天津市西青区2019-2020学年高三第一学期期末考试数学试题(教师版)

合集下载

天津市2019-2020学年第一学期高三年级阶段性试测数学学科试卷

天津市2019-2020学年第一学期高三年级阶段性试测数学学科试卷

和平区2019~2020学年度第一学期高三年级阶段性试测数学学科试卷一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|12}A x x =-<,{B =-1,0,1,2},则A B 等于()A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}2.圆锥的高缩小为原来的13,底面半径扩大为原来的2倍,则它的体积是原来体积的()A.23B.32C.43D.343.0>”是“0x >”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.已知0.92a =,20.9b =,2log 0.9c =,则a 、b 、c 的大小关系为()A.c a b <<B.b c a<< C.a b c<< D.c b a<<5.已知函数()y f x =的图象与函数11y x =-的图象关于原点对称,则()A.1()1f x x=- B.1()1f x x =+ C.1()1f x x =+ D.1()1f x x =-+6.已知(2sin()cos()1()636f x x x x R πππ+=-+-∈,则()f x 是()A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知抛物线22(0)y px p =>上一点(1M ,)m 到其焦点的距离为5,双曲线221y xb-=的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数b 的值是()A.12C.2D.48.数列{}n a 满足13a =-,1111n n n a a a ++-=+,其前n 项积为n T ,则2019T 等于()A.12B.1C.32D.-39.已知()(1)f x k x =+,其中0k >.设()g x 是定义在R 上的周期函数,且()g x 的周期为2,当(0x ∈,2]时,201()2123x x g x x ⎧<≤⎪=⎨<≤⎪⎩.若在区间(0,6]上,关于x 的方程()()f x g x =恰有4个不同的实数根,则k 的取值范围是()A.2(21,12)(915 ,16 B.2[21,12)(915 ,16C.2[21,12[915 ,1)6D.2[21,12][915 ,1]6二、填空题:本大题共6小题,每小题5分,共30分.10.已知a R ∈,且0a >,i 为虚数单位,2a ii+=,则a 的值为____________.11.二项式8(2x 的展开式中常数项是___________.12.设ABC ∆的内角A 、B 、C 所对边的长分别为a 、b 、c ,若3sin 5sin A B =,2b c a +=,则cos C 的值为__________.13.已知圆C 的圆心坐标是(c ,0),半径是r .若直线230x y ++=与圆C 相切于点(1P ,2)-,则c =_______,r =_________.14.已知0x >,0y >,则代数式16(32)()M x y x y=++中的x 和y 满足_________时,M 取得最小值,其最小值为__________.15.如图,菱形ABCD 的边长为3,对角线AC 与BD 相交于O 点,AC =E 为BC 边(包含端点)上一点,则EA的取值范围是___________,EA ED ⋅ 的最小值为__________.三、解答题:本大题共5小题,每小题15分,共75分.解答应写出文字说明、证明过程或演算步骤.16.某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止课间操,若无雾霾则组织课间操.预报得知,在未来一周从周一到周五的课间操时间出现雾霾的概率是:前3天均为12,后2天均为34,且每一天出现雾霾与否是相互独立的.⑴求未来5天至少一天停止课间操的概率;⑵求未来5天组织课间操的天数X 的分布列和数学期望.17.如图,四边形ABCD 为直角梯形,BC ∥AD ,90BAD ∠=︒,2BC =,3AD =,四边形ABEF 为平行四边形,1AB =,2BE =,60EBA ∠=︒,平面ABEF ⊥平面ABCD .⑴求证:AE ⊥平面ABCD ;⑵求平面ABEF 与平面FCD 所成锐二面角的余弦值.18.已知等差数列{}n a 中,4720a a +=,且前9项和981S =.⑴求数列{}n a 的通项公式;⑵求数列2n an n b a =的前n 项和n T .19.已知椭圆C :22221(0)x y a b a b+=>>经过点,1),且离心率22e =.⑴求椭圆C 的方程;⑵若直线l 与椭圆C 相交于A 、B 两点,且满足90(AOB O ∠=︒为坐标原点),求AB 的取值范围.20.已知函数()ln (f x ax b x a =+,)b R ∈在点(1,(1))f 处的切线方程为112y x =-.⑴求a 、b 的值;⑵当1x >时,()0kf x x+<恒成立,求实数k 的取值范围;⑶设1()2xg x e x =-,求证:对于(0x ∈,)+∞,()()2g x f x ->恒成立.。

2019-2020学年天津市部分区高三(上)期末数学试卷

2019-2020学年天津市部分区高三(上)期末数学试卷

2019-2020学年天津市部分区高三(上)期末数学试卷一、选择题:本大题共9小题,每小题5分,共45分.1.(5分)设全集{1U =,2,3,4,5,6,7,8},集合{2A =,3,4,6},{1B =,4,7,8},则()(U A B =⋂ð )A .{4}B .{2,3,6}C .{2,3,7}D .{2,3,4,7}2.(5分)抛物线24y x =的准线方程是( ) A .1x =B .1y =C .1x =-D .1y =-3.(5分)设x R ∈,则“220x x -<”是“|1|2x -<”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分又不必要条件4.(5分)直线10x y -+=与圆22(1)4x y ++=相交于A 、B ,则弦AB 的长度为( ) AB.C .2D .45.(5分)已知数列{}n a 中,11a =,*12()n n a a n N +=∈,记{}n a 的前n 项和为n S ,则()A .21n n S a =-B .12n n S a =-C .2n n S a =-D .2n n S a =-6.(5分)已知偶函数()f x 在区间(,1)-∞-上单调递增,若3a ln =,21log 3b =,121log 5c =,则f (a ),f (b ),f (c )的大小关系为( ) A .f (a )f >(b )f >(c ) B .f (b )f >(c )f >(a )C .f (c )f >(b )f >(a )D .f (a )f >(c )f >(b )7.(5分)将函数()sin 2f x x =的图象向右平移6π个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .1()22g π=B .()g x 的最小正周期是4πC .()g x 在区间[0,]3π上单调递增D .()g x 在区间[3π,5]6π上单调递减8.(5分)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,点P 在C 的一条渐近线上,若||||(PO PF O =是原点),且POF ∆C 的方程是( ) A .22142x y -=B .22124x y -=C .22133x y -=D .2215x y -= 9.(5分)已知函数2|(2)|23()15363ln x x f x x x x -<⎧=⎨-+->⎩…,若关于x 的方程()f x kx =恰有三个互不相同的实数解,则实数k 的取值范围是( ) A .[3,12]B .(3,12)C .(0.12)D .(0,3)二、填空题:本大题共6小题,每小题5分,共30分.其中第14题答对1空得3分,全对得5分.10.(5分)i 是虚数单位,若复数z 满足(13)4i z i +=,则z = . 11.(5分)621(2)x x-的展开式中含3x 项的系数是 (用数字作答). 12.(5分)已知0a >,0b >,且31a b +=,则43a b+的最小值是 . 13.(5分)已知半径为2的球的球面上有A 、B 、C 、D 不同的四点,ABC ∆是边长为3的等边三角形,且DO ⊥平面(ABC O 为球心,D 与O 在平面ABC 的同一侧),则三棱锥D ABC -的体积为 .14.(5分)设{}n a 是等差数列,若59a =,2716a a +=,则n a = ;若*121()n n n b n N a a +=+∈,则数列{}n b 的前n 项和n S = .15.(5分)设点M 、N 、P 、Q 为圆222()x y r r R +=∈上四个互不相同的点,若0MP PN =,且()2PM PN PQ +=,则||PQ = .三、解答题:本大题共5个小题,共14×2+15+16×2=75分.解答应写出必要的文字说明、证明过程或演算步骤.16.(14分)在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c .已知2(s i n c o s c o s s i n)s i n A C A C A C+=+. (1)求证:a 、b 、c 成等差数列; (2)若7c =,23C π=,求b 和sin 2B 的值. 17.(14分)每年的12月4日为我国“法制宣传日”.天津市某高中团委在2019年12月4日开展了以“学法、遵法、守法”为主题的学习活动.已知该学校高一、高二、高三的学生人数分别是480人、360人、360人.为检查该学校组织学生学习的效果,现采用分层抽样的方法从该校全体学生中选取10名学生进行问卷测试.具体要求:每位被选中的学生要从10个有关法律、法规的问题中随机抽出4个问题进行作答,所抽取的4个问题全部答对的学生将在全校给予表彰.(1)求各个年级应选取的学生人数;(2)若从被选取的10名学生中任选3人,求这3名学生分别来自三个年级的概率; (3)若被选取的10人中的某学生能答对10道题中的7道题,另外3道题回答不对,记X 表示该名学生答对问题的个数,求随机变量X 的分布列及数学期望.18.(15分)如图,在三棱柱111ABC A B C -中,P 、O 分别为AC 、11A C的中点,11PA PC ==11111A B B C PB ===114AC =.(1)求证:PO ⊥平面111A B C ; (2)求二面角111B PA C --的正弦值;(3)已知H 为棱11B C 上的点,若11113B H BC =,求线段PH 的长度.19.(16分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(,0)F c -、2(,0)F c ,点P 在椭圆上,O 为原点. (1)若||PO c =,23F OP π∠=,求椭圆的离心率;(2)若椭圆的右顶点为A ,短轴长为2,且满足2211(||||3||ee OF OA F A +=为椭圆的离心率). ①求椭圆的方程;②设直线:2l y kx =-与椭圆相交于P 、Q 两点,若POQ ∆的面积为1,求实数k 的值.20.(16分)已知函数21()()(1)(2f x ln ex ax a x e =+++为自然对数的底数).(1)当1a =时,求曲线()y f x =在点(1,f (1))处的切线方程; (2)讨论()f x 的单调性; (3)当0a <时,证明3()12f x a --….2019-2020学年天津市部分区高三(上)期末数学试卷参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共45分.1.(5分)设全集{1U =,2,3,4,5,6,7,8},集合{2A =,3,4,6},{1B =,4,7,8},则()(U A B =⋂ð )A .{4}B .{2,3,6}C .{2,3,7}D .{2,3,4,7}【解答】解:{1U =,2,3,4,5,6,7,8},{2A =,3,4,6},{1B =,4,7,8}, {2U B ∴=ð,3,5,6},(){2U A B =⋂ð,3,6}.故选:B .2.(5分)抛物线24y x =的准线方程是( ) A .1x =B .1y =C .1x =-D .1y =-【解答】解:抛物线24y x =,得4124p ==, ∴其准线方程为1x =-.故选:C .3.(5分)设x R ∈,则“220x x -<”是“|1|2x -<”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分又不必要条件【解答】解:由220x x -<,得02x <<; 由|1|2x -<,得13x -<<. (0,2)(1-Ü,3),∴ “220x x -<”是“|1|2x -<”的充分不必要条件.故选:A .4.(5分)直线10x y -+=与圆22(1)4x y ++=相交于A 、B ,则弦AB 的长度为( )AB .C .2D .4【解答】解:圆22(1)4x y ++=的圆心坐标为(0,1)-,半径为4,圆心(0,1)-到直线10x y -+=的距离d ==,∴弦AB的长度为==故选:B .5.(5分)已知数列{}n a 中,11a =,*12()n n a a n N +=∈,记{}n a 的前n 项和为n S ,则()A .21n n S a =-B .12n n S a =-C .2n n S a =-D .2n n S a =-【解答】解:数列{}n a 中,11a =,*12()n n a a n N +=∈, 即112n n a a +=, {}n a ∴是以1为首项,以12为公比的等比数列, 11()2n n a -∴=,前n 项和为11112221212n n n n S a --==-=--, 故选:D .6.(5分)已知偶函数()f x 在区间(,1)-∞-上单调递增,若3a ln =,21log 3b =,121log 5c =,则f (a ),f (b ),f (c )的大小关系为( ) A .f (a )f >(b )f >(c ) B .f (b )f >(c )f >(a )C .f (c )f >(b )f >(a )D .f (a )f >(c )f >(b )【解答】解:偶函数()f x 在区间(,1)-∞-上单调递增,且函数的图象关于y 轴对称, ()f x ∴在区间(1,)+∞上单调递减, 3(1,2)a ln =∈,221log log 33b ==-,1221log log 525c ==>,且23log 3ln <, 则f (a )(3)f ln =,f (b )2(log 3)f =,f (c )2(log 5)f =, f ∴(c )f <(b )f <(a ), 故选:A .7.(5分)将函数()sin 2f x x =的图象向右平移6π个单位长度后得到函数()g x 的图象,则下列说法正确的是( )。

天津市部分区2019-2020学年度第一学期期末考试高三数学

天津市部分区2019-2020学年度第一学期期末考试高三数学

天津市部分区2019~2020学年度高三年级上学期期末考试数学试卷一、选择题:本大题共9小题,每小题5分,共45分.1. 设全集{U =1,2,3,4,5,6,7,8},集合{A =2,3,4,6},{B =1,4,7,8},则()U AB =ð( ) A.{4}B.{2,3,6}C.{2,3,7}D.{2,3,4,7} 2. 抛物线24y x =的准线方程是( )A.1x =B.1y =C.1x =-D.1y =-3. 设x R ∈,则“220x x -<”是“12x -<”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要条件4. 直线10x y -+=与圆22(1)4x y ++=相交于A 、B ,则弦AB 的长度为( )B. C.2D.45. 已知数列{}n a 中,11a =,*12()n n a a n N +=∈,记{}n a 的前n 项和为n S ,则( )A.21n n S a =-B.12n n S a =-C.2n n S a =-D.2n n S a =-6. 已知偶函数()f x 在区间(-∞,1)-上单调递增,若ln3a =,21log 3b =,121log 5c =,则()f a ,()f b ,()f c 的大小关系为( )A.()()()f a f b f c >>B.()()()f b f c f a >>C.()()()f c f b f a >>D.()()()f a f c f b >>7. 将函数()sin 2f x x =的图象向右平移6π个单位长度后得到函数()g x 的图象,则下列说法正确的是( ) A.1()22g π=B.()g x 的最小正周期是4πC.()g x 在区间[0,]3π上单调递增 D.()g x 在区间[3π,5]6π上单调递减 8. 已知双曲线C :22221(0x y a a b-=>,0)b >的右焦点为F ,0),点P 在C 的一条渐近线上,若(PO PF O =是原点),且POF ∆,则C 的方程是( )A.22142x y -=B.22124x y -=C.22133x y -=D.2215x y -= 9. 已知函数2ln(2)23()15363x x f x x x x -<≤⎧=⎨-+->⎩,若关于x 的方程()f x kx =恰有三个互不相同的实数解,则实数k 的取值范围是( ) A.[3,12] B.(3,12) C.(0。

2019-2020年高三上学期期末数学试卷含解析(I)

2019-2020年高三上学期期末数学试卷含解析(I)

2019-2020年高三上学期期末数学试卷含解析(I)一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣2,0},B={﹣2,3},则A∪B=.2.已知复数z满足(1﹣i)z=2i,其中i为虚数单位,则z的模为.3.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为.4.根据如图所示的伪代码,则输出S的值为.5.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为.6.若抛物线y2=8x的焦点恰好是双曲线的右焦点,则实数a的值为.7.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.8.若函数的最小正周期为,则的值为.9.已知等比数列{a n}的前n项和为S n,若S2=2a2+3,S3=2a3+3,则公比q的值为.10.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为.11.若实数x,y满足,则的最小值为.12.已知非零向量满足,则与夹角的余弦值为.13.已知A,B是圆上的动点,,P是圆上的动点,则的取值范围为.14.已知函数,若函数f(x)的图象与直线y=x 有三个不同的公共点,则实数a的取值集合为.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明或演算步骤)15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.已知2cosA(bcosC+ccosB)=a.(1)求角A的值;(2)若,求sin(B﹣C)的值.16.(14分)如图,在四棱锥E﹣ABCD中,平面EAB⊥平面ABCD,四边形ABCD 为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.17.(14分)如图,已知A,B两镇分别位于东西湖岸MN的A处和湖中小岛的B处,点C在A的正西方向1km处,tan∠BAN=,∠BCN=,现计划铺设一条电缆联通A,B两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P ,先沿线段AP 在地下铺设,再沿线段PB 在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km 、4万元∕km . (1)求A ,B 两镇间的距离;(2)应该如何铺设,使总铺设费用最低?18.(16分)在平面直角坐标系xOy 中,已知椭圆C : +=1(a >b >0)的离心率为,且右焦点F 到左准线的距离为6.(1)求椭圆C 的标准方程;(2)设A 为椭圆C 的左顶点,P 为椭圆C 上位于x 轴上方的点,直线PA 交y 轴于点M ,过点F 作MF 的垂线,交y 轴于点N .(i )当直线PA 的斜率为时,求△MFN 的外接圆的方程; (ii )设直线AN 交椭圆C 于另一点Q ,求△PAQ 的面积的最大值.19.(16分)已知函数ax ex x f -=2)(2,ax x x g -=ln )(,R a ∈(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.20.(16分)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 取值范围;(3)当a=2时,将数列{a n }中的部分项按原来的顺序构成数列{b n },且b 1=a 2,证明:存在无数个满足条件的无穷等比数列{b n }.附加题[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.如图,AB为半圆O的直径,D为弧BC的中点,E为BC的中点,求证:AB•BC=2AD•BD.[选修4-2:矩阵与变换](本小题满分0分)22.已知矩阵A=的一个特征值为2,其对应的一个特征向量为a=,求实数a,b的值.[选修4-4:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:ρsin(θ﹣)=m(m∈R),圆C的参数方程为(t为参数).当圆心C到直线l的距离为时,求m的值.[选修4-5:不等式选讲](本小题满分0分)24.已知a,b,c为正实数, +++27abc的最小值为m,解关于x的不等式|x+l|﹣2x<m.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B 题.(1)求甲选做D题,且乙、丙都不选做D题的概率;(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).26.已知等式(1+x)2n﹣1=(1+x)n﹣1(1+x)n.(1)求(1+x)2n﹣1的展开式中含x n的项的系数,并化简:++…+;(2)证明:()2+2()2+…+n()2=n.2016-2017学年江苏省苏北四市(徐州、淮安、连云港、宿迁)联考高三(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣2,0},B={﹣2,3},则A∪B={﹣2,0,3} .【考点】并集及其运算.【分析】利用并集定义直接求解.【解答】解:∵集合A={﹣2,0},B={﹣2,3},∴A∪B={﹣2,0,3}.故答案为:{﹣2,0,3}.【点评】本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.2.已知复数z满足(1﹣i)z=2i,其中i为虚数单位,则z的模为.【考点】复数代数形式的乘除运算.【分析】由(1﹣i)z=2i,得,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.【解答】解:由(1﹣i)z=2i,得=,则z的模为:.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为14.【考点】茎叶图.【分析】求出剩下的4个分数平均数,代入方差公式,求出方差即可.【解答】解:剩下的4个分数是:42,44,46,52,平均数是:46,故方差是:(16+4+0+36)=14,故答案为:14.【点评】本题考查了读茎叶图问题,考查求平均数以及方差问题,是一道基础题.4.根据如图所示的伪代码,则输出S的值为20.【考点】程序框图.【分析】根据条件进行模拟计算即可.【解答】解:第一次I=1,满足条件I≤5,I=1+1=2,S=0+2=2,第二次I=2,满足条件I≤5,I=2+1=3,S=2+3=5,第三次I=3,满足条件I≤5,I=3+1=4,S=5+4=9,第四次I=4,满足条件I≤5,I=4+1=5,S=9+5=14,第五次I=5,满足条件I≤5,I=5+1=6,S=14+6=20,第六次I=6不满足条件I≤5,查询终止,输出S=20,故答案为:20【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.5.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=,再用列举法求出所取2个数的和能被3整除包含的基本事件个数,由此能求出所取2个数的和能被3整除的概率.【解答】解:从1,2,3,4,5,6这六个数中一次随机地取2个数,基本事件总数n=,所取2个数的和能被3整除包含的基本事件有:(1,2),(1,5),(2,4),(3,6),(4,5),共有5个,∴所取2个数的和能被3整除的概率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.6.若抛物线y2=8x的焦点恰好是双曲线的右焦点,则实数a 的值为1.【考点】双曲线的简单性质.【分析】求得抛物线的焦点,双曲线的右焦点,由题意可得方程,解方程即可得到a的值.【解答】解:抛物线y2=8x的焦点为(2,0),双曲线的右焦点为(,0),由题意可得为=2,解得a=1.故答案为:1.【点评】本题考查双曲线的方程和性质,同时考查抛物线的焦点,考查运算能力,属于基础题.7.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.【考点】旋转体(圆柱、圆锥、圆台).【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面直径与高都是2,∴母线长为:=,∴圆锥的侧面积为:πrl=.故答案为:.【点评】本题考查了圆锥的侧面积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.8.若函数的最小正周期为,则的值为﹣.【考点】正弦函数的图象.【分析】利用正弦函数的周期性求得ω,再利用诱导公式求得的值.【解答】解:∵函数的最小正周期为=,∴ω=10,则=sin(10π•﹣)=sin=sin=﹣sin=﹣,故答案为:.【点评】本题主要考查正弦函数的周期性,利用诱导公式求三角函数的值,属于基础题.9.已知等比数列{a n}的前n项和为S n,若S2=2a2+3,S3=2a3+3,则公比q的值为2.【考点】等比数列的通项公式.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:∵S2=2a2+3,S3=2a3+3,∴a1=a1q+3,a1(1+q)=+3,∴q2﹣2q=0,q≠0.则公比q=2.故答案为:2.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为(﹣∞,﹣3] .【考点】函数奇偶性的性质.【分析】根据函数奇偶性的性质求出当x<0的解析式,讨论x>0,x<0,x=0,解不等式即可.【解答】解:若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)≤﹣5等价为2x﹣3≤﹣5即2x≤﹣2,无解,不成立;当x<0时,不等式f(x)≤﹣5等价为﹣2﹣x+3≤﹣5即2﹣x≥8,得﹣x≥3,即x≤﹣3;当x=0时,f(0)=0,不等式f(x)≤﹣5不成立,综上,不等式的解为x≤﹣3.故不等式的解集为(﹣∞,﹣3].故答案为:(﹣∞,﹣3].【点评】本题主要考查不等式的解集的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.11.若实数x,y满足,则的最小值为8.【考点】基本不等式.【分析】实数x,y满足,可得x=∈,解得y>3.则=y+3+=y﹣3++6,利用基本不等式的性质即可得出.【解答】解:∵实数x,y满足,∴x=∈,解得y>3.则=y+3+=y﹣3++6≥+6=8,当且仅当y=4(x=)时取等号.故答案为:8.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.12.已知非零向量满足,则与夹角的余弦值为.【考点】平面向量数量积的运算.【分析】利用两个向量的加减法的法则,以及其几何意义,余弦定理,数形结合求得与夹角的余弦值.【解答】解:非零向量满足,不妨设=1,设与夹角为θ,如图所示:设=,=,=+,则OA=0B=0C=1,设=2=2,则=2﹣,∠ODA即为θ,△OAC和△OBC都是边长等于3的等边三角形.利用余弦定理可得BD==,cosθ==,故答案为:.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,余弦定理的应用,属于中档题.13.已知A,B是圆上的动点,,P是圆上的动点,则的取值范围为[7,13] .【考点】圆与圆的位置关系及其判定.【分析】求出AB的中点的轨迹方程,即可求出的取值范围.【解答】解:取AB的中点C,则=2||,C的轨迹方程是x2+y2=,|C1C2|=5由题意,||最大值为5+1+=,最小值为5﹣1﹣=.∴的取值范围为[7,13],故答案为[:7,13].【点评】本题考查圆与圆的位置关系,考查学生的计算能力,正确转化是关键.14.已知函数,若函数f(x)的图象与直线y=x 有三个不同的公共点,则实数a的取值集合为[﹣20,﹣16] .【考点】分段函数的应用.【分析】因为y=sinx (x<1)与y=x无交点,故只需函数f(x)=x3﹣9x2+25x+a (x≥1)的图象与直线y=x有三个不同的公共点即可,只需g(x)=x3﹣9x2+24x+a (x≥1)与x轴有3个交点即可,【解答】解:因为y=sinx (x<1)与y=x无交点,故只需函数f(x)=x3﹣9x2+25x+a (x≥1)的图象与直线y=x有三个不同的公共点即可,令g(x)=x3﹣9x2+24x+a(x≥1),g′(x)=3x2﹣18x+24=3(x2﹣6x+8)=2(x﹣2)(x﹣4),当x∈(1,2),(4,+∞)时g(x)单调递增,当x∈(2,4)时g(x)单调递减,依题意只需g(x)=x3﹣9x2+24x+a(x≥1)与x轴有3个交点即可,及g(1)=16+a≤0,g(2)=20+a≥0,∴﹣20≤a≤﹣16.故答案为[﹣20,﹣16]【点评】题主要考查函数的图象的交点以及数形结合方法,数形结合是数学解题中常用的思想方法,属于基础题.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明或演算步骤)15.(14分)(2016秋•淮安期末)在△ABC中,角A,B,C的对边分别为a,b,c.已知2cosA(bcosC+ccosB)=a.(1)求角A的值;(2)若,求sin(B﹣C)的值.【考点】正弦定理;余弦定理.【分析】(1)由正弦定理化简已知等式可得2cosAsinA=sinA,结合sinA≠0,可求,结合范围A∈(0,π),可求A的值.(2)由已知利用同角三角函数基本关系式可求sinB,利用倍角公式可求sin2B,cos2B,由sin(B﹣C)=sin(2B﹣),利用两角差的正弦函数公式即可计算得解.【解答】(本题满分为14分)解:(1)由正弦定理可知,2cosA(sinBcosC+sinCcosB)=sinA,…(2分)即2cosAsinA=sinA,因为A∈(0,π),所以sinA≠0,所以2cosA=1,即,…(4分)又A∈(0,π),所以.…(6分)(2)因为,B∈(0,π),所以,…(8分)所以,,…(10分)所以=…(12分)==.…(14分)【点评】本题主要考查了正弦定理,同角三角函数基本关系式,倍角公式,两角差的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.16.(14分)(2016秋•淮安期末)如图,在四棱锥E﹣ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)取BE中点F,连结CF,MF,证明四边形MNCF是平行四边形,所以MN∥CF,即可证明直线MN∥平面EBC;(2)证明BC⊥平面EAB,得到BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,即可证明直线EA⊥平面EBC.【解答】证明:(1)取BE中点F,连结CF,MF,又M是AE的中点,所以MF=AB,又N是矩形ABCD边CD的中点,所以NC=AB,所以MF平行且等于NC,所以四边形MNCF是平行四边形,…(4分)所以MN∥CF,又MN⊄平面EBC,CF⊂平面EBC,所以MN∥平面EBC.…(7分)(2)在矩形ABCD中,BC⊥AB,又平面EAB⊥平面ABCD,平面ABCD∩平面EAB=AB,BC⊂平面ABCD,所以BC⊥平面EAB,…(10分)又EA⊂平面EAB,所以BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,所以EA⊥平面EBC.…(14分)【点评】本题考查线面平行、线面垂直的证明,考查学生分析解决问题的能力,属于中档题.17.(14分)(2016秋•淮安期末)如图,已知A,B两镇分别位于东西湖岸MN的A处和湖中小岛的B处,点C在A的正西方向1km处,tan∠BAN=,∠BCN=,现计划铺设一条电缆联通A,B两镇,有两种铺设方案:①沿线段AB 在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB 在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km、4万元∕km.(1)求A,B两镇间的距离;(2)应该如何铺设,使总铺设费用最低?【考点】导数在最大值、最小值问题中的应用.【分析】(1)由tan∠BAN=,∠BCN=,得到|AD|,|DB|、|AB|间的关系,然后利用直角三角形的性质求解;(2)方案①:总铺设费用为5×4=20(万元).方案②:设∠BPD=θ,则,其中θ0=∠BAN,在Rt△BDP中,,,则总铺设费用为.设,则,,求出函数的极小值,即函数的最小值得答案.【解答】解:(1)过B作MN的垂线,垂足为D,如图示:在Rt△ABD中,,所以,在Rt△BCD中,,所以CD=BD.则,即BD=3,所以CD=3,AD=4,由勾股定理得,(km).所以A,B两镇间的距离为5km.…(4分)(2)方案①:沿线段AB在水下铺设时,总铺设费用为5×4=20(万元).…(6分)方案②:设∠BPD=θ,则,其中θ0=∠BAN,在Rt△BDP中,,,所以.则总铺设费用为.…(8分)设,则,令f'(θ)=0,得,列表如下:所以f(θ)的最小值为.所以方案②的总铺设费用最小为(万元),此时.…(12分)而,所以应选择方案②进行铺设,点P选在A的正西方向km处,总铺设费用最低.…(14分)【点评】本题考查了简单的数学建模思想方法,考查了利用导数求函数的最值,是中档题18.(16分)(2016秋•淮安期末)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且右焦点F到左准线的距离为6.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(i)当直线PA的斜率为时,求△MFN的外接圆的方程;(ii)设直线AN交椭圆C于另一点Q,求△PAQ的面积的最大值.【考点】椭圆的简单性质.【分析】(1)由题意可知:离心率e==,则a=c,右焦点F到左准线的距离c+=6,即可求得c和a的值,则b2=a2﹣c2=8,即可求得椭圆方程;(2)(i)设直线方程为:y=(x+4),求得M点,即可求得NF的方程和N的坐标,则丨MN丨=6,则以MN为圆心(0,﹣1),半径为3,即x2+(y+1)2=9;(ii)设直线方程为:y=k(x+4),代入椭圆方程,求得P点坐标,求得直线PF方程,则求得N点坐标,则直线AN:y=﹣﹣,代入椭圆方程,求得M点坐标,求得丨AM丨,△PAQ的面积S===≤=10.【解答】解:(1)由题意可知:椭圆C: +=1(a>b>0)焦点在x轴上,由离心率e==,则a=c,由右焦点F到左准线的距离c+=6,解得:c=2,则a=4,由b2=a2﹣c2=8,∴椭圆的标准方程为:;(2)(i)由(1)可知:椭圆的左顶点(﹣4,0),F(2,0),设直线方程为:y=(x+4),即y=x+2,则M(2,0),k MF==﹣,则k NF=,直线NF:y=(x﹣2)=﹣4,则N(0,﹣4),丨MN丨=6,则以MN为圆心(0,﹣1),半径为3,即x2+(y+1)2=9,(ii)设直线方程为:y=k(x+4),∴,整理得:(1+2k2)x2+16k2x+32k2﹣16=0,解得:x1=4,x2=,则y2=,则P(,),∴k MF==﹣k,由M(0,4k),F(2,0),∴k NF=,则NF:y=(x﹣2),则N(0,﹣),则直线AN:y=﹣﹣,代入椭圆方程:整理得:(1+)x2+x+﹣16=0,解得:x1=4,x2=,则y2=,则Q(,),∴k PQ=,直线PQ:y﹣=(x﹣),则x M =﹣=,∴丨AM 丨=+4=,△PAQ 的面积S==••=,=≤=10,当且仅当2k=,即k=时,取最大值,△PAQ 的面积的最大值10.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考三角形的面积公式的应用,考查基本不等式的综合应用,属于难题.19.(16分)已知函数ax ex x f -=2)(2,ax x x g -=ln )(,R a ∈(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(1)通过讨论a 的范围,求出不等式的解集即可;(2)设h (x )=f (x )﹣g (x ),求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值,证出结论即可;(3)假设存在,得到对任意的x >0恒成立,根据函数的单调性判断即可.【解答】解:(1)当a=0时,,所以f (x )≤0的解集为{0};当a ≠0时,,若a>0,则f(x)≤0的解集为[0,2ea];若a<0,则f(x)≤0的解集为[2ea,0].综上所述,当a=0时,f(x)≤0的解集为{0};当a>0时,f(x)≤0的解集为[0,2ea];当a<0时,f(x)≤0的解集为[2ea,0].…(4分)(2)设,则.令h'(x)=0,得,列表如下:所以函数h(x)的最小值为,所以,即f(x)≥g(x).…(8分)(3)假设存在常数a,b使得f(x)≥ax+b≥g(x)对任意的x>0恒成立,即对任意的x>0恒成立.而当时,,所以,所以,则,所以恒成立,①当a≤0时,,所以(*)式在(0,+∞)上不恒成立;②当a>0时,则,即,所以,则.…(12分)令,则,令φ'(x)=0,得,当时,φ'(x)>0,φ(x)在上单调增;当时,φ'(x)<0,φ(x)在上单调减.所以φ(x)的最大值.所以恒成立.所以存在,符合题意.…(16分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.20.(16分)(2016秋•淮安期末)已知正项数列{a n}的前n项和为S n,且a1=a,(a n+1)(a n+1+1)=6(S n+n),n∈N*.(1)求数列{a n}的通项公式;(2)若对于∀n∈N*,都有S n≤n(3n+1)成立,求实数a取值范围;(3)当a=2时,将数列{a n}中的部分项按原来的顺序构成数列{b n},且b1=a2,证明:存在无数个满足条件的无穷等比数列{b n}.【考点】数列的求和;等比数列的通项公式.【分析】(1)当n=1时,(a1+1)(a2+1)=6(S1+1),故a2=5;当n≥2时,(a n﹣1+1)(a n+1)=6(S n﹣1+n﹣1),可得(a n+1)(a n+1﹣a n﹣1)=6(a n+1),因此a n+1﹣a n﹣1=6,分奇数偶数即可得出.(2)当n为奇数时,,由S n≤n(3n+1)得,恒成立,利用单调性即可得出.当n为偶数时,,由S n≤n(3n+1)得,a≤3(n+1)恒成立,即可得出.(3)证明:当a=2时,若n为奇数,则a n=3n﹣1,所以a n=3n﹣1.解法1:令等比数列{b n}的公比q=4m(m∈N*),则.设k=m(n﹣1),可得5×4m(n﹣1)=5×[3(1+4+42+...+4k﹣1)+1],=3[5(1+4+42+ (4)﹣1)+2]﹣1,….因为5(1+4+42+…+4k﹣1)+2为正整数,可得数列{b n}是数列{a n}中包含的无穷等比数列,进而证明结论.解法2:设,所以公比.因为等比数列{b n}的各项为整数,所以q为整数,取,则q=3m+1,故,由得,,n≥2时,,可得k n是正整数,因此以数列{b n}是数列{a n}中包含的无穷等比数列,即可证明.【解答】解:(1)当n=1时,(a1+1)(a2+1)=6(S1+1),故a2=5;当n≥2时,(a n﹣1+1)(a n+1)=6(S n﹣1+n﹣1),所以(a n+1)(a n+1+1)﹣(a n﹣1+1)(a n+1)=6(S n+n)﹣6(S n﹣1+n﹣1),即(a n+1)(a n+1﹣a n﹣1)=6(a n+1),又a n>0,所以a n+1﹣a n﹣1=6,…(3分)所以a2k﹣1=a+6(k﹣1)=6k+a﹣6,a2k=5+6(k﹣1)=6k﹣1,k∈N*,故…(2)当n为奇数时,,由S n≤n(3n+1)得,恒成立,令,则,所以a≤f(1)=4.…(8分)当n为偶数时,,由S n≤n(3n+1)得,a≤3(n+1)恒成立,所以a≤9.又a1=a>0,所以实数a的取值范围是(0,4].…(10分)(3)证明:当a=2时,若n为奇数,则a n=3n﹣1,所以a n=3n﹣1.解法1:令等比数列{b n}的公比q=4m(m∈N*),则.设k=m(n﹣1),因为,所以5×4m(n﹣1)=5×[3(1+4+42+…+4k﹣1)+1],=3[5(1+4+42+…+4k﹣1)+2]﹣1,…(14分)因为5(1+4+42+…+4k﹣1)+2为正整数,所以数列{b n}是数列{a n}中包含的无穷等比数列,因为公比q=4m(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n}有无数个.…(16分)解法2:设,所以公比.因为等比数列{b n}的各项为整数,所以q为整数,取,则q=3m+1,故,由得,,而当n≥2时,,即,…(14分)又因为k1=2,5m(3m+1)n﹣2都是正整数,所以k n也都是正整数,所以数列{b n}是数列{a n}中包含的无穷等比数列,因为公比q=3m+1(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n}有无数个.…(16分)【点评】本题考查了构造方法、等差数列与等比数列的通项公式及其求和公式,考查了分类讨论方法、推理能力与计算能力,属于难题.附加题[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.(2016秋•淮安期末)如图,AB为半圆O的直径,D为弧BC的中点,E为BC的中点,求证:AB•BC=2AD•BD.【考点】与圆有关的比例线段.【分析】证明△ABD∽△BDE,即可证明结论.【解答】证明:因为D为弧BC的中点,所以∠DBC=∠DAB,DC=DB,因为AB为半圆O的直径,所以∠ADB=90°,又E为BC的中点,所以EC=EB,所以DE⊥BC,所以△ABD∽△BDE,所以,所以AB•BC=2AD•BD.…(10分)【点评】本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.[选修4-2:矩阵与变换](本小题满分0分)22.(2016秋•淮安期末)已知矩阵A=的一个特征值为2,其对应的一个特征向量为a=,求实数a,b的值.【考点】特征向量的定义.【分析】由条件知,Aα=2α,从而,由此能求出a,b的值.【解答】解:∵矩阵A=的一个特征值为2,其对应的一个特征向量为a=,∴由条件知,Aα=2α,即,即,…(6分)∴,解得∴a,b的值分别为2,4.…(10分)【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意特征向量的性质的合理运用.[选修4-4:坐标系与参数方程](本小题满分0分)23.(2016秋•淮安期末)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:ρsin(θ﹣)=m(m∈R),圆C的参数方程为(t为参数).当圆心C到直线l的距离为时,求m的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】根据极坐标方程,参数方程与普通方程的关系求出曲线的普通方程,利用点到hi直线的距离公式进行求解即可.【解答】解:由ρsin(θ﹣)=m得ρsinθcos﹣ρcosθsin=m,即x﹣y+m=0,即直线l的直角坐标方程为x﹣y+m=0,圆C的普通方程为(x﹣1)2+(y+2)2=9,圆心C到直线l的距离,解得m=﹣1或m=﹣5.【点评】本题主要考查参数方程,极坐标方程与普通方程的关系,结合点到直线的距离公式解决本题的关键.[选修4-5:不等式选讲](本小题满分0分)24.(2016秋•淮安期末)已知a,b,c为正实数, +++27abc的最小值为m,解关于x的不等式|x+l|﹣2x<m.【考点】绝对值不等式的解法.【分析】根据基本不等式的性质求出m的值,从而解不等式即可.【解答】解:因为a,b,c>0,所以=,当且仅当时,取“=”,所以m=18.…(6分)所以不等式|x+1|﹣2x<m即|x+1|<2x+18,所以﹣2x﹣18<x+1<2x+18,解得,所以原不等式的解集为.…(10分)【点评】本题考查了基本不等式的性质,考查解不等式问题,是一道基础题.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(2016秋•淮安期末)甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B题.(1)求甲选做D题,且乙、丙都不选做D题的概率;(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)利用古典概率计算公式、相互独立事件概率计算公式即可得出.(2)利用互斥事件概率计算公式、相互独立事件概率计算公式即可得出.【解答】解:(1)设“甲选做D题,且乙、丙都不选做D题”为事件E.甲选做D题的概率为,乙,丙不选做D题的概率都是.则.答:甲选做D题,且乙、丙都不选做D题的概率为.(2)X的所有可能取值为0,1,2,3.,,,.所以X的概率分布为X的数学期望.【点评】本题考查了古典概率计算公式、互斥事件概率计算公式、相互独立事件概率计算公式及其数学期望计算公式,考查了推理能力与计算能力,属于中档题.26.(2016秋•淮安期末)已知等式(1+x)2n﹣1=(1+x)n﹣1(1+x)n.(1)求(1+x)2n﹣1的展开式中含x n的项的系数,并化简:++…+;(2)证明:()2+2()2+…+n()2=n.【考点】二项式定理的应用;二项式系数的性质.【分析】(1)(1+x)2n﹣1的展开式中含x n的项的系数为,由可知,(1+x)n﹣1(1+x)n的展开式中含x n的项的系数为.即可证明.(2)当k∈N*时,=.即可证明.【解答】(1)解:(1+x)2n﹣1的展开式中含x n的项的系数为,由可知,(1+x)n﹣1(1+x)n的展开式中含x n的项的系数为.所以.(2)证明:当k∈N*时,=.所以=.由(1)知,即,所以.【点评】本题考查了二项式定理的性质、组合数的性质,考查了推理能力与计算能力,属于中档题.。

天津市西青区2024学年高三数学第一学期期末学业水平测试试题含解析

天津市西青区2024学年高三数学第一学期期末学业水平测试试题含解析

天津市西青区2024学年高三数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>2.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦.其中,判断正确的个数为( ) A .1B .2C .3D .43.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( )A B 1 C .3- D 14.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若2||2PF =,则12F PF ∠的大小为( )A .150︒B .135︒C .120︒D .90︒5.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭6.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b +=的焦距为2,则双曲线的标准方程为( )A .22143x y -= B .22143y x -=C .22123x y -=D .22132y x -=7.在正项等比数列{a n }中,a 5-a 1=15,a 4-a 2 =6,则a 3=( ) A .2 B .4C .12D .88.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离9.已知命题:0p x ∀>,ln(1)0x +>;命题:q 若a b >,则22a b >,下列命题为真命题的是( ) A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝10. “11x y -≤+≤且11x y -≤-≤”是“221x y +≤”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件11.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元12.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( )A .8B .4C .2D .6二、填空题:本题共4小题,每小题5分,共20分。

天津市西青区2019-2020学年高一上学期期末考试数学试卷Word版

天津市西青区2019-2020学年高一上学期期末考试数学试卷Word版

数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分. 考试时间120分钟. 第I 卷1至2页,第II 卷3至5页.注意事项:答卷前务必将自己的姓名、准考号填写在答题卡上,答卷时,考生务必把答案涂写在答题卡各题目指定区域内相应的位置,答在试卷上的无效.祝各位考生考试顺利!第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分. 1. 已知集合{}022>--=x x x A ,则=A C RA .{}{}21>-<x x x xB . {}{}21≥-≤x x x x C .{}21≤≤-x x D .{}21<<-x x 2. 已知函数3log 2)(2-+=x x f x,则()f x 的零点所在的区间为A .(0,1)B .(1,2)C .(2,3)D .(3,4)3. 下列函数中既是奇函数又在区间)1,0(上单调递减的函数是A .x y -=B .3x y = C .x y tan = D .x y sin -=4.已知7log 2=a ,8log 3=b ,2.03.0=c ,则,,a b c 的大小关系为A .a b c <<B .a b c << C.b c a<<D .c a b <<5. 下列说法中,正确..的个数是 ①A ={}1,0的子集有3个;②命题“0),,0[2≥++∞∈∀x x x ”的否定是“),,0[0+∞∈∃x 使得0020<+x x ”; ③“4π=x ”是“函数x y 2sin =取得最大值”的充分不必要条件;④根据对数定义,对数式29log 3=化为指数式3921=;⑤若πβαπ432<<<,则βα-的取值范围为44πβαπ<-<-; ⑥04tan 3cos 2sin >⋅⋅.A .1个B .2个C .3个D .4个6. 函数1)2()(2+++=x a ax x f 是偶函数,则函数)(x f 的单调递增区间为A .(]0,∞-B .[)+∞,0C .()+∞∞-,D .(]1,-∞-7. 已知函数),0,0)(sin()(πϕϖϕϖ<>>+=A x A x f 是奇函数,且)(x f 的最小正周期为π,将)(x f y =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为)(x g .若2)8(=πf ,则)4(πgA .2-B .CD .28. 当1,0≠>a a 时,函数1)1(log )(+-=x x f a 的图象恒过定点),(n m A ,已知函数⎪⎩⎪⎨⎧>-≤-+=0,2ln 0,3)(2x x n x mx x x f ,若0)(=-k x f 有两个零点,则k 的取值范围为A. (]4,-∞-B. [)+∞-,3C.[]3,4--D. [){}4,3-+∞-第II 卷(非选择题 共110分)温馨提示:请将答案写在答题纸上,写在卷面上无效. 二、填空题:本大题共6小题,每小题5分,共30分.9. 已知⎪⎩⎪⎨⎧>≤=0log 0)21()(3x xx x f x ,若))31((f f = .10.=255sin .15. (本小题满分13分)16.(本小题满分13分)11. 若1lg lg =+y x ,则yx 52+的最小值为 .12. 已知三个式子1)31(<a ,131<a ,131log <a 同时成立,则a 的取值范围为 .13.《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为 平方米.14. 关于函数)32sin(4)(π+=x x f (x ∈R)有下列命题:①)(x f y =是以π2为最小正周期的周期函数; ②)(x f y =可改写为)62cos(4π-=x y ;③)(x f y =的图象关于)0,6(π-对称; ④ )(x f y =的图象关于直线6π-=x 对称;⑤函数)32sin(4)(π+=x x f 向右平移3π个单位长度所得图象的函数解析式为x y 2sin 4=.其中正确的序号为 .三、解答题:本大题共6个小题,共80分. 解答应写出文字说明、演算步骤或推理过程.已知53sin =α,(,)2παπ∈, (I ) sin 2α的值; (II )值)4tan(πα+.求关于x 不等式:02)2(2>++-x a ax (R a ∈)的解集.19. (本小题满分14分)20.(本小题满分14分)17. (本小题满分13分)已知命题:p 函数xa x f )2()(-=是R 上的减函数, 命题q :02232>-++a ax x 对∀x R ∈都成立.若命题p 和命题q 中有且只有一个真命题,求实数a 的取值范围.18. (本小题满分13分)已知函数21cos cos sin 3)(2+-=x x x x f . (I ) 求函数()f x 在⎥⎦⎤⎢⎣⎡-4,4ππ上的单调递增区间.; (II ) 若⎥⎦⎤⎢⎣⎡∈4,0πx ,,33)(=x f 求x 2cos 的值.已知幂函数mx x f =)(的图象过点)4,2(, 函数1)(2+++=bx x amx x g 是[]1,1-上的奇函数.(I) 求)(x g 的解析式;(II) 判断并证明)(x g 在[]1,1-上的单调性; (III) 解不等式0)1()(<--t g t g .已知函数3)3()(2+++=x k kx x f ,其中k 为常数.(I) 若不等式0)(>x f 的解集是{}31<<-x x ,求此时)(x f 的解析式;(II) 在(Ⅰ)的条件下,设函数()()g x f x mx =-,若)(x g 在区间[]2,2-上是单调递增函数,求实数m 的取值范围;(III) 是否存在实数k 使得函数()f x 在[1,4]-上的最大值是4?若存在,求出k 的值;若不存在,请说明理由.数学试卷答案一、选择题:1 2 3 4 5 6 7 8 C BD.ABACD.二、填空题9. 2 10.462+ 11. 2 12. 310<<a 13. 120 14.② ③ 三、解答题: 15.(Ⅰ) 53sin =α.(,)2παπ∈ ∴αα2sin 1cos --= ………………………………….2分=54-........................................3分 αααcos sin 22sin =.........................................5分=2524-…………………………………………………………………6 ∴αααcos sin tan = .........................................8分=43-……………………………………………………..9分∴)4tan(πα+=ααtan 1tan 1-+………………………………………….11分=431431+-=71…………………13分 16.(本题满分13分) 解:a =0时,不等式变为,解得<1;则不等式的解集为(-∞,1) …………..2分当0≠a 时,=)(x f,…………..3分02)2(2=++-x a ax 的根为1,221==x a x若a >2,则<1,解得>1或< ----------5分若a =2,则=1,0122>+-x x ,解得≠1 ----------7分若0<a <2,则>1,解得>或<1 ----------9分a <0时,不等式变为( -)( -1)<0,解得<<1 ----------12分综上所述, =0时,不等式的解集为(-∞,1);0<a <2时,不等式的解集(-∞,1)∪(,+∞);a =2时,不等式的解集(-∞,1)∪(1,+∞);a >2时,不等式的解集(-∞,)∪(1,+∞);a <0时,不等式的解集(,1); ----------13分17.解: 函数xa x f )2()(-=是R 上的减函数120<-<∴a解得:32<<a02232>-++a ax x 对∀x R ∈都成立0<∆∴则:0)223(42<--a a解得:42<<a当命题p 成立时:⎩⎨⎧≥≤<<4232a a a 或解得:a 不存在 当命题q 成立时,⎩⎨⎧<<≤≥4223a a a 或解得:43<≤a∴实数a 取值范围为: 43<≤a 18. (I )21cos cos sin 3)(2+-=x x x x f =21212cos 2sin 23++-x x ……………………2分 =x x 2cos 212sin 23- =)62sin(π-x ………………………………………………3分法一:令:62π-=x z …………………………………………………………………..4分⎥⎦⎤⎢⎣⎡-∈4,4ππx由36232πππ≤-≤-x ,即⎥⎦⎤⎢⎣⎡-∈3,32ππz ………………………………5分 因为:z y sin =在⎥⎦⎤⎢⎣⎡-∈3,32ππz 的单调递增区间为⎥⎦⎤⎢⎣⎡-3,21ππ……………………6分3622πππ≤-≤-∴x ,解得46ππ≤≤-∴x∴函数f (x )在⎥⎦⎤⎢⎣⎡-4,6ππ上为增…………………………8分法二: (I )21cos cos sin 3)(2+-=x x x x f =21212cos 2sin 23++-x x ……………………2分 =x x 2cos 212sin 23- =)62sin(π-x ………………………………………………3分由226222πππππ+≤-≤-k x k ,得36ππππ+≤≤-k x k ,k ∈Z………………………………………………5分x ∈⎥⎦⎤⎢⎣⎡-4,4ππ,画数轴可知:∴函数f (x )在⎥⎦⎤⎢⎣⎡-4,6ππ上为增…………………………8分(Ⅱ) ,33)(=x f 33)62sin(=-∴πx ………………….9分 ⎥⎦⎤⎢⎣⎡∈4,0πx 3626πππ≤-≤-∴x366)2(sin _1)62cos(2=-=-∴ππx x ……………………..11分 6sin)62sin(6cos)62cos(]6)62cos[(2cos ππππππ---=+-=∴x x x x ……………12分=632321332336-=⨯-⨯…………………………………13分19. (Ⅰ) 幂函数mx x f =)(的图象过点)4,2(,m24=∴,得2=m ……..1分12)(2+++=bx x ax x g 在[]1,1-上为奇函数.01)0(==∴ag ,0=∴a ………………………………………………………………………………………………2分 )1()1(--=∴g gbb ---=+∴2222,得0=b ………………………………………………………………………………………..4分12)(2+=x xx g …………………………………………………………………………………………5分 (Ⅱ) )(x g 在[]1,1-上单调增…………………………………6分(此判断结果必须有,没有扣1分)证明:任取[]1,1,21-∈x x ,且12,x x < 则=-)()(21x g x g 1212222211+-+x x x x =)1)(1()1(2)1(22221212221+++-+x x x x x x=)1)(1()1)((222212121++--x x x x x x …………………8分因为[]1,1,21-∈x x ∴021<-x x ,0121>-x x …………………………9分 所以0)()(21<-x g x g∴)()(21x g x g <,……………………………………………………..10分即:函数()f x 在区间[]1,1-上是增函数.…………………………11分 (Ⅲ) 0)1()(<--t g t g 即)1()(t g t g -<)(x g 在[]1,1-上单调增⎪⎩⎪⎨⎧-<≤-≤-≤≤-∴t t t t 111111…………………………………………13分(只写第三个不等式给1分) 解得:⎪⎪⎩⎪⎪⎨⎧<≤≤≤≤-∴212011t t t210<≤∴t ………………………14分20.解:(I)由题意得:3,1-是03)3(2=+++x k kx 的根…………………1分 ∵⎪⎩⎪⎨⎧+-=+-=⨯-k k k 331331, 解得1-=k ………………2分 ∴32)(2++-=x x x f ………………3分(另解:将根分别代入方程求解,也可,具体解法略)(II)由(1)可得 mx x x x g -++-=32)(23)2(2+-+-=x m x ,……..4分 其对称轴方程为 22m x -=若)(x g 在]2,2[-上为增函数,则222≥-m ,解得2-≤m ………………6分 综上可知,m 的取值范围为2-≤m(III)当0k =时, ()33f x x =+,函数)(x f 在[1,4]-上的最大值是15,不满足条件 …………………7分当0k ≠时,假设存在满足条件的k ,则()f x 的最大值只可能在,4,1-对称轴处取得, 其中对称轴kk x 230+-= ……………… …………8分 ① 若4)1()(max =-=f x f ,则有433=+--k k , k 的值不存在,………9分② 若4)4()(max ==f x f ,则4341216=+++k k ,解得2011-=k ,此时,对称轴]4,1[22490-∈=x ,则最大值应在0x 处取得,与条件矛盾,舍去 ……………11分 ③ 若4)()(0max==x f x f ,则:0<k ,且44)3(342=+-⨯kk k , ……………12分化简得09102=++k k ,解得1-=k 或9-=k ,满足 0<k ………………13分综上可知,当1-=k 或9-=k 时,函数()f x 在[1,4]-上的最大值是4. …………14分(III 另解:当0k =时,()33f x x =+,函数)(x f 在[1,4]-上的最大值是15,不满足条件 …………………7分 所以0≠k ,此时3)3()(2+++=x k kx x f 的对称轴为k k x 23+=若0>k ,023<+=kk x ,此时3)3()(2+++=x k kx x f 在[1,4]-上最大值为 4341216)4(=+++=k k f ,解得2011-=k ,与假设矛盾,舍……………8分 若0<k (1) 当423≥+-k k ,即31-≥k ,函数()f x 在[1,4]-为增,3)3()(2+++=x k kx x f 在[1,4]-上最大值为4341216)4(=+++=k k f ,解得2011-=k ,矛盾舍……..10分 (2) 当123-≤+-kk ,即3≥k ,矛盾舍……………………….11分 (3) 当4231≤+-≤-k k 。

天津市2019-2020学年数学高三上学期文数期末考试试卷A卷

天津市2019-2020学年数学高三上学期文数期末考试试卷A卷

天津市2019-2020学年数学高三上学期文数期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2018高一上·林芝月考) 已知集合 , ,则等于()A .B .C .D .2. (1分)已知双曲线,则它的渐近线的方程为()A .B .C .D .3. (1分) (2018高一上·长安月考) 若函数,则的值为()A . 5B . -1C . -7D . 24. (1分)如图,边长为1的正六边形ABCDEF中,向量在方向上的投影是()A . -B . -3C .D .5. (1分)数列的前n项的和等于()A .B .C .D .6. (1分) (2019高二上·汇川期中) 已知函数f(x)=2x-1,g(x)=1-x2 ,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)()A . 有最小值-1,最大值1B . 有最大值1,无最小值C . 有最小值-1,无最大值D . 有最大值-1,无最小值7. (1分)已知向量的夹角为45°,且||=1,|2-|=,则||=()A . 3B . 2C .D . 18. (1分)已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件9. (1分)圆x2+y2+2x﹣4y=0的半径为()A . 2B .C .D . 510. (1分) (2020高一下·大同月考) 函数在下列区间内递减的是()A .B .C .D .11. (1分)定义在R上的函数满足:恒成立,若,则与的大小关系为()A .B .C .D . 与的大小关系不确定12. (1分)一个正四棱锥和一个正四面体的所有棱长都相等,将它们的一个三角形重合在一起,组成一个新的几何体,则新几何体是()A . 五面体B . 六面体C . 七面体D . 八面体二、填空题 (共4题;共4分)13. (1分)(2018·南阳模拟) 某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润如下表所示:体积(升/件)重量(公斤/件)利润(元/件)甲乙在一次运输中,货物总体积不超过升,总重量不超过公斤,那么在合理的安排下,一次运输获得的最大利润为________元.14. (1分)已知函数,则函数的递减区间为________.15. (1分)(2016·枣庄模拟) 如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为________.16. (1分)(2017·江西模拟) 设△AnBnCn的三边长分别为an , bn , cn , n=1,2,3…,若b1>c1 ,b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,则∠An的最大值是________.三、解答题 (共7题;共15分)17. (2分)(2018高一下·三明期末) 在中,角所对的边分别为,且.(1)若,,求角;(2)若,的面积为,求的值.18. (2分) (2017高二上·嘉兴月考) 已知数列的前n项和,是等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)令 .求数列的前n项和 .19. (3分)如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=AC=1,BC=2,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.(Ⅰ)求证:平面PAC⊥平面ABC;(Ⅱ)求锐二面角M﹣AC﹣B的余弦值.20. (2分) (2018高二上·大庆期中) 已知椭圆C:的焦距为2,左右焦点分别为,,以原点O为圆心,以椭圆C的半短轴长为半径的圆与直线相切.Ⅰ 求椭圆C的方程;Ⅱ 设不过原点的直线l:与椭圆C交于A,B两点.若直线与的斜率分别为,,且,求证:直线l过定点,并求出该定点的坐标;若直线l的斜率是直线OA,OB斜率的等比中项,求面积的取值范围.21. (2分)(2020·安阳模拟) 已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.22. (2分) (2017高三上·唐山期末) 选修4-4:坐标系与参数方程在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)若射线分别交于两点,求的最大值.23. (2分)(2018·海南模拟) 设函数 .(1)若不等式的解集为,求的值;(2)在(1)的条件下,若不等式恒成立,求的取值范围.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共15分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。

天津市西青区2019年数学高一上学期期末考试试题

天津市西青区2019年数学高一上学期期末考试试题

天津市西青区2019年数学高一上学期期末考试试题一、选择题1.已知ABC ∆中,a =b =60B =,那么角A 等于( )A.135B.45C.135或45D.902.设m ,n 为两条不同的直线,α,β为两个不同的平面,则( ) A.若//m α,//n α,则//m n B.若//m α,//m β,则//αβ C.若//m n ,n α⊥,则m α⊥D.若//m α,αβ⊥,则m β⊥3.将sin 2y x =的图像怎样移动可得到sin 23y x π⎛⎫=+ ⎪⎝⎭的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 4.已知定义在R 上的奇函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()2xf x m =-,则()2019f =( )A .1-B .1C .2-D .25.设函数()f x 的定义域为D ,若对任意a D ∈,存在唯一的实数b D ∈满足()()()22f a f b f a =+,则()f x 可以是( ) A .sin xB .1x x+C .ln xD .x e6.已知函数()y f x =的周期为2,当[0,2]x ∈时,2()(1)f x x =-,如果5()()log 1g x f x x =--,则函数的所有零点之和为( ) A.8B.6C.4D.107.已知函数()()2log x(x 0)x f x 3x 0>⎧=≤⎨⎩,那么1f f 4⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值为( )A.9B.19C.9-D.19-8.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A.1盏 B.3盏 C.5盏D.9盏9.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110B.35C.310D.2510.在△ABC 中,若222a b c bc =+-,4bc =,则△ABC 的面积为( )A .12B .1CD .211.将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的,,有,则ϕ=( )A .512π B .3π C .4π D .6π 12.若任意两圆交于不同两点、,且满足,则称两圆为“心圆”,已知圆:与圆:为“心圆”,则实数的值为( )A .B .C .2D .二、填空题13.分形几何学是美籍法国数学家伯努瓦.B .曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生产成一个数形图,则第13行的实心圆点的个数是______.14.如图,半圆O 的直径为2,A 为直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ∆.则四边形OACB 的面积最大值为_____.15.已知()sin f x x x =+,若函数()()g x f x m =-在()0,x π∈上有两个不同零点αβ、,则()cos αβ+=_______.16.若正四棱锥的底面边长为,则该正四棱锥的体积为______. 三、解答题17.如图,在三棱锥P ABC -中,PA AB ⊥,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:平面BDE ⊥平面PAC ;(2)当//PA 平面BDE 时,求三棱锥P BDE -的体积.18.设数列{}n a 满足12323...2(n N*)n na a a na ⋅⋅⋅⋅=∈.(1)求{}n a 的通项公式;(2)求数列122n n a +⎧⎫+⎨⎬⎩⎭的前n 项和n S .19.已知函数()()()ln 1ln 1f x x x =--+.()1判断并证明函数()f x 的奇偶性;()2若()()2f m f m --=,求实数m 的值.20.已知圆C :(x ﹣a )2+(y ﹣2)2=4(a >0)及直线l :x ﹣y+3=0.当直线l 被圆C 截得的弦长为(Ⅰ)a 的值;(Ⅱ)求过点(3,5)并与圆C 相切的切线方程. 21.已知圆心为C 的圆过点,且与直线2y =相切于点()0,2。

【精准解析】天津市西青区2020届高三上学期期末考试数学试题+Word版含解析

【精准解析】天津市西青区2020届高三上学期期末考试数学试题+Word版含解析

直线 PF1 的斜率及直线 PF2 的斜率,根据直线平行及垂直的关系,即可求得 a, b 的关系,根据
只要坚持 梦想终会实现
-3-
高中学习讲义
双曲线的离心率公式,即可求得双曲线的离心率.
详解:设双曲线渐近线 l1 的方程为
y
b a
x

l2
的方程为
y
b a
x

则设 P 点坐标为 (x, b x) , a
-7-
高中学习讲义
故答案为: 4 3 .
【点睛】本题考查三棱锥外接球体积的计算,属基础题;本题的重点是要根据球心的位置去
推导四面体的几何形态,从而解决问题.
13.已知 ab>0,a+b=3,则 b2 a2 的最小值为_____. a 2 b1
3
【答案】
2
【解析】
【分析】
根据 a b 3 ,巧妙配凑出 1,使得均值不等式可以使用,再用均值不等式求解最小值.
【答案】 60
【解析】
只要坚持 梦想终会实现
-6-
高中学习讲义
【分析】 首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种 数. 【详解】首先选派男医生中唯一的主任医师,
然后从 5 名男医生、 4 名女医生中分别抽调 2 名男医生、 2 名女医生, 故选派的方法为: C52C42 10 6 60 . 故答案为 60 .
【点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情 发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元 素(或位置),再考虑其他元素(或位置).
12.已知四面体 P﹣ABC 的外接球的球心 O 在 AB 上,且 PO⊥平面 ABC,2AC 3 AB,若四 3

西青区高中2018-2019学年上学期高三数学期末模拟试卷含答案

西青区高中2018-2019学年上学期高三数学期末模拟试卷含答案
2x y 2 0
【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 16.设有一组圆 Ck:(x﹣k+1)2+(y﹣3k)2=2k4(k∈N*).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点. 其中真命题的代号是 (写出所有真命题的代号).
【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可, 否则给出证明;考查学生灵活应用知识分析解决问题的能力. 2. 【答案】B 【解析】解:由双曲线的一条渐近线方程为 y=x, 可设双曲线的方程为 x2﹣y2=λ(λ≠0), 代入点 P(2, ),可得 λ=4﹣2=2, 可得双曲线的方程为 x2﹣y2=2,
则不等式 xf(x)<0 的解为:

解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D.
第 7 页,共 17 页
8. 【答案】B 【解析】解:A=[0,4],B=[﹣4,0],所以 A∩B={0},∁R(A∩B)={x|x∈R,x≠0}, 故选 B. 9. 【答案】 D 【解析】解:由题意作出其平面区域, 将 u=2x+y 化为 y=﹣2x+u,u 相当于直线 y=﹣2x+u 的纵截距, 故由图象可知, 使 u=2x+y 取得最大值的点在直线 y=3﹣2x 上且在阴影区域内, 故(1,1),(0,3),( ,2)成立, 而点( ,0)在直线 y=3﹣2x 上但不在阴影区域内, 故不成立; 故选 D.
第 3 页,共 17 页
20.证明:f(x)是周期为 4 的周期函数; (2)若 f(x)= (0<x≤1),求 x∈[﹣5,﹣4]时,函数 f(x)的解析式.

天津市部分区2019-2020学年高三上学期期末数学试题

天津市部分区2019-2020学年高三上学期期末数学试题
解不等式 得; ,
解不等式 得: ,
因为 是 的真子集,
所以“ ”是“ ”的充分不必要条件.
故选:A.
【点睛】
本题考查简易逻辑中的充分条件与必要条件,求解时要转化成集合间的关系进行判断,能使求解过程更清晰、明了.
4.B
【解析】
【分析】
先求圆心到直线的距离 ,再利用弦长公式,即可求得答案.
【详解】
圆心到直线的距离 ,
(1)由题意得 ,利用勾股定理得 ,再利用椭圆的定义得到 的关系,从而求得离心率;
所以 .
故选:B.
【点睛】
本题考查直线与圆相交弦的求解,考查基本运算求解能力,属于基础题.
5.D
【解析】
【分析】
根据递推关系求得等比数列 的通项公式,再求出前 项和为 ,化简可得 .
【详解】
, ,
数列 是以 为首项, 为公比的等比数列,
, .
故选:D.
【点睛】
本题考查等比数列的通项公式与前 项和公式,考查基本量运算,求解时要注意通过化简找到 与 的关系.
所以 , ,
所以 .
故所求二面角 的正弦值为
(3)由(2)知 .
设点 ,则 .
又 , ,
所以 ,从而
即点 .
所以 .
所以 .
【点睛】
本题考查线面垂直的判定定理、向量法求空间角及空间中线段的长度,考查空间想象能力和运算求解能力,求解时注意空间直角坐标系建立的适当性.
19.(1) (2)① ②
【解析】
【分析】
A. 4 B. 2,3,6 C. 2,3,7 D. 2,3,4,7
2.抛物线 的准线方程为( )
A. B. C. D.
3.设 ,则“ ”是“ ”的()

天津市西青区2020届高三上学期期末考试数学试卷

天津市西青区2020届高三上学期期末考试数学试卷

数学试卷说明:本套试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间:120分钟.参考公式:柱体的体积公式Sh V =,其中S 表示柱体的底面积,h 表示柱体的高. 锥体的体积公式Sh V 31=,其中S 表示锥体的底面积,h 表示锥体的高. 球的体积公式334R V π=,其中R 表示球的半径. 第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一个选项是符合题目要求的. 将正确答案填在下面的表格内.1.若集合{}53211,0-,,,,=A ,集合{}7,6,5,4,3,2=B ,则集合B A I 等于 A. {}2 B. {}3,2 C. {}5,3,2 D. {}7,5,3,2 2.在ABC ∆中,内角C B A ,,所对的边分别是c b a ,,,若ABC ∆的面积为S 且()222c b a S -+=,则C tan 等于A .43B .34C .43-D . 34-3.设R b a ∈,,则""b a <是()"0"2<-a b a 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知1.15.0229.0,log ,3log 3log -==-=c b a π,则A. b a c >>B. c b a >>C. b c a >>D. a c b >>5.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为ji a ,例如934=a ,则464a 等于 1A. 2018B. 2019 2 3C. 2020D. 2021 4 5 67 8 9 10 ……6.双曲线()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,渐近线分别为21,l l ,点P 在第一象限内且在1l 上,若2l ∥2PF 且⊥2l 1PF ,则双曲线的离心率是A. 5B. 2C. 3D. 2 7.设函数()()()⎪⎭⎫⎝⎛<>+++=2,03sin πϕωϕωϕωx coc x x f 的图象与直线2=y 的两个相邻的交点之间的距离为π,且()()0=-+x f x f ,若()()ϕω+=x x g sin ,则A. ()x g 在⎪⎭⎫ ⎝⎛20π,上单调递增B. ()x g 在⎪⎭⎫ ⎝⎛60π,上单调递减C. ()x g 在⎪⎭⎫ ⎝⎛12512-ππ,上单调递增 D. ()x g 在⎪⎭⎫⎝⎛26ππ,上单调递减 8. 已知函数()⎪⎩⎪⎨⎧>+-≤<=3,83103130,o 23x x x x x g l x f ,d c b a ,,,是互不相等的正数,且()()()()d f c f b f a f ===,则abcd 的取值范围是A .()25,18B .()24,18C .()2521,D .()2421,第Ⅱ卷(非选择题 共110分)评卷人 得分9.已知i 为虚数单位, i-12=z ,则z = .10.在某市创建文明城市活动中,对800名志愿者的年龄进行统计后得到频率分布直方图如下.但是年龄组为[)3025,的数据不慎丢失.据此直方图估计,这800名志愿者年龄在[)3025,内的人数为 .11.在一次医疗救助活动中,需要从总医院外科的6名男医生、4名女医生中分别 抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须在内,则不同的选派方案共有 种(用数字作答).12.已知三棱锥ABC P -的外接球的球心O 在AB 上,且⊥PO 平面ABC ,又已知AB AC 32=,若三棱锥ABC P -的体积为23,则该三棱锥的外接球的体积等于 .13.已知0>ab ,3=+b a ,则1222+++b a a b 的最小值为 . 14.在平面直角坐标系中,O 为坐标原点,1===OD OC OB ,=++,二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上.点()11,A ,则⋅的取值范围为 .6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 在 ABC ∆中,内角C B A ,,所对的边分别为c b a ,,.已知3,2==c a ,又知)6cos(sin π-=B a A b(Ⅰ)求角B 的大小、b 边的长; (Ⅱ)求()B A -2sin 的值. 为弘扬中华优秀传统文化,某中学利用课余时间组织学生开展小型知识竞赛.比赛规则为:每个参赛者回答B A ,两组题目,每组题目各有两道题,每道题答对得1分,答错得0分,两组题目得分的和作为该选手的比赛成绩.小明估计,答对A 组每道题的概率均为43,答对B 组每道题的概率均为32. (Ⅰ)求小明A 组题得分比B 组题得分多一分的概率;(Ⅱ)记小明在比赛中得分为X ,按此估计X 的分布列和数学期望.15.(本小题满分13分)16.(本小题满分13分)得 分 评卷人已知{}n a 为等差数列,前n 项和为()*∈N n S n ,{}n b 是首相为2的等比数列,且公比大于0,4111433211,2,12b S a a b b b =-==+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列{}n n b a ⋅的前n 项和为()*∈N n T n .得 分 评卷人如图,在多面体ABCDEF 中,四边形ABCD 为平行四边形,平面⊥ADE 平面CDEF ,,60︒=∠ADE DE ∥CF ,DE CD ⊥,2=AD ,3==DC DE ,4=CF ,点G 是棱CF 上的动点.(Ⅰ)当3=CG 时,求证EG ∥平面ABF ; (Ⅱ)求直线B E 与平面ABCD 所成角的正弦值;(Ⅲ)若二面角D -AE -G 的余弦值为1122,求线段CG 的长. 得 分 评卷人17.(本小题满分13分)18.(本小题满分13分)19.(本小题满分14分)已知椭圆()012222>>=+b a b y a x C :,四点()()⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-23,1,23,1,1,0,1,14321P P P P 中,恰有三点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 不经过点2P 且与椭圆C 相交于B A ,两点.若直线A P 2与直线B P 2的斜率之和为1-,证明:直线l 过定点.已知函数()x ax x g ln 2+-=.(Ⅰ) 当1=a 时,求曲线()x g 在点()()2,2g 处切线的方程;(Ⅱ) 令()()x g x a x f +=22,已知函数()x f 有两个极值点1x ,2x ,且2121>⋅x x , (ⅰ)求实数a 的取值范围; (ⅱ)若存在⎥⎦⎤⎢⎣⎡+∈2,2210x ,使不等式()()()()2ln 2111ln 20++-->++a a m a x f 对任意实数a (取值范围内的值)恒成立,求实数m 的取值范围.20.(本小题满分14分)数学答案(请注意:解答题每一分都要有一个给分按钮!!!!!)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出四个选项中,只有一 项是符合题目要求的,将正确答案填在下表中.二、填空题:本大题共6小题,每小题5分,共30分.9. 2; 10. 061; 11. 60; 12. π34; 13.32; 14. ⎥⎦⎤⎢⎣⎡+221-2-21-, 三、解答题:本大题共6个小题,共80分. 解答应写出文字说明、演算步骤或推理过程. 15. (Ⅰ)由正弦定理可得:B a A b sin sin = ……………………………………………………………1分又由已知)6cos(sin π-=B a A b ,则)6cos(sin π-=B a B a所以)6cos(sin π-=B B6sinsin 6coscos ππB B += ……………………………………2分解得:3tan =B …………………………………………………………………………3分因为:()π,0∈B ,所以3π=B ……………………………………………………………………4分由余弦定理可得:B ac c a b cos 2222-+= ……………………………………………………5分又由已知3,2==c a ,所以721322932=⋅⋅⋅-+=b ……………………………………6分 所以7=b (7)分(Ⅱ)由正弦定理可得:Ba Ab sin sin =,所以73sin =A …………………………………………8分 又由已知可得:ca <,所以CA <,所以72cos =A ………………………………………9分因为AconAA sin 22sin =,所以7342sin =A ……………………………………………10分 因为AA A 22sin cos 2cos -=,所以712cos =A ……………………………………………11分 根据和角公式可得:()B A B A B A sin 2cos cos 2sin 2sin -=-……………………………12分所以,()14332sin =-B A ………………………………………………………………………13分 16. (Ⅰ)设小明A 组题1分,B 组题得0分为事件M ,A 组题得2分,B 组题得1分为事件N , 则()241314143212=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=C M P ……………………………………………………………… 1分()41313243122=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=C N P ……………………………………………………………… 2分所以()()()N P M P N M P +=Y (3)分24741241=+=所以,小明A组题得分比B组题得分多一分的概率为247……………………………………… 4分(Ⅱ) 依题意,X 的取值可以是4,3,2,1,0………………………………………………………………… 5分()14413141022=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==X P ……………………………………………………………………6分()7253231413143411122212=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C C X P ………………………………………7分()144373231434132413143212122222=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C C X P ……………………8分()1253231433243413122212=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C C X P ………………………………………9分()413243422=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==X P ……………………………………………………………………10分所以,X 的分布列为:…………………………………………………………11分所以,()4141253144372725114410⨯+⨯+⨯+⨯+⨯=X E ………………………………12分 617= ……………………………………………………………………………13分17.(Ⅰ)由已知1232,12b b b =+=,解得2q =…………………………………………………………………1分所以()11n n b b q -= ………………………………………………………………………………………2分()1222n n-== …………………………………………………………………………………3分由已知3411142,11b a a S b =-=,解得11a = …………………………………………………………………………………………………4分3d = …………………………………………………………………………………………………5分所以()1132n a a n d n =+-=- ………………………………………………………………………6分32n =- (7)分(Ⅱ)()322n n T n =- …………………………………………………………………………………………8分()()1231124272352322n nn n -=⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅+-⋅+-⋅① ……………………………9分()()23412124272352322nn n T n n +⋅=⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅+-⋅+-⋅② ……………………………10分 由①-②得()23112323232322n n n T n +-=⨯+⨯+⨯+⋅⋅⋅⋅⋅⋅+⋅--⋅ ………………………………11分()110532n n +=-+-⋅ …………………………………………………………………12分 所以()135210n n T n +=-+ ……………………………………………………………………………13分18. (Ⅰ)证明:由已知得CG ∥DE 且CG =DE . 则四边形CDEG 为平行四边形,∴CD ∥EG Q 四边形ABCD 为平行四边形,∴CD ∥AB ,∴EG ∥AB ………………………………………1分又QEG ⊄平面ABF ,Q AB ⊂平面ABF …………………………………………………………2分∴EG∥平面ABF ………………………………………………………………………………………3分(Ⅱ)过点AB 作AO DE ⊥,交DE 于点O ,过点O 作OK ∥CD ,交CF 于点K .QDECD ⊥,∴OK DE ⊥…………………………………………………………………………4分Q 平面⊥ADE 平面CDEF ,平面ADE I平面CDEF =DE ,AO ⊂平面ADE .∴AO ⊥平面CDEF ……………………………………………………………………………………5分以O 为原点,建立如图所示的空间直角坐标系-O xyz …………………………………………………6分则()0,0,0O ,()0,1,0D -,()0,2,0E ,()3,1,0C -,()3,3,0F ,(3A ,(3B设平面ABCD 的一个法向量为(),,m x y z =u r,则m DC ⊥u r u u u r 且m DA ⊥u r u u u r∴m DC m DA⎧⊥⎪⎨⊥⎪⎩u r u u u r u r u u u r∴0x y =⎧⎪⎨=⎪⎩………………………………………………………………………7分 解得1x y z =⎧⎪=⎨⎪=-⎩,∴()1m =-u r………………………………………………………………………8分又Q(3,2,BE =-u u u r∴cos ,m BE m BE m BE⋅=⋅u r u u u r u r u u u ru r u u u r ……………………………………………9分= ∴直线B E与平面ABCD所成角的正弦值为10分 (Ⅲ)设()01CG CF λλ=≤≤u u u r u u u r,∴()0,4,0CG λu u u r,∴()3,41,0G λ-……………………………………11分设平面AEG 的一个法向量为(),,n x y z =r,则n AE ⊥r u u u r 且N EG ⊥u u r u u u r解得(34,3,n λ=-r又Q平面AED的一个法向量为()1,0,0p =u r∴cos ,n p n p n p⋅===⋅r u r r u rr u r解得433λ=+(舍),433λ=-……………………………………………………12分∴0,3,03CG ⎛⎫- ⎪ ⎪⎝⎭u u u r ,∴3CG =u u u r ,∴33CG =-…………………………13分19. (Ⅰ) 根据椭圆对对称性可得,椭圆经过三点()2340,1,,P P P ⎛⎛- ⎝⎭⎝⎭…………………………1分所以222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩………………………………………………………………………………………2分 解得⎪⎩⎪⎨⎧==1422b a ……………………………………………………………………………………………3分 所以椭圆C的方程为1422=+y x …………………………………………………………………4分 (Ⅱ)(1)假设直线l 与x 轴垂直,可设直线l 对方程为x t =,由已知,2t <且0t ≠此时,A t ⎛ ⎝⎭,B t ⎛ ⎝⎭由已知121k k +=-,所以121k k +==-,解得2t =与2t <且0t ≠相矛盾,故直线l 与x轴不能垂直………………………………………………5分(2) 直线l 的方程为()1y kx m m =+≠联立,2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消元化简为()222418440kx kmx m +++-=…………………………6分由已知∆>,所以()()222222644414416(41)0k m k m k m ∆=-+⋅-=-+>…………7分设()11,A x y ,()22,B x y , 则122841kmx x k +=-+……………………………………………8分 21224441m x x k -⋅=+………………………………………………9分设直线A P 2与直线B P 2的斜率分别为1k 和2k 由已知121k k +=-,则1212111y y x x --+=- 化简为()()()12122110k x x m x x ++-+= ………………………………………………………10分代入得:()()22244821104141m kmk m k k --+⋅+-⋅=++………………………………………………11分解得12m k +=-……………………………………………………………………………………12分于是1:2m l y x m +=-+, 变形为()1:122m l y x ++=--……………………………………13分 所以直线l经过定的()2,1-…………………………………………………………………………14分20. (Ⅰ) 当1=a 时,函数()2ln g x x x=-+,定义域为{}0x x >…………………………………………1分()24ln 2g =-+ …………………………………………………………………2分(),12g x x=-+……………………………………………………………………………………………3分(),322g =-,即32k =- ………………………………………………………………………………4分所以曲线()x g 在点()()2,2g 处切线的方程为:()34ln 222y x +-=--化简为322ln 220x y +-+=……………………………………………………………………………5分 (Ⅱ) 由已知,()()22ln 02a f x x ax x x =-+>………………………………………………………………6分()(),212120ax ax f x ax a x x x-+=-+=> …………………………………………………………7分 (ⅰ)令(),0fx =,得2210ax ax -+=由已知函数()x f 有两个极值点1x ,2x ,且2121>⋅x x 则20440112a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩ …………………………………………………………………………………8分 解得12a << …………………………………………………………………………………………9分所以实数a 的取值范围是()1,2(ⅱ) 由2210ax ax -+=,解得:11x =-,21x =+因为0a >,所以函数()f x 在区间()10,x 上单调递增,在区间()12,x x 上单调递减,在区间()2,x +∞上单调递增因为12a <<,所以2112x =+<+,所以函数()f x在区间12⎡⎫++∞⎪⎢⎪⎣⎭上单调递增所以函数()f x在区间122⎡⎤+⎢⎥⎣⎦上单调递增所以,在区间122⎡⎤+⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+ 所以,命题“存在⎥⎦⎤⎢⎣⎡+∈2,2210x ,使不等式()()()()111ln 20+-->++a a m a x f 2ln 2+对任意实数a (取值范围内的值)恒成立”,等价于命题“不等式()()()22ln 2ln 111a a m a a -+++>--+ 2ln 2+对任意实数a (12a <<)恒成立”. ……………………………………………………………10分令()()()2ln 1ln 21,1,2h a a ma a m a =+--+-+∈………………………………………………11分则()10h =(取不到), ()'12121ma a m h a a ⎛⎫-++ ⎪⎝⎭=+①当0m ≥时,()'0h a <,所以函数()h a 在区间()1,2上递减,即()2ln 1ln 210a ma a m +--+-+<,不符合题意 ……………………………………………12分②0m >时,令()'121201ma a m h a a ⎛⎫-++ ⎪⎝⎭==+,解得112a m ⎛⎫=-+ ⎪⎝⎭所以函数()h a 在区间11,12m ⎛⎫⎛⎫-+⎪ ⎪⎝⎭⎝⎭上递减,在区间11,22m ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭上递增 所以,若要函数()h a 在区间()1,2上递增,只需1112m ⎛⎫-+≤ ⎪⎝⎭……………………………13分解得:14m ≤- 所以,所求实数m的取值范围是1,4⎛⎤-∞- ⎥⎝⎦…………………………………………………………14分。

天津市西青区2020届高三第一学期期末考试

天津市西青区2020届高三第一学期期末考试

天津市西青区2019-2020学年度第一学期高三期末一、单选:1.---Could I use this dictionary?--- _________. It’s a spare one.A. Good ideaB. You’d better notC. You’re welcomeD. Just go ahead2. You ____ be Carol. You haven’t changed a bit after all these years.A.must B.will C.shall D.can3. I found the lecture hard to follow because it ________ when I arrived.A.started B.had startedC.was starting D.would start4. —Only those who have a lot in common can get along well.—_________. Opposites sometimes do attract.A.I beg to differ B.I hope notC.I think so D.I appreciate that5. Clearly and thoughtfully________, the book inspires confidence in students who wish to seek their own answers.A.writing B.to writeC.being written D.written6. I was sent to the village last month to see how the development plan _______ in the past two years. A.had been carried out B.would be carried outC.is being carried out D.has been carried out7. It was________of Michael to inform us of his delay in case we got worried.A.considerate B.careless C.patient D. generous8. Caroline doesn’t have a gift for music,but she ______ it with hard work.A.goes back on B.takes away from C.makes up for D.catches up with9. Like ancient sailors, birds can find their way__________ the sun and the stars.A.used B.usingC.having used D.use10.Facing up to your problem _______running away from them is the best approach to working things out.A. more thanB. along withC. rather thanD. or rather11. I borrow the book Sherlock Holmes from the library last week, ______ my classmates recommended to me..A.who B.whenC.which D.Where12. The weather forecast says it will be cloudy with a slight _____ of rain later tonight.A.effect B.chanceC.sense D.change13. If you don’t understand something, you may research, study, and talk to other people _______ you figure it out.A.since B.thoughC.because D.until14.--- Is it true that Mike refused an offer from Yale University yesterday?--- Yeah, but I have no idea _______ he did it; that’s one of his favorite universities.A. whenB. thatC. whyD. how15. When their children lived far away from them , these old people felt ______from the world. A.carried away B.broken downC.brought up D.cut off二、完形填空:I fell in love with Yosemite National Park the first time I saw it, when I was 13. My parents took us there for camping. On the way out, I asked them to wait while I ran up to E1 Capitan, a ___16___ rock of 3,300 feet straight up. I touched that giant rock and knew ___17___ I wanted to climb it. That has been my life’s passion (钟爱) ever since--- ___18___ the rocks and mountains of Yosemite. I’ve long madeYosemite my ___19___.About 15 years ago I started seeing a lot of ___20___, like toilet paper, beer cans, and empty boxes, around the area. It’s ___21___ me why visitors started respecting the place less and treated such a___22___ home-like place this way.I tried ___23___ trash(垃圾)myself, but the job was too big. I would ___24___an hour or two on the job, only to find the area trashed all over again weeks later. Finally, I got so ___25__ it that I decided something had to ___26___.As a rock-climbing guide, I knew ___27___about organizing any big event. But in 2004, together with some climbers, I set a date for a ___28___. On that day, more than 300 people ___29___. Over three days we collected about 6,000 pounds of trash. It was ___30___ how much we were able to accomplish.I couldn’t believe the ___31___ we made ---the park looked clean!Each year volunteers come for the cleanup from everywhere. In 2007 alone, 2,945 people picked up 42,330 pounds of trash and ___32___ 132 miles of roadway.I often hear people ___33___ about their surroundings. If you are one of them, I would say the only way to change things is by ___34___ rather than complaining. We need to teach by ___35___. You can’t blame others unless you start with yourself.16.A.distant B.hard C.loose D.huge17.A.gradually B.finally C.immediately D.recently18.A.climbing B.painting C.measuring D.approaching19.A.home B.palace C.garden D.shelter20.A.dust B.waste C.materials D.resources21.A.against B.over C.beyond D.within22.A.new B.safe C.happy D.beautiful23.A.throwing away B.breaking downC.picking up D.digging out24.A.wait B.save C.kill D.spend25.A.delighted in B.tired ofC.satisfied with D.used to26.A.aim B.stress C.depend D.change27.A.anything B.nothing C.everything D.something28.A.cleanup B.picnic C.party D.concert29.A.looked around B.called backC.dropped out D.showed up30.A.puzzling B.amazing C.amusing D.interesting31.A.plan B.visit C.difference D.contact32.A.covered B.crossed C.measured D.designed33.A.argue B.complain C.quarrel D.talk34.A.thinking B.questioning C.doing D.watching35.A.method B.explanation C.research D.example三、阅读理解:AStill seeking a destination for your weekend break?There are some places which are probably a mere walk away from your college.King's Art CentreA day at the Centre could mean a visit to an exhibition of the work of one of the most interesting contemporary artists on show anywhere.This weekend sees the opening of an exhibition of four local artists.You could attend a class teaching you how to ‘learn from the masters’ or get more creative wit h paint—free of charge.The Centre also runs two life drawing classes for which there is a small fee.The Botanic GardenThe Garden has over 8,000 plant species;it holds the research and teaching collection of living plants for Cambridge University.The multibranched Torch Aloe here is impressive.The African plant produces red flowers above blue-green leaves,and is not one to miss.Get to the display house to see Dionaea muscipula,a plant more commonly known as the Venus Flytrap that feeds on insects and other small animals.The Garden is also a place for wildlifeenthusiasts.Look for grass snakes in the lake.A snake called ‘Hissing Sid’ is regularly seen lying in the heat of the warm sun.Byron's PoolMany stories surround Lord Byron's time as a student of Cambridge University.Arriving in 1805,he wrote a letter complaining that it was a place of “mess and drunkenness”.However,it seems as though Byron did manage to pass the time pleasantly enough.I'm not just talking about the pet bear he kept in his rooms.He spent a great deal of time w alking in the village.It is also said that on occasion Byron swam naked by moonlight in the lake,which is now known as Byron's Pool.A couple of miles past Grantchester in the south Cambridgeshire countryside,the pool is surrounded by beautiful circular paths around the fields.The cries of invisible birds make the trip a lovely experience and on the way home you can drop into the village for afternoon tea.If you don't trust me,then perhaps you'll take it from Virginia Woolf—over a century after Byron,she reportedly took a trip to swim in the same pool.36.According to the passage,there is a small charge for ______.A.seeing an exhibitionB.learning life drawingC.working with local artistsD.attending the masters' class37.“Torch Aloe” and “Venus Flytrap” are ______.A.common insects B.rarelyseen snakesC.impressive plants D.wildlife-enthusiasts38.In the passage Byron's Pool is described as a lake ______.A.o wned by Lord Byron B.surrounded by fieldsC.located in Grantchester D.discovered by Virginia Woolf39.What is the passage mainly about?A.Unknown stories of Cambridge University.B.The colourful life in the countryside.C.A way to become creative in art.D.Some places for weekend break.BOne day, when I was working as a psychologist in England, an adolescent boy showed up in my office. It was David. He kept walking up and down restlessly, his face pale, and his hands shaking slightly. His head teacher had referred him to me. “This boy has lost his family,” he wrote, “He is understandably very sad and refuses to talk to others, and I’m very worried about him. Can you help?”I looked at David and showed him to a chair. How could I help him? There are problems psychology doesn’t have the answer to, and which no words can describe. Sometimes the best thing one can do is to listen openly and sympathetically.The first two times we met, David didn’t say a word. He sat there, only looking up to look at the children’s drawing on the wall behind me. I suggest ed we play a game of chess. He nodded. After that he played chess with me every Wednesday afternoon-in complete silence and without looking at me. It’s not easy to cheat in chess, but I admit I made sure David won once or twice.Usually, he arrived earlier than agreed, took the chess board and pieces from the shelf and began setting them up before I even got a chance to sit down. It seemed as if he enjoyed my company(陪伴). But why did he never look at me?“Perhaps he simply needs someone to share his pain with,” I thought, “Perhaps he senses that I respect his suffering.” Some months later, when we were playing chess, he looked up at me suddenly.“It’s your turn,” he said.After that day, David started talking. He got friends in school and joined a bicycle club. He wrote to me a few times about his biking with some friends, and about his plan to get into university. Now he had really started to live his own life.Maybe I gave David something. But 1 also leaned that one, without any words, can reach out to another person. All it takes is a hug, a shoulder to cry on, a friendly touch, and an car that listens.40. When he first met the author, David ________.A. looked a little nervousB. felt a little excitedC. walked energeticallyD. was accompanied by his teacher41. What can we learn about the author from paragraph 2?A. He was sure of handling David’s problemB. He was able to describe David’s problemC.was skeptical about psychologyD. He was ready to listen to David42. David enjoyed being with the author because he ________.A. beat the author many times in the chess gameB. liked the children’s drawings in the officeC. needed to share sorrow with the authorD. wanted to ask the author for advice43. What can be inferred about David?A.He got friends in school before he met the author.B. He went into university soon after starting to talk.C. He liked biking before he lost his family.D. He recovered after months of treatment.44. What made David change?A. The author’s friendship.B. His teacher’s help.C. His exchange of letters with the author.D. The author's silent communication with him.CCan dogs and cats live in perfect harmony in the same home? People who are thinking about adopting a dog as a friend for their cats are worried that they will fight. A recent research has found a new recipe of success. According to the study, if the cat is adopted before the dog, and if they are introduced when still young (less than 6 months for cats, a year for dogs), it is highly probable that the two pets will get along swimmingly. Two-thirds of the homes interviewed reported a positive relationship between their cat and dog.However, it wasn’t all sweetness and light. There was a reported coldness between the cat and dog in 25% of the homes, while aggression and fighting were observed in 10% of the homes. One reason for this is probably that some of their body signals were just opposite. For example, when a cat turns its head away it signals aggression, while a dog doing the same signals submission.In homes with cats and dogs living peacefully, researchers observed a surprising behavior. They are lea rning how to talk each other’ s language. It is a surprise that cats can learn how to talk ‘Dog’, and dogs can learn how to talk ‘Cat’.What’s interesting is that both cats and dogs have appeared to develop their intelligence. They can learn how to read ea ch other’ s body signals, suggesting that the two may have more in common than we previously suspected. Once familiar with each other’ s presence and body language, cats and dogs can play together, greet each other nose to nose, and enjoy sleeping together on the sofa. They can easily share the same water bowl and in some cases groom (梳理) each other.The significance of the research on cats and dogs may go beyond pets ─ to people who don’t get along, including neighbors, colleagues at work, and even world superpowers. If cats and dogs can learn to get along, surely people have a good chance.45.The underlined word “swimmingly”in Paragraph 1 is closest in meaning to ______.A.smoothly B.quickly C.early D.sweetly46.Some cats and dogs may fight when ______.A.they are cold to each otherB.they are introduced at an early ageC.they misunderstood each other’ s signalsD.they look away from each other47.What is found surprising about cats and dogs?A.They know something from each other’ s voices.B.They learn to speak each other’ s language.C.They observe each other’ s behaviors.D.They eat and sleep each other.48.It is suggested in Paragraph 4 that cats and dogs ______.A. have common interestsB. have a common body languageC.are less different than was thoughtD.are less intelligent than was expected49.What can we human beings learn from cats and dogs?A.We should learn to live in harmony.B.We should know more about animals.C.We should live in peace with animals.D.We should learn more body languages.DYou are given many opportunities in life to choose to be a victim or creator. When you choose to be a victim, the world is a cold and difficult place. “They” did things to you which caused all of your pain and suffering. “They” are wrong and bad, and life is terrible as long as “they” are around. Or you may blame yourself for all your problems, thus internalizing (内化) your victimization. The truth is, your life is likely to stay that way as long as you feel a need to blame yourself or others.Those who choose to be creators look at life quite differently. They know there are individuals who might like to control their lives, but they don’t let this get in the way. They know they have their weaknesses, yet they don’t blame themselves when they fail. Whatever happens, they have choice in the matter. They believe their dance with each sacred (神圣的) moment of life is a gift and that storms are a natural part of life which can bring the rain needed for emotional and spiritual growth.Victims and creators live in the same physical world and deal with many of the same physical realities, yet their experience of life is worlds apart. Victims relish (沉溺) in anger, guilt, and other emotions that cause others — and even themselves — to feel like victims, too. Creators consciously choose love, inspiration, and other qualities which inspire not only themselves, but all around them. Both victims and creators always have choice to determine the direction of their lives.In reality, all of us play the victim or the creator at various points in our lives. One person, on losing a job or a special relationship, may feel as if it is the end of the world and sink into terrible suffering for months, years, or even a lifetime. Another with the same experience may choose to first experience the grief, then accept the loss and soon move on to be a powerful creative force in his life.In every moment and every circumstance, you can choose to have a fuller, richer life by setting a clear intention to transform the victim within, and by inviting into your life the powerful creator that you are.50. What does the word “they” in Paragraph 1 probably refer to?A. People and things around you.B. Opportunities and problems.C. Creators and their choices.D. Victims and their sufferings.51. According to Paragraph 2, creators ________.A. handle ups and downs of life wiselyB. possess the ability to predict future lifeC. seem willing to experience failures in lifeD. have potential to create something new52. What can we learn from Paragraph 3?A. Creators and victims are masters of their lives.B. Victims can influence more people than creators.C. Compared with victims, creators are more emotional.D. Creators and victims face quite different things in life.53. The examples mentioned in Paragraph 4 show that _________.A. strong attachment to sufferings in life pulls people into victimsB. people need family support to deal with challenger in lifeC. it takes creators quite a long time to get rid of their painsD. one’s experiences determine his attitude toward life54.The passage is organized by _______.A. giving definitionsB. making a contrastC. giving examplesD. telling stories55. What is the author’s purpose in wri ting this passage?A. To define victims and creators.B. To evaluate victims against creators.C. To explain the relationship between victims and creators.D. To suggest the transformation from victims to creators.四、阅读表达:When Dan Shaw gets up from the sofa in his home, Cuddles is never far away. When he wants to go outside, he doesn’t take Cuddles out for walk—Cuddles takes him for a walk. Cuddles is clearly no ordinary family pet. It is a two-foot-high miniature horse and serves as the guiding eyes of Shaw, who is blind.When Shaw lost his sight, his wife suggested he apply for a guide dog. Shaw, an animal lover, said he couldn’t bear to part with a dog (which usually lives about eight to ten years) and get used to a new one, perhaps several times in his life.Then Shaw heard of a program about the tiny guide horses. He learned that the horse possess many qualities that that make them an excellent choice for guiding people. They are clean friendly, smart and have great memories. They can be trained to remain calm in noisy and crowded places. Best of all, they live for 25-25years, which would enable Shaw to have the same guide companion for most or all of his life.Shaw immediately applied to be and was accepted as the first person to receive a guide horse. The instant he met Cuddles, he knew he was making the right choice. Then he began his training.Through training ,Shaw and Cuddles learned to find way on busy streets, step over curbs(便道沿儿)and find elevator buttons. Cuddles even demonstrated(显示)its ability to step in front of Shaw and block him, to prevent him from walking into a dangerous situation. The little horse also expertly led Shaw through busy shopping malls. They got along without any difficulties. Now Shaw is confident that Cuddles will change his life for the better.56. What’s the meaning of the underlined word “miniature” in Paragraph 1?(No more than 2 words)____________________________________________________________57. Why didn’t Shaw want to choose a dog as his guide? (No more than 15 words)_______________________________________________________________58. What does Paragraph 3 mainly tell us? (No more than 10 words)_______________________________________________________________59. How does Shaw feel about his future life with the help of Cuddles? (No more than 10 words)_______________________________________________________________60. What animal would you like to keep as a pet at home? Please give your reasons. (No more than 20words)_______________________________________________________________五、书面表达:61. 假如你叫李津,在报纸上看到一幅成语漫画,很有感触。

天津市西青区2019-2020学年高三第一学期期末考试数学试题(学生版)

天津市西青区2019-2020学年高三第一学期期末考试数学试题(学生版)

天津市西青区2019-2020学年度第一学期期末考试高三数学试卷一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一个选项是符合题目要求的.将正确箸案填在下面的括号内.1.若集合A ={﹣1,0,1,2,3,5},集合B ={2,3,4,5,6,7},则集合A ∩B 等于( )A. {2}B. {2,3}C. {2,3,5}D. {2,3,5,7}2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,且2S =(a +b )2﹣c 2,则tan C =( ) A. 34 B. 43 C. 43- D. 34- 3.设a ,R b ∈,则“a b <”是“2()0a b a -<”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 4.已知a =log 23﹣log 23,b =log 0.5π,c =0.9﹣1.1,则( )A. c >a >bB. a >b >cC. a >c >bD. b >c >a 5.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为ij a ,例如43a =9,则()644a 等于( ) A . 2018B. 2019C. 2020D. 2021 6.双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F 、2F ,渐近线为12,l l ,点P 在第一象限内且在1l 上,若2122,,l PF l PF ⊥P 则双曲线的离心率为( )3 B. 2 527.设函数f (x )=sin (ωx +φ)3(ωx +φ)(ω>0,|φ|2π<)的图象与直线y =2的两个相邻的交点之间的距离为π,且f (x )+f (﹣x )=0,若g (x )=sin (ωx +φ),则( )A. g (x )在(0,2π)上单调递增 B. g (x )在 (0,6π)上单调递减 C. g (x )在(12π-,512π)上单调递增 D. g (x )在(6π,2π)上单调递减8.已知()32log,03 {1108,333x xf xx x x<≤=-+>,a b c d,,,是互不相同的正数,且()()()()f a f b f c f d===,则abcd的取值范围是()A. ()18,28 B. ()18,25 C. ()20,25 D. ()21,24二、填空题:本大题共6小题,每小题5分,共30分把答案填在题中横线上.9.已知i为虚数单位,z21i=-,则|z|=_____.10.在某市“创建文明城市”活动中,对800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[)25,30的数据不慎丢失,据此估计这800名志愿者年龄在[)25,30的人数为______.11.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)12.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC3=,若四面体P﹣ABC的体积为32,则该球的体积为_____.13.已知ab>0,a+b=3,则2221b aa b+++的最小值为_____.14.在平面直角坐标系中,O为坐标原点,1OB OD OC===u u u r u u u r u u u r,0OB OC OD++=u u u r u u u r u u u r r,A(1,1),则AD OB⋅u u u r u u u r 的取值范围为___三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.15.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=2,c=3,又知b sin A=a cos(B6π-).(Ⅰ)求角B的大小、b边的长:(Ⅱ)求sin(2A﹣B)的值.16.为弘扬中华优秀传统文化,某中学高三年级利用课余时间组织学生开展小型知识竞赛.比赛规则:每个参赛者回答A、B两组题目,每组题目各有两道题,每道题答对得1分,答错得0分,两组题目得分和做为该选手的比赛成绩.小明估计答对A 组每道题的概率均为34,答对B 组每道题的概率均为23. (Ⅰ)按此估计求小明A 组题得分比B 组题得分多1分的概率;(Ⅱ)记小明在比赛中的得分为ξ,按此估计ξ的分布列和数学期望E ξ.17.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4﹣2a 1,S 11=11b 4.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)求数列{a n •b n }的前n 项和为T n (n ∈N *).18.如图,在多面体ABCDEF 中,四边形ABCD 为平行四边形,平面ADE ⊥平面CDEF ,∠ADE =60°,DE ∥CF ,CD ⊥DE ,AD =2,DE =DC =3,CF =4,点G 是棱CF 上的动点.(Ⅰ)当CG =3时,求证EG ∥平面ABF ;(Ⅱ)求直线BE 与平面ABCD 所成角的正弦值;(Ⅲ)若二面角G ﹣AE ﹣D 所成角的余弦值为22,求线段CG 的长.19.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.20.已知函数()2ln h x ax x =-+.(1)当1a =时,求()h x 在()()2,2h 处的切线方程;(2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围.。

天津市西青区2019-2020学年高三上学期期末英语试题(学生版)

天津市西青区2019-2020学年高三上学期期末英语试题(学生版)

天津市西青区2019-2020学年度第一学期高三期末一、单选1. ----Could I use this dictionary ?----_____.It’s a spare one.A. Good ideaB. Just go aheadC. You’re welcomeD. You’d better not2. You ____ be Carol. You haven’t changed a bit after all these years.A. mustB. canC. willD. shall3.I found the lecture hard to follow because it ________ when I arrived.A. startedB. was startingC. would startD. had started4.—Only those who have a lot in common can get along well.—_________. Opposites sometimes do attract.A. I hope notB. I think soC. I appreciate thatD. I beg to differ5.Clearly and thoughtfully________, the book inspires confidence in students who wish to seek their own answers.A. writingB. to writeC. writtenD. being written6.【2018·江苏】I was sent to the village last month to see how the development plan_______in the past two years.A. had been carried outB. would be carried outC. is being carried outD. has been carried out7. It was________of Michael to inform us of his delay in case we got worried. A. careless B. considerate C. patient D. Generous8. Caroline doesn’t have a gift for music,but she ______ it with hard work.A. goes back onB. takes away fromC. makes up forD. catches up with9.(2015·重庆) Like ancient sailors, birds can find their way__________ the sun and the stars.A. usedB. having usedC. usingD. use10.(2014·浙江) Facing up to your problem _________ running away from them is the best approach to working things out.A. more thanB. rather thanC. along withD. or rather11. I borrow the book Sherlock Holmes from the library last week, ______ my classmates recommended to me..A. thatB. whenC. whichD. Where12.(2016·天津)The weather forecast says it will be cloudy with a slight _____ of rain later tonight.A. effectB. senseC. changeD. chance13.If you don’t understand something, you may research, study, and talk to other people _______ you figure it out.A. becauseB. thoughC. untilD. since14.—Is it true that Mike refused an offer from Yale University yesterday?—Yeah, but I have no idea _____________ he did it; that’s one of his favorite universities.A. whenB. whyC. thatD. how15. When their children lived far away from them , these old people felt ______from the world.A. carried awayB. broken downC. cut offD. brought up二、完形填空:I fell in love with Yosemite National Park the first time I saw it, when I was 13. My parents took us there for camping. On the way out, I asked them to wait while I ran up to E1 Capitan, a ____16____ rock of 3,300 feet straight up. I touched that giant rock and knew ____17____ I wantedto climb it. That has been my life’s passion (钟爱) ever since--____18____ the rocks and mountains of Yosemite. I’ve long made Yosemite my ____19____.About 15 years ago I started seeing a lot of ____20____, like toilet paper, beer cans, and empty boxes, around the area. It’s ____21____ me why visitors started respecting the place less and treated such a ____22____ home-like place this way.I tried ____23____ trash(垃圾)myself, but the job was too big. I would ____24____an hour or two on the job, only to find the area trashed all over again weeks later. Finally, I got so ______25______ it that I decided something had to _______26_______.As a rock-climbing guide, I knew _______27_______about organizing any big event. But in 2004, together with some climbers, I set a date for a _______28_______. On that day, more than 300 people _______29_______. Over three days we collected about 6,000 pounds of trash. It was_______30_______how much we were able to accomplish. I couldn’t believe the _______31_______ we made --the park looked clean!Each year volunteers come for the cleanup from everywhere. In 2007 alone, 2,945 people picked up 42,330 pounds of trash and _______32_______ 132 miles of roadway.I often hear people _______33_______ about their surroundings. If you are one of them, I would say the only way to change things is by _______34_______ rather than complaining. We need to teach by _______35_______. You can’t blame others unless you start with you rself.16. A. distant B. hard C. loose D. huge17. A. gradually B. finally C. immediately D. recently18. A. climbing B. painting C. measuring D. approaching19. A. home B. palace C. garden D. shelter20. A. dust B. waste C. materials D. resources21. A. against B. over C. beyond D. within22. A. new B. safe C. happy D. beautiful23. A. throwing away B. breaking down C. picking up D. digging out24. A. wait B. save C. kill D. spend25. A. delighted in B. tired of C. satisfied with D. used to26. A. aim B. stress C. depend D. change27. A. anything B. nothing C. everything D. something28. A. cleanup B. picnic C. party D. concert29. A. looked around B. called back C. dropped out D. showed up30. A. puzzling B. amazing C. amusing D. interesting31. A. plan B. visit C. difference D. contact32. A. covered B. crossed C. measured D. designed33. A. argue B. complain C. quarrel D. talk34. A. thinking B. questioning C. doing D. watching35. A. method B. explanation C. research D. example三、阅读理解:AStill seeking a destination for your weekend break? There are some places which are probably a mere walk away from your college.King's Art CentreA day at the Centre could mean a visit to an exhibition of the work of one of the most interesting contemporary artists on show anywhere. This weekend sees the opening of an exhibition of four local artists.You could attend a class teaching you how to ‘learn from the masters’ or get more creative with paint—free of charge.The Centre also runs two life drawing classes for which there is a small fee.The Botanic GardenThe Garden has over 8,000 plant species;it holds the research and teaching collection of living plants for Cambridge University.The multibranched Torch Aloe here is impressive. The African plant produces red flowers above bluegreen leaves, and is not one to miss.Get to the display house to see Dionaea muscipula, a plant more commonly known as the Venus Flytrap that feeds on insects and other small animals.The Garden is also a place for wildlife enthusiasts. Look for grass snakes in the lake. A snake called ‘Hissing Sid’ is regularly seen lyin g in the heat of the warm sun.Byron's PoolMany stories surround Lord Byron's time as a student of Cambridge University. Arriving in 1805, he wrote a letter complaining that it was a place of “mess and drunkenness”. However, it seems as though Byron did manage to pass the time pleasantly enough. I'm not just talking about the pet bear he kept in his rooms. He spent a great deal of time walking in the village.It is also said that on occasion Byron swam naked by moonlight in the lake, which is now known as Byron's Pool. A couple of miles past Grantchester in the south Cambridgeshire countryside, the pool is surrounded by beautiful circular paths around the fields. The cries of invisible birds make the trip a lovely experience and on the way home you can drop into the village for afternoon tea. If you don't trust me, then perhaps you'll take it from Virginia Woolf—over a century after Byron, she reportedly took a trip to swim in the same pool.36. According to the passage, there is a small charge for ______.A. seeing an exhibitionB. learning life drawingC. working with local artistsD. attending the masters' class37. “Torch Aloe” and “Venus Flytrap” are ______.A. common insectsB. rarely seen snakesC. impressive plantsD. wildlife-enthusiasts38. In the passage Byron's Pool is described as a lake ______.A. owned by Lord ByronB. surrounded by fieldsC. located in GrantchesterD. discovered by Virginia Woolf39. What is the passage mainly about?A. Unknown stories of Cambridge University.B. The colourful life in the countryside.C. A way to become creative in art.D. Some places for weekend break.BOne day, when I was working as a psychologist in England, an adolescent boy showed up in myoffice. It was David. He kept walking up and down restlessly, his face pale, and his hands shaking slightly. His head teacher had referred him to me. “This boy has lost his family,” he wrote, “He is understandably very sad and refuses to talk to others, and I’m very worried about him. Can you help?”I looked at David and showed him to a chair. How could I help him? There are problems psychology doesn’t have the answer to, and which no words can describe. Sometimes the best thing one can do is to listen openly and sympathetically.The first two times we met, David didn’t s ay a word. He sat there, only looking up to look at the children’s drawing on the wall behind me. I suggested we play a game of chess. He nodded. After that he played chess with me every Wednesday afternoon-in complete silence and without looking at me. It’s not easy to cheat in chess, but I admit I made sure David won once or twice.Usually, he arrived earlier than agreed, took the chess board and pieces from the shelf and began setting them up before I even got a chance to sit down. It seemed as if he enjoyed my company (陪伴). But why did he never look at me?“Perhaps he simply needs someone to share his pain with,” I thought, “Perhaps he senses that I respect his suffering.” Some months later, when we were playing chess, he looked up at me suddenly.“It’s your turn,” he said.After that day, David started talking. He got friends in school and joined a bicycle club. He wrote to me a few times about his biking with some friends, and about his plan to get into university. Now he had really started to live his own life.Maybe I gave David something. But I also learned that one, without any words, can reach out to another person. All it takes is a hug, a shoulder to cry on, a friendly touch, and an ear that listens.40. When he first met the author, David ________.A. looked a little nervousB. felt a little excitedC. walked energeticallyD. was accompanied by his teacher41. What can we learn about the author from paragraph 2?A. He was sure of handling David’s problem.B. He was able to describe David’s problem.C. He was skeptical about psychology.D. He was ready to listen to David.42. David enjoyed being with the author because he ________.A. beat the author many times in the chess gameB. liked the children’s drawings in the officeC. needed to share sorrow with the authorD. wanted to ask the author for advice43. What can be inferred about David?A. He got friends in school before he met the author.B. He went into university soon after starting to talk.C. He liked biking before he lost his family.D. He recovered after months of treatment.44. What made David change?A. The author’s friendship.B.His teacher’s help.C. His exchange of letters with the author.D. The author's silent communication with him. C Can dogs and cats live in perfect harmony in the same home? People who are thinking about adoptinga dog as a friend for their cats are worried that they will fight. A recent research has found a new recipe of success. According to the study, if the cat is adopted before the dog, and if they are introduced when still young (less than 6 months for cats, a year for dogs), it is highly probable that the two pets will get alongswimmingly. Two-thirds of the homes interviewed reported a positive relationship between their cat and dog.However, it wasn’t all sweetness and light. There was a reported coldness between the cat and dog in 25% of the homes, while aggression and fighting were observed in 10% of the homes. Onereason for this is probably that some of their body signals were just opposite. For example, when a cat turns its head away it signals aggression, while a dog doing the same signals submission. In homes with cats and dogs living peacefully, researchers observed a surprising behaviour. They are learning how to talk each other’s language. It is a surprise that cats can learn how to talk ‘Dog’, and dogs can learn how to talk ‘Cat’.What’s interesting is that both cats and dogs have appeared to develop their intelligence. They can learn how to read each other’s body signals, suggesting that the two m ay have more in common than we previously suspected. Once familiar with each other’s presence and body language, cats and dogs can play together, greet each other nose to nose, and enjoy sleeping together on the sofa. They can easily share the same water bowl and in some cases groom (梳理) each other. The significance of the research on cats and dogs may go beyond pets ─ to people who don’t get along, including neighbors, colleagues at work, and even world superpowers. If cats and dogs can learn to get along, surely people have a good chance.45.The underlined word “swimmingly”in Paragraph 1 is closest in meaning to ______.A. earlyB. sweetlyC. quicklyD. smoothly46. Some cats and dogs may fight when ______. A. they are cold to each other B. they look away from each other C. they misunderstood each other’s signals D. they are introduced at an early age47. What is found surprising about cats and dogs?A. They eat and sleep each other.B. They observe each other’s behaviors.C.They learn to speak each other’s language.D. They know something from each other’s voices.48. It is suggested in Paragraph 4 that cats and dogs ______. A. have common interests B. are less different than was thoughtC. have a common body languageD. are less intelligent than was expected49. What can we human beings learn from cats and dogs?A. We should learn to live in harmony.B. We should know more about animals.C. We should live in peace with animals.D. We should learn more body languages.DYou are given many opportunities in life to choose to be a victim or creator. When you choose to be a victim, the world is a cold and difficult place. “They” did things to you which caused all of your pain and suffering. “They” are wrong and bad, and life is terrible as long as “they” are around. Or you may blame yourself for all your problems, thus internalizing (内化) your victimization. The truth is, your life is likely to stay that way as long as you feel a need to blame yourself or others.Those who choose to be creators look at life quite differently. They know there are individuals who might like to control the ir lives, but they don’t let this get in the way. They know they have their weaknesses, yet they don’t blame themselves when they fail. Whatever happens, they have choice in the matter. They believe their dance with each sacred (神圣的) moment of life is a gift and that storms are a natural part of life which can bring the rain needed for emotional and spiritual growth.Victims and creators live in the same physical world and deal with many of the same physical realities, yet their experience of life is worlds apart. Victims relish (沉溺) in anger, guilt, and other emotions that cause others —and even themselves —to feel like victims, too. Creators consciously choose love, inspiration, and other qualities which inspire not only themselves, but all around them. Both victims and creators always have choice to determine the direction of their lives.In reality, all of us play the victim or the creator at various points in our lives. One person, on losing a job or a special relationship, may feel as if it is the end of the world and sink into terrible suffering for months, years, or even a lifetime. Another with the same experience may choose to first experience the grief, then accept the loss and soon move on to be a powerful creative force in his life.In every moment and every circumstance, you can choose to have a fuller, richer life by setting a clear intention to transform the victim within, and by inviting into your life the powerfulcreator that you are.50. What does the word “they” in Paragraph 1 probably refer to?A. People and things around you.B. Opportunities and problems.C. Creators and their choices.D. Victims and their sufferings.51. According to Paragraph 2, creators ________.A. handle ups and downs of life wiselyB. possess the ability to predict future lifeC. seem willing to experience failures in lifeD. have potential to create something new52. What can we learn from Paragraph 3?A. Creators and victims are masters of their lives.B. Victims can influence more people than creators.C. Compared with victims, creators are more emotional.D. Creators and victims face quite different things in life.53. The examples mentioned in Paragraph 4 show that _________.A. strong attachment to sufferings in life pulls people into victimsB. people need family support to deal with challenger in lifeC. it takes creators quite a long time to get rid of their painsD. one’s experiences determine his attitude toward life54. The passage is organized by _______.A. giving definitionsB. making a contrastC. giving examplesD. telling stories55. What is the author’s purpose in writing this passage?A. To define victims and creators.B. To evaluate victims against creators.C. To explain the relationship between victims and creators.D. To suggest the transformation from victims to creators.四阅读表达:When Dan Shaw gets up from the sofa in his home, Cuddles is never far away. When he wants to go outside, he doesn’t take Cuddles out for walk—Cuddles takes him for a walk. Cuddles isclearly no ordinary family pet. It is a two-foot-high miniature horse and serves as the guiding eyes of Shaw, who is blind.When Shaw lost his sight, his wife suggested he apply for a guide dog. Shaw, an animal lover, said he couldn’t bear to part with a dog (which usually lives about eight to ten years) an d get used to a new one, perhaps several times in his life.Then Shaw heard of a program about the tiny guide horses. He learned that the horse possess many qualities that make them an excellent choice for guiding people. They are clean friendly, smart and have great memories. They can be trained to remain calm in noisy and crowded places. Best of all, they live for 25-25years, which would enable Shaw to have the same guide companion for most or all of his life.Shaw immediately applied to be and was accepted as the first person to receive a guide horse. The instant he met Cuddles, he knew he was making the right choice. Then he began his training.Through training ,Shaw and Cuddles learned to find way on busy streets, step over curbs (便道沿儿) and find elevator buttons. Cuddles even demonstrated (显示)its ability to step in front of Shaw and block him, to prevent him from walking into a dangerous situation. The little horse also expertly led Shaw through busy shopping malls. They got along without any difficulties. Now Shaw is confident that Cuddles will change his life for the better.56. What’s the meaning of the underlined word “miniature” in Paragraph 1?(No more than 2 words) ____________________________________________________________57. Why didn’t Shaw want to choose a dog as his guide? (No more than 15 words)_______________________________________________________________58. What does Paragraph 3 mainly tell us? (No more than 10 words)_______________________________________________________________59. How does Shaw feel about his future life with the help of Cuddles? (No more than 10 words) _______________________________________________________________60. What animal would you like to keep as a pet at home? Please give your reasons. (No more than 20 words)_______________________________________________________________五、书面表达:61.假如你叫李津,在报纸上看到一幅成语漫画,很有感触。

天津市2020〖人教版〗高三数学复习试卷第一学期期末教学统一检测1

天津市2020〖人教版〗高三数学复习试卷第一学期期末教学统一检测1

天津市2020年〖人教版〗高三数学复习试卷第一学期期末教学统一检测第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{1,2,3,4}U =,集合{1,3,4}A =,{2,4}B =,那么集合()U C A B =(A ){2}(B ){4}(C ){1,3}(D ){2,4}(2)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于3 33 1正(主)视图侧(左)视图13俯视图(A )32cm 3(B )2cm 3(C )3cm 3(D )9cm 3 (3)设i 为虚数单位,如果复数z 满足(12)5i z i -=,那么z 的虚部为(A )1-(B )1(C )i (D )i -(4)已知(0,1)m ∈,令log 2m a =,2b m =,2mc =,那么,,a b c 之间的大小关系为(A )b c a <<(B )b a c <<(C )a b c <<(D )c a b << (5)已知直线l 的倾斜角为α,斜率为k ,那么“3πα>”是“k >(A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(6)已知函数11,02()ln ,2x f x x x x ⎧+<≤⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是(A )(1,)+∞(B )3[,)2+∞(C )32[,)e +∞(D )[ln 2,)+∞(7)过抛物线220)y pxp =>(的焦点F 的直线交抛物线于,A B 两点,点O 是原点,如果3BF =,BF AF >,23BFO π∠=,那么AF 的值为 ()A 1()B 32()C 3(D )6 (8)如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,)1,0(∈x ,给出以下四个命题:①四边形MENF 为平行四边形;②若四边形MENF 面积)(x f s =,)1,0(∈x ,则)(x f 有最小 值;③若四棱锥A MENF 的体积)(x p V =,)1,0(∈x ,则)(x p 常函数;④若多面体MENF ABCD -的体积()V h x =,1(,1)2x ∈,则)(x h 为单调函数. 其中假.命题..为 ()A ①()B ②()C ③(D )④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9) 在ABC ∆中,a b 、分别为角A B 、的对边,如果030B =,0105C =,4a =,那么b =.(10)在平面向量a,b 中,已知(1,3)=a ,(2,y)=b .如果5⋅=a b ,那么y =;如果-=a +b a b ,那么y =.(11)已知,x y 满足满足约束条件+10,2,3x y x y x ≤⎧⎪-≤⎨⎪≥⎩,那么22z x y =+的最大值为___.(12)如果函数2()sin f x x x a =+的图象过点(π,1)且()2f t =.那么a =;()f t -=.(13)如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为__.(14)数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题:下凸①若数列{}n a 满足:21a a >,则1n n a a ->成立;单增②存在常数c ,使得n a c >成立;无限下降无最小值,比如底数小于1的对数函数不满足③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+;单减时不满足 ④存在常数d ,使得1(1)n a a n d >+-都成立.各项都在过首项的切线的上方 上述命题正确的是____.(写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)设{}n a 是一个公比为(0,1)q q q >≠等比数列,1234,3,2a a a 成等差数列,且它的前4项和415s =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2,(1,2,3......)n n b a n n =+=,求数列{}n b的前n 项和. (16)(本小题共13分)已知函数22()sin cos cos ()f x x x x x x =+-∈R . (Ⅰ)求()f x 的最小正周期和在[0,π]上的单调递减区间; (Ⅱ)若α为第四象限角,且3cos 5α=,求7π(212f α+的值.(17)(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值; (Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在,求出PMMC的值,若不存在,说明理由. (18)(本小题共13分)已知椭圆22221x y a b+=( )0a b >>的焦点是12F F 、,且122F F =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点,求22||||AF F B 的取值范围.(19)(本小题共14分)已知函数()(ln )xe f x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围. (20)(本小题共13分)已知曲线n C 的方程为:*1()n nx y n N +=∈.(Ⅰ)分别求出1,2n n ==时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(III) 若方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y (其中0xy ≠),,x y 不能全是有理数.。

2019-2020学年天津市西青区高一上学期期末考试数学试题

2019-2020学年天津市西青区高一上学期期末考试数学试题

2019-2020学年天津市西青区高一上学期期末考试数学试题一、单选题1.已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.函数()22log 3xf x x =+-的零点所在区间( )A .()0,1B .()1,2C .()2,3D .()3,4解:由题意,可得函数在定义域上为增函数,()2f 12log 1310=+-=-<,()22f 22log 235320=+-=-=>,所以()()120f f <,根据零点存在性定理,()f x 的零点所在区间为()1,2 故选B . 点评:本题考查了函数零点的判定定理的应用,其中解答中准确计算()()1,2f f 的值,合理利用零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题. 3.下列函数中既是奇函数又在区间(0,1)上单调递减的函数是( ) A .y x =- B .3y x =C .tan y x =D .sin y x =-解:选项A ,||y x x =-=不是奇函数,所以错误; 选项B ,3y x =在实数集R 上是增函数,所以错误; 选项C ,tan y x =在(0,1)上是增函数,所以错误;选项D ,sin y x =-是奇函数,且在(0,1)上是减函数, 所以正确. 故选:D. 点评:本题考查函数的性质,熟练掌握基本初等函数的性质是解题的关键,属于基础题. 4.已知2log 7a =,3log 8b =,0.20.3c =,则,,a b c 的大小关系为 A .c b a << B .a b c << C .b c a << D .c a b <<解:0.200.30.31c =<=;22log 7log 42>=; 331log 8log 92<<=.故c b a <<. 故选A . 点评:利用指数函数、对数函数的单调性时要根据底数与1的大小区别对待. 5.下列说法中,正确..的个数是( ) ①A={}0,1的子集有3个;②命题“2[0,),0x x x ∀∈+∞+≥”的否定是“0[0,),x ∃∈+∞使得2000x x +<”;③“4x π=”是“函数sin 2y x =取得最大值”的充分不必要条件;④根据对数定义,对数式3log 92=化为指数式1293=; ⑤若324παβπ<<<,则αβ-的取值范围为44ππαβ-<-<; ⑥sin 2cos3tan 40⋅⋅>. A .1个 B .2个C .3个D .4个解:①A={}0,1的子集个数有224=,所以不正确; ②命题“2[0,),0x x x ∀∈+∞+≥”的否定是“0[0,),x ∃∈+∞使得2000x x +<”为正确;③函数sin 2y x =取得最大值时,4x k (k Z )π=+π∈, “4x π=”是“函数sin 2y x =取得最大值”的充分不必要条件为正确;④根据对数定义,对数式3log 92=化为指数式239=,所以错误; ⑤若324παβπ<<<,则αβ-的取值范围为04παβ-<-<, 所以错误; ⑥32,sin 20,3,cos30,4,tan 40222ππππππ<<><<<<<>, sin 2cos3tan 40∴⋅⋅<,所以错误.故选:B 点评:考查考查命题真假的判定,涉及到:子集的个数、命题的否定、正弦函数的性质、指对数关系、不等式性质、三角函数值正负,属于基础题.6.函数2()(2)1f x ax a x =+++是偶函数,则函数()f x 的单调递增区间为( )A .(],0-∞B .[)0,+∞C .(),-∞+∞D .(],1-∞-答案:A根据偶函数的对称性求出a ,结合二次函数的单调性,即可求出结论. 解:2()(2)1f x ax a x =+++是偶函数,()()f x f x ∴-=, 22(2)1(2)1ax a x ax a x -=+++++, 2(2)0,a x x R +=∈恒成立,2a ∴=-,2()21f x x =-+,()f x 的单调递增区间为(],0-∞.故选:A. 点评:本题考查函数奇偶性求参数以及函数的性质,属于基础题.7.已知函数()sin()(0,0,)f x A x A ϖφϖφπ=+>><是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()8f π=,则()4g π=( )A .2- B.CD .2答案:C由奇函数求出ϕ,由周期性求出ω,再由()8f π=求出A ,结合函数伸缩变换求出()g x ,即可求解.解:函数()sin()(0,0,)f x A x A ϖφϖφπ=+>><是奇函数,0ϕ=,()f x 的最小正周期为,2πω=,()sin 2f x A x =,()sin 2842f A A A ππ====,()2sin ,()4g x x g π∴==.故选:C. 点评:本题考查三角函数的性质以及函数图象间的变换关系,属于基础题.8.当0,1a a >≠时,函数()log (1)1a f x x =-+的图象恒过定点(,)A m n ,已知函数23,0()ln 2,0x mx x f x n x x ⎧+-≤⎪=⎨->⎪⎩,若()0f x k -=有两个零点,则k 的取值范围为( )A .(],4-∞-B .[)3,-+∞C .[]4,3-- D .{}(3,)4-+∞⋃-答案:D利用1的对数为0,求出定点,做出()f x 的图象,转化为()y f x =与y k =有两个交点时,k 的取值范围. 解:()log (1)1a f x x =-+恒过(2,1),2,1m n ∴==,223,0()ln2,0x x xf xx x⎧+-≤⎪=⎨->⎪⎩,做出()y f x=图象如下图示:可得当{}(3,)4k∈-+∞⋃-时,()y f x=与y k=有两个交点,即()0f x k-=有两个零点,则k的取值范围为{}(3,)4-+∞⋃-.故选:D.点评:本题考查分段函数、函数的零点,意在考查直观想象、逻辑推理能力,属于中档题.二、填空题9.已知函数31()0(){2log0?x xf xx x≤=>,,,则1(())3f f= .答案:2解:3()lo113g13f==-,11(1)()22f--==10.sin255=o_________.答案:264-根据诱导公式,化为锐角,再用两角和差公式转化为特殊角,即可求解.解:000sin 255sin 75sin(4530)=-=-+o0000sin 45cos30cos 45sin 304=--=-. 故答案为:4- 点评:本题考查诱导公式、两角和正弦公式求值,属于基础题.11.已知lg lg 1x y +=,则25x y+的最小值是_____________________.答案:2分析:先化简已知得到xy=10,再利用基本不等式求25x y+的最小值. 详解:因为lg lg 1x y +=,所以lg 1,10.xy xy =∴=所以25x y+2≥==, 当且仅当10250,0xy x y x y ⎧=⎪⎪=⎨⎪⎪>>⎩即x=2,y=5时取到最小值.故答案为:2.点睛:(1)本题主要考查对数运算和基本不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线中 a ,b,c 的关系以及离心率的公式求得结果 .
7. 设函数 f ( x)= sin (ω x+φ)
3 cos (ω x+φ)(ω> 0,| φ|< )的图象与直线 y= 2 的两个相邻 2
的交点之间的距离为 π,且 f ( x) +f (﹣ x)= 0,若 g(x)= sin (ω x+φ),则(
( 2),
2
b2 联立( 1)(2),整理得: a2 3 ,
由双曲线的离心率 e c a
b2 1 a2
2,
所以双曲线的离心率为 2,故选 B.
点睛:该题考查的是有关双曲线的离心率的求解问题,在解题的过程中,需要先设出点
P 的坐标,利用两
点斜率坐标公式, 将对应的直线的斜率写出, 再利用两直线平行垂直的条件, 得到 a, b 的关系, 之后借助于
2. 在△ ABC中,角 A, B, C的对边分别为 a, b, c, △ ABC的面积为 S,且 2S=( a+b) 2﹣ c2,则 tan C=(

3
A.
4
B. 4 3
C. 4 3
3
D.
4
【答案】 C
【解析】
【分析】
利用面积公式,以及余弦定理对已知条件进行转化,再利用同角三角函数关系,将正余弦转化为正切,解
故选 B.
【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的关系进行判断即可.
4. 已知 a=log 23﹣ log 2 3 , b= log 0.5 π, c= 0.9 ﹣1.1 ,则(

A. c> a> b
B. a> b>c
C. a>c> b
【答案】 A
【解析】
【分析】
将数据与 0 或者 1 进行比较,从而区分大小 .
天津市西青区 2019-2020 学年度第一学期期末考试高三数学试卷
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中只有一个
选项是符合题目要求的 . 将正确箸案填在下面的括号内 .
1. 若集合 A= { ﹣ 1,0,1,2,3,5} ,集合 B= {2,3,4,5,6,7} ,则集合 A∩ B 等于(
i 行第 j 列的数记为 aij ,例如 a43 = 9,则 a 64 4 等于(

A. 2018
B. 2019
C. 2020
D. 2021
【答案】 C
【解析】
【分析】
根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果
.
【详解】根据题意,第
1 行第 1 列的数为 1,此时 a11 1 1 1 2

A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】 B
【解析】
【分析】
根据充分条件和必要条件的定义结合表达式的性质进行判断即可. 【详解】解:若 a=0, b= 1,满足 a< b,但( a﹣ b) a2< 0 不成立, 若“( a﹣ b) a2< 0,则 a< b 且 a≠ 0,则 a< b 成立, 故“ a< b”是“( a﹣ b) a2< 0”的必要不充分条件,
sinC

2cosC 2
4,化简可得 3tan 2 C+4tan C=0.
sin2C cos2C
∵C∈( 0,180°),∴ tan C
4 ,
3
故选: C.
【点睛】本题考查余弦定理以及面积公式的使用,涉及同角三角函数关系,属基础题
.
3. 设 a , b R ,则“ a b ”是“ ( a b)a2 0 ”的(
D. 2
P 的坐标,根据直线的斜率公式,求得直线
PF1 的斜
率及直线 PF2 的斜率,根据直线平行及垂直的关系,即可求得
a, b 的关系,根据双曲线的离心率公式,即
可求得双曲线的离心率 .
详解:设双曲线渐近线 l1 的方程为 y 则设 P 点坐标为 ( x, b x) ,
a
b x , l2 的方程为 y a

A. g( x)在( 0, )上单调递增 2
C. g( x)在(
5

)上单调递增

12 12

A. {2}
B. {2 , 3}
C. {2 , 3, 5}
D. {2 , 3, 5,7}
【答案】 C
【解析】
【分析】
根据集合的交运算即可求得结果 .
【详解】因 A= { ﹣1,0,1,2,3,5} , B={2,3,4,5,6,7} ,
∴A∩ B= {2,3,5} . 故选: C.
【点睛】本题考查集合的交运算,属基础题 .
1= 1,
2 21 第 2 行第 1 列的数为 2,此时 a21
2
1= 2,
3 31 第 3 行第 1 列的数为 4,此时 a31
2
1= 4,
……
据此分析可得:第 64 行第 1 列的数为 a 64 1
64 64 1 2
1= 2017,则 a 64 4 = 2020;
故选: C.
【点睛】本题考查归纳推理能力,要善于发现数据之间的规律,属基础题
【详解】∵ a= log 2 3 b= log 0.5 π< 0,
1
1
log 23∈( ,1),
2
2
c= 0.9 ﹣1.1 >1.
∴c> a> b.
故选: A.
【点睛】本题考查指数式,对数式的比较大小,一般地,我们将数据与
D. b> c> a 0 或者 1 进行比较,从而区分大小 .
5. 正整数的排列规则如图所示,其中排在第
方程即可求得 .
【详解】△ ABC中,∵ S△ABC
1 ab sinC ,由余弦定理:
c2= a2+b2﹣ 2abcos C,
2
且 2 S=( a+b) 2﹣ c2,∴ absin C=( a+b) 2﹣( a2+b2﹣ 2abcos C),
整理得 sin C﹣ 2cos C= 2,∴( sin C﹣ 2cosC) 2= 4.
.
x2 6. 双曲线 a2
y2 b2
1(a 0,b 0) 的左右焦点分别为
F1 、 F2 ,渐近线为 l1, l2 ,点 P 在第一象限内且在
l1 上,
若 l2 PF1,l 2 PPF2, 则双曲线的离心率为(

A. 3
B. 2
【答案】 B 【解析】
分析:分别求得双曲线的两条渐近线的方程,设出点
C. 5
b x, a
则直线 PF1 的斜率 k1
b x0
a xc
bx ,直线 PF2 的斜率 k2 a(x c)
b x0
a xc
bx , a( x c)
bx
b
由 l2
PF1 ,则 a( x
c)
(
) a
1 ,即
b2x a2( x c)
1 ( 1)
bx 由 l2 P PF2 ,则 a( x c)
b
c
,解得 x a
相关文档
最新文档