一元二次方程竞赛 文档
奥林匹克数学题型一元二次方程
奥林匹克数学题型一元二次方程二次方程是数学中最常见且重要的方程之一,它的形式通常为ax^2 + bx + c = 0,其中a、b、c为已知常数,而x是未知数。
在奥林匹克数学竞赛中,一元二次方程常常作为题目的出发点,要求解题者根据方程的性质和特点,运用巧妙的数学方法来解决问题。
本篇文章将探讨奥林匹克数学竞赛中涉及一元二次方程的几种常见题目类型。
一、求根公式的应用在解一元二次方程时,求根公式是最经典的方法之一。
对于任意一元二次方程ax^2 + bx + c = 0,其根可以通过以下公式计算得出:x = (-b ± √(b^2 - 4ac))/(2a)在使用求根公式时,需要注意方程的系数以及判别式的正负。
当判别式大于零时,方程有两个实根;当判别式等于零时,方程有两个相等的实根;当判别式小于零时,方程无实根。
例如,考虑一道典型的奥林匹克数学竞赛题目:已知方程x^2 - 3x + 2 + √(x^2 - 3x + 2) = 4的解集为A,求A的并集与交集之和。
解题思路:首先,将方程整理为一般形式x^2 - 3x + (2 + √(x^2 - 3x + 2) - 4) = 0。
然后,观察方程可知,它等价于(x - 1)(x - 2) = 0。
因此,方程的解为x = 1或者x = 2。
根据解的性质,我们可以得出解集A = {1, 2}。
所以A的并集与交集之和即为{1, 2}。
二、二次方程的图像性质了解二次方程的图像性质对于解题非常有帮助。
一元二次方程的图像是一个抛物线,它的开口方向和性质与二次方程的系数有关。
1. 当a > 0时,抛物线开口向上,并且最低点(顶点)处在x轴的上方;2. 当a < 0时,抛物线开口向下,并且最高点(顶点)处在x轴的下方。
利用这些性质,我们可以在奥林匹克数学竞赛中运用几何推理来解决问题。
例如,考虑以下题目:已知实数x满足x^2 - 2x - 15 < 0,求x的取值范围。
初中数学竞赛:一元二次方程求参数高难度题(三种方法)
初中数学竞赛:一元二次方程求参数高难度题(三种方法)设p为质数,且关于x的方程x²+px-1170p=0的一个根为正整数,求p 的值;题目如上,很简洁,那么相对的,难度也会很不简单。
首先根据十字相乘法,将-1170p拆分因数,可得-、3、3、10、13、p,那么要求组合而成的两个因数之和还必须=p,那么我们可以看到除了10和p之外,其他三个数的个位都是3,首先可以排除1170×p这种形式,那么就可以确定不含p的一个因数的个位必定为3、9或7,同时p肯定要比1170小,所以我们可以分情况来讨论,先将负号放在一边,那么:①若其中一个因数为3×3=9,那么另一个则为130p,明显不行;②若其中一个因数为3×13=39,那么另一个则为30p,由于p至少得是2,所以无论p取哪个质数,39和30p的差值都不会是p,也不行;③若其中一个因数为3×10=30,那么另一个则为39p,同②也不行;④若其中一个因数为3×3×10=90,那么另一个则为13p,则需要p乘以13后个位数与p相同,那么p的个位数只能是5,而个位是5的质数只有5,当p=5时,也不行;⑤若其中一个因数为3×3×13=117时,那么另一个为10p,这个更没有合适的p;⑥若其中一个因数位10×13=130时,那么另一个为9p,当p=13时,9p=117,130与117的差值刚好为13=p,所以这个合适;所以最终就能得到p=13;这是一个一个情况罗列出来求解,那么能不能不这么麻烦呢?我们重新看一下1170拆分出来的3、3、10、13、p这五个因数,想要组成的两个因数差值等于p,那么也就是说不含p的那个因数里面含有p-1或者p+1这个因数,而其他部分的因数组成完全相同,那么这样一来,我们就可以将这四个已知的因数先分一下组,有两个因数3,那么假设这两个3分别在两个因数中,那么剩余的10、13、p这三个因数怎么也不可能凑出来差值等于p,为什么呢?因为有三个因数,怎么分呢?所以,剩余三个因数肯定是没法分的,那么也就是说两个3要在同一组当中,那么我们可以将两个3看做一个因数9,现在就变成了四个因数9、10、13、p,需要其中有两个因数相同,那么p肯定是9、10、13中的其中一个,那么别忘了,不相同的两个因数差值必须是1,才能凑出p这个差值,那么我们就可以先选出差值是1的两个因数9和10,也就是说,p就只能和剩下的那个13相等了,将p=13放进去,验证一个因数为130,另一个因数为117,130-117=13=p成立,所以p=13符合;老师用的方法和答案上提供的不同,题后答案如下:x²=p(1170-p),因为p是质数,所以x中肯定含有p这个因数,所以设x=np,那么(np)²=p(1170-p),所以n²p=1170-p,变形为n(n+1)p=9×10×13那么p=13;。
一元二次方程(竞赛培训资料)
一元二次方程含有字母系数的方程1.解关于x 的方程:()02122=+++-m x m mx练习:解关于x 的方程:()()02=-+-+-a c x c b x b a 含绝对值的方程 2.解方程:0232=+-x x练习:求方程629332+=-+++x x x x的实数根。
方程的根3.方程()012006200420052=-⨯-x x 较大根为r ,020*******=-+x x 的较小的根为s ,求s r -。
练习1:已知二次方程02=++c bx ax的两根和为1S ,两根的平方和为2S ,两根的立方和为3S ,试求123cS bS aS ++的值。
练习2:已知a 是方程0120032=+-x x 的一个根,求12003200222++-a a a 的值。
练习3:已知a 是方程0199762=--x x 的一个正根,求代数式a19976199761997619978++++的值。
公共根4.已知关于x 的方程()0212=-+-x k x 和方程()0122=+--k k x x 只有一个相同的根,求k 的值和此公共根。
练习:已知关于x 的方程()0312=-++x m x和方程042=--m x x 有一个公共根,求两个非公共根的和。
巧解方程(组)5.解方程(组):(1)()0178322=-+-x x (可变为()()05324322=--+-x x ) (2)011223334251=++++-+-+++xx x x x x(3)421131132=⎪⎭⎫ ⎝⎛+-++-x x x x x x (4)()3322222-+=-+++-x x x x x x (5)()()821344=+++x x (6)()()2229152132x x x x x =+++- (7)解关于x 的方程:()()()0=+++++++abc b a x a c x c b x(8)解关于x 的方程:()()0212223=-+--+t t tx x t x(9)解方程:x x x x x 31132232552-=++++ (10)解方程:()()221112++-=-+x x x x (11)解方程:()()10625625=-++x x (12)解方程:2937322=-+-++x x x x (13)解方程:397397373373----+-=--+-++x x x x x x x x (14)解方程:⎩⎨⎧=+=+8428322y xy xy x (15)解方程组:⎩⎨⎧=++=++1712222y y x x y xy x (16)解方程组:⎪⎪⎩⎪⎪⎨⎧=++=-+++812331y y x y x y x (17)解方程组:()⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+=+043511211xz z x zy yz xy y x(18)解方程组:⎪⎩⎪⎨⎧=++=++=++251x z zx z y yz y x xy根与系数的关系:1.()a c x x a b x x a c bx ax=-=+−−→−≠=++≥∆212102,00 2.()2122122212x x x x x x -+=+,()()21221221214x x x x x x x x -+=-=- ()()212132132313x x x x x x x x +-+=+,21212111x x x x x x +=+ 例1、 已知方程()0134222=-+-m mx x ,求当m 为何值时,方程(1)有两个正根;(2)两根异号;(3)有一根为0。
《一元二次方程》培优竞赛
《一元二次方程》培优【知识要点】:1、一元二次方程的解法 (1) 法;(2) 法;(3) 法;(4) 法2、一元二次方程的根的判别式一元二次方程ax 2+bx +c = 0(a ≠0)的根的判别式为△= ,当△>0时方程有两个不相等的实根x 1= 和x 2= ;当△=0时有两个相等的实根x 1=x 2= ; 当△<0时根据平方根的意义,负数没有平方根,所以一元二次方程ax 2+bx +c = 0没有实数解.3、一元二次方程的根与系数的关系若一元二次方程方程20 (0)ax bx c a ++=≠的两个根为 即x 1=,x 2那么:12x x += ,12x x = ,此结论称为”韦达定理”,其成立的前提是0∆≥.3.特别地, 以两个数根x 1和x 2为根的一元二次方程是x 2+( x 1+x 2 )x +x 1.x 2 = 0.【精选题型】:1、已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1)方程有两个不相等的实数根; (2)方程有两个相等的实数根 (3)方程有实数根; (4)方程无实数根.2 、若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.3、已知关于x 的方程22(2)04m x m x ---=.(1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足x 2=x 1+2,求m 的值及相应的x 1,x 2.4、已知关于x 的方程mx 2—(2m+1)x+2=0.(1)求证:无论m 取何实数时,原方程总有实数根;(2)若原方程有两个实数根x 1和x 2,当52221=+x x 时求m 的值(3)若原方程有两个实数根,能否存在一个根大于2,另一个根小于2 ?若存在,请求出m 的取值范围;若不存在,请说明理由.【拓展练习】:1.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2 B .2-C .12 D .922.若t 是一元二次方程20 ax bx c ++=的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定3.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )A . m <14 B 。
初中数学竞赛专题选讲-一元二次方程的根(含答案)
初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k ab cdb a dc ==++.∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1). 例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k .由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是: ___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1,m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。
与一元二次方程有关的竞赛题
与一元二次方程有关的竞赛题一、降次(一)直接用方程降次1.当219941+=x 时,多项式20013)199419974(--x x 的值为 。
分析与解:2.若,132=-x x 则200572129234+--+x x x x 的值等于 。
分析与解:3.设0772=+-x x ,则42749x x ++= 。
分析与解:(二)用根的关系式降次4.已知βα,是方程012=--x x 的两个根,则βα34+的值为 。
分析与解:5.设21,x x 是二次方程032=-+x x 的两个根,求1942231+-x x 的值。
分析与解:二、用根的判别式解题6.已知c b a ,,是整数,且,01,422=-+=-c ab b a 求c b a ++的值。
分析与解:7.已知c b a ,,均为实数,且4=+b a ,,103422-=-c ab c 求ab 的值。
分析与解:8.已知b a ,为整数,且032=-+-b ax x 有两个不相等的实数根;07)6(2=-+-+b x a x 有两个相等的实数根;0)5()4(2=-+-+b x a x 没有实数根,则b a += 。
分析与解:9.m 为整数时,关于x 的方程0)223()1(422=+-+--k m m x m x 的根是有理数,求k 的值。
分析与解:10.证明:已知关于x 的一元二次方程022=++c Bx Ax ① 022=++A Cx Bx ② 022=++B Ax cx ③中,至少有一个方程有实数根。
分析与解:11.设p 1、p 2、q 1、q 2为实数,且),(22121q q p p +=⋅证明方程0112=++q x p x 和0222=++q x p x 中至少有一个实数根。
分析与解:12.求方程012222=++-++y x y xy x 的整数解。
分析与解:三、用韦达定理解题13.若1≠ab ,且有09200352=++a a 及,05200392=++b b 则ba 的值是 。
一元二次方程竞赛训练题
一元二次方程竞赛训练题1 •方程7x2(k 13)x k2k2 0 (k是实数)有两个实根、,且0v v 1, 1v v 2,那么k的取值范围是( )(B)—2v k v —1 ;(C) 3v k v 4或—2v k v— 1 (D)无解。
3•方程x2x 1 0的解是()误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为—1和4,那么,2b 3ca5•若X。
是一元二次方程ax2 bx c 0(a 0)的根,则判别式b2 4ac与平方式M (2ax。
b)2的关系是()(A) >M (B) =M (C) <M ; (D)不确定.6 •若方程(x2 1)(x2 4) k有四个非零实根,且它们在数轴上对应的四个点等距排列,则k= ____________ .的取值范围是( )(A) 0 m , /、 3 3m 13 , 1; (B) m - ;(C) ; (D) m 14 4 4&设x1, x2是二2一次方程xx 3 0的两个根,那么, 3X1 4x2219的值等于( )7•如果方程(x 1)(x2 2x m) 0的三根可以作为一个三角形的三边之长,那么实数m(A)4 ; (B) 8; (C) 6; (D) 0..(A) 3v k v 4;2•方程(x a)(x 8) 1 0 ,有两个整数根,则a ______________(A)1 ,52(B)1 ..5(D)1 .524•已知关于x的一元二次方程ax2bx c 0没有实数解.甲由于看错了二次项系数,11. 已知且,则=的值为()(A) 23( B 23 (C) 2 (D) 1315.如果x和y是非零实数,使得x y 3和x y x30, 那么x+y等于().(A) 3 ( B) v'13 (C) 1晁(D) 4216 .已知实数a 、b、x、y满足 a b x y 2 , ax by 5,则2 2 2 2(a b )xy ab(x y )17. ______________________________________________________ 实数x、y、z满足x+y+z=5, xy+yz+zx=3,则z的最大值是_____________________________ .18.已知a, b是实数,关于x, y的方程组y x ax bx,y ax b有整数解(x, y),求a, b满足的关系式.19.已知b2-4ac是一元二次方程ax2+bx+c=0(a丰0)的一个实数根,则ab的取值范围为()ab 1 ab 1 ,1 ,1(A) - (B) (C) ab 一(D) ab 一8 8 4 420 . 在RtVABC 中,斜边AB=5 , 而直角边BC, AC之长是一元二次方程10•求所有正实数a,使得方程x2ax 4a 0仅有整数根。
初中数学竞赛:一元二次方程
初中数学竞赛:一元二次方程一元二次方程是中学代数的重要内容之一,是进一步学习其他方程、不等式、函数等的基础,其内容非常丰富,本讲主要介绍一元二次方程的基本解法.方程ax2+bx+c=0(a≠0)称为一元二次方程.一元二次方程的基本解法有开平方法、配方法、公式法和国式分解法.对于方程ax2+bx+c=0(a≠0),△=b2-4ac称为该方程的根的判别式.当△>0时,方程有两个不相等的实数根,即当△=0时,方程有两个相等的实数根,即当△<0时,方程无实数根.分析可以使用公式法直接求解,下面介绍的是采用因式分解法求解.因为所以例2 解关于x的方程:x2-(p2+q2)x+pq(p+q)(p-q)=0.解用十字相乘法分解因式得[x-p(p-q)][x-q(p+q)]=0,所以x1=p(p-q),x2=q(p+q).例3 已知方程(2000x)2-2001×1999x-1=0的较大根为a,方程x2+1998x-1999=0的较小根为β,求α-β的值.解由方程(2000x)2-2001×1999x-1=0得(20002x+1)(x-1)=0,(x+1999)(x-1)=0,故x1=-1999,x2=1,所以β=-1999.所以α-β=1-(-1999)=2000.例4 解方程:(3x-1)(x-1)=(4x+1)(x-1).分析本题容易犯的错误是约去方程两边的(x-1),将方程变为3x-1=4x+1,所以x=-2,这样就丢掉了x=1这个根.故特别要注意:用含有未知数的整式去除方程两边时,很可能导致方程失根.本题正确的解法如下.解 (3x-1)(x-1)-(4x+1)(x-1)=0,(x-1)[(3x-1)-(4x+1)]=0,(x-1)(x+2)=0,所以 x1=1,x2=-2.例5 解方程:x2-3|x|-4=0.分析本题含有绝对值符号,因此求解方程时,要考虑到绝对值的意义.解法1 显然x≠0.当x>0时,x2-3x-4=0,所以x1=4,x2=-1(舍去).当x<0时,x2+3x-4=0,所以x3=-4,x4=1(舍去).所以原方程的根为x1=4,x2=-4.解法2 由于x2=|x|2,所以|x|2-3|x|-4=0,所以 (|x|-4)(|x|+1)=0,所以|x|=4,|x|=-1(舍去).所以 x1=4,x2=-4.例6 已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,求另一个根,并确定a的值.解由方程根的定义知,当x=2时方程成立,所以3×22-(2a-5)×2-3a-1=0,故a=3.原方程为3x2-x-10=0,即(x-2)(3x+5)=0,例7 解关于x的方程:ax2+c=0(a≠0).分析含有字母系数的方程,一般需要对字母的取值范围进行讨论.当c=0时,x1=x2=0;当ac>0(即a,c同号时),方程无实数根.例8 解关于x的方程:(m-1)x2+(2m-1)x+m-3=0.分析讨论m,由于二次项系数含有m,所以首先要分m-1=0与m-1≠0两种情况(不能认为方程一定是一元二次方程);当m-1≠0时,再分△>0,△=0,△<0三种情况讨论.解分类讨论.(1)当m=1时,原方程变为一元一次方程x-2=0,所以x=2.(2)当m≠1时,原方程为一元二次方程.△=(2m-1)2-4(m-1)(m-3)=12m-11.例9 解关于x的方程:a2(x2-x+1)-a(x2-1)=(a2-1)x.解整理方程得(a2-a)x2-(2a2-1)x+(a2+a)=0.(1)当a2-a≠0,即a≠0,1时,原方程为一元二次方程,因式分解后为[ax-(a+1)][(a-1)x-a]=0,(2)当a2-a=0时,原方程为一元一次方程,当a=0时,x=0;当a=1时,x=2.例10 求k的值,使得两个一元二次方程x2+kx-1=0,x2+x+(k-2)=0有相同的根,并求两个方程的根.解不妨设a是这两个方程相同的根,由方程根的定义有a2+ka-1=0,①a2+a+(k-2)=0.②①-②有ka-1-a-(k-2)=0,即 (k-1)(a-1)=0,所以k=1,或a=1.(1)当k=1时,两个方程都变为x2+x-1=0,所以两个方程有两个相同的根没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为x2-1=0,x2+x-2=0.解这两个方程,x2-1=0的根为x1=1,x2=-1;x2+x-2=0的根为x1=1,x2=-2.x=1为两个方程的相同的根.例11 若k为正整数,且关于x的方程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根,求k的值.解原方程变形、因式分解为(k+1)(k-1)x2-6(3k-1)x+72=0,[(k+1)x-12][(k-1)x-6]=0,即4,7.所以k=2,3使得x1,x2同时为正整数,但当k=3时,x1=x2=3,与题目不符,所以,只有k=2为所求.例12 关于x的一元二次方程x2-5x=m2-1有实根a和β,且|α|+|β|≤6,确定m 的取值范围.解不妨设方程的根α≥β,由求根公式得|α|+|β|=α+β=5<6,符合要求,所以m2≤1.例13 设a,b,c为△ABC的三边,且二次三项式x2+2ax+b2与x2+2cx-b2有一次公因式,证明:△ABC一定是直角三角形.证因为题目中的两个二次三项式有一次公因式,所以二次方程x2+2ax+b2=0与x2+2cx-b2=0必有公共根,设公共根为x0,则两式相加得若x0=0,代入①式得b=0,这与b为△ABC的边不符,所以公共根x0=-(a+c).把x0=-(a +c)代入①式得(a+c)2-2a(a+c)+bg2=0,整理得a2=b2+c2所以△ABC为直角三角形.例14 有若干个大小相同的球,可将它们摆成正方形或正三角形,摆成正三角形时比摆成正方形时每边多两个球,求球的个数.解设小球摆成正三角形时,每边有x个球,则摆成正方形时每边有(x-2)个球.此时正三角形共有球此时正方形共有(x-2)2个球,所以即 x2-9x+8=0,x1=1,x2=8.因为x-2≥1,所以x1=1不符合题意,舍去.所以x=8,此时共有球(x-2)2=36个.练习1.解方程:(2)20x2+253x+800=0;(3)x2+|2x-1|-4=0.2.解下列关于x的方程:(1)abx2-(a4+b4)x+a3b3=0;(2)(2x2-3x-2)a2+(1-x2)b2=ab(1+x2).3.若对任何实数a,关于x的方程x2-2ax-a+2b=0都有实数根,求实数b的取值范围.4.若方程x2+ax+b=0和x2+bx+a=0有一个公共根,求(a+b)2000的值.5.若a,b,c为△ABC的三边,且关于x的方程4x2+4(a2+b2+c2)x+3(a2b2+b2c2+c2a2)=0有两个相等的实数根,试证△ABC是等边三角形.。
一元二次方程竞赛题
一元二次方程的基本知识形如ax2+bx+c=0(a ≠0)的方程判别式:△=b2-4ac 求根公式: 韦达定理:整系数一元二次方程有整数根的必要条件:(1)两个根都是整数;(2)判别式是整数;(3)判别式是整数的完全平方;(4)两根和是整数,两根积是整数.策略一:利用判别式例1.当m 是什么整数时,关于x 的一元二次方程 与 的根都是整数。
策略二:利用求根公式例3.设关于x 的二次方程 的两根都是整数,求满足条件的所有实数k 的值。
策略三:利用方程根的定义例4. b 为何值时,方程有相同的整数根?并且求出它们的整数根?策略四:利用因式分解例5. 已知关于x 的方程的根都是整数,那么符合条件的整数a 有__个.2440mxx -+=2244450x mx m m -+--=2222(68)(264)4k k x k k x k -++--+=220x bx --=22(1)0x x b b ---=2(1)210a x x a -+--=策略五:利用根与系数的关系例6:求所有正实数a,使得方程 仅有整数根.例7:当m 是何整数时,关于x 的方程 的两根都是整数?例8:试确定一切有理数r ,使得关于x 的方程 有根且只有整数根例9:已知p 、q 都是质数,且使得关于x 的一元二次方程 至少有正整数根,求所有满足条件的质数对(p,q )例10:已知关于x 的一元二次方程5x 2-5px+12p-15=0的两个根均为整数,求实数p 的所有可能的值.240x ax a -+=2(1)10x m x m --++=01)2(2=-+++r x r rx 05)108(2=+--pq x q p x例11:已知p 、q 是正整数,试问关于x 的方程 是否有两个整数解?如果有,请把它们求出来;如果没有,请给出证明.策略六:构造新方程例12:方程 有两个整数根,求a 的值.例13:已知均不为零的实数x 、y 、z 满足x+y+z=xyz ,x2=yz ,求证x2≥3策略七:构造等式例14.求所有的正整数a,b,c,使得关于x 的方程的所有的根都是正整数.策略八:.分析等式例15. n 为正整数,方程有一个整数根,则n=__________.22=++-q p pqx x ()(8)10x a x ---=222320,320,320x ax b x bx c x cx a -+=-+=-+=21)60x x -++-=策略九:反客为主例16:求出所有正整数a,使方程 至少有一个整数根.例17:求方程 的所有整数解例18:已知函数 的最大值为1,最小值为-2,求实数a,b 的值策略十:利用配方法例19: 已知方程 有两个不等的负整数根,则整数a 的值是____.策略十一:利用奇偶分析例20:已知方程 有两个质数根,则常数a=___________.例21:设a 是大于零的实数。
竞赛辅导 一元二次方程
一. 一元二次方程的判别式若 x o 是一元二次方程 ax 2+bx+c=0 的根,则判别式△=b 2-4ac 与平方式 M=(2ax o +b)2 的关系是 (A)△<M (B)△=M (C)△>M (D)不确定.若a ,b ,c 为△ABC 的三边,且关于x 的方程4x 2+4(a 2+b 2+c 2)x+3(a 2b 2+b 2c 2+c 2a 2)=0有两个相等的实数根,试证△ABC 是等边三角形.若对任何实数a ,关于x 的方程x 2-2ax-a+2b=0都有实数根,求实数b 的取值范围.已知 b 2 - 4ac 是一元二次方程 ax 2 + bx + c = 0 (a≠0)的一个实数根,则 ab 的取值范围为( ) (A)ab≥1/8 (B)ab≤1/8 (C)ab≥1/4 (D)ab≤1/4若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.1、a 、b 、c 都是实数,且a ≠0,a +b +2c =0,则方程a x 2+b x +c =0( )。
(A )有两个正根 (B )至少有一个正根 (C )有且只有一个正根 (D )无正根6、对a >b >c>0,作二次方程:()02=+++++-ca bc ab x c b a x .(1)若方程有实根,求证:a 、b 、c 不能成为一个三角形的三条边长。
(2)若方程有实根x 0,求证:c b x a +>>0. (3)当方程有实根6、9,求正整数a 、b 、c 。
已知a i 、b i (i=1,2,3)为实数,且a 21-a 22-a 23与b 21-b 22-b 23中至少有一个是正数.证明:关于x 的一元二次方程x 2+2(a 1b 1-a 2b 2-a 3b 3)x+(a 21-a 22-a 23)(b 21-b 22-b 23)=0①必有实根. 不妨设a 21-a 22-a 23>0,则a 1≠0.作一元二次方程(a 21-a 22-a 23)x 2+2(a 1b 1-a 2b 2-a 3b 3)x+(b 21-b 22-b 23)=0.②记f(x)=(a 21-a 22-a 23)x 2+2(a 1b 1-a 2b 2-a 3b 3)x+(b 21-b 22-b 23).则二次函数f(x)的图像开口向上.注意到f(x)=(a 1x+b 1)2-(a 2x+b 2)2-(a 3x+b 3)2(a 1≠0). 取x 0=-b 1/a 1,有f(x 0)≤0.所以,二次函数f(x)的图像与x 轴有交点,即方程②有实根.故方程②的判别式Δ≥0.因为方程①、②有相同的判别式Δ,所以,方程①有实根.已知关于x 的方程029|3|)2(62=-+--+-a x a x x 有两个不同的实数根,则实数a 的取值范围是( D )(A )a =0 (B )a ≥0 (C )a =-2 (D )a >0或a =-2二. 根与系数的关系△ABC 的三边长a 、b 、c 满足8=+c b ,52122+-=a a bc ,则△ABC 的周长等于 .1411、已知实数z 、y 、z 满足x+y=5及z 2=xy+y-9,则x+2y+3z=_______________解:由已知条件知(x+1)+y=6,(x +1)·y=z 2+9,所以x +1,y 是t 2-6t +z 2+9=0的两个实根,方程有实数解,则△=(-6)2-4(z 2+9)=-4z 2≥0,从而知z=0,解方程得x+1=3,y=3。
一元二次方程竞赛题
一元二次方程竞赛题例1、解方程:x2-3|x|-4=0.解法1 显然x≠0.当x>0时,x2-3x-4=0,所以x1=4,x2=-1(舍去).当x<0时,x2+3x-4=0,所以x3=-4,x4=1(舍去).所以原方程的根为x1=4,x2=-4.解法2 由于x2=|x|2,所以|x|2-3|x|-4=0,所以 (|x|-4)(|x|+1)=0,所以|x|=4,|x|=-1(舍去).所以 x1=4,x2=-4.例2 解关于x的方程:(m-1)x2+(2m-1)x+m-3=0.分析讨论m,由于二次项系数含有m,所以首先要分m-1=0与m-1≠0两种情况(不能认为方程一定是一元二次方程);当m-1≠0时,再分△>0,△=0,△<0三种情况讨论.解分类讨论.(1)当m=1时,原方程变为一元一次方程x-2=0,所以x=2.(2)当m≠1时,原方程为一元二次方程.△=(2m-1)2-4(m-1)(m-3)=12m-11.例3 求k的值,使得两个一元二次方程x2+kx-1=0,x2+x+(k-2)=0有相同的根,并求两个方程的根.解不妨设a是这两个方程相同的根,由方程根的定义有a2+ka-1=0,①a2+a+(k-2)=0.②①-②有ka-1-a-(k-2)=0,即 (k-1)(a-1)=0,所以k=1,或a=1.(1)当k=1时,两个方程都变为x2+x-1=0,所以两个方程有两个相同的根没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为x2-1=0,x2+x-2=0.解这两个方程,x2-1=0的根为x1=1,x2=-1;x2+x-2=0的根为x1=1,x2=-2.x=1为两个方程的相同的根.例4设a,b,c为△ABC的三边,且二次三项式x2+2ax+b2与x2+2cx-b2有一次公因式,证明:△ABC一定是直角三角形.证因为题目中的两个二次三项式有一次公因式,所以二次方程x2+2ax+b2=0与x2+2cx-b2=0必有公共根,设公共根为x,则两式相加得若x0=0,代入①式得b=0,这与b为△ABC的边不符,所以公共根x=-(a+c).把x=-(a+c)代入①式得(a+c)2-2a(a+c)+bg2=0,整理得a2=b2+c2所以△ABC为直角三角形.例5 m是什么整数时,方程(m2-1)x2-6(3m-1)x+72=0有两个不相等的正整数根.解法1首先,m2-1≠0,m≠±1.Δ=36(m-3)2>0,所以m≠3.用求根公式可得由于x1,x2是正整数,所以m-1=1,2,3,6,m+1=1,2,3,4,6,12,解得m=2.这时x1=6,x2=4.解法2首先,m2-1≠0,m≠±1.设两个不相等的正整数根为x1,x2,则由根与系数的关系知所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即m2=3,4,5,7,9,10,13,19,25,37,73,只有m2=4,9,25才有可能,即m=±2,±3,±5.经检验,只有m=2时方程才有两个不同的正整数根.例6、已知关于x的方程a2x2-(3a2-8a)x+2a2-13a+15=0(其中a是非负整数)至少有一个整数根,求a的值.分析“至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根.我们也可以像上题一样,把它的两个根解出来.解因为a≠0,所以所以所以只要a是3或5的约数即可,即a=1,3,5.例7设m是不为零的整数,关于x的二次方程mx2-(m-1)x+1=0有有理根,求m的值.解一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数.令Δ=(m-1)2-4m=n2,其中n是非负整数,于是m2-6m+1=n2,所以 (m-3)2-n2=8,(m-3+n)(m-3-n)=8.由于m-3+n≥m-3-n,并且(m-3+n)+(m-3-n)=2(m-3)是偶数,所以m-3+n与m-3-n同奇偶,所以说明一个整系数的一元二次方程如果有整数根或有理根,那么它的判别式一定是完全平方数,然后利用平方数的性质、解不定方程等手段可以将问题解决.例8已知a是正整数,且使得关于x的一元二次方程ax2+2(2a-1)x+4(a-3)=0至少有一个整数根,求a的值.解将原方程变形为(x+2)2a= 2(x+6).显然x+2≠0,于是由于a是正整数,所以a≥1,即所以 x2+2x-8≤0,(x+4)(x-2)≤0,所以-4≤x≤2(x≠-2).当x=-4,-3,-1,0,1,2时,得a的值为1,6,10,3,说明从解题过程中知,当a=1时,有两个整数根-4,2;当a=3,6,10时,方程只有一个整数根.有时候,在关于x的一元二次方程中,如果参数是一次的,可以先对这个参数来求解.例9 已知方程x2+bx+c=0与x2+cx+b=0各有两个整数根x1,x2(2)求证:b-1≤c≤b+1;(3)求b,c的所有可能的值.解 (1)由x1x2>0知,x1与x2同号.若x1>0,则x2>0,(2)由(1)知,x1<0,x2<0,所以x1≤-1,x2≤-1.由韦达定理c-(b-1)=x1x2+x1+x2+1=(x1+1)(x2+1)≥0,所以 c≥b-1.同理有所以 c≤b+1,所以 b-1≤c≤b+1.(3)由(2)可知,b与c的关系有如下三种情况:(i)c=b+1.由韦达定理知x 1x2=-(x1+x2)+1,所以 (x1+1)(x2+1)=2,解得x1+x2=-5,x1x2=6,所以b=5,c=6.(ii)c=b.由韦达定理知x 1x2=-(x1+x2),所以 (x1+1)(x2+1)=1,所以x1=x2=-2,从而b=4,c=4.(iii)c=b-1.由韦达定理知所以综上所述,共有三组解:(b,c)=(5,6),(4,4),(6,5).解:由已知,得x2=3x-1.∴ x4+3x3-16x2+3x-17=x2(x2+3x-16)+3x-17=(3x-1)(6x-17)+3x-17=18(3x-1)-54x=-18.例10已知a,b都不为1,且有5a2+1995a+8=0及8b2+1995b+5=0,例11 设实数a 、b 、c 满足a >0,b >0,2c >a+b ,且c 2 >ab , 证明:ab c c a ab c c -+<<--22, 。
二次根式及一元二次方程竞赛
二次根式及一元二次方程竞赛卷(一)一、填空(共45分)1. 已知12-n 是正整数,则实数n 的最大值是______________;2. 若x -23-x = x -23-x成立,则x 满足________________; 3. 已知一个正数的平方根是2x -6和x+3 ,则这个数是___________;4. 观察并分析右边的数据,寻找规律:0,6,3,23,15,32,…,那么第10个数据应是_____________;5. 化简:( 3 -2)2 =________;6. 23231+-与的关系是 ;7.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________;8.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是______________;9.代数式2x 2+8x+6的最小值是_________;10.若分式22632x x x x ---+的值为0,则x 的值为_________; 11.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为_________;12.如果二次三项式16)122++-x m x (是一个完全平方式,那么m 的值是________;13.如果一元二方程043)222=-++-m x x m (有一个根为0,则m= ; 14.已知方程032=+-mx x 的两个相等实根,那么=m ; 15.已知方程022=-+kx x 的一个根是1,则另一个根是二、解答题(共55分)16.若│1995-a │=a ,求a -19952的值.17、某商场销售某品牌童装,平均每天可以售出20件,每件盈利40元为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件童装降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元每件童装应降价多少元?18、在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x 的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长.19、如果x 2-10x+y 2-16y+89=0,求x y 的值.20、已知关于x 的方程0)2(4122=+--m x m x ⑴ 若方程有两个相等的实数根,求m 的值,并求出此时方程的根⑵ 是否存在正数m ,使方程的两个实数根的平方和等于224 ?若存在,求出满足条件的m 的值; 若不存在,请说明理由。
九年级数学:一元二次方程竞赛题
九年级数学:一元二次方程竞赛题
题目如上,看到这道题,相信同学们都会有思路,方程有实数根,说明判别式大于等于0嘛,所以就有··········然后等到看清楚方程之后,就又没辙了,方程中是x-2的平方,而且还有绝对值,肯定没办法直接用判别式的,那么我们就假设y=|x-2|,
所以方程可以变为y²-4y-k=0,
估计到这里会有很多同学说,后面不就简单了吗,△≥0求出k的范围就行了,
肯定没有那么简单,
我们先来利用判别式求k的范围,
△=16+4k≥0,
所以k≥-4,
然而,同学们可能都忽略了一个东西,那就是y=|x-2|≥0,
也就是说关于y的方程的两个根肯定得是非负的,
根据方程可知两根之和=4,两根之积=-k,
两根之和为正,那么就需要两根之积非负,
所以k≤0,
那么到这里就完事儿了吗?
老师给大家丢了两个包袱,不知道同学们有没有发现呢?
如果方程y²-4y-k=0有两个相等的实数根,那么也就是说y只有一个值,
对应的x不就剩下两个值了吗?
所以还必须得有两个不相等的y,
所以△>0,即k>-4,
那么可能有些同学就会想到,如果y=0的话,得到的对应x不也是一个吗?
是不是y也不能取0呢?
那么要想让y不等0,就需要k≠0,
所以k<0,
所以-4<k<0;
OK,这道题的过程看起来似乎很容易,但其考察的就是思维的严谨性,所以,同学们是否漏掉什么了吗?。
一元二次方程竞赛选修(二)
一元二次方程竞赛选修(二)一、例题解析【例1】解方程:①75103241x x x x --+=-+-+(公式法) ②4322914920x x x x -+-+=(对称性因式分解法)【例2】解下列方程(组):(换元法)(1)解下列方程: ①3320121;x y x y +=-⎧⎪⎨-++=-⎪⎩ ②22(2)(3)34(2)(3)741(2)(3)x y x y x y x y ⎧++++=⎪⎨+++=-++⎪⎩(2)解下列方程组:①2(1)(35)1444524x x x y x x y ++=⎧⎨++=⎩ ②229410(9)(4)24x y x y x y xy ⎧+++=⎪⎨⎪++=⎩【例3】解含字母系数的一元二次方程(主元法)(1)4323(32)(31)(1)0x x a x a x a a -+-+-+-=〖练〗(1)4322102(11)2(56)20x x a x a x a a ---++++=(2)32222210x x x -+-+=〖练〗4223330x x x -+--=【例4】含绝对值的一元二次方程(分类讨论)2540x x -+= [练]2440x x --+=【例5】可化为一元二次方程的方程1.可化为一元二次方程的整式方程(1)(1)(2)(3)(4)24x x x x ++++=(换元法)(2)432254120x x x x +++-=(换元法)2.可化为一元二次方程的分式方程(1)11112464x x x x -=-++-- (分组组合、换元法)(2)2248410()33x x x x-=-3.可化为一元二次方程的无理方程(1)2237101x x x x ++--+=(构造法)(2)32102213x x -+-=(换元法)4.简单的高次方程与方程组求解方程组232323000x ay a y a x by b z b x cy c z c ⎧+++=⎪+++=⎨⎪+++=⎩(构造法)【例6】首项系数不相等的两个一元二次方程222(1)(2)(2)0a x a x a a --+++=;222(1)(2)(2)0b x b x b b --+++=有一个公共根,其中a 、b 均为正整数,求b ab a a b a b --++的值。