2014北京西城一模理科数学
20142015西城高三第一学期期末数学(理)试题及答案
北京市西城区2014—2015学年度第一学期期末试卷高三数学(理科)2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =I ( ) (A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若A 为锐角,2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin 3A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为((A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( ) (A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D 内的任一点(,)A x y ,都有1OA OB ⋅u u u r u u u r≤成立,则a b +的最大值等于( )(A )2 (B )1 (C )0 (D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP?o ,则实数m 的取值范围是( )(A )(4,8) (B )(4,)+? (C )(0,4) (D )(8,)+?侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12.如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F , 且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目 之间恰好有3个唱歌节目,那么演出顺序的排列种数是______.(用数字作答)14.设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转θ(02θπ<<)角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=o ,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同. (Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 120.(本小题满分13分)设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=L (其中1a 是个位数字,2a 是十位数字,L ),定义变换A :012()()()()m A n f a f a f a =+++L . 并规定(0)0A =.记10()n A n =,21()n A n =,L , 1()k k n A n -=,L .(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.96 14.13 注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . (9)分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC ,所以2tan 3πBC BAO AC ∠==. ………… 13分16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立,所以p +13+q =1. ……………… 2分又因为14p =, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则C AB AB AB =U U ,且A ,B 独立. 由上表可知, 1()2P A =,()P B p =. 所以()()()()P C P AB P AB P AB =++ ……………… 5分 111(1)222p p p =?+?? 1122p =+. ……………… 6分因为114()225P C p =+>,所以35p >. ……………… 7分又因为113p q ++=,0q ≥, 所以23p ≤.所以3253p ≤<. (8)分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:X 4 02- P12 1838…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:Y2 01-P121316…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.…… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD I 平面1A ECF EC =,平面1111A B C D I 平面11A ECF A F =, 所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分B CA 1 D 1DA B 1 C 1 E F x yzM(Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=o ,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-u u u r ,1(2,1,2)AC =-u u u r . 设平面1A ECF 的法向量为(,,),m x y z =u r由10A E m ⋅=u u u r u r ,10AC m ⋅=u u u r u r , 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-u r. …………………7分又因为平面DEC 的法向量为(0,0,1)n =r, (8)分所以1cos ,3||||m n m n m n ⋅<>==⋅u r ru r r ur r , 由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. (14)分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分且()2f x ax b '=-,1()g x x'=, …………………3分由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) (7)分因为 10(21)a s s =>-,且0s >,所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. (9)分令()0F x '= ,解得1x =或14x =(舍). …………………10分 当x 变化时,()F x '与()F x 的变化情况如下表所示,()F x '+ 0 -()F x↗↘…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞U 时()0F x <.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,23b =,222c a b =-=, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N . 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分)8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k ,所以 MPF NPF ∠=∠. ……………… 12分因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. (3)分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++L ,所以 ()20A n m ≤. ……………… 6分令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增. 故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分(Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38. (14)分。
2014北京市西城区高三(一模)数 学(文)
2014北京市西城区高三(一模)数学(文)一、选择题(共8小题,每小题5分,满分40分)1.(5分)设全集U={x|0<x<2},集合A={x|0<x≤1},则集合∁U A=()A.(0,1)B.(0,1] C.(1,2)D.[1,2)2.(5分)已知平面向量=(2,﹣1),=(1,3),那么||等于()A.5 B. C. D.133.(5分)已知双曲线C:=1(a>0,b>0)的虚轴长是实轴长的2倍,则此双曲线的离心率为()A.B.2 C.D.4.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.2 B.C.4 D.55.(5分)下列函数中,对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x﹣π)=f(x)的函数是()A.f(x)=sinx B.f(x)=sin2x C.f(x)=cosx D.f(x)=cos2x6.(5分)设a>0,且a≠1,则“函数y=log a x在(0,+∞)上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.(5分)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于()A.4 B.5 C.6 D.78.(5分)如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个二、填空题(共6小题,每小题5分,满分30分)9.(5分)设复数=x+yi,其中x,y∈R,则x+y= .10.(5分)若抛物线C:y2=2px的焦点在直线x+y﹣2=0上,则p= ;C的准线方程为.11.(5分)已知函数f(x)=,若f(x0)=2,则实数x0= ;函数f(x)的最大值为.(5分)执行如图所示的程序框图,如果输入a=2,b=2,那么输出的a值为.12.13.(5分)若不等式组表示的平面区域是一个四边形,则实数a的取值范围是.14.(5分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=2,P为线段AD(含端点)上一个动点.设=x,=y,记y=f(x),则f(1)= ;函数f(x)的值域为.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.16.(13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.寿命(天)频数频率[100,200)10 0.05[200,300)30 a[300,400)70 0.35[400,500) b 0.15[500,600)60 c合计200 1(Ⅰ)根据频率分布表中的数据,写出a,b,c的值;(Ⅱ)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不是次品的概率;(Ⅲ)某人从这批灯泡中随机地购买了n(n∈N*)个,如果这n个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求n的最小值.17.(14分)如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,AD=2AB,SA=SD,SA⊥AB,N是棱AD的中点.(Ⅰ)求证:AB∥平面SCD;(Ⅱ)求证:SN⊥平面ABCD;(Ⅲ)在棱SC上是否存在一点P,使得平面PBD⊥平面ABCD?若存在,求出的值;若不存在,说明理由.18.(13分)已知函数f(x)=lnx﹣,其中a∈R.(Ⅰ)当a=2时,求函数f(x)的图象在点(1,f(1))处的切线方程;(Ⅱ)如果对于任意x∈(1,+∞),都有f(x)>﹣x+2,求a的取值范围.19.(14分)已知椭圆W:=1(a>b>0)的焦距为2,过右焦点和短轴一个端点的直线的斜率为﹣1,O为坐标原点.(Ⅰ)求椭圆W的方程.(Ⅱ)设斜率为k的直线l与W相交于A,B两点,记△AOB面积的最大值为S k,证明:S1=S2.20.(13分)在数列{a n}中,a n=(n∈N*).从数列{a n}中选出k(k≥3)项并按原顺序组成的新数列记为{b n},并称{b n}为数列{a n}的k项子列.例如数列,,,为{a n}的一个4项子列.(Ⅰ)试写出数列{a n}的一个3项子列,并使其为等比数列;(Ⅱ)如果{b n}为数列{a n}的一个5项子列,且{b n}为等差数列,证明:{b n}的公差d满足﹣<d<0;(Ⅲ)如果{c n}为数列{a n}的一个6项子列,且{c n}为等比数列,证明:c1+c2+c3+c4+c5+c6≤.数学试题答案一、选择题(共8小题,每小题5分,满分40分)1.【解答】∵全集U=(0,2),集合A=(0,1],∴∁U A=(1,2).故选:C.2.【解答】∵=(2,﹣1)+(1,3)=(3,2),∴==.故选:B.3.【解答】∵双曲线C:=1(a>0,b>0)的虚轴长是实轴长的2倍,∴b=2a,∴c==,∴e==.故选:D.4.【解答】由三视图知几何体是一个四棱柱,四棱柱的底面是一个直角梯形,梯形的下底是3,斜边为,高是1,梯形的上底为:3﹣=1,棱柱的高为2,∴四棱柱的体积是:=4,故选:C.5.【解答】对于任意x∈R,f(x)满足f(x)=f(﹣x),则函数f(x)是偶函数,选项中,A,B显然是奇函数,C,D为偶函数,又对于任意x∈R,f(x)满足f(x﹣π)=f(x),则f(x+π)=f(x),即f(x)的最小正周期是π,选项C的最小正周期是2π,选项D的最小正周期是=π,故同时满足条件的是选项D.故选D.6.【解答】若函数y=log a x在(0,+∞)上是减函数,则0<a<1,此时2﹣a>0,函数y=(2﹣a)x3在R上是增函数,成立.若y=(2﹣a)x3在R上是增函数,则2﹣a>0,即a<2,当1<a<2时,函数y=log a x在(0,+∞)上是增函数,∴函数y=log a x在(0,+∞)上是减函数不成立,即“函数y=log a x在(0,+∞)上是减函数”是“函数y=(2﹣a)x3在R上是增函数”的充分而不必要条件,故选:A.7.【解答】设该设备第n年的营运费为a n万元,则数列{a n}是以2为首项,2为公差的等差数列,则a n=2n,则该设备使用了n年的营运费用总和为T n==n2+n,设第n年的盈利总额为S n,则S n=11n﹣(n2+n)﹣9=﹣n2+10n﹣9=﹣(n﹣5)2+16,∴当n=5时,S n取得最大值16,故选:B.8.【解答】符合条件的点P有两类:(1)6条棱的中点;(2)4个面的中心.共10个点.故集合M中有且只有2个元素,那么符合条件的点P有4+6=10.故选:C二、填空题(共6小题,每小题5分,满分30分)9.【解答】∵,又=x+yi,∴,∴,则x+y=.故答案为:.10.【解答】直线x+y﹣2=0,令y=0,可得x=2,∵抛物线C:y2=2px的焦点在直线x+y﹣2=0上,∴=2,∴p=4,准线方程为x=﹣=﹣2.故答案为:4,x=﹣2.11.【解答】x≤0,x+3=2,∴x=﹣1;x>0,=2,x=﹣(舍去);x≤0,x+3≤3;x>0,0<<1,∴函数f(x)的最大值为3.故答案为:﹣1,3.12.【解答】若a=2,则log3a=log32>4不成立,则a=22=4,若a=4,则log3a=log34>4不成立,则a=42=16,若a=16,则log3a=log316>4不成立,则a=162=256若a=256,则log3a=log3256>4成立,输出a=256,故答案为:25613.【解答】作出不等式组对应的平面区域,当直线x+y=a经过点A(3,0)时,对应的平面区域是三角形,此时a=3,当经过点B时,对应的平面区域是三角形,由,解得,即B(1,4),此时a=1+4=5,∴要使对应的平面区域是平行四边形,则3<a<5,故答案为:(3,5)14.【解答】如图,建立直角坐标系;设点P(a,b),则﹣2≤a≤﹣1;∴=(a+2,b),=(1,2);=(﹣a,﹣b),=(﹣a,2﹣b);又∵=x,∴,即,(其中0≤x≤1);∴•=(﹣a,﹣b)•(﹣a,2﹣b)=a2﹣b(2﹣b)=(x﹣2)2﹣2x•(2﹣2x)=5x2﹣8x+4;即y=f(x)=5x2﹣8x+4,其中0≤x≤1;∴当x=1时,y=f(1)=5﹣8+4=1;当x=﹣=时,y取得最小值f()=,当x=0时,y取得最大值f(0)=4;∴f(x)的值域是.故答案为:1,.三、解答题(共6小题,满分80分)15.【解答】(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.16.【解答】(Ⅰ)根据频率分布表中的数据,得a==0.15,b=200﹣(10+30+70+60)=30,c==0.3.(Ⅱ)设“此人购买的灯泡恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有100个,次品有40个,所以此人购买的灯泡恰好不是次品的概率为.(Ⅲ)由(Ⅱ)得这批灯泡中优等品、正品和次品的比例为60:100:40=3:5:2.所以按分层抽样法,购买灯泡数 n=3k+5k+2k=10k(k∈N*),所以n的最小值为10.17.【解答】(Ⅰ)证明:∵底面ABCD是矩形,∴AB∥CD,又∵AB⊄平面SCD,CD⊂平面SCD,所以 AB∥平面SCD.(Ⅱ)证明:∵AB⊥SA,AB⊥AD,∴AB⊥平面SAD,又∵SN⊂平面SAD,∴AB⊥SN.∵SA=SD,且N为AD中点,∴SN⊥AD.∴SN⊥平面ABCD.(Ⅲ)解:如图,连接BD交NC于点F,在平面SNC中过F作FP∥SN交SC于点P,连接PB,PD.∵SN⊥平面ABCD,∴FP⊥平面ABCD.又∵FP⊂平面PBD,∴平面PBD⊥平面ABCD.在矩形ABCD中,∵ND∥BC,∴==.在△SNC中,∵FP∥SN,∴==.则在棱SC上存在点P,使得平面PBD⊥平面ABCD,此时=.18.【解答】(Ⅰ)由,∴,∴k=f′(1)=3,又∵f(1)=﹣2,∴函数f(x)的图象在点(1,f(1))处的切线方程为3x﹣y﹣5=0;(Ⅱ)由 f(x)>﹣x+2,得,即 a<xlnx+x2﹣2x,设函数g(x)=xlnx+x2﹣2x,则g′(x)=lnx+2x﹣1,∵x∈(1,+∞),∴lnx>0,2x﹣1>0,∴当x∈(1,+∞)时,g′(x)=lnx+2x﹣1>0,∴函数g(x)在x∈(1,+∞)上单调递增,∴当x∈(1,+∞)时,g(x)>g(1)=﹣1,∵对于任意x∈(1,+∞),都有f(x)>﹣x+2成立,∴对于任意x∈(1,+∞),都有a<g(x)成立,∴a≤﹣1.19.【解答】(Ⅰ)解:由题意得椭圆W的半焦距c=1,右焦点F(1,0),上顶点M(0,b),∴直线MF 的斜率为,解得 b=1,由 a2=b2+c2,得a2=2,∴椭圆W 的方程为.(Ⅱ)证明:设直线l的方程为y=kx+m,其中k=1或2,A(x1,y1),B(x2,y2).由方程组得(1+2k2)x2+4kmx+2m2﹣2=0,∴△=16k2﹣8m2+8>0,(*)由韦达定理,得,.∴=.∵原点O到直线y=kx+m 的距离,∴=≤=,当且仅当m2=2k2﹣m2+1,即2m2=2k2+1时取等号.与k的取值无关系,因此S1=S2.20.【解答】(Ⅰ)解:答案不唯一.如3项子列:,,.…(2分)(Ⅱ)证明:由题意,知1≥b1>b2>b3>b4>b5>0,所以 d=b2﹣b1<0.…(4分)因为 b5=b1+4d,b1≤1,b5>0,所以 4d=b5﹣b1>0﹣1=﹣1,解得.所以.…(7分)(Ⅲ)证明:由题意,设{c n}的公比为q,则.11 / 12因为{c n}为{a n}的一个6项子列,所以 q为正有理数,且q<1,.…(8分)设,且K,L互质,L≥2).当K=1时,因为,所以,所以.…(10分)当K≠1时,因为是{a n}中的项,且K,L互质,所以 a=K5×M(M∈N*),所以=.因为 L≥2,K,M∈N*,所以.综上,.…(13分)12 / 12。
北京市西城区2014-2015学年度高三第一学期期末试数学理-含答案
北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(理科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b (D )∃平面向量a 和b ,||||||-+≥a b a b5.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面xOy 内一点,若对于区域D内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )36.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP?o ,则实数m 的取值范围是( )(A )(4,8) (B )(4,)+? (C )(0,4)(D )(8,)+?侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____.13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面A B CD ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1B CE ;(Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.B CDA B 1C 1E FA 1 D 1设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)北京市西城区2014 — 2015学年度第一学期期末高三数学(理科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤,所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC , 所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p =, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则C AB AB AB =U U ,且A ,B 独立. 由上表可知, 1()2P A =,()P B p =.所以()()()()P C P AB P AB P AB =++ ……………… 5分 111(1)222p p p =?+?? 1122p =+. ……………… 6分因为114()225P C p =+>,所以35p >. ……………… 7分 又因为113p q ++=,0q ≥,所以23p ≤.所以3253p ≤<. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A B C D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1B CE ,EC ⊂平面1B CE ,所以1A F ∥平面1B CE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C , 所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10A E m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A B C D ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >,所以 12s >. …………………8分 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分(Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N . 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k ,所以 MPF NPF ∠=∠. ……………… 12分 因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增. 故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。
2014北京中考西城一模数学试题及答案
北京市西城区2014年初三一模试题数 学 2014.4考生须知1.本试卷共6页,共五道大题,25道小题,满分120分,考试时间120分钟。
2.在试卷和答题纸上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4. 在答题纸上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题纸和草稿纸一并交回。
一、选择题(本小题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 的绝对值是( )2- A. B. C. D. 22-1212-2. 2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高,将数字13 100 000用科学计数法表示为( )A. B. C. D. 613.110⨯71.3110⨯81.3110⨯80.13110⨯3. 由5个相同的正方体组成的几何体如图所示,则它的主视图是( )4. 从1到9这九个自然数中任取一个,是奇数的概率是( )A. B. C. D. 294959235. 右图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm 水面宽为,则水的最大深度为( )AB 8cm CD A. B. C. D. 4cm 3cm 2cm 1cm 6. 为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是( )A.极差是6B.众数是7C.中位数是8D.平均数是107. 已知关于的一元二次方程有两个不相等的实数根,则的取值范围是( )x 2210mx x +-=m A. B. C. 且 D. 且1m <-1m >1m <0m ≠1m >-0m ≠8. 如图,在平面直角坐标系中,以点为顶点任作一直角,使其两边分别与轴、xOy (23)A ,PAQ ∠x y 轴A. B. C. D.主视方向第5题图的正半轴交于点、,连接,过点作于点,设点的横坐标为,的长为P Q PQ A AH PQ ⊥H P x AH y ,则下列图象中,能表示与的函数关系的图象大致是( )y x 二、填空题(本题共16分,每小题4分)9. 分解因式: 。
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科)
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科)一、选择题(共8小题;共40分)1. 设集合A=x x+1<3,x∈R,B=0,1,2,则A∩B= A. x0<x<2B. x−4<x<2C. 0,1,2D. 0,12. 已知复数z满足z=2i1+i,那么z的虚部为______A. −1B. −iC. 1D. i3. 在△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos A+B=13,则c= ______A. 4B.C. 3D.4. 执行如图所示的程序框图,输出的S值为______A. 34B. 45C. 56D. 15. 已知圆C:x+12+y−12=1与x轴切于A点,与y轴切于B点,设劣弧AB的中点为M,则过点M的圆C的切线方程是______A. y=x+2−B. y=x+12C. y=x−2+D. y=x+1−6. 若曲线ax2+by2=1为焦点在x轴上的椭圆,则实数a,b满足______A. a2>b2B. 1a <1bC. 0<a<bD. 0<b<a7. 定义域为R的函数f x满足f x+1=2f x,且当x∈0,1时,f x=x2−x,则当x∈−2,−1时,f x的最小值为______A. −116B. −18C. −14D. 08. 如图,正方体ABCD−A1B1C1D1的棱长为23,动点P在对角线BD1上,过点P作垂直于BD1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设BP=x,则当x∈1,5时,函数y=f x的值域为______A. 26,66B. 26,18C. 36,18D. 36,66二、填空题(共6小题;共30分)9. 在平面直角坐标系xOy中,点A1,3,B−2,k,若向量OA⊥AB,则实数k= ______.10. 若等差数列a n满足a1=12,a4+a6=5,则公差d= ______;a2+a4+a6+⋯+a20= ______.11. 已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12. 甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______.(用数字作答)13. 如图,B,C为圆O上的两个点,P为CB延长线上一点,PA为圆O的切线,A为切点.若PA=2,BC=3,则PB= ______;ACAB= ______.14. 在平面直角坐标系xOy中,记不等式组x+y≥0,x−y≤0,x2+y2≤2所表示的平面区域为D.在映射T:u=x+y,v=x−y的作用下,区域D内的点x,y对应的象为点u,v.(1)在映射T的作用下,点2,0的原象是______;(2)由点u,v所形成的平面区域的面积为______.三、解答题(共6小题;共78分)15. 已知函数f x=3cosωx,g x=sin ωx−π3ω>0,且g x的最小正周期为π.(1)若fα=62,α∈−π,π,求α的值;(2)求函数y=f x+g x的单调增区间.16. 以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.(1)若甲、乙两个小组的数学平均成绩相同,求a的值;(2)求乙组平均成绩超过甲组平均成绩的概率;(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X,求随机变量X的分布列和数学期望.17. 如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60∘,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求直线DH与平面BDEF所成角的正弦值;(3)求二面角H−BD−C的大小.18. 已知函数f x=x+a e x,其中e是自然对数的底数,a∈R.(1)求函数f x的单调区间;(2)当a<1时,试确定函数g x=f x−a−x2的零点个数,并说明理由.19. 已知A,B是抛物线W:y=x2上的两个点,点A的坐标为1,1,直线AB的斜率为k,O为坐标原点.(1)若抛物线W的焦点在直线AB的下方,求k的取值范围;(2)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求 OD 的最小值.20. 设无穷等比数列a n的公比为q,且a n>0n∈N∗,a n表示不超过实数a n的最大整数(如2.5=2),记b n=a n,数列a n的前n项和为S n,数列b n的前n项和为T n.(1)若a1=4,q=12,求T n;(2)若对于任意不超过2014的正整数n,都有T n=2n+1,证明:2312012<q<1.(3)证明:S n=T n n=1,2,3,⋯的充分必要条件为a1∈N∗,q∈N∗.答案第一部分1. D2. C3. D4. B5. A6. C7. A8. D第二部分9. 410. 12;5511. 2312. 2413. 1;214. 1,1;π第三部分15. (1)因为g x=sin ωx−π3ω>0的最小正周期为π,所以2πω=π,解得ω=2.由fα=62,得3cos2α=62,即cos2α=22,所以2α=2kπ±π4,k∈Z.因为α∈−π,π,所以α∈ −7π8,−π8,π8,7π8.(2)y=f x+g x=3cos2x+sin2x−π3=3cos2x+sin2x cosπ3−cos2x sinπ3 =12sin2x+32cos2x=sin2x+π3,由2kπ−π2≤2x+π3≤2kπ+π2,解得kπ−5π12≤x≤kπ+π12.所以函数y=f x+g x的单调增区间为 kπ−5π12,π+π12k∈Z.16. (1)依题意,得1388+92+92=1390+91+90+a,解得a=1.(2)设“乙组平均成绩超过甲组平均成绩”为事件A,依题意a=0,1,2,⋯,9,共有10种可能.由(1)可知,当a=1时甲、乙两个小组的数学平均成绩相同,所以当a=2,3,4,⋯,9时,乙组平均成绩超过甲组平均成绩,共有8种可能.所以乙组平均成绩超过甲组平均成绩的概率P A=810=45.(3)当a=2时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有3×3=9种,它们是:88,90,88,91,88,92,92,90,92,91,92,92,92,90,92,91,92,92,则这两名同学成绩之差的绝对值X的所有取值为0,1,2,3,4.因此P X=0=29,P X=1=29,P X=2=13,P X=3=19,P X=4=19.所以随机变量X的分布列为:X01234P2929131919所以X的数学期望E X=0×29+1×29+2×13+3×19+4×19=53.17. (1)因为四边形ABCD是菱形,所以AC⊥BD.因为平面BDEF⊥平面ABCD,且四边形BDEF是矩形,所以ED⊥平面ABCD,又因为AC⊂平面ABCD,所以ED⊥AC.因为ED∩BD=D,所以AC⊥平面BDEF.(2)设AC∩BD=O,取EF的中点N,连接ON.因为四边形BDEF是矩形,O,N分别为BD,EF的中点,所以ON∥ED.又因为ED⊥平面ABCD,所以ON⊥平面ABCD,由AC⊥BD,得OB,OC,ON两两垂直.O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.因为底面ABCD是边长为2的菱形,∠BAD=60∘,BF=3,所以A 0,−3,0,B1,0,0,D−1,0,0,E−1,0,3,F1,0,3,C 0,3,0,H12,32,32.因为AC⊥平面BDEF,所以平面BDEF的法向量AC=0,23,0.设直线DH与平面BDEF所成角为α,由DH=32,32,32,得sinα=cos DH,AC=DH⋅ACDH AC=32×0+32×23+32×021×23=77,所以直线DH与平面BDEF所成角的正弦值为77.(3)由(2),得BH= −12,32,32,DB=2,0,0.设平面BDH的法向量为n=x1,y1,z1,所以n⋅BH=0,n⋅DB=0,即−x1+3y1+3z1=0,2x1=0,令z1=1,得n=0,−3,1.由 ED ⊥平面ABCD ,得平面 BCD 的法向量为 ED= 0,0,−3 ,则cos n ,ED =n ⋅EDn ED=0×0+ − 3 ×0+1× −3 2×3=−12.由图可知二面角 H −BD −C 为锐角,所以二面角 H −BD −C 的大小为 60∘. 18. (1) 因为 f x = x +a e x ,x ∈R , 所以 fʹ x = x +a +1 e x . 令 fʹ x =0,得 x =−a −1.当 x 变化时,f x 和 fʹ x 的变化情况如下:x−∞,−a −1 −a −1 −a −1,+∞ fʹ x −0+f x ↘↗故 f x 的单调减区间为 −∞,−a −1 ;单调增区间为 −a −1,+∞ . (2) 结论:函数 g x 有且仅有一个零点.理由如下: 由 g x =f x −a −x 2=0,得方程 x e x−a =x 2, 显然 x =0 为此方程的一个实数解. 所以 x =0 是函数 g x 的一个零点. 当 x ≠0 时,方程可化简为 e x−a =x .设函数 F x =e x−a −x ,则 Fʹ x =e x−a −1,令 Fʹ x =0,得 x =a . 当 x 变化时,F x 和 Fʹ x 的变化情况如下:x−∞,a a a ,+∞Fʹ x−0+F x ↘↗即 F x 的单调增区间为 a ,+∞ ;单调减区间为 −∞,a .所以 F x 的最小值 F x min =F a =1−a . 因为 a <1,所以 F x min =F a =1−a >0, 所以对于任意 x ∈R ,F x >0, 因此方程 e x−a =x 无实数解.所以当 x ≠0 时,函数 g x 不存在零点. 综上,函数 g x 有且仅有一个零点. 19. (1) 抛物线 y =x 2 的焦点为 0,14 . 由题意,得直线 AB 的方程为 y −1=k x −1 ,令 x =0,得 y =1−k ,即直线 AB 与 y 轴相交于点 0,1−k . 因为抛物线 W 的焦点在直线 AB 的下方, 所以 1−k >14,解得 k <34.(2) 由题意,设 B x 1,x 12 ,C x 2,x 22 ,D x 3,y 3 ,联立方程 y −1=k x −1 ,y =x 2, 消去 y ,得x 2−kx +k −1=0,由韦达定理,得 1+x 1=k ,所以 x 1=k −1. 同理,得 AC 的方程为 y −1=−1k x −1 ,x 2=−1k −1. 对函数 y =x 2 求导,得 yʹ=2x ,所以抛物线y=x2在点B处的切线斜率为2x1,所以切线BD的方程为y−x12=2x1x−x1,即y=2x1x−x12.同理,抛物线y=x2在点C处的切线CD的方程为y=2x2x−x22.联立两条切线的方程y=2x1x−x12,y=2x2x−x22,解得x3=x1+x22=12k−1k−2,y3=x1x2=1k−k,所以点D的坐标为12 k−1k−2,1k−k .因此点D在定直线2x+y+2=0上.因为点O到直线2x+y+2=0的距离d=22+12=255,所以 OD ≥255,当且仅当点D的坐标为−45,−25时等号成立.由y3=1k −k=−25,得k=1±265,验证知符合题意.所以当k=1±265时, OD 有最小值255.20. (1)由等比数列a n的a1=4,q=12,得a1=4,a2=2,a3=1,且当n>3时,0<a n<1.所以b1=4,b2=2,b3=1,且当n>3时,b n=a n=0.即T n=4,n=1, 6,n=2, 7,n≥3.(2)因为T n=2n+1n≤2014,所以b1=T1=3,b n=T n−T n−1=22≤n≤2014.因为b n=a n,所以a1∈3,4,a n∈2,32≤n≤2014.由q=a2a1,得q<1.因为a2014=a2q2012∈2,3,所以q2012≥2a2>23,所以23<q2012<1,即231<q<1.(3)(充分性)因为a1∈N∗,q∈N∗,所以a n=a1q n−1∈N∗,所以b n=a n=a n对一切正整数n都成立.因为S n=a1+a2+⋯+a n,T n=b1+b2+⋯+b n,所以S n=T n.(必要性)因为对于任意的n∈N∗,S n=T n,当n=1时,由a1=S1,b1=T1,得a1=b1;当n≥2时,由a n=S n−S n−1,b n=T n−T n−1,得a n=b n.所以对一切正整数n都有a n=b n.由b n∈Z,a n>0,得对一切正整数n都有a n∈N∗,所以公比q=a2a1为正有理数.假设q∉N∗,令q=pr,其中p,r∈N∗,r>1,且p与r的最大公约数为1.因为a1是一个整数,所以必然存在一个整数k k∈N,使得a1能被r k整除,而不能被r k+1整除.又因为a k+2=a1q k+1=a1p k+1,且p与r的最大公约数为1.r所以a k+2∉Z,这与a n∈N∗(n∈N∗)矛盾.所以q∈N∗.因此a1∈N∗,q∈N∗.。
【2014西城一模】北京市西城区2014届高三一模数学(文)试题Word版含解析
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设全集{}02U x x =<<,集合{}01A x x =<≤,则集合U A =ð( )A.()0,1B.(]0,1C.()1,2D.[)1,22.已知平面向量()2,1a =-,()1,3b =,那么a b +等于( )A.5 D.133.已知双曲线()2222:10,0x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心率为( )B.2= D.考点:1.双曲线的几何性质;2.双曲线的离心率4.某几何体的三视图如图所示,则该几何体的体积为( ) A.2 B.43C.4D.55.下列函数中,对于任意x R ∈,同时满足条件()()f x f x =-和()()f x f x π-=的函数是( ) A.()sin f x x = B.()sin cos f x x x = C.()cos f x x = D.()22cos sin f x x x =-()22cos sin cos2f x x x x =-=,该函数是偶函数,且以π为最小正周期的周期函数,故选D.正(主)视图俯视图侧(左)视图考点:1.二倍角公式;2.三角函数的奇偶性与周期性6.设0a >,且1a ≠,则“函数log a y x =在()0,+∞上是减函数”是“函数()32y a x =-在R 上是增函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( )A.4B.5C.6D.78.如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A.4个B. 6个C.10个D.14个 【答案】C 【解析】试题分析:分以下两种情况讨论:(1)点P 到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点P 位于正四面体各棱的中点,符合条件的有6个点;(2)点P 到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点P 在正四面体各侧面的中心点,符合条件的有4个点,故选C. 考点:新定义第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设复数12ix yi i-=++,其中x 、y R ∈,则x y +=______.10.若抛物线2:2C y px =的焦点在直线20x y +-=上,则p =_____;C 的准线方程为_____.4p =,此时抛物线的准线方程为2x =-.BADC. P考点:抛物线的几何性质11.已知函数()3,01,01x x f x x x +≤⎧⎪=⎨>⎪+⎩,若()02f x =,则实数0=x ______;函数()f x 的最大值为_____.12.执行如图所示的程序框图,如果输入2a =,2b =,那么输出的a 值为______.【答案】256. 【解析】试题分析:3log 24>不成立,执行第一次循环,224a ==;3log 44>不成立,执行第二次循环,2416a ==;4333log 164log 3log 81>==不成立,执行第三次循环,216256a ==;33log 2564log 81>=成立,跳出循环体,输出a 的值为256,故选C.考点:算法与程序框图13.若不等式组1026ax y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是_______.范围是()3,5. 考点:线性规划14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,记()y f x =,则()1f =____; 函数()f x 的值域为_________.因为()()205080441f f =⨯-⨯+=>,因此()()max 04f x f ==,所以函数()f x 的值域为4,45⎡⎤⎢⎥⎣⎦.A D C P考点:1.平面向量的数量积;2.二次函数三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .已知222b c a bc +=+. (1)求A 的大小;(2)如果cos 3=B ,2b =,求a 的值.考点:1.正弦定理与余弦定理;2.同角三角函数的基本关系16.(本小题满分13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(1)根据频率分布表中的数据,写出a 、b 、c 的值;(2)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不.是次品的概率; (3)某人从这批灯泡中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽.....样.所得的结果相同,求n 的最小值.所以n 的最小值为10.考点:1.频率分布表;2.古典概型17.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD 是矩形,2AD AB =,SA SD =,SA AB ⊥, N 是棱AD 的中点.(1)求证://AB 平面SCD ;(2)求证:SN ⊥平面ABCD ;(3)在棱SC 上是否存在一点P ,使得平面PBD ⊥平面ABCD ?若存在,求出SPPC的值;若不存在,说明理由.【答案】(1)详见解析;(2)详见解析;(3)存在,且12SP PC =. 所以 SN AD ⊥.又因为 ABAD A =,所以 SN ⊥平面ABCD .(3)如图,连接BD 交NC 于点F ,在平面SNC 中过F 作//FP SN 交SC 于点P ,连接PD 、PC .因为 SN ⊥平面ABCD ,所以FP ⊥平面ABCD . 又因为FP ⊂平面PBD ,所以平面PBD ⊥平面ABCD . 在矩形ABCD 中,因为//ND BC , 所以12NF ND FC BC ==. 在SNC ∆中,因为//FP SN , 所以12NF SP FC PC ==. 则在棱SC 上存在点P ,使得平面PBD ⊥平面ABCD ,此时12SP PC =. 考点:1.直线与平面平行的判定与性质;2.直线与平面垂直 18.(本小题满分13分)已知函数()ln af x x x=-,其中a R ∈. (1)当2a =时,求函数()f x 的图象在点()()1,1f 处的切线方程; (2)如果对于任意()1,x ∈+∞,都有()2f x x >-+,求a 的取值范围. 【答案】(1)350x y --=;(2)(],1-∞-. 【解析】试题分析:(1)将2a =代入函数解析式,求出()1f '及()1f 的值,利用点斜式写出切线方程;(2)利用参数分离法将()2f x x >-+转化为2ln 2a x x x x <+-,构造新函数()2ln 2g x x x x x =+-,问题转化为()min a g x <来求解,但需注意区间()1,+∞端点值的取舍. 试题解析:(1)由()2ln f x x x =-,得()212f x x x'=+, 所以()13f '=, 又因为()12f =- ,所以函数()f x 的图象在点()()1,1f 处的切线方程为350x y --=;19.(本小题满分14分)已知椭圆()2222:10x y W a b a b+=>>的焦距为2,过右焦点和短轴一个端点的直线的斜率为1-,O 为坐标原点. (1)求椭圆W 的方程.(2)设斜率为k 的直线l 与W 相交于A 、B 两点,记AOB ∆面积的最大值为k S ,证明:12S S =.【答案】(1)2212x y +=;(2)详见解析. 【解析】试题分析:(1)利用题干中的已知条件分别求出a 、b 、c ,从而写出椭圆W 的方程;(2)设直线l 的方程为y kx m =+,将直线l 的方程与椭圆W 的方程联立,借助韦达定理求出弦长AB ,并求出原点到直线l 的距离d ,然后以AB 为底边,d 为高计算AOB ∆的面积,利用基本不等式验证1k =时和2k =时AOB ∆的验证知(*)成立;当2k =时,因为AOB S ∆=,20.(本小题满分13分)在数列{}n a 中,()1n a n N n*=∈. 从数列{}n a 中选出()3k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列12、13、15、18为{}n a 的一个4 项子列.(1)试写出数列{}n a 的一个3项子列,并使其为等比数列;(2)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足104d -<<;(3)如果{}n c 为数列{}n a 的一个6项子列,且{}n c 为等比数列,证明:1234566332c c c c c c +++++≤.【答案】(1)答案不唯一. 如3项子列:12、14、18;(2)详见解析;(3)详见解析.【解析】试题分析:(1)根据题中的定义写出一个3项子列即可;(2)根据定义得到11b ≤,利用数列{}n b 的定义与单调性得到0d >,然后由5140b b d =+>得到14d >-,从而证明104d -<<;(3)注意到数列{}n a 各项均为有理数,从而得到数列{}n c 的公比q 为正有理数,从而存在K 、L N *∈使得K q L=,并对K 是否等于1进行分类讨论,结合等比数列求和公式进行证明. 试题解析:(1)答案不唯一. 如3项子列:12、14、18; (2)由题意,知1234510b b b b b ≥>>>>>,所以 210d b b =-<. 因为 514b b d =+,11b ≤,50b >,所以 514011d b b =->-=-,解得 14d >-.543223*********M K K L K L K L KL L ⎛⎫=+++++ ⎪⎝⎭. 因为 2L ≥,K 、*M N ∈,所以 2345123456111116312222232c c c c c c ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤+++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.综上,12345663 32c c c c c c+++++≤. 考点:1.新定义;2.等比数列求和。
2014年北京市西城区高考一模数学试卷(理科)【解析版】
2014年北京市西城区高考数学一模试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)设全集U=R,集合A={x|0<x≤2},B={x|x<1},则集合∁U(A∪B)=()A.(﹣∞,2]B.(﹣∞,1]C.(2,+∞)D.[2,+∞)2.(5分)已知平面向量=(2,﹣1),=(1,1),=(﹣5,1),若(+k)∥,则实数k的值为()A.2B.C.D.﹣3.(5分)在极坐标系中,过点(2,)且与极轴平行的直线方程是()A.ρ=2B.θ=C.ρcosθ=2D.ρsinθ=2 4.(5分)执行图题实数的程序框图,如果输入a=2,b=2,那么输出的a值为()A.44B.16C.256D.log3165.(5分)下列函数中,对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x ﹣π)=f(x)的函数是()A.f(x)=sin x B.f(x)=sin2x C.f(x)=cos x D.f(x)=cos2x 6.(5分)“m<8”是“方程﹣=1表示双曲线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于()A.4B.5C.6D.78.(5分)如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)设复数=x+yi,其中x,y∈R,则x+y=.10.(5分)若抛物线C:y2=2px的焦点在直线x+2y﹣4=0上,则p=;C的准线方程为.11.(5分)已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是.12.(5分)若不等式组表示的平面区域是一个四边形,则实数a的取值范围是.13.(5分)科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是.(用数字作答)14.(5分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设=x,=y,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②∀a∈(0,+∞),都有f(1)=1成立;③∀a∈(0,+∞),函数f(x)的最大值都等于4.其中所有正确结论的序号是.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cos B=,b=2,求△ABC的面积.16.(13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a,b的值;(Ⅱ)某人从灯泡样品中随机地购买了n(n∈N*)个,如果这n个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求n的最小值;(Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X表示此人所购买的灯泡中次品的个数,求X的分布列和数学期望.17.(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.(Ⅰ)求证:BC⊥D1E;(Ⅱ)求证:B1C∥平面BED1;(Ⅲ)若平面BCC1B1与平面BED1所成的锐二面角的大小为,求线段D1E的长度.18.(13分)已知函数f(x)=,其中a≥0.(Ⅰ)当a=0时,求函数f(x)的图象在点(1,f(1))处的切线方程;(Ⅱ)如果对于任意x1,x2∈R,且x1<x2,都有f(x1)<f(x2),求a的取值范围.19.(14分)已知椭圆W:=1,直线l与W相交于M,N两点,l与x 轴、y轴分别相交于C、D两点,O为坐标原点.(Ⅰ)若直线l的方程为x+2y﹣1=0,求△OCD外接圆的方程;(Ⅱ)判断是否存在直线l,使得C,D是线段MN的两个三等分点,若存在,求出直线l的方程;若不存在,说明理由.20.(13分)在数列{a n}中,a n=(n∈N*).从数列{a n}中选出k(k≥3)项并按原顺序组成的新数列记为{b n},并称{b n}为数列{a n}的k项子列.例如数列,,,为{a n}的一个4项子列.(Ⅰ)试写出数列{a n}的一个3项子列,并使其为等差数列;(Ⅱ)如果{b n}为数列{a n}的一个5项子列,且{b n}为等差数列,证明:{b n}的公差d满足﹣<d<0;(Ⅲ)如果{c n}为数列{a n}的一个m(m≥3)项子列,且{c n}为等比数列,证明:c1+c2+c3+…+c m≤2﹣.2014年北京市西城区高考数学一模试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)设全集U=R,集合A={x|0<x≤2},B={x|x<1},则集合∁U(A∪B)=()A.(﹣∞,2]B.(﹣∞,1]C.(2,+∞)D.[2,+∞)【解答】解:∵A=(0,2],B=(﹣∞,1),∴A∪B=(﹣∞,2],∵全集为U=R,∴∁U(A∪B)=(2,+∞).故选:C.2.(5分)已知平面向量=(2,﹣1),=(1,1),=(﹣5,1),若(+k)∥,则实数k的值为()A.2B.C.D.﹣【解答】解:∵=(2,﹣1),=(1,1),∴,又=(﹣5,1),且(+k)∥,∴1×(2+k)﹣(﹣5)×(k﹣1)=0,解得:k=.故选:B.3.(5分)在极坐标系中,过点(2,)且与极轴平行的直线方程是()A.ρ=2B.θ=C.ρcosθ=2D.ρsinθ=2【解答】解:点(2,)在直角坐标系下的坐标为(2,2),即(0,2)∴过点(0,2)且与x轴平行的直线方程为y=2.即为ρsinθ=2.故选:D.4.(5分)执行图题实数的程序框图,如果输入a=2,b=2,那么输出的a值为()A.44B.16C.256D.log316【解答】解:若a=2,则log3a=log32>4不成立,则a=22=4,若a=4,则log3a=log34>4不成立,则a=42=16,若a=16,则log3a=log316>4不成立,则a=162=256若a=256,则log3a=log3256>4成立,输出a=256,故选:C.5.(5分)下列函数中,对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x ﹣π)=f(x)的函数是()A.f(x)=sin x B.f(x)=sin2x C.f(x)=cos x D.f(x)=cos2x 【解答】解:对于任意x∈R,f(x)满足f(x)=f(﹣x),则函数f(x)是偶函数,选项中,A,B显然是奇函数,C,D为偶函数,又对于任意x∈R,f(x)满足f(x﹣π)=f(x),则f(x+π)=f(x),即f(x)的最小正周期是π,选项C的最小正周期是2π,选项D的最小正周期是=π,故同时满足条件的是选项D.故选:D.6.(5分)“m<8”是“方程﹣=1表示双曲线”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若方程﹣=1表示双曲线,则(m﹣10)(m﹣8)>0,即m>10或m<8.∴“m<8”是“方程﹣=1表示双曲线”的充分而不必要条件,故选:A.7.(5分)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于()A.4B.5C.6D.7【解答】解:设该设备第n年的营运费为a n万元,则数列{a n}是以2为首项,2为公差的等差数列,则a n=2n,则该设备使用了n年的营运费用总和为T n==n2+n,设第n年的盈利总额为S n,则S n=11n﹣(n2+n)﹣9=﹣n2+10n﹣9=﹣(n﹣5)2+16,∴当n=5时,S n取得最大值16,故选:B.8.(5分)如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个【解答】解:符合条件的点P有两类:(1)6条棱的中点;(2)4个面的中心.共10个点.故集合M中有且只有2个元素,那么符合条件的点P有4+6=10.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)设复数=x+yi,其中x,y∈R,则x+y=.【解答】解:∵,又=x+yi,∴,∴,则x+y=.故答案为:.10.(5分)若抛物线C:y2=2px的焦点在直线x+2y﹣4=0上,则p=8;C 的准线方程为x=﹣4.【解答】解:直线x+2y﹣4=0,令y=0,可得x=4,∴=4,∴p=8,C的准线方程为x=﹣4故答案为:8;x=﹣4.11.(5分)已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是.【解答】解:∵正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,故它的侧(左)视图一定是一个高为2的矩形,当侧(左)视图的底面为俯视图的高时侧(左)视图面积最小,此时侧(左)视图面积S=2×=故答案为:12.(5分)若不等式组表示的平面区域是一个四边形,则实数a的取值范围是(3,5).【解答】解:作出不等式组对应的平面区域,当直线x+y=a经过点A(3,0)时,对应的平面区域是三角形,此时a=3,当经过点B时,对应的平面区域是三角形,由,解得,即B(1,4),此时a=1+4=5,∴要使对应的平面区域是平行四边形,则3<a<5,故答案为:(3,5)13.(5分)科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是48.(用数字作答)【解答】解:采用捆绑及内部调整法,把三对师生看成三个整体,每对师生都有2种排列顺序,故不同的排法种数为A33×2×2×2=6×8=48.故答案为:48.14.(5分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设=x,=y,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②∀a∈(0,+∞),都有f(1)=1成立;③∀a∈(0,+∞),函数f(x)的最大值都等于4.其中所有正确结论的序号是②③.【解答】解:如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=x,(0≤x≤1).∴=(﹣2,0)+x(1,a)=(x﹣2,xa),∴==(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa)∴y=f(x)==(2﹣x,﹣xa)•(2﹣x,a﹣xa)=(2﹣x)2﹣ax(a﹣xa)=(a2+1)x2﹣(4+a2)x+4.①当a=2时,y=f(x)=5x2﹣8x+4=,∵0≤x≤1,∴当x=时,f(x)取得最小值;又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.综上可得:函数f(x)的值域为.因此①不正确.②由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可得:∀a∈(0,+∞),都有f(1)=1成立,因此②正确;③由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可知:对称轴x0=.当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.当时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.因此③正确.综上可知:只有②③正确.故答案为:②③.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cos B=,b=2,求△ABC的面积.【解答】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cos A==,又A∈(0,π),∴A=;(Ⅱ)∵cos B=,B∈(0,π),∴sin B==,由正弦定理=,得a==3,∵b2+c2=a2+bc,即4+c2=9+2c,整理得:c2﹣2c﹣5=0,解得:c=1±,∵c>0,∴c=+1,=bc sin A=.则S△ABC16.(13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a,b的值;(Ⅱ)某人从灯泡样品中随机地购买了n(n∈N*)个,如果这n个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求n的最小值;(Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X表示此人所购买的灯泡中次品的个数,求X的分布列和数学期望.【解答】(本小题满分13分)解:(Ⅰ)a=1﹣0.10﹣0.35﹣0.15﹣0.25=0.15,b=200﹣20﹣30﹣70﹣50=30.…(2分)(Ⅱ)由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,∴优等品、正品和次品的比例为50:100:50=1:2:1.…(4分)∴按分层抽样法,购买灯泡数n=k+2k+k=4k(k∈N*),∴n的最小值为4.…(6分)(Ⅲ)X的所有取值为0,1,2,3.…(7分)由题意,购买一个灯泡,且这个灯泡是次品的概率为0.1+0.15=0.25,…(8分)从本批次灯泡中购买3个,可看成3次独立重复试验,∴,,,.…(11分)∴随机变量X的分布列为:…(12分)∴X的数学期望.…(13分)(注:写出,,k=0,1,2,3.请酌情给分)17.(14分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.(Ⅰ)求证:BC⊥D1E;(Ⅱ)求证:B1C∥平面BED1;(Ⅲ)若平面BCC1B1与平面BED1所成的锐二面角的大小为,求线段D1E的长度.【解答】(Ⅰ)证明:∵底面ABCD和侧面BCC1B1是矩形,∴BC⊥CD,BC⊥CC1,又∵CD∩CC1=C,∴BC⊥平面DCC1D1,…(2分)∵D1E⊂平面DCC1D1,∴BC⊥D1E.…(4分)(Ⅱ)证明:∵BB1∥DD1,BB1=DD1,∴四边形D1DBB1是平行四边形.连接DB1交D1B于点F,连接EF,则F为DB1的中点.在△B1CD中,∵DE=CE,DF=B1F,∴EF∥B1C.…(6分)又∵B1C⊄平面BED1,EF⊂平面BED1,∴B1C∥平面BED1.…(8分)(Ⅲ)解:由(Ⅰ)知BC⊥D1E,又∵D1E⊥CD,BC∩CD=C,∴D1E⊥平面ABCD.…(9分)设G为AB的中点,以E为原点,EG,EC,ED1所在直线分别为x轴,y轴,z轴如图建立空间直角坐标系,设D1E=a,则E(0,0,0),B(1,1,0),D1(0,0,a),C(0,1,0),B1(1,2,a),G(1,0,0).设平面BED1法向量为=(x,y,z),因为,由,得令x=1,得=(1,﹣1,0).…(11分)设平面BCC1B1法向量为=(x1,y1,z1),∵,∴由,得令z1=1,得=(0,﹣a,1).…(12分)由平面BCC1B1与平面BED1所成的锐二面角的大小为,得,…(13分)解得a=1.∴线段D1E的长度是1.…(14分)18.(13分)已知函数f(x)=,其中a≥0.(Ⅰ)当a=0时,求函数f(x)的图象在点(1,f(1))处的切线方程;(Ⅱ)如果对于任意x1,x2∈R,且x1<x2,都有f(x1)<f(x2),求a的取值范围.【解答】解:(Ⅰ)由题意,得f'(x)=(xlnx)'=lnx+1,其中x>0,…(2分)所以f'(1)=1,又因为f(1)=0,所以函数f(x)的图象在点(1,f(1))处的切线方程为y=x﹣1.…(4分)(Ⅱ)先考察函数g(x)=﹣x2+2x﹣3,x∈R的图象,配方得g(x)=﹣(x﹣1)2﹣2,…(5分)所以函数g(x)在(﹣∞,1)上单调递增,在(1,+∞)单调递减,且g(x)=g(1)=﹣2.…(6分)max因为对于任意x1,x2∈R,且x1<x2,都有f(x1)<f(x2)成立,所以a≤1.…(8分)以下考察函数h(x)=xlnx,x∈(0,+∞)的图象,则h'(x)=lnx+1,令h'(x)=lnx+1=0,解得.…(9分)随着x变化时,h(x)和h'(x)的变化情况如下:即函数h (x )在上单调递减,在上单调递增,且.…(11分)因为对于任意x 1,x 2∈R ,且x 1<x 2,都有f (x 1)<f (x 2)成立, 所以 .…(12分)因为(即h (x )min >g (x )max ),所以a 的取值范围为.…(13分)19.(14分)已知椭圆W :=1,直线l 与W 相交于M ,N 两点,l 与x轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为x +2y ﹣1=0,求△OCD 外接圆的方程;(Ⅱ)判断是否存在直线l ,使得C ,D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由. 【解答】解:(Ⅰ)因为直线l 的方程为x +2y ﹣1=0, 所以与x 轴的交点C (1,0),与y 轴的交点.…(1分)则线段CD 的中点,,…(3分)即△OCD 外接圆的圆心为,半径为, 所以△OCD 外接圆的方程为.…(5分)(Ⅱ)存在直线l ,使得C ,D 是线段MN 的两个三等分点. 理由如下:由题意,设直线l 的方程为y =kx +m (km ≠0),M (x 1,y 1),N (x 2,y 2), 则,D (0,m ),…(6分)由方程组得(1+2k2)x2+4kmx+2m2﹣2=0,…(7分)所以△=16k2﹣8m2+8>0,(*)…(8分)由韦达定理,得,.…(9分)由C,D是线段MN的两个三等分点,得线段MN的中点与线段CD的中点重合.所以,…(10分)解得.…(11分)由C,D是线段MN的两个三等分点,得|MN|=3|CD|.所以,…(12分)即,解得.…(13分)验证知(*)成立.所以存在直线l,使得C,D是线段MN的两个三等分点,此时直线l的方程为,或.…(14分)20.(13分)在数列{a n}中,a n=(n∈N*).从数列{a n}中选出k(k≥3)项并按原顺序组成的新数列记为{b n},并称{b n}为数列{a n}的k项子列.例如数列,,,为{a n}的一个4项子列.(Ⅰ)试写出数列{a n}的一个3项子列,并使其为等差数列;(Ⅱ)如果{b n}为数列{a n}的一个5项子列,且{b n}为等差数列,证明:{b n}的公差d满足﹣<d<0;(Ⅲ)如果{c n}为数列{a n}的一个m(m≥3)项子列,且{c n}为等比数列,证明:c1+c2+c3+…+c m≤2﹣.【解答】(Ⅰ)解:答案不唯一.如3项子列,,;(Ⅱ)证明:由题意,知1≥b1>b2>b3>b4>b5>0,所以d=b2﹣b1<0.假设b1=1,由{b n}为{a n}的一个5项子列,得,所以.因为b5=b1+4d,b5>0,所以4d=b5﹣b1=b5﹣1>﹣1,即.这与矛盾.所以假设不成立,即b1≠1.所以,因为b5=b1+4d,b5>0,所以,即,综上,得.(Ⅲ)证明:由题意,设{c n}的公比为q,则.因为{c n}为{a n}的一个m项子列,所以q为正有理数,且q<1,.设,且K,L互质,L≥2).当K=1时,因为,所以=,所以.当K≠1时,因为是{a n}中的项,且K,L互质,所以a=K m﹣1×M(M∈N*),所以=.因为L≥2,K,M∈N*,所以.综上,.。
2014西城高三二模数学理科
北京市西城区2014年高三二模试卷数学(理科)2014.5第I 卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ).A .(,2]-∞-B .[2,)-+∞C .(,2]-∞D .[2,)+∞2.在复平面内,复数2(12i)z =+对应的点位于( ).A . 第一象限B .第二象限C .第三象限D .第四象限3.直线2y x =为双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线,则双曲线C 的离心率是( ). A .5 B .52C .3D .324.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ).A .2A ∈,且4A ∈B .2A ∈,且4A ∈C .2A ∈,且25A ∈D .2A ∈,且17A ∈5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x 轴围成的封闭图形,那么这个阴影区域的面积是( ). A .1B .2C .π2D .π7.在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩………所表示的平面区域是α,不等式组04,010x y ⎧⎨⎩剟剟所表示的平面区域是β.从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是( ).A .14B .35C .34D .158.设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论: ①()x Ω的最大值为2;②()()x y Ω+Ω的取值范围是[2,22]; ③()()x y Ω-Ω恒等于0. 其中所有正确结论的序号是( ). A .①B .②③C .①②D .①②③第II 卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.61()x x+的二项展开式中,常数项为_________.10.在ABC V 中,若14,3,cos 3a b A ===,则sin A =______,B =______.11.如图,AB 和CD 是圆O 的两条弦,AB 与CD 相交于点E ,且4,:4:1C E D E A E B E ===,则AE =_______;ACBD=______.12.执行如图所示的程序框图,输出的a 值为_________.13.设抛物线2:4C y x =的焦点为,F M 为抛物线C 上一点,(2,2)N ,则MF M N +的取值范围为_________.14.已知f 是有序数对集合**{(,)|,}M x y x y =∈∈N N 上的一个映射,正整数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =,对于任意的正整数,()m n m n >,映射f 由下表给出:(,)x y (,)n n(,)m n(,)n m(,)f x yn m n - m n +则(3,5)f =_______,使不等式(2,)4x f x …成立的x 集合是_________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在平面直角坐标系xOy 中,点(cos ,2sin ),(sin ,0)A B θθθ,其中θ∈R . (I )当2π3θ=,求向量AB uu u r 的坐标; (II )当π[0,]2θ∈时,求AB uu u r 的最大值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的,A B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班的5名学生的视力检测结果:43.,51.,46.,41.,49.. B 班的5名学生的视力检测结果:51.,49.,40.,40.,45..(I )分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好? (II )由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(III )现从A 班的上述5名学生中随机选取3名学生,用X 表示其中视力大于46.的人数,求X 的分布列和数学期望. 17.(本小题满分14分)如图,在三棱锥P A B C -中,PA ⊥底面,,ABC AC BC H ⊥为PC 的中点,M 为AH 的中点,2,1P A A C B C ===(I )求证:AH ⊥面PBC ;(II )求PM 与平面AHB 所成角的正弦值 (III )设点N 在线段PB 上,且,PNMN PBλ=∥平面ABC ,求实数λ的值.18.(本小题满分13分)已知函数12e ()44x f x ax x +=++,其中a ∈R(I )若0a =,求函数()f x 的极值;(II )当1a >时,试确定函数()f x 的单调区间. 19.(本小题满分14分)设,A B 是椭圆22:143x y W +=上不关于坐标轴对称的两个点,直线AB 交x 轴于点M (与点,A B 不重合),O 为坐标原点.(I )如果点M 是椭圆W 的右焦点,线段MB 的中点在y 轴上,求直线AB 的方程;(II )设N 为x 轴上一点,且4OM ON ⋅=uuu r uuu r,直线AN 与椭圆W 的另外一个交点为C ,证明:点B 与点C 关于x 轴对称.20.(本小题满分14分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*1,n n n a a a +∈<N .设*m ∈N ,记使得n a m …成立的n 最大值为m b .(I )设数列为1,3,5,7,L ,写出123,,b b b 的值; (II )若{}n b 为等差数列,求出所有可能的数列{}n a ;(III )设12,p p a q a a a A =+++=L ,求12q b b b +++L 的值.(用,,p q A 表示)北京市西城区2014年高三二模试卷高三数学(理科)2014.5 参考答案一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.D ;5.B ; 6.B ; 7.C ; 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9. 20 ; 10. 223, π4 ; 11. 8 , 2 ;12. 13-; 13. [3,+)∞ ; 14. 8 , {1,2}; 注:第10,11,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:由题意,得(sin cos ,2sin )AB θθθ=--, ……………… 2分当 2π3θ=时,2π2π13sin cos sin cos 332θθ+-=-=, ……………… 4分 2π62sin 2sin 32θ-=-=-, 所以 136(,)22AB +=-. ……………… 6分(Ⅱ)解:因为 (sin cos ,2sin )AB θθθ=--,所以 222||(sin cos )(2sin )AB θθθ=-+- ……………… 7分21sin 22sin θθ=-+ ……………… 8分1sin 21cos 2θθ=-+- ……………… 9分π22sin(2)4θ=-+. ……………… 10分因为 π02θ≤≤,所以 ππ5π2444θ+≤≤. ……………… 11分所以当π5π244θ+=时,2||AB 取到最大值22||22()32AB =-⨯-=,…… 12分即当π2θ=时,||AB 取到最大值3. ……………… 13分16.(本小题满分13分)(Ⅰ)解:A 班5名学生的视力平均数为A 4.3+5.1+4.6+4.1 4.9==4.65x +,………… 2分B 班5名学生的视力平均数为B 5.1+4.9+4.0+4.0 4.5==4.55x +. ……………… 3分从数据结果来看A 班学生的视力较好. ……………… 4分(Ⅱ)解:B 班5名学生视力的方差较大. ……………… 7分 (Ⅲ)解:由(Ⅰ)知,A 班的5名学生中有2名学生视力大于4.6.则X 的所有可能取值为0,1,2. ……………… 8分所以 3335C 1(0)C 10P X ===;……………… 9分213235C C 3(1)C 5P X ===; ……………… 10分123235C C 3(2)C 10P X ===. ……………… 11分所以随机变量X 的分布列如下:X0 1 2 P11035310……………… 12分故1336()012105105E X =⨯+⨯+⨯=. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为 PA ⊥底面ABC ,BC ⊂底面ABC ,所以 PA BC ⊥, ……………… 1分 又因为 AC BC ⊥, PAAC A =,所以 ⊥BC 平面PAC , ……………… 2分 又因为 ⊂AH 平面PAC ,所以 BC AH ⊥. ……………… 3分 因为 ,AC PA =H 是PC 中点, 所以 AH PC ⊥,又因为 PC BC C =,所以 ⊥AH 平面PBC . ……………… 5分 (Ⅱ)解:在平面ABC 中,过点A 作,BC AD // 因为 ⊥BC 平面PAC , 所以 ⊥AD 平面PAC ,由 PA ⊥底面ABC ,得PA ,AC ,AD 两两垂直,所以以A 为原点,AD ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴如图建立空间直角坐标系, 则(0,0,0)A ,(0,0,2)P ,(1,2,0)B ,(0,2,0)C ,(0,1,1)H ,11(0,,)22M . ……………… 6分设平面AHB 的法向量为(,,)x y z =n ,因为 (0,1,1)AH =,(1,2,0)AB =,由 0,0,AH AB ⎧⋅=⎪⎨⋅=⎪⎩n n 得 0,20,y z x y +=⎧⎨+=⎩ 令1=z ,得(2,1,1)=-n . ……………… 8分 设PM 与平面AHB 成角为θ,因为)23,21,0(-=PM ,所以 1320(1)1()22sin cos ,562PM PM PM θ⨯+-⨯+⨯-⋅=<>==⋅⋅n n n, 即 215sin 15θ=.……………… 10分(Ⅲ)解:因为 (1,2,2)PB =-,PN PB λ=,所以 (,2,2)PN λλλ=-, 又因为 13(0,,)22PM =-,所以 13(,2,2)22MN PN PM λλλ=-=--. ……………… 12分 因为 //MN 平面ABC ,平面ABC 的法向量(0,0,2)AP =,所以 340MN AP λ⋅=-=, 解得 43=λ. ……………… 14分 18.(本小题满分13分)(Ⅰ)解:函数1e ()44x f x x +=+的定义域为{|x x ∈R ,且1}x ≠-. ……………… 1分11122e (44)4e 4e ()(44)(44)x x x x xf x x x ++++-'==++. ……………… 3分令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:x(,1)-∞- (1,0)-(0,)+∞()f x '--+()f x↘↘↗……………… 5分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞.ABCPHMNz x yD所以当0x =时,函数()f x 有极小值e(0)4f =. ……………… 6分 (Ⅱ)解:因为 1a >,所以 22244(2)(1)0ax x x a x ++=++->,所以函数()f x 的定义域为R , ……………… 7分求导,得12112222e (44)e (24)e (42)()(44)(44)x x x ax x ax x ax a f x ax x ax x +++++-++-'==++++,…… 8分令()0f x '=,得10x =,242x a=-, ……………… 9分 当 12a <<时,21x x <,当x 变化时,()f x 和()f x '的变化情况如下:x4(,2)a-∞-42a -4(2,0)a-(0,)+∞()f x '+-+()f x↗↘↗故函数()f x 的单调减区间为4(2,0)a -,单调增区间为4(,2)a-∞-,(0,)+∞. ……………… 11分当 2a =时,210x x ==,因为12222e ()0(244)x x f x x x +'=++≥,(当且仅当0x =时,()0f x '=)所以函数()f x 在R 单调递增. ……………… 12分 当 2a >时,21x x >,当x 变化时,()f x 和()f x '的变化情况如下:x(,0)-∞4(0,2)a-42a-4(2,)a-+∞()f x '+-+()f x↗↘↗故函数()f x 的单调减区间为4(0,2)a-,单调增区间为(,0)-∞,4(2,)a -+∞. 综上,当 12a <<时,()f x 的单调减区间为4(2,0)a -,单调增区间为4(,2)a-∞-,(0,)+∞; 当 2a =时,函数()f x 在R 单调递增;当 2a >时,函数()f x 的单调减区间为4(0,2)a-;单调增区间为(,0)-∞,4(2,)a -+∞. ……………… 13分 19.(本小题满分14分)(Ⅰ)解:椭圆W 的右焦点为(1,0)M , ……………… 1分因为线段MB 的中点在y 轴上, 所以点B 的横坐标为1-, 因为点B 在椭圆W 上,将1x =-代入椭圆W 的方程,得点B 的坐标为3(1,)2-±. ……………… 3分 所以直线AB (即MB )的方程为3430x y --=或3430x y +-=.…………… 5分 (Ⅱ)证明:设点B 关于x 轴的对称点为1B (在椭圆W 上),要证点B 与点C 关于x 轴对称, 只要证点1B 与点C 重合,.又因为直线AN 与椭圆W 的交点为C (与点A 不重合),所以只要证明点A ,N ,1B 三点共线. ……………… 7分 以下给出证明:由题意,设直线AB 的方程为(0)y kx m k =+≠,11(,)A x y ,22(,)B x y ,则122(,)B x y -.由 223412,,x y y kx m ⎧+=⎨=+⎩得 222(34)84120k x kmx m +++-=, ……………… 9分 所以 222(8)4(34)(412)0km k m ∆=-+->,122834km x x k +=-+,212241234m x x k -=+. ……………… 10分在y kx m =+中,令0y =,得点M 的坐标为(,0)mk-,由4OM ON ⋅=,得点N 的坐标为4(,0)km-, ……………… 11分 设直线NA ,1NB 的斜率分别为NA k ,1NB k ,则 1211122121212444444()()NA NB k kx y y x y y y y m m k k k k k k x x x x m m m m+⨯++⨯--=-=++++ ,………12分 因为 21112244k k x y y x y y m m+⨯++⨯ 21112244()()()()k k x kx m kx m x kx m kx m m m=+++⨯++++⨯ 2121242()()8k k x x m x x k m =++++2222412482()()()83434m k kmk m k k m k-=⨯++-+++22323824832243234m k k m k k k k k ---++=+0=, ……………… 13分 所以 10NA NB k k -=,所以点A ,N ,1B 三点共线,即点B 与点C 关于x 轴对称. ……………… 14分 20.(本小题满分13分)(Ⅰ)解:11b =,21b =,32b =. ……………… 3分 (Ⅱ)解:由题意,得1231n a a a a =<<<<<,结合条件*n a ∈N ,得n n a ≥. ……………… 4分 又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 5分 设2 a k =,则 2k ≥. 假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥. 所以21b =,2k b =.因为{}n b 为等差数列,所以公差210d b b =-=,所以1n b =,其中*n ∈N . 这与2(2)k b k =>矛盾,所以22a =. ……………… 6分 又因为123n a a a a <<<<<,所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . ……………… 7分 因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a =. ……………… 8分 (Ⅲ)解:设2 (1)a k k =>,因为123n a a a a <<<<<,所以1211k b b b -====,且2k b =,所以数列{}n b 中等于1的项有1k -个,即21a a -个; ……………… 9分 设3 ()a l l k =>,则112l k k b b b -+====, 且3l b =,所以数列{}n b 中等于2的项有l k -个,即32a a -个; ……………… 10分……以此类推,数列{}n b 中等于1p -的项有1p p a a --个. ……………… 11分 所以1221321(1())))2((p q p b b b a a a a a p a p -++=-+--+-+++ 121(1)p p a a p a a p -=-----++121()p p p pa p a a a a -=+-++++(1)p q A =+-.即12(1)q q A b b b p ++++=-. ……………… 13分。
2014北京西城区高三期末数学(理)试题答案
2014.1
13.1
2
14. (1,1)
π
注:第 10、13、14 题第一问 2 分,第二问 3 分.
三、解答题:本大题共 6 小题,共 80 分. 其他正确解答过程,请参照评分标准给分.
15.(本小题满分 13 分)
(Ⅰ)解:因为 g ( x )
sin(
x
π )(
0) 的最小正周期为 π
,
3
所以 2 ,解得 ω 2 . |ω|
5
55
分
………………13
由
y3
1 k
k
2 5
,得 k
1
5
26
,验证知符合题意.
所以当 k 1 26 时, O D 有最小值 2 5 .
5
5
分
………………14
20.(本小题满分 13 分)
(Ⅰ)解:由等比数列{an} 的 a1 =
4 ,q =
1, 2
得 a1 = 4 , a2 = 2 , a3 = 1 ,且当 n > 3 时, 0 < an < 1 .
因为 bn = [an ] ,
所以 a1 [3, 4) , an [2, 3)(2≤ n≤2014) . 分
由 q a2 ,得 q 1 . a1
分
因为 a2014 a2 q 2012 [ 2, 3) ,
所以 q 2012 ≥ 2 2 , a2 3
所以
2 q 2012 1 ,即
21 ( ) 2012 q 1 .
(92, 90) , (92, 91) ,
(92, 92) ,
……………… 9 分
则这两名同学成绩之差的绝对值 X 的所有取值为 0,1, 2, 3, 4 .
【解析】【2014西城一模】北京市西城区2014届高三一模-数学(文)考试试题-Word版含解析
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设全集{}02U x x =<<,集合{}01A x x =<≤,则集合U A =ð( )A.()0,1B.(]0,1C.()1,2D.[)1,22.已知平面向量()2,1a =-,()1,3b =,那么a b +等于( )A.5B.13C.17D.133.已知双曲线()2222:10,0x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心 率为( )A.2B.2C.3D.55=,故选D.考点:1.双曲线的几何性质;2.双曲线的离心率4.某几何体的三视图如图所示,则该几何体的体积为( )A.2B.43C.4D.55.下列函数中,对于任意x R ∈,同时满足条件()()f x f x =-和()()f x f x π-=的函数是( )A.()sin f x x =B.()sin cos f x x x =C.()cos f x x =D.()22cos sin f x x x =-()22cos sin cos2f x x x x =-=,该函数是偶函数,且以π为最小正周期的周期函数,故选D.正(主)视图 俯视图 侧(左)视图 2 3 1 251考点:1.二倍角公式;2.三角函数的奇偶性与周期性6.设0a >,且1a ≠,则“函数log a y x =在()0,+∞上是减函数”是“函数()32y a x =-在R 上是增函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( )A.4B.5C.6D.78.如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A.4个B. 6个C.10个D.14个【答案】C【解析】试题分析:分以下两种情况讨论:(1)点P 到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点P 位于正四面体各棱的中点,符合条件的有6个点;(2)点P 到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点P 在正四面体各侧面的中心点,符合条件的有4个点,故选C.考点:新定义第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设复数12i x yi i-=++,其中x 、y R ∈,则x y +=______.10.若抛物线2:2C y px =的焦点在直线20x y +-=上,则p =_____;C 的准线方程为_____. 4p =,此时抛物线的准线方程为2x =-.BAD C . P考点:抛物线的几何性质11.已知函数()3,01,01x x f x x x +≤⎧⎪=⎨>⎪+⎩,若()02f x =,则实数0=x ______;函数()f x 的最大值为_____.12.执行如图所示的程序框图,如果输入2a =,2b =,那么输出的a 值为______.【答案】256.【解析】试题分析:3log 24>不成立,执行第一次循环,224a ==; 3log 44>不成立,执行第二次循环,2416a ==;4333log 164log 3log 81>==不成立,执行第三次循环,216256a ==; 开始b a a =3log 4a >输出a结束 否 是 输入a , b33log 2564log 81>=成立,跳出循环体,输出a 的值为256,故选C.考点:算法与程序框图13.若不等式组1026ax y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是_______.范围是()3,5.考点:线性规划14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,记()y f x =,则()1f =____; 函数()f x 的值域为_________.因为()()205080441f f =⨯-⨯+=>,因此()()max 04f x f ==, 所以函数()f x 的值域为4,45⎡⎤⎢⎥⎣⎦. A BD CP考点:1.平面向量的数量积;2.二次函数三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .已知222b c a bc +=+.(1)求A 的大小;(2)如果6cos 3=B ,2b =,求a 的值.考点:1.正弦定理与余弦定理;2.同角三角函数的基本关系16.(本小题满分13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品. 寿命(天) 频数 频率[)100,20010 0.05 [)200,30030 a [)300,400 70 0.35[)400,500 b 0.15[)500,60060 c 合计 200 1(1)根据频率分布表中的数据,写出a 、b 、c 的值;(2)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不.是次品的概率; (3)某人从这批灯泡中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽.....样.所得的结果相同,求n 的最小值.所以n 的最小值为10.考点:1.频率分布表;2.古典概型17.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD 是矩形,2AD AB =,SA SD =,SA AB ⊥, N 是棱AD 的中点.(1)求证://AB 平面SCD ;(2)求证:SN ⊥平面ABCD ;(3)在棱SC 上是否存在一点P ,使得平面PBD ⊥平面ABCD ?若存在,求出SP PC的值;若不存在,说明理由.【答案】(1)详见解析;(2)详见解析;(3)存在,且12SP PC =. 所以 SN AD ⊥.又因为 AB AD A =,所以 SN ⊥平面ABCD .(3)如图,连接BD 交NC 于点F ,在平面SNC 中过F 作//FP SN 交SC 于点P ,连接PD 、PC . B CA D S N因为 SN ⊥平面ABCD ,所以FP ⊥平面ABCD . 又因为FP ⊂平面PBD ,所以平面PBD ⊥平面ABCD . 在矩形ABCD 中,因为//ND BC , 所以12NF ND FC BC ==. 在SNC ∆中,因为//FP SN , 所以12NF SP FC PC ==. 则在棱SC 上存在点P ,使得平面PBD ⊥平面ABCD ,此时12SP PC =. 考点:1.直线与平面平行的判定与性质;2.直线与平面垂直 18.(本小题满分13分)已知函数()ln af x x x=-,其中a R ∈. (1)当2a =时,求函数()f x 的图象在点()()1,1f 处的切线方程; (2)如果对于任意()1,x ∈+∞,都有()2f x x >-+,求a 的取值范围. 【答案】(1)350x y --=;(2)(],1-∞-. 【解析】试题分析:(1)将2a =代入函数解析式,求出()1f '及()1f 的值,利用点斜式写出切线方程;(2)利用参数分离法将()2f x x >-+转化为2ln 2a x x x x <+-,构造新函数()2ln 2g x x x x x =+-,问题转化为()min a g x <来求解,但需注意区间()1,+∞端点值的取舍. 试题解析:(1)由()2ln f x x x =-,得()212f x x x'=+, 所以()13f '=, 又因为()12f =- ,B CA DSNFP所以函数()f x 的图象在点()()1,1f 处的切线方程为350x y --=;19.(本小题满分14分)已知椭圆()2222:10x y W a b a b+=>>的焦距为2,过右焦点和短轴一个端点的直线的斜率为1-,O 为坐标原点. (1)求椭圆W 的方程.(2)设斜率为k 的直线l 与W 相交于A 、B 两点,记AOB ∆面积的最大值为k S ,证明:12S S =.【答案】(1)2212x y +=;(2)详见解析. 【解析】试题分析:(1)利用题干中的已知条件分别求出a 、b 、c ,从而写出椭圆W 的方程;(2)设直线l 的方程为y kx m =+,将直线l 的方程与椭圆W 的方程联立,借助韦达定理求出弦长AB ,并求出原点到直线l 的距离d ,然后以AB 为底边,d 为高计算AOB ∆的面积,利用基本不等式验证1k =时和2k =时AOB ∆的验证知(*)成立;当2k =时,因为()22299AOB S m m ∆=-,20.(本小题满分13分)在数列{}n a 中,()1n a n N n*=∈. 从数列{}n a 中选出()3k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列12、13、15、18为{}n a 的一个4 项子列.(1)试写出数列{}n a 的一个3项子列,并使其为等比数列;(2)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足104d -<<;(3)如果{}n c 为数列{}n a 的一个6项子列,且{}n c 为等比数列,证明:1234566332c c c c c c +++++≤.【答案】(1)答案不唯一. 如3项子列:12、14、18;(2)详见解析;(3)详见解析.【解析】试题分析:(1)根据题中的定义写出一个3项子列即可;(2)根据定义得到11b ≤,利用数列{}n b 的定义与单调性得到0d >,然后由5140b b d =+>得到14d >-,从而证明104d -<<;(3)注意到数列{}n a 各项均为有理数,从而得到数列{}n c 的公比q 为正有理数,从而存在K 、L N *∈使得K q L=,并对K 是否等于1进行分类讨论,结合等比数列求和公式进行证明. 试题解析:(1)答案不唯一. 如3项子列:12、14、18; (2)由题意,知1234510b b b b b ≥>>>>>,所以 210d b b =-<. 因为 514b b d =+,11b ≤,50b >,所以 514011d b b =->-=-,解得 14d >-.543223*********M K K L K L K L KL L ⎛⎫=+++++ ⎪⎝⎭. 因为 2L ≥,K 、*M N ∈,所以 2345123456111116312222232c c c c c c ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤+++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.综上,12345663 32c c c c c c+++++≤. 考点:1.新定义;2.等比数列求和。
北京市西城区2014届高三二模数学(理科)试卷(有答案)
北京市西城区2014年高三二模试卷数学(理科) 2014.5第I 卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( ).A .(,2]-∞-B .[2,)-+∞C .(,2]-∞D .[2,)+∞2.在复平面内,复数2(12i)z =+对应的点位于( ).A . 第一象限B .第二象限C .第三象限D .第四象限3.直线2y x =为双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线,则双曲线C 的离心率是( ). A .5B .5C .3D .3 4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ).A . 2A ∈,且4A ∈B . 2A ∈,且4A ∈C . 2A ∈,且25A ∈D .2A ∈,且17A ∈5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是( ).A .1B .2C . π2D .π7.在平面直角坐标系xOy中,不等式组0,0,80xyx y⎧⎪⎨⎪+-⎩所表示的平面区域是α,不等式组04,010xy⎧⎨⎩所表示的平面区域是β.从区域α中随机取一点(,)P x y,则P为区域β内的点的概率是().A.14B.35C.34D.158.设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论:①()x Ω的最大值为2; ②()()x y Ω+Ω的取值范围是[2,22];③()()x y Ω-Ω恒等于0.其中所有正确结论的序号是( ).A .①B .②③C .①②D .①②③第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.61()x x +的二项展开式中,常数项为_________.10.在ABC 中,若14,3,cos 3a b A ===,则sin A =______,B =______.11.如图,AB 和CD 是圆O 的两条弦,AB 与CD 相交于点E ,且4,:4:1CE DE AE BE ===,则AE =_______;AC BD=______.12.执行如图所示的程序框图,输出的a 值为_________.13.设抛物线2:4C y x =的焦点为,F M 为抛物线C 上一点,(2,2)N ,则MF MN +的取值范围为_________.14.已知f 是有序数对集合**{(,)|,}M x y x y =∈∈N N 上的一个映射,正整数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =,对于任意的正整数,()m n m n >,映射f 由下表给出:则(3,5)f =_______,使不等式(2,)4x f x 成立的x 集合是_________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在平面直角坐标系xOy中,点(cos),(sin,0)A Bθθθ,其中θ∈R.(I)当2π3θ=,求向量AB的坐标;(II)当π[0,]2θ∈时,求AB的最大值.为了解某校学生的视力情况,现采用随机抽样的方式从该校的,A B两班中各抽5名学生进行视力检测.检测的数据如下:A班的5名学生的视力检测结果:43.,51.,46.,41.,49..B班的5名学生的视力检测结果:51.,49.,40.,40.,45..(I)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(II)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(III)现从班的上述5名学生中随机选取3名学生,用X表示其中视力大于46.的人数,求X的分布列和数学期望.如图,在三棱锥P ABC -中,PA ⊥底面,,ABC AC BC H ⊥为PC 的中点,M 为AH 的中点,2,1PA AC BC ===(I )求证:AH ⊥面PBC ;(II )求PM 与平面AHB 所成角的正弦值 (III )设点N 在线段PB 上,且,PN MN PBλ=∥平面ABC ,求实数λ的值.已知函数12e ()44x f x ax x +=++,其中a ∈R (I )若0a =,求函数()f x 的极值;(II )当1a >时,试确定函数()f x 的单调区间.设,A B是椭圆22:143x yW+=上不关于坐标轴对称的两个点,直线AB交x轴于点M(与点,A B不重合),O为坐标原点.(I)如果点M是椭圆W的右焦点,线段MB的中点在y轴上,求直线AB的方程;(II)设N为x轴上一点,且4OM ON⋅=,直线AN与椭圆W的另外一个交点为C,证明:点B与点C关于x轴对称.在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*1,n n n a a a +∈<N .设*m ∈N ,记使得n a m 成立的n 最大值为m b .(I )设数列为1,3,5,7,,写出123,,b b b 的值; (II )若{}n b 为等差数列,求出所有可能的数列{}n a ; (III )设12,p p a q a a a A =+++=,求12q b b b +++的值.(用,,p q A 表示)。
【2014西城一模】北京市西城区2014届高三一模 数学(文)试题 Word版含解析
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设全集{}02U x x =<<,集合{}01A x x =<≤,则集合U A =ð( )A.()0,1B.(]0,1C.()1,2D.[)1,22.已知平面向量()2,1a =-,()1,3b =,那么a b +等于( )A.5B.13C.17D.133.已知双曲线()2222:10,0x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心率为( )A.2B.2C.3D.55=,故选D.考点:1.双曲线的几何性质;2.双曲线的离心率4.某几何体的三视图如图所示,则该几何体的体积为( ) A.2 B.43C.4D.55.下列函数中,对于任意x R ∈,同时满足条件()()f x f x =-和()()f x f x π-=的函数是( ) A.()sin f x x = B.()sin cos f x x x = C.()cos f x x = D.()22cos sin f x x x =-()22cos sin cos2f x x x x =-=,该函数是偶函数,且以π为最小正周期的周期函数,故选D.正(主)视图俯视图侧(左)视图2 3 1251考点:1.二倍角公式;2.三角函数的奇偶性与周期性6.设0a >,且1a ≠,则“函数log a y x =在()0,+∞上是减函数”是“函数()32y a x =-在R 上是增函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( )A.4B.5C.6D.78.如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A.4个B. 6个C.10个D.14个 【答案】C 【解析】试题分析:分以下两种情况讨论:(1)点P 到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点P 位于正四面体各棱的中点,符合条件的有6个点;(2)点P 到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点P 在正四面体各侧面的中心点,符合条件的有4个点,故选C. 考点:新定义第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设复数12ix yi i-=++,其中x 、y R ∈,则x y +=______.10.若抛物线2:2C y px =的焦点在直线20x y +-=上,则p =_____;C 的准线方程为_____.4p =,此时抛物线的准线方程为2x =-.BADC. P考点:抛物线的几何性质11.已知函数()3,01,01x x f x x x +≤⎧⎪=⎨>⎪+⎩,若()02f x =,则实数0=x ______;函数()f x 的最大值为_____.12.执行如图所示的程序框图,如果输入2a =,2b =,那么输出的a 值为______.【答案】256. 【解析】试题分析:3log 24>不成立,执行第一次循环,224a ==;3log 44>不成立,执行第二次循环,2416a ==;4333log 164log 3log 81>==不成立,执行第三次循环,216256a ==;开始 b a a =3log 4a >输出a结束否是输入a , b33log 2564log 81>=成立,跳出循环体,输出a 的值为256,故选C.考点:算法与程序框图13.若不等式组1026ax y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是_______.范围是()3,5. 考点:线性规划14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,记()y f x =,则()1f =____; 函数()f x 的值域为_________.因为()()205080441f f =⨯-⨯+=>,因此()()max 04f x f ==,所以函数()f x 的值域为4,45⎡⎤⎢⎥⎣⎦.A BD C P考点:1.平面向量的数量积;2.二次函数三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .已知222b c a bc +=+. (1)求A 的大小; (2)如果6cos 3=B ,2b =,求a 的值.考点:1.正弦定理与余弦定理;2.同角三角函数的基本关系16.(本小题满分13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.寿命(天)频数频率[)100,200 10 0.05[)200,30030 a[)300,400700.35 [)400,500 b0.15[)500,60060 c合计2001(1)根据频率分布表中的数据,写出a 、b 、c 的值;(2)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不.是次品的概率; (3)某人从这批灯泡中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽.....样.所得的结果相同,求n 的最小值.所以n 的最小值为10.考点:1.频率分布表;2.古典概型17.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD 是矩形,2AD AB =,SA SD =,SA AB ⊥, N 是棱AD 的中点.(1)求证://AB 平面SCD ;(2)求证:SN ⊥平面ABCD ;(3)在棱SC 上是否存在一点P ,使得平面PBD ⊥平面ABCD ?若存在,求出SPPC的值;若不存在,说明理由.【答案】(1)详见解析;(2)详见解析;(3)存在,且12SP PC =. 所以 SN AD ⊥.又因为 ABAD A =,所以 SN ⊥平面ABCD .(3)如图,连接BD 交NC 于点F ,在平面SNC 中过F 作//FP SN 交SC 于点P ,连接PD 、PC .B CA DSN因为 SN ⊥平面ABCD ,所以FP ⊥平面ABCD . 又因为FP ⊂平面PBD ,所以平面PBD ⊥平面ABCD . 在矩形ABCD 中,因为//ND BC , 所以12NF ND FC BC ==. 在SNC ∆中,因为//FP SN , 所以12NF SP FC PC ==. 则在棱SC 上存在点P ,使得平面PBD ⊥平面ABCD ,此时12SP PC =. 考点:1.直线与平面平行的判定与性质;2.直线与平面垂直 18.(本小题满分13分)已知函数()ln af x x x=-,其中a R ∈. (1)当2a =时,求函数()f x 的图象在点()()1,1f 处的切线方程; (2)如果对于任意()1,x ∈+∞,都有()2f x x >-+,求a 的取值范围. 【答案】(1)350x y --=;(2)(],1-∞-. 【解析】试题分析:(1)将2a =代入函数解析式,求出()1f '及()1f 的值,利用点斜式写出切线方程;(2)利用参数分离法将()2f x x >-+转化为2ln 2a x x x x <+-,构造新函数()2ln 2g x x x x x =+-,问题转化为()min a g x <来求解,但需注意区间()1,+∞端点值的取舍. 试题解析:(1)由()2ln f x x x =-,得()212f x x x'=+, 所以()13f '=, 又因为()12f =- ,B CA DSNFP所以函数()f x 的图象在点()()1,1f 处的切线方程为350x y --=;19.(本小题满分14分)已知椭圆()2222:10x y W a b a b+=>>的焦距为2,过右焦点和短轴一个端点的直线的斜率为1-,O 为坐标原点. (1)求椭圆W 的方程.(2)设斜率为k 的直线l 与W 相交于A 、B 两点,记AOB ∆面积的最大值为k S ,证明:12S S =.【答案】(1)2212x y +=;(2)详见解析. 【解析】试题分析:(1)利用题干中的已知条件分别求出a 、b 、c ,从而写出椭圆W 的方程;(2)设直线l 的方程为y kx m =+,将直线l 的方程与椭圆W 的方程联立,借助韦达定理求出弦长AB ,并求出原点到直线l 的距离d ,然后以AB 为底边,d 为高计算AOB ∆的面积,利用基本不等式验证1k =时和2k =时AOB ∆的验证知(*)成立;当2k =时,因为()22299AOB S m m ∆=-,20.(本小题满分13分)在数列{}n a 中,()1n a n N n*=∈. 从数列{}n a 中选出()3k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列12、13、15、18为{}n a 的一个4 项子列.(1)试写出数列{}n a 的一个3项子列,并使其为等比数列;(2)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足104d -<<; (3)如果{}n c 为数列{}n a 的一个6项子列,且{}n c 为等比数列,证明:1234566332c c c c c c +++++≤.【答案】(1)答案不唯一. 如3项子列:12、14、18;(2)详见解析;(3)详见解析.【解析】试题分析:(1)根据题中的定义写出一个3项子列即可;(2)根据定义得到11b ≤,利用数列{}n b 的定义与单调性得到0d >,然后由5140b b d =+>得到14d >-,从而证明104d -<<;(3)注意到数列{}n a 各项均为有理数,从而得到数列{}n c 的公比q 为正有理数,从而存在K 、L N *∈使得K q L=,并对K 是否等于1进行分类讨论,结合等比数列求和公式进行证明. 试题解析:(1)答案不唯一. 如3项子列:12、14、18; (2)由题意,知1234510b b b b b ≥>>>>>,所以 210d b b =-<. 因为 514b b d =+,11b ≤,50b >,所以 514011d b b =->-=-,解得 14d >-.543223*********M K K L K L K L KL L ⎛⎫=+++++ ⎪⎝⎭. 因为 2L ≥,K 、*M N ∈,所以 2345123456111116312222232c c c c c c ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤+++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.综上,12345663 32c c c c c c+++++≤. 考点:1.新定义;2.等比数列求和。
北京西城区2014年高三一模试卷参考答案及评分标准
北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(文科)2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.B 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.4 2=-x 11.1- 3 12.256 13. (3,5) 14. 4[,4]5注:第10、11、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, (4)分又因为 (0,π)∈A ,所以 π3A =. ……………… 6分(Ⅱ)解:因为 cos =B (0,π)∈B ,所以 sin B ==, ………………8分由正弦定理 sin sin =a bA B, ………………11分得 sin 3sin ==b Aa B. ………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =,0.3=c . ……………… 3分(Ⅱ)解:设“此人购买的灯泡恰好不是次品”为事件A . ……………… 4分由表可知:这批灯泡中优等品有60个,正品有100个,次品有40个, 所以此人购买的灯泡恰好不是次品的概率为100604()2005+==P A . …………… 8分(Ⅲ)解:由(Ⅱ)得这批灯泡中优等品、正品和次品的比例为60:100:403:5:2=. (10)分所以按分层抽样法,购买灯泡数 35210()*=++=∈n k k k k k N ,所以n 的最小值为10. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 是矩形,所以 //AB CD , ……………… 1分又因为 AB ⊄平面SCD ,CD ⊂平面SCD ,所以 //AB 平面SCD . ……………… 3分(Ⅱ)证明:因为 , , AB SA AB AD SA AD A ⊥⊥=I ,所以 ⊥AB 平面SAD , (5)分又因为 SN ⊂平面SAD ,所以 AB SN ⊥. ……………… 6分因为 SA SD =,且N 为AD 中点, 所以 SN AD ⊥. 又因为 AB AD A =I ,所以 SN ⊥平面ABCD . ……………… 8分(Ⅲ)解:如图,连接BD 交NC 于点F ,在平面SNC 中过F 作//FP SN 交SC 于点P ,连接PB ,PD .因为 SN ⊥平面ABCD ,所以 FP ⊥平面ABCD . (11)又因为 FP ⊂平面PBD ,所以平面PBD ⊥平面ABCD . …………… 12在矩形ABCD 中,因为//ND BC , 所以12NF ND FC BC ==. 在SNC ∆中,因为//FP SN , 所以12NF SP FC PC ==. 则在棱SC 上存在点P ,使得平面⊥PBD 平面ABCD ,此时12SP PC =. ……… 14分18.(本小题满分13分) (Ⅰ)解:由2()ln f x x x=-,得212()f x x x '=+, (2)分所以 (1)3f '=,又因为 (1)2f =-,所以函数()f x 的图象在点(1,(1))f 处的切线方程为350x y --=. ……………… 4分(Ⅱ)解:由 ()2f x x >-+,得ln 2ax x x->-+, 即 2ln 2a x x x x <+-. ……………… 6分设函数2()ln 2g x x x x x =+-,则 ()ln 21g x x x '=+-, ……………… 8分因为(1,)x ∈+∞,所以ln 0x >,210x ->,所以当(1,)x ∈+∞时,()ln 210g x x x '=+->, ……………… 10分故函数()g x 在(1,)x ∈+∞上单调递增,所以当(1,)x ∈+∞时,()(1)1g x g >=-. ……………… 11分因为对于任意(1,)x ∈+∞,都有()2f x x >-+成立, 所以对于任意(1,)x ∈+∞,都有()a g x <成立.所以1a -≤. ……………… 13分19.(本小题满分14分)(Ⅰ)解:由题意,得椭圆W 的半焦距1c =,右焦点(1,0)F ,上顶点(0,)M b ,…… 1分 所以直线MF 的斜率为0101-==--MF b k , 解得 1b =, (3)分由 222a b c =+,得22a =,所以椭圆W 的方程为2212x y +=. (5)分(Ⅱ)证明:设直线l 的方程为y kx m =+,其中1k =或2,11(,)A x y ,22(,)B x y .… 6分由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分所以 2216880k m ∆=-+>, (*)由韦达定理,得122412kmx x k-+=+, 21222212m x x k -=+. ……………… 8分所以||AB == (9)分因为原点O 到直线y kx m =+的距离d =, (10)分所以 1||2AOB S AB d ∆=⋅=, ……………… 11分当1k =时,因为AOB S ∆=所以当232m =时,AOB S ∆的最大值1S =,验证知(*)成立; ……………… 12分当2k =时,因为AOB S ∆=,所以当292m =时,AOB S ∆的最大值2S =验证知(*)成立.所以 12S S =. ……………… 14分注:本题中对于任意给定的k ,AOB ∆.20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列:12,14,18. ……………… 2分(Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 4分因为 514b b d =+,151,0b b >≤, 所以 514011d b b =->-=-,解得 14d >-. 所以104d -<<. ……………… 7分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 23451234561(1)c c c c c c c q q q q q +++++=+++++. 因为{}n c 为{}n a 的一个6项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. ……………… 8分设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥). 当1K =时,因为 112q L =≤, 所以 23451234561(1)c c c c c c c q q q q q +++++=+++++ 2345111111()()()()22222+++++≤, 所以 1234566332c c c c c c +++++≤. ……………… 10分当1K ≠时,因为 556151==⨯K c c q a L是{}n a 中的项,且,K L 互质,所以 5*()a K M M =⨯∈N ,所以 23451234561(1)c c c c c c c q q q q q +++++=+++++543223*********()M K K L K L K L KL L=+++++. 因为 2L ≥,*,K M ∈N ,所以 234512345611111631()()()()2222232c c c c c c ++++++++++=≤. 综上, 1234566332c c c c c c +++++≤. ……………… 13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2014年高三一模试卷数 学(理科) 2014.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合2{|0}A x x =<≤,{|1}B x x =<,则集合()U A B = ð( ) (A )(,2]-∞(B )(,1]-∞(C )(2,)+∞(D )[2,)+∞2. 已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( ) (A )2(B )12(C )114(D )114-3.在极坐标系中,过点π(2,)2且与极轴平行的直线方程是( ) (A )2ρ=(B )2θπ=(C )cos 2ρθ= (D )sin =2ρθ4.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为( ) (A )4 (B )16 (C )256 (D )3log 165.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( ) (A )()sin =f x x (C )()cos =f x x (B )()sin cos =f x x x(D )22()cos sin =-f x x x6. “8m <”是“方程221108x y m m -=--表示双曲线”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )3 (B )4(C )5(D )68. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )(A ) 4个 (B )6个(C )10个(D )14个第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______. 10. 若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____.BADC. P11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是_______.13. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,(0)BC a a =>,P 为线段AD (含端点)上一个动点,设AP xAD = ,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:○1 当2a =时,函数()f x 的值域为[1,4]; ○2 (0,)a ∀∈+∞,都有(1)1f =成立;○3 (0,)a ∀∈+∞,函数()f x 的最大值都等于4. 其中所有正确结论的序号是_________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos 3=B ,2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿A D CP命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b 的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值;(Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.17.(本小题满分14分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(Ⅰ)求证:1⊥BC D E ; (Ⅱ)求证:1B C // 平面1BED ;(Ⅲ)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3,求线段1D E 的长度.18.(本小题满分13分)已知函数2ln ,,()23,,x x x a f x x x x a >⎧⎪=⎨-+-⎪⎩≤ 其中0a ≥.1(Ⅰ)当0a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程;(Ⅱ)如果对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <,求a 的取值范围.19.(本小题满分14分)已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.20.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等差数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<; (Ⅲ)如果{}n c 为数列{}n a 的一个(3)m m ≥项子列,且{}n c 为等比数列,证明:1231122m m c c c c -++++-≤.北京市西城区2014年高三一模试卷参考答案及评分标准高三数学(理科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.8 4x =-11. 12.(3,5) 13.4814.○2,○3注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, ……………… 3分 又因为 (0,π)∈A ,所以 π3A =. ……………… 5分(Ⅱ)解:因为 cos =B ,(0,π)∈B ,所以 sin 3B ==. ………………7分 由正弦定理sin sin =a bA B , ………………9分 得 sin 3sin ==b Aa B. ………………10分因为 222b c a bc +=+,所以 2250--=c c ,解得 1=c 因为 0>c ,所以 1=c . ………………11分故△ABC 的面积1sin 22S bc A ==………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. ……………… 2分 (Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. ……………… 4分 所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N , 所以n 的最小值为4. ……………… 6分 (Ⅲ)解:X 的所有取值为0,1,2,3. ……………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, ……… 8分 从本批次灯泡中购买3个,可看成3次独立重复试验, 所以033127(0)C (1)464P X ==⨯-=, 1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=, 33311(3)C ()464P X ==⨯=. ……………… 11分 所以随机变量X 的分布列为:………………12分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. …13分(注:写出1(3,)4X B ,3311()C ()(1)44kkkP X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥, 又因为 1= CD CC C ,所以 BC ⊥平面11DCC D , ………………2分 因为 1D E ⊂平面11DCC D , 所以1BC D E ⊥. ………………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以 1//EF B C . ………………6分 又因为 1⊄B C 平面1BED ,⊂EF平面1BED ,所以 1//B C 平面1BED . (8)(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥, 又因为 1D E CD ⊥,BC CD C = ,所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴 如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G . 设平面1BED 法向量为(,,)x y z =n ,因为 1(1,1,0), (0,0,)EB ED a ==,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩ n n得0,0.x y z +=⎧⎨=⎩ 令1x =,得(1,1,0)=-n . ………………11分 设平面11BCC B 法向量为111(,,)x y z =m ,因为 1(1,0,0), (1,1,)CB CB a ==,1由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩ m m得11110,0.x x y az =⎧⎨++=⎩令11z =,得(0,,1)a =-m . ………………12分由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3, 得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分 解得1a =. ………………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=, 又因为(1)0f =, 所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. ……………… 4分(Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, ……………… 5分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-.……………… 6分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. ……………… 8分 以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+,令()ln 10h x x '=+=,解得1e=x . ……………… 9分 随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e上单调递减,在1(,)e+∞上单调递增,且min 11()()e e==-h x h . ……………… 11分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . ……………… 12分因为 12e->-(即min max ()()h x g x >), 所以a 的取值范围为1,e[1]. ……………… 13分19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||CD ==, …………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分 (Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分 所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412kmx x k-+=+, 21222212m x x k -=+. ……………… 9分 由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k mk-+==+-, ………………10分解得 2k =±. ……………… 11分 由,C D 是线段MN 的两个三等分点,得||3||MN CD =.12|x x -= ……………… 12分即 12||3||m x x k-==,解得 m = ……………… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为2y x =,或y x =. ……………… 14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥, 所以 210d b b =-<. ……………… 3分若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤,所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠.所以 112b ≤, ……………… 6分因为 514b b d =+,50b >,所以 51511422d b b b =-->-≥,即18d >-, 综上,得108d -<<. ……………… 7分 (Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q-++++=++++ . 因为{}n c 为{}n a 的一个m 项子列,所以 q 为正有理数,且1q <,111()c a a *=∈N ≤. 设 (,K q K L L*=∈N ,且,K L 互质,2L ≥). 当1K =时,因为 112q L =≤, 所以 211231(1)m m c c c c c q q q-++++=++++ 211111()()222≤-++++ m , 112()2-=-m , 所以 112312()2m m c c c c -++++- ≤. ……………… 10分 当1K ≠时,因为 11111m m m m K c c qa L ---==⨯是{}n a 中的项,且,K L 互质, 所以 1*()-=⨯∈m a K M M N ,所以 211231(1)m m c c c c c q q q -++++=++++1232111111()----=++++ m m m m M K K L K L L . 因为 2L ≥,*K M ∈N ,,所以 21112311111()()2()2222m m m c c c c --++++++++=- ≤. 综上, 1231122m m c c c c -++++-≤. ……………… 13分。