人教版高中数学必修4-1.1《_弧度制》教学设计

合集下载

弧度制的教学设计

弧度制的教学设计

1.1.2 弧度制一.教材分析1.地位作用:本节课是普通高中课程标准实验教科书人教A版必修4第一章第一单元第二节.是在学习了任意角概念的前提下,对角的大小表示的进一步学习.学生已掌握了一些长度,时间的转换方法,并能体会到不同的单位制所带来的便捷,类比长度与时间的不同进制,探究表示角的不同度制.本节知识是学习任意角的三角函数的基础,起着承上启下的作用.通过本节弧度制的学习,引导学生经历一个角度值与弧度制的发展演变的过程,了解三角部分数学史的发展历程,培养学生的类比,探究,归纳的数学思想与方法,是对学生进行数学史教育的良好素材,是培养学生抽象概括,逻辑推理,直观形象,数学运算等数学学科核心素养的载体.通过对弧度制的学习,学生能够理解角与实数的一一对应关系,从而联系函数的概念,进而了解三角学纳入函数体系的可能性,为学习弧度制下的弧长公式和扇形面积公式打下基础,进一步为三角函数的学习扫清障碍.2.教学目标①理解弧度的意义, 能正确地进行角度制与弧度制的互化.②了解角的集合和实数集R之间的一一对应的关系.③了解角度制和弧度制的发展史,培养学生数学核心素养.3.重点难点重点:①理解弧度制的合理性.②角度制与弧度制的互化.难点:①尝试建立一种新的表示角的制度,分析其合理性与实用性.②总结一种制度的建立需要遵循的数学美学的原则:来源合理,结构优美,简洁实用.二.设计思想教材遵循了由浅入深、循序渐进的原则.从学生熟悉的基本单位转换入手,体会不同的单位制能给解决问题带来方便,引导学习去思考寻找另一种的单位制度量角.通过崂山风景图片介绍,引出崂山道教,通过教义解读,引出探究方法:“道生一,一生二,二生三,三生万物”,逆向思考:“万物由一而得,一由道而生,道乃客观存在的事物和规律”.通过讲数学史小故事“角度制中10的由来”,类比论证1弧度设定的合理性,关键弄清1弧度的定义,通过弧度数绝对值公式得出角度和弧度的换算方法,展开对弧度制与角度制的互化的课堂训练.最后分析角的集合与实数集的一一对应关系,为学习任意角的三角函数奠定基础.进一步升华,能否模仿弧度制创立出新的表示角的大小的“弧度制或弦度制”,总结出制度的建立因该遵循的数学美学:来源合理,结构优美,简洁实用.努力培养学生的数学核心素养.三.教法学法本节课采用启发诱导式教学法.引导学生问题探究,合作学习,中间穿插教师讲解富有启发性的数学史方面的小故事,激发兴趣,引导探究.四.教学过程。

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。

高中数学必修四《弧度制》名师教学设计

高中数学必修四《弧度制》名师教学设计

课题:1.1.2 弧度制教学设计一、教学目标知识与技能1.理解1弧度的角,弧度制的定义,熟记特殊角的弧度数;2.掌握角度与弧度的换算公式并能熟练进行角度与弧度的换算;3.了解角的集合与实数集合之间可以建立一一对应关系;4.掌握弧度制下的弧长公式,扇形的面积公式.过程与方法1.经历弧度制的探索过程,让学生从某一个简单的、特殊的情况着手,更利于教学的开展和学生思维的拓展,共同找出弧度与角度的换算方法,领悟从特殊到一般的思想.2.通过设置问题启发,发展学生观察、分析、归纳概括解决问题的方法,提高解决问题的能力.情感态度与价值观1.使学生领悟到角度制、弧度制都是角的度量制,二者虽然单位不同,但是是互相联系的、辩证统一的,进一步加强对辩证统一思想的理解,欣赏数学之美.2.使学生体会弧度制的好处,学会归纳、整理并认识到任何新知识的学习都会为我们解决实际问题带来方便,从而激发学生的学习兴趣.二、教学重点、难点1.教学重点:理解弧度制意义,能进行角度制与弧度制的互化.2.教学难点:弧度制的概念及弧度与角度的换算.三、教学方法与教学手段1.教学方法:问题教学法、合作学习法.2.教学手段:多媒图片、几何画板、PPT课件.四、教学过程(一)创设情境1.师提出问题:2019年10月1日中华人民共和国成立70周年,同学们有没有看阅兵式?【设计意图】以时政热点为话题导入新课,极大地调动了学生的学习热情,而且能提高学生的参与度,对培养学生的综合能力和提升课堂效率都很有帮助.2.问题情境1:中国国土面积960万平方千米,故宫面积约1080亩;中国领海宽度12海里;中国高铁运营里程达到3万公里,位居世界第一;中国黄金储备6245盎司;中国钢铁产量超过10亿吨,连续16年位居世界第一.【设计意图】以祖国的成就设为问题情境,调动学生的学习积极性,同学们都能够感受到祖国的强大,激起同学们浓烈的爱国思想;类比研究面积、长度、质量可以选择不同的单位,不同的单位制能为我们解决问题带来方便,引出度量角的另一种单位制.3.问题情境2:回忆初中学习的锐角三角函数定义,教师引出其他版本教材有不一样的定义.提出问题:为什么有的教材将锐角的正弦、余弦、正切定义成三角比呢?请你结合高中函数的定义进行分析.【设计意图】通过引出其他版本教材有不一样的定义,利用新旧知识所蕴含的矛盾引发认知冲突一方面引出本节课的主题,另一方面学生发现问题、提出问题的能力在潜移默化中得到培养,这个问题是本节知识的切入点是引发学生思考,培养学生素养的关键.(二)探究新知,得到概念1.教师提出问题:在半径为r 的圆O 中,当B 点在圆周上运动时,你发现了什么?(教师几何画板演示)学生活动1:学生讨论后总结,弧长变大,圆心角变大,因为我们要用实数度量圆心角,所以由180r n l π=,变形得r l n ⋅π=180. 师继续追问:当半径发生变化时,你发现了什么?能不能仅用弧长或者半径来度量圆心角?(教师几何画板演示)学生活动2:学生讨论后总结,不能仅用弧长或者半径来度量圆心角的大小. 教师再总结:仅用半径和弧长中的一个量不能度量圆心角的大小,但它又与半径r 和弧长l 相关.AA 教师继续追问:同学们觉得圆心角可能会由谁的值控制? 学生得出与rl 有关后,继续追问这个猜想合理吗?教师几何画板演示. 学生活动3:从理论上证明猜想的正确性,由弧长公式180r n l π=,稍作变形得r l n ⋅π=180,这说明当圆心角确定时,rl 就确定;r l 是随着圆心角的确定而唯一角确定.【设计意图】通过设置问题启发,发展发展学生观察、分析、归纳概括解决问题的方法,提高解决问题的能力.在探索的过程中,让学生总结归纳出当角确定时,r l 是随着圆心角的确定而唯一角确定.学生体会用r l 度量角的合理性,从而比较顺利的引出1弧度角的概念.2.教师总结:rl 来度量圆心角的大小就是今天要学习的度量角的另一种单位制——弧度制.3.定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度,单位也可以省略不写.用弧度作为角的单位制来度量角的单位制称为弧度制.(三)深入探究,理解概念1.度量角的弧度数通过度量使学生进一步感受到r l 2=时,2=α;r l 3-=时,3-=α; rl π=时,π=α;r l π=2时,π=α2;动点从点A 逆时针经过的弧长为l 则这段弧所对的圆心角为多少弧度?学生活动:得出 r l =α 教师追问:这个等式能否推广为求解任意角弧度数的一般公式呢?【设计意图】通过不断追问,引导学生得出任意角弧度数的一般公式,rl =α,并加以强调l 为动点经过的弧长.2.引入弧度制数学史,向学生介绍角度制到弧度制的跨越有千年,我们就是引用数学家的思想方法进行探究的.【设计意图】数学史的引入,将弧度制的由来置于丰富的数学文化内涵之中,进一步表明引入弧度制解决了进位制统一的问题,让学生真正感受到现实世界需要这种文化内涵以及引入弧度制的可能性.让学生感知数学家探求知识的艰难,培养学生探索科学的精神.3.推导出任意角的弧度数公式后,再去度量一个角,既可以用原有的角度制,也可以用弧度制,教师抛出问题:构建起角度与弧度互化的等式是什么呢? 学生活动:rad 2360π=︒,rad 180π=︒师追问:用类似的方法,你能够求出特殊角的弧度数吗?rad 290π=︒,rad 360π=︒,rad 445π=︒,rad 630π=︒, rad 00=︒ 从而很顺利得出角度与弧度互化的关系式.d ra 1801π=︒rad 017450.≈; rad 1︒≈︒π=30.57)180( 用弧度制表示角时,“弧度”可略去不写.如2=α表示2弧度的角,3π就表示3π弧度的角;角度表示角时,单位“度”不能省略.【设计意图】抛出问题让学生尝试不同方法求出相应的弧度数,实现角度与弧度的换算,让学生经历弧度制的探索过程,让学生从某一个简单的、特殊的情况着手,更利于教学的开展和学生思维的拓展,共同找出弧度与角度的换算方法,领悟从特殊到一般的思想.(四)巩固新知,应用概念1.练习1:把下列角从角度化为弧度:(1)︒-210 (2)0367'︒练习2:把下列角从弧度化为角度: (1) 54π (2)5.3- 结论:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是零.这样就在任意角的集合与实数集之间建立了一一对应关系.这也是引入弧度制的意义.【设计意图】使学生领悟到角度制、弧度制都是角的度量制,二者虽然单位不同,但是是互相联系,相互统一的,更容易看清楚与实数的一一对应关系.2.教师追问:在弧度制下,你能推导出弧长公式和扇形面积公式吗?(用r 表示半径,l 表示弧长,S 表示扇形面积,α表示圆心角的弧度数)(π≤α2)(师生共同回忆初中扇形的弧长与面积公式,学生尝试推导弧度制下的公式过程) 解:弧长公式:由公式rl =||α可得:r l α=. 扇形面积公式:22212r r S α=π⋅πα=(用弧长表示扇形面积) 又因为r l α=,所以有lr S 21=(用圆心角的弧度数表示扇形面积) 【设计意图】通过对比让学生发现:在弧度制下,弧长公式和扇形面积公式简单了,这也是引入弧度制的好处.3.师生总结:回过头来再去看问题情境2:通过弧度制的学习,可以将角转化成实数,它不再是三角比,它就是真正意义上的三角函数.追问学生:我们后面将要研究什么?【设计意图】前后呼应,再一次让学生体会到引入弧度制的必要性,为我们今后学习三角函数奠定了基础.五、课堂小结:(1)1弧度的角,弧度制定义,任意角的弧度数公式rl =||α; (2)弧度制下,角的集合与实数集之间建立了一一对应关系;(3)角度制与弧度制是度量角的两种单位制,它们之间可以进行换算;(4)掌握弧度制下的弧长公式,扇形的面积公式.六、课后作业:课本第9页练习1到6题七、板书设计:八、教学设计说明通过通过时政话题创设教学情境,极大地调动了学生的关注度,积极性,拉近与学生的距离,运用几何画板课件动态演示作图过程,实施信息技术与学科课程整合教学设计,引发学生学习兴趣,从而较好地完成教学任务.几何画板动态效果的展示形成对视觉的强刺激,把通常惯用的语言描述生动形象地刻画出来,促进学生对重点难点知识的理解掌握.建构主义学习理论认为,知识不是通过教师传授获得的,而是学习者在一定的情境即社会文化背景下,利用必要的学习资料,通过意义建构的方式而获得的.本课教学设计重点是学习环境的设计,强调学生自主学习.关注学生的学习兴趣和经验,引导学生主动参与、乐于探究、培养学生处理信息的能力.本节课的设计思想中体现着由特殊到一般,由具体到抽象的化归思想.本节本人遵循由浅入深,循序渐进的原则,从学生熟悉的基本单位入手,体会不同的单位制能给解决问题带来方便引导学生去思考,寻找另一种度量角的单位制. 经历弧度制的探索过程,让学生从某一个简单的、特殊的情况着手,更利于教学的开展和学生思维的拓展,共同找出弧度与角度的换算方法,领悟从特殊到一般的思想.通过设置问题启发,发展学生观察、分析、归纳概括解决问题的方法,提高解决问题的能力 . 使学生领悟到角度制、弧度制都是角的度量制,二者虽然单位不同,但是是互相联系的、辩证统一的,进一步加强对辩证统一思想的理解,欣赏数学之美.使学生体会弧度制的好处,学会归纳、整理并认识到任何新知识的学习都会为我们解决实际问题带来方便,从而激发学生的学习兴趣.同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材.。

高中数学人教版必修4任意角和弧度制教学设计

高中数学人教版必修4任意角和弧度制教学设计

第二课时 :1.1.2 弧度制(一)
教学目标 :掌握弧度制的定义,学会弧度制与角度制互化,并进
而建立角的集合与实数集 R一一对应关系的概念 .
教学重点 :掌握换算 .
教学难点 :理解弧度意义 .
教学过程:
一、复习准备:
1. 写出终边在 x 轴上角的集合
.
2. 写出终边在 y 轴上角的集合
.
3. 写出终边在第三象限角的集合
1、习题 1.1 A 组第 1,2,3 题. 2. 多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握 他们的表示,进一步理解具有相同终边的角的特点 .
2
2
分析:先求 1 弧度扇形的面积( 1 πR2 )→再求弧长为 L、半径
2
为 R的扇形面积?
方法二:根据扇形弧长公式、面积公式,结合换算公式转换 .
② 练习:扇形半径为 45,圆心角为 120°,用弧度制求弧长、
面积 .
③ 出示例:计算 sin 、tan1.5 、cos
3
4
(口答方法→共练→小结:换算为角度;计算器求)
(概念:角的顶点与原点重合, 角的始边与 x 轴的非负半轴重 合. 那么,角的终边(除端点外)在第几象限,我们就说这个角是第
几象限角 . ) ⑤ 练习:试在坐标系中表示 300°、 390°、- 330°角,并判
别在第几象限? ⑥ 讨论:角的终边在坐标轴上,属于哪一个象限? 结论:如果角的终边在坐标轴上 , 就认为这个角不属于任何一
(1) 推广角的概念、 引入大于角和负角 ;(2) 理解并掌握正角、 负角、
零角的定义 ;(3) 理解任意角以及象限角的概念 ;(4) 掌握所有与 角终
边相同的角 ( 包括 角) 的表示方法 ;(5) 树立运动变化观点,深刻理解

高中数学《弧度制》教案

高中数学《弧度制》教案

《弧度制》教学设计深入挖掘数学学科的核心价值,树立以发展学生数学学科核心素养为导向的教学意识,将数学学科核心素养的培养贯穿于教学活动的全过程——这是我教学设计的根本宗旨。

本节课我教学的重点就是弧度制概念,设计的一大亮点就是由一道探究题目,展开本节课的全部教学内容。

一.教学内容解析弧度制在本章的位置:本节知识结构:《弧度制》是人教A版必修4第一章第一节第二课时的知识内容,教学重点是弧度制的概念。

本节内容起着承上启下的作用,在弧度制下,任意角的集合和实数集建立起一一对应的关系,为三角函数奠定基础。

二.教学目标设置首先,理解1弧度的角及弧度制的定义;掌握角度和弧度的换算公式;理解任意角的集合和实数集之间一一对应的关系;理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用。

其次,以本节数学知识作为载体,为渗透类比的思想、转化化归的思想、归纳推理的思想、以及数形结合的思想,还有提高数学推理论证能力、几何直观能力、数据处理与数值计算能力都提供了很好的契机。

另外,探究新概念时,树立敢于质疑,善于思考,严谨求实的科学精神;系统的去思考概念产生的必要性,合理性,优越性,概念的内涵和外延;同时,培养学生自主学习习惯,增强同学间相互交流,取长补短,形成良好课堂学习氛围,达到学生主动、全面、健康发展。

三.学生学情分析其一学生熟知角度制,其二学生能体会不同的单位制会给解决问题带来方便,其三学生已经学习了任意角的概念,这是本节课的知识基础。

能力上,学生经过高中半个多学期的数学思维训练,已经具有一定的学习能力和探索意识,本节课要学习和探究的内容都在学生的最近发展区内。

弧度制的概念教学是重点也是难点,力求讲清概念的内涵和外延,分析概念生成的必要性、合理性、优越性。

四.教学策略分析本节课采用问题驱动式教学,学生探究与教师讲授相结合,结合多媒体辅助教学,围绕这样的问题链展开:引发学生探究性思维活动,使学生在思考、讨论、交流中经历每个知识点的产生和发展过程。

弧度制教学设计

弧度制教学设计

《弧度制》教学设计教学内容:《普通高中课程标准试验教科书·数学》必修四第一章:三角函数§1.1任意角和弧度制§1.1.2弧度制课题:弧度制三维目标:1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制。

2.理解弧度制的意义,以及任意角的弧度数与弧长半径的关系。

3.能进行角度制与弧度制的互化。

4.通过探究使学生认识到角度制与弧度都是度量角的制度,从而使学生体会到事物之间总是相互联系的。

5.通过总结引入弧度制的好处,使学生学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣。

6.通过探究任意角的弧度数与弧长半径的关系,培养学生的合作意识和创新能力。

教学重点:理解弧度制的意义,能进行角度制与弧度制的互化教学难点:弧度制的概念及其与角度的换算教学用具:直尺、圆规、剪刀、绳子课时安排:两课时教学过程一、课前布置任务。

教师在上节课结束前布置课后学习任务:准备直尺、圆规、剪刀、绳子及硬纸板(意在培养学生主动学习的意识)二、类比引入1.你所知道的长度单位有哪些?重量单位有哪些?比如,人体的身高可以用什么单位表示?人体的重量可以用什么单位表示?(设计意图是问题来源于实际生活,可以激发学生的兴趣,使得新知识的学习自然亲切)2.在初中几何里,我们学过角的度量,1度的角是怎样定义的呢?角还有没有新的度量方法?(教师顺势引导点明我们这节课要学习的内容,从而引出概念,这样以旧引新,符合学生的认知规律)三、新知探究1.定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角.用符号rad表示。

弧度制的定义:用弧度做单位来度量角的制度叫做弧度制说明:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是圆周的所对的圆心角的大小;1弧度≠1º;1 360(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制;(4)今后在用弧度制表示角的时候,弧度二字或rad可以略去不写。

高中数学必修4弧度值教案

高中数学必修4弧度值教案

高中数学必修4弧度值教案
课题:弧度值
目标:学生能够掌握弧度值的概念,能够转换角度和弧度的关系
教学重点:弧度的定义,角度和弧度的转换
教学难点:角度和弧度的转换
教学准备:教材、黑板、粉笔、教学PPT
教学步骤:
一、导入(5分钟)
老师通过引导学生回顾之前学过的角度的概念,让学生思考什么是角度,并与圆相关联。

二、讲解(15分钟)
1. 弧度的定义:引导学生思考圆周角的度量方式,并介绍弧度的定义为圆周的长度等于半径的角。

2. 角度和弧度的关系:通过示意图和实际问题,让学生理解角度与弧度的转换关系。

三、练习(25分钟)
1. 让学生完成几道简单的练习题,巩固弧度的概念及与角度的转换。

2. 让学生通过实际问题应用角度和弧度的计算方法。

四、总结(5分钟)
老师带领学生总结本节课学到的知识点,并强调弧度值在数学中的重要性。

五、作业布置(5分钟)
布置作业,巩固学生对弧度值的理解和运用。

板书设计:
1. 弧度的定义:圆周的长度等于半径的角
2. 角度和弧度的关系:1弧度=180°
3. 角度和弧度的转换公式:θ(弧度)=θ(角度) × π/180
反思:
通过本节课的教学,学生对弧度值的概念有了更深入的认识,能够灵活运用角度和弧度的转换公式进行计算。

同时,本节课难度适中,但为了更好地巩固和理解弧度值的知识,可以设计更多场景化的问题,提高学生的实际运用能力。

(完整版)_弧度制教案及教学设计

(完整版)_弧度制教案及教学设计

1.1.2 弧度制一、教材分析1、本节内容在教材中的地位和作用:教材地位与作用:本节课是普通高中实验教科书人教A版必修4第一章第一单元第二节。

本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位“度”并且上节课学了任意角的概念,学生已掌握了一些基本单位转换方法,并能体会不同的单位制能给解决问题带来方便;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用。

通过本节弧度制的学习,我们很容易找出与角对应的实数而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。

另外弧度制为今后学习三角函数带来很大方便。

2、教学目标3、教学中的重点和难点教学重点:理解弧度的意义,能正确地进行角度制与弧度制的换算。

教学难点:弧度制的概念与角度的换算。

二、教学设计思想教材遵循了由浅入深、循序渐进的原则.从学生熟悉的基本单位转换入手,体会不同的单位制能给解决问题带来方便,引导学习去思考寻找另一种的单位制度量角。

通过类比引出弧度制,关键弄清1弧度的定义,然后通过探索得到弧度数绝对值公式并得出角度和弧度的换算方法。

在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性。

这样可以尽量自然的引入弧度制,并让学生在探索的过程中,更好的形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础。

三、教法分析本节课我采用引导发现式的教学方法。

通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、自主探究来达到对知识的发现和接受。

四、教学过程五、教学流程六、教学反思本节课,学生能够在老师的引导下主动学习,基本掌握了弧度制与角度制之间的转换,完成了课堂教学。

课堂气氛比较活跃。

人教A版高中数学必修4精选优课教案1.1任意角和弧度制

人教A版高中数学必修4精选优课教案1.1任意角和弧度制

《任意角》教学设计教学目标1、知识与技能目标理解任意角的概念(包括正角、负角、零角) 与象限角的概念.2、过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.3、情感与态度目标提高学生的推理能力;培养学生应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合的表示;区间角的集合的书写.教学方法数学实验数学实验是计算机技术和数学、软件引入教学后出现的新事物。

数学实验的目的是提高学生学习数学的积极性,提高学生对数学的应用意识并培养学生用所学的数学知识和计算机技术去认识问题和解决实际问题的能力。

不同于传统的数学学习方式,它强调以学生动手为主的数学学习方式。

教学过程课前:结合学案,学生进行预习课上:一、介绍数学实验的过程二、利用多媒体展示本节课需要解决的五大问题1、对比角的两种定义,阐述各自的特点?2、为什么要对角的概念进行推广?3、如何把角的概念推广到任意角?4、在直角坐标系中,所有的角都是象限角吗?锐角与第一象限的角是什么逻辑关系?钝角与第二象限的角是什么逻辑关系?直角与轴线角是什么逻辑关系?第二象限的角一定比第一象限的角大吗?5、终边相同的角有无数个,在0°~360°范围内与已知角β终边相同的角有几个?所有与角α终边相同的角,连同角α在内所构成的集合S可以怎样表示?三、学生们分组利用计算机软件进行实验,结合昨天的预习寻求五大问题的答案四、学生们上台展示自己的研究成果五、教师点评并作总结,得到五大问题的答案六、例题讲解七、课堂练习八、小结九、布置作业课后:教学反思。

人教版高中必修四《弧度制》教学设计

人教版高中必修四《弧度制》教学设计

人教版高中必修四《弧度制》教学设计《人教版高中必修四《弧度制》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教材地位:本节课是人教新课标A版必修四第一章第一节第二课时的内容。

在教材的结构上,本节课为后面内容学习做好了铺垫,之前的学习已经让学生了解了任意角和角度制,然而在后面研究三角函数的时候大多都用弧度制,因此本节内容起着承上启下的重要作用。

只有学生学好这一节才能更好的学习后面的三角函数,解三角形等知识。

在教学内容上弧度制是一个全新的研究角的单位,利用类比的思想方法让学生理解数学研究的互通性。

教学目标:1.知识与技能目标(1)理解1弧度角、弧度制的定义(2)掌握角度与弧度的换算公式并能熟练进行角度与弧度的互化。

2.过程与方法目标通过创设情境感知,设置问题启发、培养学生观察分析、类比发现、解决问题的能力。

3.情感态度与价值观使学生领悟角度制、弧度制都是度量角的单位制,二者虽然单位不同,但是是互相联系的、辩证统一的。

进一步加强学生对辩证统一思想的理解,欣赏数学之美,从而激发学生的学习兴趣。

重点:(1)弧度制的概念,1弧度角的概念。

(2)弧长,半径,圆心角的联系(3)角度制与弧度制互化难点:弧度制定义的理解和探索弧长,半径,圆心角的联系策略(1)通过学生亲自进行数学实验,发现弧长与半径的比值为同一常数.(2)通过例题分析、进行小组挑战赛游戏、当堂练习,让学生真正掌握两种单位制的互化。

学情分析:1.学生已经学过角度制的有关知识2.学生基础一般3.尊重个体差异,循序渐进,因材施教学法指导:1.观察—归纳—检验—应用2.小组讨论3.学生发言4.当堂训练教学方法:引导发现法:举出实例,由多个标量的不同度量方法来引导学生思考,可能角也有其他的度量方法。

探索发现法:介绍弧度制后,学生分组讨论,共同思考,探讨出弧度制与角度制的互化。

教学过程:创设情景,引入新课说法一说法二身高()m 身高()尺体重()kg 体重()斤鞋子()cm 鞋子()码我校占地()平方米我校占地()亩(启发式类比探究)通过这四组简单的问题,学生可以很容易的发现实际生活中对于同一个量,我们可以用不同的方法来度量它,请同学再举出一些我们身边的实例。

人教版高中数学弧度制教案

人教版高中数学弧度制教案

人教版高中数学弧度制教案
教学内容:弧度制
教学目标:
1. 理解弧度制的概念及与角度制的转换关系;
2. 掌握弧度制的计算方法;
3. 能够运用弧度制解决相关问题。

教学重点:
1. 弧度制的概念及运用;
2. 弧度制和角度制的转换。

教学难点:
1. 弧度制与角度制的转换;
2. 弧度制的计算方法。

教学过程:
一、导入新知识(5分钟)
教师引导学生回顾角度制的概念及计算方法,并提出弧度制的定义。

二、讲解弧度制的概念及计算方法(15分钟)
1. 教师讲解弧度制的定义及计算方法,强调弧度制的优势和应用范围;
2. 带领学生进行弧度制与角度制的转换练习,并解释计算过程。

三、练习与讨论(20分钟)
1. 学生自主练习弧度制计算方法,并相互讨论解题思路;
2. 教师布置相关练习题,让学生在课后进行巩固练习。

四、检测与总结(10分钟)
1. 教师让学生进行弧度制的应用题练习,并及时纠正;
2. 学生合作讨论,总结本节课的知识点,提出问题并解决。

五、作业布置(5分钟)
布置相关作业,要求学生巩固掌握弧度制的概念和计算方法。

教学反思:
本节课主要围绕弧度制展开教学,通过讲解、练习和讨论,让学生充分理解弧度制的概念和计算方法,提高学生的数学运算能力和分析问题的能力。

在课后作业中,学生可以继续巩固弧度制的知识,提高解题的能力和速度。

人教A版高中数学必修4精选优课教案 1.1弧度制

人教A版高中数学必修4精选优课教案 1.1弧度制

1.1.2 弧度制一、教学要求:掌握弧度制的定义,学会弧度制与角度制互化,能熟练地进行弧度与角度的换算,进而建立角的集合与实数集R一一对应关系的概念.理解弧度的意义,掌握弧长公式,掌握并运用弧度制表示的弧长公式、扇形面积公式二、三维目标:1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制;2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣。

三、重难点:教学重点:理解弧度制的意义,并能进行角度和弧度的换算教学难点:弧度的概念及其与角度的关系。

学法指导:学生在已经学习了角的概念的基础上,进一步去研究角的其它方面,今天首先介绍角的度量单位,本节课在初中角度制的基础上,进行学习,采用对照方式,让学生掌握弧度制下角的应用以及掌握弧长和面积公式。

四、教学过程:导入新课:以到黄山游玩时拍摄的照片为例,导入新课,同样的事物,站在不同的位置,不同的心情观赏的结果是不一样的,前面我们研究了角,知道角推广到任意角,今天我们进一步去研究角的知识,初中我们学习了用角度制来测量角,今天来回顾一下,角度制,在数学和其他许多科学研究中还要经常用到一种度量角的制度—弧度制,它是如何定义呢?1.弧度制我们把长度等于半径长的弧所对的圆心角叫做1弧度的角思考1:若半径为r的圆的圆心角α所对的弧长为2r,那么,角α的弧度数是多少?根据弧度制的定义:=2α思考2:如果一个半径为r的圆的圆心角α所对的弧长是l,那么α的弧度数是多少?结论1:角α的弧度数的绝对值是=l rα.r为半径, l为角α所对弧的长,α的正负由角α的终边旋转方向决定结论2:正角的弧度数是一个正数,负角的弧度数是一个负数, 零角的弧度数是0.思考1,2设置意图:由一般到特殊,应用弧度制的定义,得到弧度的推导公式,让学生思维得到发散,由弧度制的定义,得到度量角的另外一种运算方式,新旧知识对照,对比角度制与弧度制的比较。

高二数学必修四《任意角和弧度制》教案

高二数学必修四《任意角和弧度制》教案

高二数学必修四《任意角和弧度制》教案教案【一】教学准备教学目标一、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.三、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备教学重难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点:理解弧度制定义,弧度制的运用.教学工具投影仪等教学过程一、创设情境,引入新课师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.二、讲解新课1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题.2.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).(师生共同活动)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格.我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应.四、课堂小结度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radsinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

高中数学必修四 弧度制教案

高中数学必修四 弧度制教案

1.1.1 弧度制【课题】:弧度制【学情分析】:教学对象是高一的学生,在前面已经系统学习了任意角的概念,学生对用角度来表示角已经相当熟练,在此基础上引进角的另一种度量方式——弧度制。

由于这种度量方式的定义较抽象,是以比值来定义角的大小,不像角度制那样可以看得见,能体会得到,而高一学生的抽象思维水平发展有限,因此应多结合具体实例来说明弧度制的合理性和必要性,从具体实例出发,慢慢抽象概括,最后得角的弧度制定义,这符合学生的认知规律。

【教学三维目标】:一、知识与技能1、1弧度的角的定义;2、弧度制的定义;3、角度与弧度的换算;4、弧度制下的弧长公式、扇形面积公式;5、角的集合与实数集R之间建立的一一对应关系;二、过程与方法1、理解1弧度的角、弧度制的定义;2、掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算;3、熟记特殊角的弧度数;4、理解角的集合与实数集R之间建立的一一对应关系;5、掌握弧度制下的弧长公式、扇形面积公式,会运用弧长公式、扇形面积公式解决一类问题;三、情感态度与价值观使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系、辩证统一的,进一步加强对辩证统一思想的理解,使学生通过总结引入弧度制的好处,学会归纳、整理并认识到任何新知识的学习,都会为我们解决实际问题带来方便,从而激发学生的学习兴趣、求知欲望,培养良好的学习品质.【教学重点】:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.【教学难点】:理解弧度制定义,弧度制的运用.【课前准备】:计算器、投影机、三角板积公式分别是:180n Rl π=,2360n R S π=,将0n 转换为弧度,得 180n πα=,于是 212S R α=.将l R α=代入上式,即得12S lR =.教师出示例题:例7.求图中公路弯道处弧AB 的长l (精确到1m )图中长度单位为:m解: ∵ 360π=ο∴ )(471514.3453m R l ≈⨯≈⨯=⋅=πα教师出示例题:例8.已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积 解:设扇形的半径为r ,弧长为l ,则有⎩⎨⎧==⇒⎪⎩⎪⎨⎧==+22162l r r l l r ∴ 扇形的面积2)(221cm rl S ==教师出示例题:例9. 直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴34π ⑵ ο165解: cm r 10= ⑴ )(3401034cm r l ππα=⨯=⋅=(2)rad rad 1211)(165180165ππ=⨯=ο∴)(655101211cm l ππ=⨯=教师出示例题:例10. 已知扇形周长为10cm ,面积为6cm2,求扇形中心角的弧度数. 解:设扇形中心角的弧度数为α(0<α<2π),弧长为l ,半径为r , 由题意:⎪⎩⎪⎨⎧=⋅=+621102r l r l ⇒0652=+-r r ∴ ⎩⎨⎧==62l r 或⎩⎨⎧==43l r ∴ r l =α=3 或34 教师出示例题:例11.一扇形周长为20cm ,问扇形的半径和圆心角各取什么值时,才能使扇形面积最大? 分析:最值问题途径有二:一是利用几何意义,从图中直接找到(本例不好找);二是利用函数求解,即设出未知量,建立函数关系式,然后用函熟悉弧长公式加深弧长公式的使用。

人教版高中数学必修4-1.1《_弧度制》教学设计

人教版高中数学必修4-1.1《_弧度制》教学设计

《弧度制》教学设计一、教学目标:(一)核心素养通过本节课的学习,了解引入弧度制的必要性,理解弧度制的定义,熟练角度制与弧度制的换算,掌握并运用弧度制的弧长公式和扇形的面积公式;在类比和数学运算过程中,更好的形成弧度的概念,建立角的集合与实数集的一一对应的关系.(二)教学目标1.“为什么”——为什么要引入弧度制,理解引入弧度制的必要性;2.“是什么”——弧度是什么,理解弧度的定义;3.“如何化”——如何进行弧度与角度的转化,掌握弧度与角度之间的相互转化;4.“怎么用”——如何使用弧度制,学会使用弧度制下的新的弧长与扇形面积公式求解有关问题(三)学习重点1.理解弧度“是什么”;2.熟练弧度和角度之间“如何化”;3.掌握弧度制来计算弧长和扇形面积“怎么用”;(四)学习难点1.理解弧度“是什么”;2.理解角的集合与实数之间一一对应的关系二、教学过程(一)课前设计1.预习任务(1)读一读:阅读教材第6页至第11页.(2)想一想:弧度制是如何定义的?弧度制和角度制之间是如何让转化的?如何将弧度制应用于弧长公式和扇形的面积公式中?2.预习自测=____________(1)已知圆O的半径为2,弧AB的长为2,则AOB【答案】1rad.(2)2π rad =()A.180°B.200°C.270°D.360°【答案】D.(3)把50°化为弧度制()A.50B.5 18πC.18 5πD.9000π【答案】B.(4)扇形的圆心角为72°,半径为5,则它的弧长为______,面积为________ 【答案】2π;5π(二)课堂设计1.知识回顾(1)角的概念的推广;(2)终边相同的角的表示2.问题探究探究一结合实例,引入弧度制,理解引入弧度制的必要性;●活动结合实例,引入弧度制有人问:海口到三亚有多远时,有人回答约270.4公里,但也有人回答约169英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程.探究二 弧度是什么,理解弧度的定义 ●活动① 回顾角度制的定义1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等. 【设计意图】从1角度过度到1弧度,更加的自然. ●活动② 探究弧度制的定义弧度制的定义:长度等于半径长的圆弧所对的圆心角叫做1弧度角, 记作1rad ,或1弧度,或1(单位可以省略不写).A【设计意图】让学生掌握弧度制的定义 探究三 探究如何进行弧度与角度的转化●活动① 通过具体的数据,探究弧度制和角度制之间的关系如图,半径为r 的圆的圆心与原点重合,角α的终边与x 轴的正半轴重合,交圆于点A,终边与圆交于点B.请完成表格.xyαBOA【答案】我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.【设计意图】一方面可以让学生加深对弧度制的理解,也为接下来推导弧度制和角度制的转化公式做准备.●活动② 在掌握了弧度制定义的基础上推导弧长,半径,和圆心角(弧度制)之间的关系思考:如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数是多少? 角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 【设计意图】既是对弧度制定义的巩固强化,加深学生对于弧长,半径以及圆心角(弧度数)三者关系的理解.●活动③ 通过活动①中表格的数据,推导出弧度制和角度制的转化公式.'360=2rad 180rad 1801rad 1rad=57.3=5718180ππππ︒∴︒=⎛⎫∴︒=︒≈︒︒ ⎪⎝⎭反过来 Q【设计意图】通过已有的数据推出角度制和弧度制相互转化的公式更容易被学生理解和接受. ●活动④ 快速抢答抢答特殊角的度数与弧度数的对应表:【答案】【设计意图】通过抢答环节,让学生迅速掌握弧度制和角度制的相互转换,也让学生熟悉特殊角对应的角度制和弧度制.探究四 探究弧度制下的弧长与扇形面积公式求解有关问题.●活动① 回顾初中已学的用角度制表示的弧长公式和扇形的面积公式.已知扇形的圆心角为n °,半径为R则弧长180n Rl π=,扇形的面积公式为2360n R S π=【设计意图】通过对已有知识的回顾,对接下来推出弧度制下的弧长与扇形面积公式做准备.●活动② 利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)212S R α=; (3)12S lR =.其中R 是半径,l 是弧长,(02)ααπ<<为圆心角,S 是扇形的面积.lRl R αα==立即可得:证明:由公式 2ππ=360180n R n S α=又,Q221121802n S R R πα∴=⋅⋅= 1122l R S R R lRαα=∴=⋅⋅=又Q 【设计意图】以证明题的形式将弧度制应用于弧长和扇形的面积公式,有了推导过程,学生更容易理解和记忆.●活动③ 利用计算器比较sin1.5和sin85°的大小.【设计意图】弧度制定义的理解与应用,以及角度与弧度的区别. ●活动④ 巩固基础,检查反馈 例1 下列说法不正确的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1度的角是圆周角的1360,1弧度的角是圆周角的12πC . 根据弧度的定义,180°一定等于π弧度D .大圆中1弧度角比小圆中1弧度角大【知识点】考察了弧度制和角度制的相互转换,弧度制的定义,以及弧度制和角度制都是度量角的两种方式 【数学思想】转换的思想【解题过程】当圆心角一定时,它所对的弧长与半径的比值是一定的,与所取圆的半径大小无关【思路点拨】通过弧度制的定义去判断 【答案】D同类训练 若扇形的半径变为原来的2倍,而弧长也扩大到原来的2倍,则( ) A .扇形的面积不变 B .扇形的圆心角不变C . 扇形的面积扩大到原来的2倍D .扇形的圆心角扩大到原来的2倍【知识点】扇形的圆心角,弧长,半径三者之间的关系 【数学思想】【解题过程】由公式lRα=,因此圆心角应该不变 【思路点拨】所对的弧长与半径的比值是一定值,则圆心角就不变 【答案】B例2:(1)将下列各角化为弧度:①'11230︒;②315-︒(2)将下列各弧度化为角度:①512rad π-;②193rad π【知识点】弧度制和角度制换算公式的应用 【数学思想】【解题过程】'511230112.5112.51808rad rad ππ︒=︒=⨯= 7315(315)1804551807512121919180114033rad radrad rad ππππππππ-︒=-⨯=-⎛⎫-=-⨯︒=-︒⎪⎝⎭⎛⎫=⨯︒=︒ ⎪⎝⎭【思路点拨】公式 1801 1=180rad rad ππ⎛⎫︒=︒ ⎪⎝⎭的应用 【答案】58rad π,74rad π-,75-︒,1140︒同类训练 将下列各角度与弧度互化'9(1)67.5; (2)15730; (3); (4)34π︒-︒ 【知识点】弧度制和角度制换算公式的应用 【数学思想】【解题过程】367.567.51808rad rad ππ︒=⨯= '715730157.5(157.5)1808991804054418054033()rad rad rad πππππππ-︒=-︒=-⨯=-⎛⎫=⨯︒=︒ ⎪⎝⎭⎛⎫=⨯︒=︒ ⎪⎝⎭【思路点拨】公式 1801 1=180rad rad ππ⎛⎫︒=︒ ⎪⎝⎭的应用 【答案】38rad π;78rad π-;405︒;540()π︒例3 半径为1cm ,圆心角为56π的弧长为( )A .23cmB .23cm πC .56cmD .56cm π【知识点】弧度制在弧长公式的应用 【数学思想】【解题过程】55166l aR cm ππ==⨯= 【思路点拨】公式l R α=的应用 【答案】D同类训练 若2rad 的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是( )A .tan 2B .1sin1 C .21sin 1 D .2cos1【知识点】圆中垂径定理的应用和三角函数以及弧度在扇形面积公式中的应用 【数学思想】【解题过程】半径1sin1R =,22112221sin1S R α⎛⎫==⨯⨯ ⎪⎝⎭【思路点拨】公式212S R α=的应用●活动5 强化提升、灵活应用例4 与1°角终边相同的角的集合为( )A .360,180k k Z παα⎧⎫=⋅︒+∈⎨⎬⎩⎭B .360,180k k Z παα⎧⎫=⋅︒+∈⎨⎬︒⎩⎭C .2,180k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D .2,180k k Z πααπ⎧⎫=+∈⎨⎬︒⎩⎭【知识点】终边相同角的表示,同一个式子中角度制和弧度制不能混用 【数学思想】 【解题过程】1180π︒=Q ,3602π︒=,13602180k k ππ∴︒+︒=+【思路点拨】将角度制转换为弧度制:1180π︒=【答案】C同类训练 第四象限角的集合可写为( )A .360360,2k k k Z πααα⎧⎫=⋅︒-<<⋅︒∈⎨⎬⎩⎭B .{}2902,k k k Z ααπαπ=-︒<<∈C .,2k k k Z πααπαπ⎧⎫=-<<∈⎨⎬⎩⎭D .22,2k k k Z πααπαπ⎧⎫=-<<∈⎨⎬⎩⎭【知识点】第四象限角的表示,同一个式子中角度制和弧度制不能混用 【数学思想】【解题过程】{}36090360,k k k Z ααα=⋅︒-︒<<⋅︒∈Q 3602,π︒=902π︒=22,2k k k Z πααπαπ⎧⎫∴=-<<∈⎨⎬⎩⎭【思路点拨】将角度制转换为弧度制:1180π︒=【答案】D 3.课堂总结(1)长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).(2)弧度制和角度制之间的转换公式为:1801rad 1rad=180ππ⎛⎫︒=︒ ⎪⎝⎭(3)弧度制在扇形相关公式中的应用为:l R α= ;212S R α=; 12S lR =.重难点归纳(1)生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. (2)当圆心角一定时,它所对的弧长与半径的比值是一定的,与所取圆的半径大小无关.(3)同一个式子中角度制和弧度制不能混用.(4)在选择弧长和扇形的面积公式时,一定要理清楚题目所给圆心角是弧度制还是角度制. (三)课后作业 基础型 自主突破1.在半径不相等的两个圆内,1弧度的圆心角( ) A .所对的弧长相等 B .所对的弦长相等C .所对的弦长等于各自的半径D .所对的弧长等于各自的半径 【知识点】弧长的定义【解题过程】长度等于半径长的圆弧所对的圆心角叫做1弧度角 【思路点拨】1弧度的圆心角所对的弧长始终等于半径 【答案】D2.把'5615︒化为弧度是( )A .58πB .54πC .56πD .516π 【知识点】角度制和弧度制的相互换算 【解题过程】'5561556.2556.2518016rad rad ππ︒=︒=⨯= 【思路点拨】先将角度的单位化为“°”【答案】D3.若=4α-,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【知识点】了解每个象限角对应的范围【数学思想】数形结合 【解题过程】342ππ-<-<- 【思路点拨】342ππ-<-<- 【答案】B4.若角α与β的终边互相垂直,则α与β的关系是( )A .2πβα=+B .2πβα=±C .2()2k k Z πβαπ=++∈ D .2()2k k Z πβαπ=±+∈ 【知识点】对于角的表示【数学思想】【解题过程】B 选项忽略了终边相同应该加上圆周角2π的整数倍【思路点拨】角α与β的终边互相垂直的本质是将角α的终边绕着原点顺时针或者逆时针旋转90°,即2π±,但要注意终于边相同要加圆周角2π的整数倍【答案】D5.已知一扇形的圆心角3πα=,扇形所在圆的半径10R =,则这个扇形的弧长为____________,该扇形对应的弓形的面积为_________.【知识点】弧度制在弧长公式中的应用【数学思想】转化的思想,将弓形的面积转化为扇形的面积—三角形的面积 【解题过程】1010,33l R ππα==⨯= 110150==10102323S S S ππ-⨯⨯-⨯⨯=-弓扇三角形 【思路点拨】弓形的面积=扇形的面积—三角形的面积【答案】103π;503π- 6.在单位圆上有两个动点P Q ,,它们同时从(10)A ,出发沿圆周运动,已知点P 按逆时针方向每秒转3π,点Q 按顺时针方向每秒转6π,试求它们从出发后到第五次相遇时各自走过的弧长.【知识点】行程问题中的相遇问题【数学思想】数形结合 【解题过程】102036t t t πππ+=∴=Q 201020203363P Q l l ππππ∴=⨯==⨯=, 【思路点拨】第五次相遇即两点的路程和恰好是圆周2π的5倍 【答案】201033P Q l l ππ==, 能力型 师生共研7.已知扇形的周长为6cm ,面积为22cm 则扇形的圆心角的弧度数为( )A .1B .4C .1或4D .2或4 【知识点】12,2C l R S lR =+= 【数学思想】【解题过程】12,2C l R S lR =+=Q 26121(62)2142222l R R R R R l l lR +=⎧==⎧⎧⎪∴∴⋅-⋅=∴⎨⎨⎨===⎩⎩⎪⎩或 =4(=1απα∴>舍)或【思路点拨】一定要考虑最终求出的圆心角的弧度数不能超过π【答案】A8.集合{}{}2(21),,44P k k k Z Q απαπαα=≤≤+∈=-≤≤,则P Q =I ( )A .∅B .{}40ααπαπ-≤≤-≤≤或C .{}44αα-≤≤D .{}0ααπ≤≤【知识点】交集的定义【数学思想】【解题过程】P 集合中的k 分别取0或1-,0απ≤≤或2παπ-≤≤-分别和Q 取公共部分【思路点拨】要找出P Q ,P 集合中的k 只能取0和1-【答案】B探究型 多维突破9.圆弧长等于其圆内接正方形的边长,则其所对的圆心角的弧度数为______ 【知识点】rl =α的应用 【数学思想】数形结合【解题过程】α==【思路点拨】有图有真相自助餐1.35π弧度化为角度是( ) A .110°B .160°C .108°D .218°【知识点】弧度制化为角度制的应用【数学思想】 【解题过程】33180()10855πππ=⨯︒=︒ 【思路点拨】1801=rad π⎛⎫︒ ⎪⎝⎭【答案】C2.时钟的分针在1点到3点20分这段时间里转过的弧度数为( )A .143π B .143π- C .718π D .718π- 【知识点】分针每走一分钟,走过的弧度数为30π 【解题过程】14140303ππ⨯= 【思路点拨】分针走60分钟走过的弧度数为2π【答案】B3.角的集合2A x x k k Z ππ⎧⎫==+∈⎨⎬⎩⎭,与集合22B x x k k Z ππ⎧⎫==±∈⎨⎬⎩⎭,之间的关系为_____________【知识点】根据集合看角的终边所处的位置【解题过程】A ,B 集合表示的都是终边在y 轴上的角【思路点拨】注意“k π+”和“2k π+”的区别【答案】A B =4.若角α的终边与角6π的终边关于直线y x =对称,且(44)αππ∈-,,则α=_______【知识点】轴对称的特征以及终边相等的角的特征【数学思想】数形结合【解题过程】在0~2π中与角6π的终边关于直线y x =对称的是3π 在2~4ππ中与角3π终边相同的角是7233πππ+=在2~0π-中与角3π终边相同的角是5233πππ-=- 在4~2ππ--中与角3π终边相同的角是11433πππ-=- 【思路点拨】(44)αππ∈-,有4个圆周【答案】7511,,,3333ππππ-- 5.如图,圆上一点A 以逆时针方向作匀速圆周运动,已知点A 每分钟转过θ角(0)θπ<≤,经过2分钟到达第三象限,经过14分钟回到原来位置,求θ的大小. xyO A【知识点】象限角的范围【数学思想】【解题过程】14=2,,7k k k Z k Z πθπθ∈∴=∈Q3332224274721,24454577k k k Z k πππππππθθππθθ<<∴<<<<∴<<∈∴=∴==Q 又即或或 【思路点拨】回到原位,即所走的角度是圆周2π的整数倍 【答案】4577ππθθ==或 6.在扇形AOB 中,90AOB ∠=°,弧AB 的长为l ,求此扇形内切圆的面积.【知识点】勾股定理,弧长公式l R α=以及圆的面积公式2S R π=【数学思想】数形结合【解题过程】设扇形AOB 所在圆半径为R ,此扇形内切圆的半径为r ,则有R r =,π2AB l R ==·.由此可得r =.则内切圆的面积22πS r ==. 【思路点拨】将内切圆的半径r 用弧长l 表示2。

最新人教版高中数学必修4第一章《第一章任意角和弧度制》示范教案(第2课时)

最新人教版高中数学必修4第一章《第一章任意角和弧度制》示范教案(第2课时)

第一章第一节任意角和弧度制第二课时作者:房增凤整体设计教学分析在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的1360,记作1°.通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一一对应,为学习任意角的三角函数奠定基础.通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点的目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点.三维目标1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制.2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.重点难点教学重点:理解弧度制的意义,并能进行角度和弧度的换算.教学难点:弧度的概念及其与角度的关系.课时安排1课时教学过程导入新课思路 1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的?思路2.(情境导入)利用古代度量时间的一种仪器——日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法——弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键.在引入弧度制后,可以引导学生建立弧与圆心角的联系——弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、0、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课新知探究提出问题问题①:在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?问题②:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同的单位制呢?活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r ,AB 所对的圆心角∠AOB 就是1弧度的角,即l r=1.图1讨论结果:①1°的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1°.它是一个定值,与所取圆的半径大小无关.②能,用弧度制.提出问题问题①:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连接圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系?问题②:如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算?活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1°的角是周角的1360;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:①完全重合,因为都是1弧度的角.②α=l r ;将角度化为弧度:360°=2π rad,1°=π180rad ≈0.017 45 rad ,将弧度化为角度:2π rad =360°,1 rad =(180π)°≈57.30°=57°18′.弧度制与角度制的换算公式:设一个角的弧度数为α rad =(180απ)°,n °=n π180(rad). 提出问题问题①:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示?问题②:填写下列的表格,找出某种规律.的长对一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没有总结完全的学生进行简单的提示.检查完毕后,教师做个总结.由上表可知,如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数的绝对值是l α.这里,应当注意从数学思想的高度引导学生认识“换算”问题,即角度制、弧度制都是角的度量制,那么它们一定可以换算.推而广之,同一个数学对象用不同方式表示时,它们之间一定有内在联系,认识这种联系性也是数学研究的重要内容之一.教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.值得注意的是:今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k ·360°+π3或者2k π+60°一类的写法.在弧度制中,与角α终边相同的角,连同角α在内,可以写成β=α+2k π(k ∈Z )的形式.如图2为角的集合与实数集R 之间的一一对应关系.图2讨论结果:①与角α终边相同的角,连同角α在内,可以写成β=α+2k π(k ∈Z )的形式.弧度制下关于扇形的公式为l =αR ,S =12αR 2,S =12lR . 的长例1下列命题中,真命题是( )A .一弧度是一度的圆心角所对的弧B .一弧度是长度为半径的弧C .一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位活动:本例目的是让学生在教师的指导下理解弧度制与角度制的联系与区别,以达到熟练掌握定义.从实际教学上看,弧度制不难理解,学生结合角度制很容易记住.根据弧度制的定义:我们把长度等于半径长的弧和所对的圆心角叫做一弧度的角.对照各项,可知D 为真命题.答案:D例2象限:①-15π4;②32π3;③-20;④-2 3. 活动:本题的目的是让学生理解什么是终边相同的角,教师给予指导并讨论归纳出一般规律.即终边在x 轴、y 轴上的角的集合分别是:{β|β=k π,k ∈Z },{β|β=π2+k π,k ∈Z }.第一、二、三、四象限角的集合分别为:{β|2k π<β<2k π+π2,k ∈Z }, {β|2k π+π2<β<2k π+π,k ∈Z }, {β|2k π+π<β<2k π+3π2,k ∈Z }, {β|2k π+3π2<β<2k π+2π,k ∈Z }. 解:①-15π4=-4π+π4,是第一象限角. ②32π3=10π+2π3,是第二象限角. ③-20=-3×6.28-1.16,是第四象限角.④-23≈-3.464,是第二象限角.点评:在这类题中对于含有π的弧度数表示的角,我们先将它化为2k π+α(k ∈Z ,α∈[0,2π))的形式,再根据α角终边所在的位置进行判断,对于不含有π的弧度数表示的角,取π=3.14,化为k ×6.28+α,k ∈Z ,|α|∈[0,6.28)的形式,通过α与π2,π,3π2比较大小,估计出角所在的象限活动:本例目的是让学生在教师的指导下会用弧度制求终边相同的角,并通过独立完成课后练习真正领悟弧度制的要领,最终达到熟练掌握.从实际教学来看,用弧度制解决角的问题很容易但却难掌握,很有可能记错或者混淆或者化简错误,学生需多做些这方面的题来练基本功.可先让学生多做相应的随堂练习,在黑板上当场演练,教师给予批改指导,对易出错的地方特别强调.对学生出现的种种失误,教师不要着急,在学生的练习操作中一一纠正,这对以后学习大有好处.解:由已知,得7θ=2k π+θ,k ∈Z ,即6θ=2k π.∴θ=k 3π. 又∵0<θ<2π,∴0<k 3π<2π.∵k ∈Z ,当k =1、2、3、4、5时,θ=π3、2π3、π、4π3、5π3. 点评:本题是在一定的约束条件下,求与角α终边相同的角,一般地,首先将这样的角表示为2k π+α(k ∈Z ,α∈[0,2π))的形式,然后在约束条件下确定k 的值,进而求适合条件的角.例4已知一个扇形的周长为a ,求当扇形的圆心角多大时,扇形的面积最大,并求这个最大值.活动:这是一道应用题,并且考查了函数思想,教师提示学生回顾一下用函数法求最值的思路与步骤,教师提问学生对已学知识的掌握和巩固,并对回答好的学生进行表扬,对回答不全面的学生给予一定的提示和鼓励.教师补充,函数法求最值所包括的五个基本环节:(1)选取自变量;(2)建立目标函数;(3)指出函数的定义域;(4)求函数的最值;(5)作出相应结论.其中自变量的选取不唯一,建立目标函数结合有关公式进行,函数定义域要根据题意确定,有些函数是结构确定求最值的方法,并确保在定义域内能取到最值.解:设扇形的弧长为l ,半径为r ,圆心角为α,面积为S .由已知,2r +l =a ,即l =a -2r .∴S =12l ·r =12(a -2r )·r =-r 2+a 2r =-(r -a 4)2+a 216. ∵r >0,l =a -2r >0,∴0<r <a 2. ∴当r =a 4时,S max =a 216.此时,l =a -2·a 4=a 2,∴α=l r=2. 故当扇形的圆心角为2 rad 时,扇形的面积取最大值a 216. 点评:这是一个最大值问题,可用函数法求解,即将扇形的面积S 表示成某个变量的函课本本节练习.解答:1.(1)π8;(2)-7π6;(3)20π3. 点评:能进行角度与弧度的换算.2.(1)15°;(2)-240°;(3)54°.点评:能进行弧度与角度的换算.3.(1){α|α=k π,k ∈Z };(2){α|α=π2+k π,k ∈Z }.点评:用弧度制表示终边分别在x 轴和y 轴上的角的集合.4.(1)cos0.75°>cos0.75;(2)tan1.2°<tan1.2.点评:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制.注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置.如求cos0.75°之前,要将角模式设置为DEG(角度制);求cos0.75之前,要将角模式设置为RAD(弧度制).5.π3m. 点评:通过分别运用角度制和弧度制下的弧长公式,体会引入弧度制的必要性.6.弧度数为1.2.点评:进一步认识弧度数的绝对值公式.课堂小结由学生总结弧度制的定义,角度与弧度的换算公式与方法.教师强调角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad 这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.重要的一点是,同学们自己找到了角的集合与实数集R 的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,表扬学生能总结出引入弧度制的好处,这种不断总结,不断归纳,梳理知识,编织知识的网络,特别是同学们善于联想、积极探索的学习品质,会使我们终生受用,这样持之以恒地坚持下去,你会发现数学王国的许多宝藏,以服务于社会,造福于人类.作业①课本习题1.1 A 组6、8、10.②课后探究训练:课本习题1.1 B 组题.设计感想本节课的设计思想是:在学生的探究活动中通过类比引入弧度制这个概念并突破这个难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么以后有些题怎么做就怎么难受.通过探究让学生明确知识依附于问题而存在,方法为解决问题的需要而产生.将弧度制的概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更宽的广度.本节设计的特点是由特殊到一般、由易到难,这符合学生的认知规律;让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启迪.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续总结归纳用弧度来计量角的好处并为后续三角函数的学习奠定基础.根据本节特点可考虑分层推进、照顾全体.对优等生,重在引导他们变式思维的训练,培养他们求同思维、求异思维的能力,以及思维的灵活性、深刻性与创造性.鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.备课资料一、密位制度量角度量角的单位制,除了角度制、弧度制外,军事上还常用密位制.密位制的单位是“密位”.1密位就是圆的16 000所对的圆心角(或这条弧)的大小.因为360°=6 000密位,所以 1°=6 000密位360≈16.7密位,1密位=360°6 000=0.06°=3.6′≈216″. 密位的写法是在百位上的数与十位上的数之间画一条短线,例如7密位写成0—07,读作“零,零七”,478密位写成4—78,读作“四,七八”.二、备用习题1.一条弦的长度等于圆的半径,则这条弦所对的圆心角的弧度数是( )A.π3B.π6C .1D .π 答案:A2.圆的半径变为原来的2倍,而弧长也增大到原来的2倍,则( )A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍答案:B3.下列表示的为终边相同的角的是( )A .k π+π4与2k π+π4(k ∈Z ) B.k π2与k π+π2(k ∈Z ) C .k π-2π3与k π+π3(k ∈Z ) D .(2k +1)π与3k π(k ∈Z ) 答案:C三、钟表的分针与时针的重合问题弧度制、角度制以及有关弧度的概念,在日常生活中有着广泛的应用,我们平时所见到的时钟上的时针、分针的转动,其实质都反映了角的变化.时间的度量单位时、分、秒分别与角2π(rad),π30(rad),π1 800(rad)相对应,只是出于方便的原因,才用时、分、秒.时钟上的数学问题比较丰富,下面我们就时针与分针重合的问题加以研讨.例题 在一般的时钟上,自零时开始到分针与时针再一次重合,分针所转过的角的弧度数是多少(在不考虑角度方向的情况下)?甲生:自零时(此时时针与分针重合,均指向12)开始到分针与时针再一次重合,设时针转过了x 弧度,则分针转过了2π+x 弧度,而时针走1弧度相当于经过6π h =360πmin ,分针走1弧度相当于经过30π min ,故有360πx =30π(2π+x ),得x =2π11, ∴到分针与时针再一次重合时,分针转过的弧度数是2π11+2π=24π11(rad). 乙生:设再一次重合时,分针转过弧度数为α,则α=12(α-2π)(因为再一次重合时,时针比分针少转了一周,且分针的旋转速度是时针的12倍),得α=24π11, ∴到分针与时针再一次重合时,分针转过的弧度数是24π11(rad). 点评:两名同学得出的结果相同,其解答过程都是正确的,只不过解题的角度不同而已.甲同学是从时针与分针所走的时间相等方面列出方程求解,而乙同学则从时针与分针所转过的弧度数入手,当分针与时针再次重合时,分针所转过的弧度数α-2π与时针所转过的弧度数相等,利用弧度数之间的关系列出方程求解.。

_弧度制教学设计与反思

_弧度制教学设计与反思

_弧度制教学设计与反思弧度制教学设计与反思【引言】弧度制是高中数学中重要的概念之一,对于学生理解角度的大小和计算角度的弧长非常重要。

本文将介绍一种针对弧度制教学的设计方案,并对教学过程进行反思和评价。

【教学设计】1. 教学目标通过本节课的学习,学生应能够:- 理解弧度制的概念和原理;- 掌握角度和弧长之间的转换关系;- 运用弧度制解决与角度和弧长相关的问题。

2. 教学准备- 教学工具:黑板、白板、投影仪等;- 教学材料:教科书、习题集等;- 教学资源:相关的示意图、实例等。

3. 教学步骤步骤一:导入- 引入角度的概念,复习学生已有的知识,激发学生对角度的兴趣和好奇心。

步骤二:引入弧度制- 通过示意图和实例,引入弧度制的概念和定义,解释为什么需要引入弧度制。

步骤三:角度和弧度的转换- 介绍角度和弧长之间的转换公式,通过实例演示如何进行转换,让学生通过计算练习巩固掌握。

步骤四:应用实例- 给出一些实际问题,让学生通过运用弧度制解决,培养学生的应用能力和解决问题的思维能力。

步骤五:总结与归纳- 总结本节课的重点内容,强调弧度制的重要性和应用价值。

4. 教学评价- 在教学过程中,可以通过提问、讨论或小组合作等方式进行形成性评价,及时发现学生的问题并加以解决。

- 课后可以布置相关的习题作业,通过作业的批改来评价学生的掌握程度。

【教学反思】本节课的教学设计在概念引入、转换公式的讲解和实例运用等方面都比较清晰和有条理,能够帮助学生理解弧度制的概念和运用。

然而,在实际教学过程中,还存在一些可以改进的地方:1. 教学导入可以更具趣味性和生动性,吸引学生的注意力和积极性。

2. 在引入弧度制的过程中,可以增加一些生活中的实例,让学生更好地理解为什么需要引入弧度制。

3. 在转换公式的讲解中,可以通过更多的实例来帮助学生掌握转换的方法和技巧。

4. 在应用实例的设计上,可以增加一些开放性的问题,激发学生的思考和创造力。

5. 在教学评价方面,可以采用更多形式的评价方式,如小组讨论、实际应用等,以全面了解学生的学习情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《弧度制》教学设计
一、教学目标:
(一)核心素养
通过本节课的学习,了解引入弧度制的必要性,理解弧度制的定义,熟练角度制与弧度制的换算,掌握并运用弧度制的弧长公式和扇形的面积公式;在类比和数学运算过程中,更好的形成弧度的概念,建立角的集合与实数集的一一对应的关系.
(二)教学目标
1.“为什么”——为什么要引入弧度制,理解引入弧度制的必要性;
2.“是什么”——弧度是什么,理解弧度的定义;
3.“如何化”——如何进行弧度与角度的转化,掌握弧度与角度之间的相互转化;
4.“怎么用”——如何使用弧度制,学会使用弧度制下的新的弧长与扇形面积公式求解有关问题
(三)学习重点
1.理解弧度“是什么”;
2.熟练弧度和角度之间“如何化”;
3.掌握弧度制来计算弧长和扇形面积“怎么用”;
(四)学习难点
1.理解弧度“是什么”;
2.理解角的集合与实数之间一一对应的关系
二、教学过程
(一)课前设计
1.预习任务
(1)读一读:阅读教材第6页至第11页.
(2)想一想:弧度制是如何定义的?弧度制和角度制之间是如何让转化的?如何将弧度制应用于弧长公式和扇形的面积公式中?
2.预习自测
=____________
(1)已知圆O的半径为2,弧AB的长为2,则AOB
【答案】1rad.
(2)2π rad =()A.180°
B.200°
C.270°
D.360°
【答案】D.
(3)把50°化为弧度制()A.50
B.5 18π
C.18 5π
D.9000π
【答案】B.
(4)扇形的圆心角为72°,半径为5,则它的弧长为______,面积为________ 【答案】2π;5π
(二)课堂设计
1.知识回顾
(1)角的概念的推广;
(2)终边相同的角的表示
2.问题探究
探究一结合实例,引入弧度制,理解引入弧度制的必要性;
●活动结合实例,引入弧度制
有人问:海口到三亚有多远时,有人回答约270.4公里,但也有人回答约169英里,请问那一种回答是正确的?(已知1英里=1.6公里)
显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.
在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.。

相关文档
最新文档