间a,b 上的定积分定义为∑⎰=→∆∆==ni iix baxf dx x f I 1)(lim)(ξ,其中||max 1i ni x x ∆=∆≤≤.由定积分的定义,可推出以下结论:1定积分只与被积函数和积分区间有关; 2定积分的值与积分变量无关,即⎰⎰=babadt t f dx x f )()(;3⎰⎰-=abbadx x f dx x f )()(,特别地,⎰=aadx x f 0)(.定积分的几何意义 设)(x f 在a,b 上边续,⎰badx x f )(在几何上表示介于i 轴、曲线y =)(x f 及直线b x a x ==,之间各部分面积的代数和,在x 轴上方取正号,在x 轴下方取负号.利用定积分的几何意义,可以计算平面图形的面积,也是考纲中要求的定义应用内容. 定理可积的必要条件 若函数)(x f 在区间a,b 上可积,则)(x f 在a,b 上有界. 定理可积的充分条件 若函数)(x f 在区间a,b 上连续,则)(x f 在a,b 上可积.定理可积的充分条件 在区间a,b 上只有有限个间断点的有界函数)(x f 在该区间上可积.2.定积分的性质设)(x f ,)(x g 在a,b 上可积 1⎰⎰=baba k dx x f k dx x kf ,)()(为常数;2⎰⎰⎰±=±bababa dx x g dx x f dx x g x f )()()]()([;3对积分区间的可加性 对任意三个数a,b,c,总有 4比较性质 设],[),()(b a x x g x f ∈≤,则⎰⎰≤babadx x g dx x f )()(.特别地1°若],[,0)(b a x x f ∈≥,则0)(≥⎰badx x f ;2°⎰⎰≤babadx x f dx x f |)(|)(5⎰-=baa b dx .定理估值定理 若)(x f 在a,b 上的最大值与最小值分别为M 与m ,则)()()(a b M dx x f a b m ba-≤≤-⎰.定理积分中值定理 若)(x f 在a,b 上连续,则在a,b 上至少存在一点ξ,使))(()(a b f dx x f ba-=⎰ξ.上式若写成⎰-=ba dx x f ab f )(1)(ξ,该式右端称为函数)(x f 在区间a,b 上的平均值. 3.微积分学基本定理定理原函数存在性定理 若函数)(x f 在区间a,b 上连续,则函数 是)(x f 在a,b 上的一个原函数,即)()()(x f dt t f dx d x xa =⎪⎭⎫ ⎝⎛=Φ'⎰.设)(),(x x ψϕ可导 推论1 设⎰=Φϕadt t f x )()(,则)())(()(x x f x ϕϕ'=Φ'.推论2 设⎰=Φ)()()()(x x dt t f x ϕψ,则)())(()())(()(x x f x x f x ψψϕϕ'-'=Φ'.推论3 ⎰=Φ)()()()(x adt x g t f x ϕ,则)())(()()()()()()()()(x x f x g dt t f x g dt t f x g x x a x a ϕϕϕϕ'+'='⎥⎦⎤⎢⎣⎡=Φ'⎰⎰. 定理牛顿-莱布尼茨公式 若函数)(x f 在区间a,b 上连续,)(x F 是)(x f 在a,b 上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式. 4.计算定积分的方法和重要公式 1直接用牛顿-莱布尼茨公式这时要注意被积函数)(x f 在积分区间a,b 上必须连续. 2换元积分法公式 设函数)(x f 在区间a,b 上连续,而函数)(t x ϕ=满足下列条件:1°)(t ϕ在区间],[βα上是单调连续函数; 2°b a ==)(,)(βϕαϕ; 3°],[)(βαϕ在t '上连续, 则⎰⎰'=βαϕϕdt t t f dx x f ba)())(()(.该公式从右端到左端相当于不定积分的第一换元积分法;从左端到右端相当于不定积分的第二换元积分法,即用定积分的换元积分法与不定积分的换元积分法思路是一致的.作变量替换是,要相应地变换积分上下限.3分部积分法公式 设函数)(),(x v x u 在区间a,b 上有连续的导数,则⎰⎰'-='babadx x u x v a b x v x u dx x v x u )()()()()()(. 用该公式时,其思路与不定积分法的分部积分法是相同的.除此此外,当被积函数为变上限的定积分时,一般要用分部积分法.例如,设⎰⎰=xcbadx x f dt t x f )(,)()(求ϕ,这时,应设dx dv x f u ==),(.4计算定积分常用的公式 1°202241a dx x a aπ=-⎰.2°奇偶函数积分 设],[)(a a x f -在上连续,则 3°⎰⎰⎰-+=-+=--a aaaadx x f x f dx x f x f dx x f 0)]()([)]()([21)(.计算定积分,当积分区间为-a,a 时,应考虑两种情况:其一是函数的奇偶性;其二是作变量替换u x -=,用上述公式3°,当公式右端的积分易于计算时,便达目的.4°周期函数积分 设)(x f 是以T 为周期的周期函数,则⎰⎰=+TTa adx x f dx x f 0)()(.5°若)(x f 以T 为周期且是奇函数,则第六讲重点:广义积分、利用定积分的性质还应平面图形面积直角坐标系下.5.广义积分 前面引进的定积分⎰badx x f )(有两个特点:积分区间为有限区间;被积函数)(x f 在a,b 上。

微积分教学课件第2章导数与微分

微积分教学课件第2章导数与微分
原式 h l12 if0m f(x(t0)22h 12h)f(fx(0t))hlf i(m 0x0f)(t)f(x0)
微积分
三、 导数的几何意义
y y f(x)
曲线 y f (x)在点 (x0 , y0)的切线斜率为
tan f(x0)
CM
T
若 f(x0)0,曲线过 (x0 , y0)上升;
o x0
nan1
说明:
微积分
对一般幂函数 y x ( 为常数)
(x)x1
(以后将证明)
例如,(
1
x ) (x 2 )
1
x
1 2
2
1 2x
1 x
(x1)
x11
1 x2
(
1
3
) (x 4 )
3
x
7 4
xx
4
微积分
例3. 求函数 f(x)sixn的导数.
解: 令hx,则
f (x) lim f(xh)f(x) lim sin x(h)sixn
u(xh)vu (x()x u)v(ux((x)vxv)2)( (vxxu ())x(x)vh)(x)
故结论成立.
推论h: v(xCvh)v(x)vC2v ( C为常数 )
微积分
例2. 求证 (tax)n se2c x,(c x )s c cx s cc x o . t 证: (tanx)csoinsxx(six)ncocxos s2sxixn(cx o)s
h h
1, 1,
h0 h0
lim f(0h)f(0)不存在 ,即x在x0不可. 导
h 0
h
例6. 设
f
(x0)
存在,
求极限
lim f(x0h)f(x0h).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

>第二章微积分运算微积分是数学学习的重点和难点之一, 而微积分运算是Maple最为拿手的计算之一, 任何解析函数, Maple都可以求出它的导数来, 任何理论上可以计算的积分, Maple都可以毫不费力的将它计算出来.>>随着作为数学符号计算平台的Maple的不断开发和研究, 越来越多的应用程序也在不断地出现。

函数的极限和连续1.1 函数和表达式的极限在Maple中, 利用函数limit计算函数和表达式的极限.如果要仅仅聋子耳朵,仅仅写出数学表达式, 则用惰性函数Limit.若a可为任意实数或无穷大时, 求极限命令格式为: limit(f,x=a);求时的命令格式为limit(f, x=a, right); 求时的命令格式为limit(f,x=a, left); 请看下述例子:> Limit((1+1/x)^x,x=infinity)=limit((1+1/x)^x,x=infinity);>>> > > >对于多重极限计算, 也用limit. 命令格式为: limit(f, points, dir); 其中, points是由一系列方程定义的极限点, dir(可选项)代表方向: left(左)、right(右)等. 例如:>limit(a*x*y-b/(x*y),{x=1,y=1});>> restart:> plot3d(sin(x+y), x=-1..1, y=-1..1);> plot3d(x^2*(1+x)-y^2*(1-y)/(x^2+y^2),x=-1..1,y=-1..1);>>>由于多重极限的复杂性,很多情况下limit无法找到答案,此时,不应轻易得出极限不存在的结论,而是应该利用数学基础判定极限的存在性,然后再寻找别的可行的方法计算极限(如化n重根限为n次极限等)。

如下例就是化二重极限为二次极限而得正确结果:> limit((sin(x+y)/(sin(x)*sin(y)),{x=Pi/4,y=Pi/4}));>>>>>>1.2 函数的连续性1.2.1 连续在Maple中可以用函数iscont来判断一个函数或者表达式在区间上的连续性. 命令格式为:iscont(expr, x=a..b, 'colsed'/'opened');其中, closed表示闭区间, 而opened表示开区间(此为系统默认状态).如果表达式在区间上连续, iscont返回true, 否则返回false, 当iscont 无法确定连续性时返回FAIL. 另外, iscont函数假定表达式中的所有符号都是实数型. 颇为有趣的是, 当给定区间[a,b] (ab)时, iscont会自动按[b,a]处理.> iscont(1/x,x=1..2);>iscont(1/x,x=-1..1,closed);> plot(1/x);>iscont(1/(x+a),x=0..1);>iscont(ln(x),x=10..1);>1.2.2 寻找间断采用函数discontdiscont可以寻找函数或表达式在实数域的间断点, 当间断点周期或成对出现时, Maple会利用一些辅助变量予以表达, 比如, _Zn~(任意整数)、_NZn~(任意自然数)和Bn~(一个二进制数, 0或者1), 其中n是序号. 判定f(x)间断点的命令为:> discont(ln(x^2-4),x);>> plot(round(3*x-1/2),x=-1..3);>函数round为"四舍五入"函数,上例并非一目了然,对其进一步理解可借助于函数plot或下面给出的fdiscont例子。

另一个寻找间断点的函数fdiscont是用数值法寻找在实数域上的间断点. 命令格式为:fdiscont(f, domain, res, ivar, eqns);其中, f表示表达式或者, domain表示要求的区域, res表示要求的分辨率, ivar 表示独立变量名称, eqns表示可选方程.>>>>>2 导数和微分 diff2.1 符号表达式求导利用Maple中的求导函数diff可以计算任何一个表达式的导数或偏导数, 其惰性形式Diff可以给出求导表达式, $表示多重导数. 求expr关于变量x1, x2, …, xn 的(偏)导数的命令格式为:diff(expr, x1, x2, …, xn);diff(expr, [x1, x2, …, xn]);其中, expr为函数或表达式, x1, x2, …, xn为变量名称.有趣的是, 当n大于1时, diff是以递归方式调用的:> g := (x,y) -> sin(x)*cos(y) + x*y;> f:=(x,y)->x^2+y^2;> simplify(f(sin(x),cos(x)));> diff(f(x,y), x,x, y,y,y);> f(x,y);> f(x,y):='f(x,y)';> for i from 1 to 4 do print(i) od;> i:='i';> f(x,y);>>>Diff(exp(x^2),x,x,x)=diff(exp(x^2),x$3);> >> diff(piecewise(x^2+y^2 < .5,x*y/(x^2+y^2)),x,y);>> >>>间断函数的微分>> diff(f(x,y),x);>> >> > diff(f(sin(x),y),x,x,x);> ?D;> (D@@2)(sin@cos);>函数diff求得的结果总是一个表达式, 如果要得到一个函数形式的结果, 也就是求导函数, 可以用D算子. D算子作用于一个函数上, 得到的结果也是一个函数. 求f的导数的命令格式为: D(f);值得注意的是, f必须是一个可以处理为函数的代数表达式, 它可以包含常数、已知函数名称、未知函数名称、箭头操作符、算术和函数运算符.复合函数表示为f@g, 而不是f(g), 因此D(sin(y))是错误的, 正确的应该是D(sin@y).D运算符也可以求高阶导数, 但此时不用$, 而用两个@@.D运算符并不局限于单变量函数, 一个带指标的D运算符D[i](f)可以用来求偏导函数, D[i](f)表示函数f对第i个变量的导函数, 而高阶导数D[i,j](f)等价于D[i](D[j](f)).> g:=x->x^n*exp(sin(x));> D(D(D(f(x)*h(x))));>Diff(g,x)(Pi)=D(g)(Pi);> D(D(sin));> (D@@14)(sin*cos);> diff(f(x,y),x$4);> restart;> f(x,y):='f(x,y)';> f(x,y);diff(f,y);> Diff(f,y)(a,b,c)=D[2](f)(a,b,c);> D(tan);> %(x);>D运算符和函数diff的差别:1)D运算符计算运算符的导数, 而diff计算表达式的导数;2)D的参数和结果是函数型运算符, 而diff的参数和结果是表达式;3)将含有导数的表达式转换为D运算符表达式的函数为: convert(expr,D); > f:=diff(y(x),x$2);>convert(f,D);>>4)将D(f)(x)表达式转换为diff(f(x),x)形式的命令:convert(expr,diff,x);> f:=D(y)(x)-a*D(z)(x);>convert(f,diff,x);> convert(%,D,x);>D运算符可以计算定义为程序的偏导数, 此即Maple自动求导功能(详细内容参看第6章).下面我们讨论在积分学当中的一个微妙的漏洞,在大多数计算机代数系统中都会出现这个问题,甚至于在许多教科书和积分表中这种情况也是长期存在。

> f:=1/(2+sin(x));> F:=int(f,x);>> assume(a>0.05, b>0.05);>>>limit(F,x=Pi,right), limit(F,x=Pi,left);>关于函数f(x)的积分仅在一些区间上是正确的,因为F是不连续的,虽然由微积分的基本定理可知当f连续时F应该是连续的。

进一步的讨论F的不连续点:>discont(F,x);因此,F在{2*Pi*_Z3+Pi} 处有跳跃间断点。

在对多元函数f(x,y)求混合偏导数时,Maple总自以为是,这一点在f(x,y)连续的情况下当然正确,但不连续时不正确。

一个典型的例子是:>> f1:=x->sin(x)+cos(y*x);> f1(ggg);> plot3d(f(x,y),x=-1..1,y=-1..1);***************************** > diff(f(x,y),y,x);>> normal(diff(f(x,y),y,x));因此,使用Maple进行科学计算时,一定要先运用数学理论和方法对问题进行简单推导,然后再利用Maple辅助计算,切不可把所有的事情都交给Maple,如果那样的话会出现错误甚至是低级的错误。

> yy:=ff(x,y);> implicitdiff(yy,y,x,x,x);>2.2 隐函数求导隐函数或由方程(组)确定的函数的求导, 使用命令implicitdiff. 假定f,f1,…,fm为代数表达式或者方程组, y, y1,…,yn为变量名称或者独立变量的函数, 且m个方程f1,…,fm隐式地定义了n个函数y1,…,yn, 而u, u1,…,ur为独立变量的名称, x, x1,…,xk为导数变量的名称. 则:(1) 求由f确定的y对x的导数:implicitdiff(f,y,x);(2) 求由f确定的y对x1,…,xk的偏导数:implicitdiff(f,y,x1,…,x k);(3) 计算u对x的导数, 其中u必须是给定的y函数中的某一个implicitdiff({f1,…,fm},{y1,…,yn},u,x);(4) 计算u对x1,…,xk的偏导数implicitdiff({f1,…,fm},{y1,…,yn},u,{x1,…xk});(5) 计算u的高阶导数implicitdiff({f1,…,fm},{y1,…,yn},{u1,…,ur}, x1,…,xk); implicitdiff(f,y,x)命令的主要功能是求隐函数方程f确定的y对x的导数, 因此, 输入的f必须是x和y或者代数表达式的方程(其中代数表达式为0). 第二个参数y指定了非独立变量、独立变量或常数, 如果y是名称, 就意味着非独立变量, 而所有其他出现在输入的f和求导变量x中名称以及不看作是常数类型的变量, 统统视作独立变量处理. 如果方程f1,…,fm是超定的, implicitdiff返回FAIL. 例如: > f := exp(y)-x*y^2 = sin(x);>> implicitdiff(f,x,y);>>> g:=x^2+y^3=1;>implicitdiff(g,x,y);>>>如果是对多元函数求多个偏导数, 结果将用偏微分形式给出. 可以给定最后一个可选参数来确定结果的表达形式, 默认情况下或者给定notation=D, 这时结果中的微分用D运算符表示, 否则可以给定notation=Diff, 这样给出的结果中的微分运算符和使用Diff时相同, 即用来表示. 试作以下实验:求>f:=x=cos(u)*cos(v);g:=y=cos(u)*sin(v);h:=z=sin(u);> implicitdiff ({f,g,h}, {z(x,y), u(x,y), v(x,y)}, {z}, x, x, notation=Diff);2.3 函数的极值2.3.1 函数的极值极值包含两种情形:极大值和极小值。

相关文档
最新文档