高中数学数列放缩专题:用放缩法处理数列和不等问题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用放缩法处理数列和不等问题(教师版)

一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:

(1)数列{}n a 的通项公式; (2)设11+=

n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2

1

解:(1)由已知得2

)1(4+=n n a S ,2≥

n 时,211)1(4+=--n n a S ,作差得:12

12224----+=n n n n n a a a a a ,所

以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由

1211+=a S ,得11=a ,所以12-=n a n

(2))1

21

121(21)12)(12(111+--=+-==

+n n n n a a b n n n ,所以

2

1)12(2121)1211215131311(21<+-=+---+-=

n n n B n 真题演练1:(06全国1卷理科22题)设数列

{}n a 的前n 项的和,1412

2333

n n n S a +=

-⨯+,1,2,3,n =

(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n

n n

T S =,1,2,3,

n =,证明:

1

3

2n

i i T =<∑.

解: (Ⅰ)由 S n =43a n -13×2n+1+2

3, n=1,2,3,… , ① 得 a 1=S 1= 43a 1-13×4+23

所以a 1=2

再由①有 S n -1=43a n -1-13×2n +2

3

, n=2,3,4,…

将①和②相减得: a n =S n -S n -1= 43(a n -a n -1)-13

×(2n+1-2n

),n=2,3, …

整理得: a n +2n

=4(a n -1+2n -1

),n=2,3, … , 因而数列{ a n +2n

}是首项为a1+2=4,公比为4的等比数列,即 : a n +2n

=4×4

n -1

=

4n , n=1,2,3, …, 因而a n =4n -2n

, n=1,2,3, …,

(Ⅱ)将a n =4n -2n 代入①得 S n = 43×(4n -2n )-13×2n+1 + 23 = 13×(2n+1-1)(2n+1

-2)

= 23

×(2n+1-1)(2n

-1)

T n = 2n

S n = 32×2n

(2n+1-1)(2n

-1) = 32×(12n -1 - 12n+1-1) 所以, 1

n

i i T =∑

=

3

2

1

(

n

i =∑12i

-1 - 12i+1-1) = 32×(121-1 - 1121

n +-) < 3

2

二.先放缩再求和

1.放缩后成等比数列,再求和

例2.等比数列

{}n a 中,1

1

2

a

=-,前n 项的和为n S ,且798,,S S S 成等差数列. 设n

n n a a b -=12

,数列{}n b 前n 项的和为n T ,证明:1

3n T <.

解:∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比981

2

a q a =

=-. ∴n n

a )2

1

(-=. n

n n n

n n b 2

31

)2(41)2

1(141⋅≤--=

--=

. (利用等比数列前n 项和的模拟公式n

n S Aq A =-猜想)

∴n n b b b B ++=2131)211(312

11)

21

1(213123123123122<-=--⋅

=⋅++⋅+⋅≤n n . 真题演练2:(06福建卷理科22题)已知数列{}n a 满足*111,21().n n a a a n N +==+∈

(I )求数列

{}n a 的通项公式;

(II )若数列{}n b 滿足12111

*444(1)()n n b b b b n a n N ---=+∈,证明:数列{}n b 是等差数列;

(Ⅲ)证明:

*122311...()232n n a a a n n

n N a a a +-<+++<∈. (I )解:

*121(),n n a a n N +=+∈

112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列

12.n n a ∴+=即 2*21().n a n N =-∈

(II )证法一:

1211144...4(1).n n k k k k n a ---=+

12(...)42.n n k k k n nk +++-∴=

122[(...)],n n b b b n nb ∴+++-= ①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+-

即1(1)20,n n n b nb +--+=21(1)20.n n nb n b ++-++=

相关文档
最新文档