新人教版九年级(下)数学投影和视图单元测试试卷
九年级数学下册《投影与视图》单元测试卷(附答案解析)
九年级数学下册《投影与视图》单元测试卷(附答案解析)一、单选题1.下列投影中,是平行投影的是()A. B.C. D.2.如图是由五个相同的正方体搭成的几何体,这个几何体的左视图是()A. B. C. D.3.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是()A. 先变短后变长B. 先变长后变短C. 逐渐变短D. 逐渐变长4.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A. 1234B. 4312C. 3421D. 42315.下例哪种光线形成的投影不是中心投影()A. 手电筒B. 蜡烛C. 探照灯D. 路灯6.如图是某个几何体的平面展开图,则这个几何体是()A. 长方体B. 三棱柱C. 四棱锥D. 三棱锥7.下列三角形中,不是等腰三角形的是()A. B.C. D.8.如图,一块含30°角的直角三角形木板ABC,将它的直角顶点C放置于直线上,点A,点B在直线l上的正投影分别是点P,点Q,若AB=20,BQ=6√3,则AB在直线l上的正投影的长是()A. 10√3B. 8√3C. 6+8√3D. 8+8√3二、填空题9.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示:则构成这个几何体的小正方体有 ______个.10.由8个相同的小正方体组成的几何体如图1所示,拿掉 ______个小正方体后的几何体的主视图和左视图都是图2所示图形.11.几个相同的正方体叠合在一起,该组合体的主视图与俯视图如图所示,那么组合体中下正方体的个数最少有 ______个.12.从正面和上面看一个几何体的平面图形,如图所示.若这个几何体最多由n个小正方体组成,最少由m 个小正方体组成,则m+n=______.13.任意放置以下几何体:正方体、圆柱、圆锥、球体,则三视图都完全相同的几何体是____.14.写一个从正面、上面、左面看到的平面图形都完全相同的几何体:________.15.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影可能是(填序号).16.若一个几何体由若干个完全相同的小正方体构成,并且该几何体从正面和上面看到的形状图如图所示.则构成这个几何体的小正方体的个数最少是 ______ .三、解答题17.如图是一个几何体的三视图.(1)写出这个几何体的名称:______;(2)画出它的一种表面展开图;(3)若主视图的高为3cm,俯视图中三角形的边长都为2cm,求这个几何体的侧面积.18.如图是某几何体的三视图.(1)说出这个几何体的名称.(2)画出它的表面展开图.(3)求这个几何体的所有棱长的和、表面积及体积.19.如图的几何体是由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体从正面和左面看到的形状图.20.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)在网格中画出这个几何体的主视图、左视图和俯视图.(2)直接写出该几何体的表面积为 ______cm2;(3)若还有一些相同的小正方体,如果保持从上面看和从左面看到的图形不变,最多可以再添加 ______个小正方体,21.如图是由大小相同的小立方块搭成的几何体.请画出该几何体从正面、左面、上面观察所看到的几何体的形状图.22.如图是由几块小立方块搭成的几何体的主视图与左视图,这个几何体最多可能有几个小立方块?23.如图,是由一些相同的小正方体搭成的几何体从上面看得到的形状图,小正方形中的数字表示该位置的小正方体的个数.(1)请在方格中画出从正面看、从左面看得到的几何体的形状图;(2)若在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面看和从上面看得到的图形不变,那么最多可以再添加 ______个小正方体.参考答案和解析1.【答案】B;【解析】解:如图,只有B中的投影线是平行的,故选B.连接影子的顶端和树的顶端得到投影线,若投影线平行则为平行投影.该题考查了平行投影的知识,牢记平行投影的定义是解答该题的关键.2.【答案】B;【解析】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:B.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.此题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3.【答案】A;【解析】解:人从马路边向一盏路灯下靠近时,光与地面的夹角越来越大,人在地面上留下的影子越来越短,当人到达路灯的下方时,人在地面上的影子变成一个圆点,当人再次远离路灯时,光线与地面的夹角越来越小,人在地面上留下的影子越来越长,所以人在走过一盏路灯的过程中,其影子的长度变化是先变短后变长.故选:A.光沿直线传播,当光遇到不透明的物体时将在物体的后方形成影子,影子的长短与光传播的方向有关.此题主要考查中心投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.4.【答案】B;【解析】解:时间由早到晚的顺序为4312.故选:B.由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.该题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.5.【答案】C;【解析】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有C选项得到的投影为平行投影,故选C.6.【答案】C;【解析】解:由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体为四棱锥.故选:C.由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体.此题主要考查的是几何体的展开图,熟记几何体的侧面、底面图形特征即可求解.7.【答案】A;【解析】解:A、由三角形的内角和为180°知:第三个角的大小为:180°−50°−35°=95°,∴A选项中的图形不是等腰三角形.故A选项符合题意;B、由三角形的内角和为180°知:第三个角的大小为:180°−90°−45°=45°,∴B选项中的图形是等腰三角形.故B选项不符合题意;C、由三角形的内角和为180°知:第三个角的大小为:180°−100°−40°=40°,∴C选项中的图形是等腰三角形.故C选项不符合题意;D、由图形中有两边长为5知:选项D中的图形是等腰三角形.故D选项不符合题意;故选:A.由三角形的内角和判定选项ABC中的三角形是否为等腰三角形,D选项由等腰三角形的定义判断.此题主要考查了三角形的内角和与等腰三角形的判定和定义.利用三角形的内角和为180°求出第三角是突破点.8.【答案】C;【解析】解:在Rt△ABC中,∠ABC=30°,AB=20,∴AC=12AB=10,BC=AB⋅cos30°=20×√32=10√3,在Rt△CBQ中,CQ=√CB2−BQ2=√(10√3)2−(6√3)2=8√3,∵∠CAP+∠ACP=90°,∠BCQ+∠ACP=90°,∴∠CAP=∠BCQ,∴Rt△ACP∽Rt△CBQ,∴CPBQ =ACBC,∴CP=√310√3=6,∴PQ=CP+CQ=6+8√3,即AB在直线l上的正投影的长是6+8√3,故选:C.根据30°角所对的直角边等于斜边的一半,可得AC=5,根据锐角三角函数可得BC的长,再根据勾股定理可得CQ的长;通过证明△ACP∽△CBQ,再根据相似三角形的性质可得CP的长,进而得出PQ的长.此题主要考查了平行投影,掌握相似三角形的判断与性质以及勾股定理是解答本题的关键.9.【答案】6;【解析】解:综合三视图可知,这个几何体的底层应该有2+1+1+1=5个小正方体,第二层应该有1个小正方体,因此组成这个几何体所用小正方体的个数是5+1=6个,故答案为:6.根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.此题主要考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.10.【答案】3、4、5;【解析】解:根据题意,拿掉若干个小立方块后保证从正面和左面看到的图形如图2所示,所以最底下一层最少必须有2个小立方块,上面一层必须保留1个立方块,如图,故答案为:3,4、5.作图求出最底下一层最少必须有2个小立方块,上面一层必须保留1个立方块即可.此题主要考查了画三视图,根据立体图形得出其三视图是解题关键,注意三种视图的观察角度.11.【答案】8;【解析】解:第一层有1+2+3=6个正方体,第二层最少有2个正方体,所以这个几何体最少有6+2=8个正方体组成.故答案为:8.由所给视图可得此几何体有3列,3行,2层,分别找到第二层的最少个数,加上第一层的正方体的个数即为所求答案.本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.12.【答案】16;【解析】解:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,n=4+3+2=9,m=4+2+1=7,所以m+n=9+7=16.故答案为:16.主视图、俯视图是分别从物体正面、上面看所得到的图形.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13.【答案】正方体和球体;【解析】解:正方体主视图、俯视图、左视图都是正方形;圆柱主视图和左视图是矩形,俯视图是圆;圆锥主视图和左视图是等腰三角形,俯视图是圆;球体主视图、俯视图、左视图都是圆;因此三视图都完全相同的几何体是正方体和球体.故答案为:正方体和球体.14.【答案】正方体或球;【解析】【试题解析】这道题主要考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.找到从物体正面、左面和上面看得到的图形全等的几何体即可.解:正方体从正面看,左面看,上面看到的平面图形为全等的正方形;球从正面看,左面看,上面看到的平面图形为全等的圆,∴这个几何体可能是正方体或球.故答案为正方体或球.15.【答案】②③④;【解析】该题考查平行投影,关键是根据在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.解:矩形木框在地面上形成的投影应该是矩形或平行四边形或一条线段,即相对的边平行或重合,故①不可能,即不会是梯形,故答案为②③④.16.【答案】5;【解析】解:综合主视图和左视图,这个几何体的底层有4个小正方体,第二层最少有1个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+1=5个.故答案为5.易得这个几何体共有2层,由左视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.【答案】三棱柱;【解析】解:(1)几何体的名称是三棱柱;故答案为:三棱柱;(2)表面展开图为:(3)3×6=18cm2,∴这个几何体的侧面积为18cm2.(1)根据三视图,即可解决问题;(2)画出正三棱柱的侧面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可.此题主要考查三视图、几何体的侧面展开图等知识,解答该题的关键是理解三视图、看懂三视图,属于中考常考题型.18.【答案】解:(1)这个几何体为三棱柱;(2)它的表面展开图如图所示;×√52−42×4+(3+4+5)×15=192(c m2);(3)它的表面积为:2×12它的体积为:1×3×4×15=90(c m3).;2【解析】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个三棱柱;(2)易得为一个长方形加两个三角形;(3)根据直三棱柱的表面积以及体积公式计算即可.此题主要考查由三视图确定几何体和求几何体的面积,体积等相关知识,考查学生的空间想象能力.19.【答案】解:从正面和从左面看到的这个几何体的形状图如图所示:;【解析】根据正面看,左面看的图形,根据各行、各列对应的立方体的个数进行画图.此题主要考查了作图−三视图的画法,把握“长对正,宽相等,高平齐”是画图的关键.20.【答案】52 2;【解析】解:(1)如图所示:(2)(4×2+3×2+5×2+2)×(1×1)=(8+6+10+2)×1=52×1=52(cm2).答:该几何体的表面积为52cm2.故答案为:52;(3)若使该几何体俯视图和左视图不变,可在从左数第1,2列前排小正方体上分别添加1,1个小正方体,1+1=2(个).答:最多可以再添加2个小正方体.故答案为:2.(1)主视图有3列,每列小正方数形数目分别为1,1,2;左视图有4列,每列小正方数形数目分别为2,1;俯视图有3列,每列小正方形数目分别为2,1,2;据此可画出图形;(2)将主视图、左视图、俯视图面积相加,再乘2,再加上2个小正方形的面积即可得解;(3)若使该几何体从上面看和从左面看到的图形不变,可在从左数第1,2列前排小正方体上分别添加1,1个小正方体.此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.21.【答案】解:三视图如图所示:;【解析】根据三视图的定义画出图形即可.考查了作图−三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.22.【答案】解:∵由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,∴最底层最多有3×2=6个正方体,主视图和左视图可得第2层最多有1+1=2个正方体,最上一层最多有1个正方体,∴组成该几何体的正方体最多有6+2+1=9个.;【解析】由主视图可得组合几何体的底层有3列,由左视图可得该几何体有2行,所以最底层最多有3×2=6个正方体,由主视图和左视图可得第2层最多有1+1=3个正方体,最上一层最多有1个正方体,相加可得组成组合几何体的正方体的个数.此题主要考查了由视图判断几何体;用到的知识点为:组合几何体最底层正方体的最多个数=行数×列数.23.【答案】3;【解析】解:(1)从正面看、从左面看得到的几何体的形状图如图所示:(2)若在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面看和从上面看得到的图形不变,那么最多可以再添加1+2=3个小正方体.故答案为:3.(1)观察图形可知,主视图有3列,每列小正方形数目分别为2,3,2;左视图有3列,每列小正方形数目分别为3,12.据此可画出图形;(2)根据俯视图的各个位置所摆放的小立方体的个数,在保持主视图,俯视图不变的情况下,添加小立方体,直至最多.此题主要考查作图−三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.。
人教版九年级数学下《第29章投影与视图》单元检测试卷(有答案)
2017-2018学年度第二学期人教版九年级数学下册第29章投影与视图单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.一根电线杆的接线柱部分AB在阳光下的投影CD的长为1.2,太阳光线与地面的夹角∠ACD=60∘,则AB的长为()A.12B.0.6C.65√3 D.25√32.由若干个大小相同的小正方体组成的几何体的三视图如图所示,则这个几何体只能是()A. B.C. D.3.给出以下命题,命题正确的有()①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影;②物体的投影的长短在任何光线下,仅与物体的长短有关;③物体的俯视图是光线垂直照射时,物体的投影;④物体的左视图是灯光在物体的左侧时所产生的投影;⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行的光线.A.1个B.2个C.3个D.4个4.下列立体图形的正视图是长方形的有()A.1个B.2个C.3个D.4个5.下列基本几何体中,从正面、上面、左面观察都是相同图形的是()A.圆柱B.三棱柱C.球D.长方体6.一个几何体由一些小正方体摆成,其主视图与左视图如图所示,其俯视图不可能()A. B.C. D.7.如图,该几何体的主视图是()A. B.C. D.8.与如图所示的三视图对应的几何体是()A. B. C. D.9.下列几何体中,主视图是三角形的是()A. B.C. D.10.如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的左视图是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,是由小立方块搭成几何体的俯视图,上面的数字表示,该位置小立方块的个数画出主视图:________,左视图:________.12.由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积最大的是________(A、主视图B、左视图C、俯视图)13.下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为________14.如图是同一时刻两根木杆的影子,则它们是________的光线形成的影子.15.一个圆锥是由一个平面和一个曲面所组成,它们相交成一个圆,且这个锥体从正面看到的形状图为一个边长为2cm的等边三角形,求其从上面看到的形状图的面积________.16.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形________相似.(填“可能”或“不可能”).17.小刚在高18米的塔上看远方,离塔5米处有一高12米的障碍物,小刚看不见离塔________米远的地方(小刚身高忽略不计).18.如图,右边的图形是物体的________图.19.如图,直角坐标平面内,小明站在点A(−10, 0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为________米.20.在桌面上摆有一些大小一样的正方体木块,其主视图如图(1)所示,左视图如图(2)所示,要摆出这样的图形至多需要用________块正方体木块,至少需要用________块正方体木块.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图是一个食品包装盒的三视图,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.22.如图是由几个小立方块所搭几何体从上面看到的图形,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体从正面、从左面看到的图形.23.如图,若干个完全相同的小正方体堆成一个几何体.(1)请画出这个几何体的三视图;(2)现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,那么在这个几何体上最多可以再添加________个小正方体.24.如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.25.如图:是一个由棱长为1cm的正方体垒成的立体图形.(1)从正面、左面、上面观察几何体,分别画出所看到的几何体的形状图.(2)求出几何体的表面积.26.小明和小彬观察同一个物体,从俯视图看都是一个等腰梯形,但小明所看到的主视图如图(1)所示,小彬看到的主视图如图(2)所示.你知道这是一个什么样的物体?小明和小彬分别是从哪个方向观察它的?答案 1.C 2.B 3.B 4.B 5.C 6.C 7.B 8.B 9.B 10.D 11.12.C13.③④①② 14.点光源 15.πcm 2 16.可能 17.5∼15 18.主视 19.2.5 20.29721.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为12cm ,5cm , ∴菱形的边长=√62+(52)2=132,棱柱的侧面积=132×4×15=390(cm 2).22.解:如图所示:. 23.4.24.解:如图所示:25.解:(1)如图所示:;(2)表面积为:(6+6+4+4+6+12)×1=38.26.解:底面为等腰梯形的四棱柱(如图所示).小明是从前面观察的,而小彬则是从后面观察的(答案不惟一).。
新人教版九年级数学下册《第29章 投影与视图》单元测试卷(解析版)
新人教版九年级数学下册《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题,满分30分,每小题3分)1.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化3.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42314.下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.5.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是()A.与窗户全等的矩形B.平行四边形C.比窗户略小的矩形D.比窗户略大的矩形6.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近7.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D8.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.9.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.10.下图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),根据图中所示,可判断形成该影子的光线为()A.太阳光线B.灯光光线C.可能为太阳光线或灯光光线D.该影子实际不可能存在二.填空题(共6小题,满分18分,每小题3分)11.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.12.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC等于8米,则树高AB等于米.13.请写出一个主视图、左视图和俯视图完全一样的几何体.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=.15.如图是由若干个大小相同的小正方体摆成的几何体.那么,其三种视图中,面积最小的是.16.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.三.解答题(共8小题,满分72分)17.(8分)有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.18.(8分)一个几何体由几块相同的小正方体叠成,它的三视图如下图所示.请回答下列问题:(1)填空:①该物体有层高;②该物体由个小正方体搭成;(2)该物体的最高部分位于俯视图的什么地方?(注:在俯视图上标注,并有相应的文字说明)19.(8分)下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)该几何体的体积是,表面积是;(2)分别画出从正面、左面、上面看到的立体图形的形状.20.(8分)根据如图视图(单位:mm),求该物体的体积.21.(8分)一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.22.(10分)已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.23.(10分)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.24.(12分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?2019年春新人教版九年级数学下册《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化【分析】连接路灯和旗杆的顶端并延长交平面于一点,这点到旗杆的底端的距离是就是旗杆的影长,画出相应图形,比较即可.【解答】解:由图易得AB<CD,那么离路灯越近,它的影子越短,故选:B.【点评】此题主要考查了中心投影,用到的知识点为:影长是点光源与物高的连线形成的在地面的阴影部分的长度.3.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.4231【分析】由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.【解答】解:时间由早到晚的顺序为4312.故选:B.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.4.下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.【分析】太阳从东方升起,故物体影子应在西方,所以太阳刚升起时,照射一根旗杆的影像图,应是影子在西方.【解答】解:太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.故选:C.【点评】本题考查平行投影的特点和规律.在不同的时刻,同一物体的影子的方向和大小也不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.5.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是()A.与窗户全等的矩形B.平行四边形C.比窗户略小的矩形D.比窗户略大的矩形【分析】太阳光照射一扇矩形的窗户,根据在同一时刻,不同物体的物高和影长成比例,且平行物体的投影仍旧平行.故可知矩形的窗户的投影是与窗户全等的矩形.【解答】解:太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是与窗户全等的矩形.故选:A.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,且平行物体的投影仍旧平行.6.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近【分析】由题意易得,小阳和小明离光源是由远到近的过程,根据中心投影的特点,即可得到身影越来越短,而两人之间的距离始终与小阳的影长相等,则他们两人之间的距离越来越近.【解答】解:因为小阳和小明两人从远处沿直线走到路灯下这一过程中离光源是由远到近的过程,所以他在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.7.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.8.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10.下图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),根据图中所示,可判断形成该影子的光线为()A.太阳光线B.灯光光线C.可能为太阳光线或灯光光线D.该影子实际不可能存在【分析】解答本题关键是要区分开平行投影和中心投影.若形成的影子是由太阳光照射形成的影子,则两直线一定平行;若形成的影子是由灯光照射而形成的影子,则两直线一定相交.据此判断即可.【解答】解:若形成的影子是由太阳光照射形成的影子,则两直线一定平行;若形成的影子是由灯光照射而形成的影子,则两直线一定相交.所以可判断形成该影子的光线为灯光光线.故选B.【点评】本题综合考查了平行投影和中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.二.填空题(共6小题,满分18分,每小题3分)11.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.【分析】根据光源和两根木棒的物高得影子长即可.【解答】解:如图所示:【点评】本题考查中心投影的特点与应用,解决本题的关键是根据光源和两根木棒的物高得影子长.12.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC等于8米,则树高AB等于10米.【分析】作DH⊥AB于H,如图,易得四边形BCDH为矩形,则DH=BC=8m,CD=BH=2m,利用平行投影得到∠ADH=45°,则可判断△ADH为等腰直角三角形,所以AH=DH=8m,然后计算AH+BH即可.【解答】解:作DH⊥AB于H,如图,则DH=BC=8m,CD=BH=2m,根据题意得∠ADH=45°,所以△ADH为等腰直角三角形,所以AH=DH=8m,所以AB=AH+BH=8m+2m=10m.故答案为10.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.13.请写出一个主视图、左视图和俯视图完全一样的几何体正方体.【分析】主视图、左视图、俯视图是物体分别从正面、左面和上面看,所得到的图形.【解答】解:球的三视图都为圆;正方体的三视图都为正方形.故答案为:正方体.【点评】本题考查学生对三视图的掌握程度以及灵活运用能力,同时也体现了对空间想象能力方面的考查.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=16.【分析】这种题需要空间想象能力,可以想象这样的小立方体搭了左中右三排,但最左排可以为4~6个小正方体,依此求出m、n的值,从而求得m+n的值.【解答】解:最少需要7块如图(1),最多需要9块如图(2)故m=9,n=7,则m+n=16.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.15.如图是由若干个大小相同的小正方体摆成的几何体.那么,其三种视图中,面积最小的是左视图.【分析】如图可知该几何体的正视图由6个小正方形组成,左视图是由34小正方形组成,俯视图是由6个小正方形组成,易得解.【解答】解:如图,该几何体正视图是由6个小正方形组成,左视图是由4个小正方形组成,俯视图是由6个小正方形组成,故三种视图面积最小的是左视图.故答案为:左视图.【点评】本题考查的是三视图的知识以及学生对该知识点的巩固,难度属简单.解题关键是找到三种视图的正方形的个数.16.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要8个小立方体.【分析】由主视图求出这个几何体共有3层,再求出第二层、第三层最少的个数,由俯视图可得第一层正方体的个数,相加即可.【解答】解:由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层只有1个,故组成这个几何体的小正方体的个数最少为:5+2+1=8(个).故答案为:8.【点评】本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”.三.解答题(共8小题,满分72分)17.(8分)有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.【分析】连接AE,过点C作AE的平行线,过点D作BE的平行线,相交于点F,DF即为所求.【解答】解:【点评】本题考查平行投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.会灵活运用性质作图.18.(8分)一个几何体由几块相同的小正方体叠成,它的三视图如下图所示.请回答下列问题:(1)填空:①该物体有3层高;②该物体由8个小正方体搭成;(2)该物体的最高部分位于俯视图的什么地方?(注:在俯视图上标注,并有相应的文字说明)【分析】(1)由三视图中的主视图和左视图可得,该物体有3层高;依据俯视图即可得到该物体由8个小正方体搭成;(2)由三视图中的主视图和左视图可得,该物体的最高部分位于俯视图的左上角.【解答】解:(1)由三视图中的主视图和左视图可得,该物体有3层高;俯视图中各位置的正方体的个数如下:∴该物体由8个小正方体搭成;故答案为:3,8;(2)如图所示,该物体的最高部分位于俯视图的左上角,即阴影部分:【点评】本题考查了由三视图判断几何体,由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.19.(8分)下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)该几何体的体积是6cm3,表面积是24cm2;(2)分别画出从正面、左面、上面看到的立体图形的形状.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,2,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【解答】解:(1)几何体的体积:1×1×1×6=6(cm3),表面积:5+5+3+3+4+4=24(cm2);故答案为:6cm3,24cm2;(2)如图所示:【点评】本题考查组合几何体的计算和三视图的画法;用到的知识点为:主视图、左视图、俯视图分别是从物体的正面、左面、上面看到的平面图形.20.(8分)根据如图视图(单位:mm),求该物体的体积.【分析】首先判断该几何体的形状由上下两个圆柱组合而成,然后计算体积即可.【解答】解:由三视图知:该几何体是两个圆柱叠放在一起,上面圆柱的底面直径为8,高为4,下面圆柱的底面直径为16,高为16,故体积为π(16÷2)2×16+π(8÷2)2×4=1088πmm3.【点评】考查了由三视图判断几何体的知识,解题的关键是能够根据该几何体的三视图得到该几何体的形状.21.(8分)一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.【分析】(1)根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答即可得;(2)根据每个正方体的体积乘以正方体的个数即可得.【解答】解:(1)如图所示:(2)该几何体的体积为33×(2+3+2+1+1+1)=27×10=270(cm3).【点评】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.22.(10分)已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.【分析】(1)根据已知连接AC,过点D作DF∥AC,即可得出EF就是DE的投影;(2)利用三角形△ABC∽△DEF.得出比例式求出DE即可.【解答】解:(1)作法:连接AC,过点D作DF∥AC,交直线BE于F,则EF就是DE的投影.(画图(1分),作法1分).(2)∵太阳光线是平行的,∴AC∥DF.∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴=,∵AB=5m,BC=4m,EF=6m,∴,∴DE=7.5(m).【点评】此题主要考查了平行投影的画法以及相似三角形的应用,根据已知得出△ABC∽△DEF是解题关键.23.(10分)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.【分析】(1)连接CB延长CB交DE于O,点O即为所求.(2)连接OG,延长OG交DF于H.线段FH即为所求.(3)根据=,可得=,即可推出DE=4m.【解答】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.【点评】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.24.(12分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?【分析】(1)根据三视图可分别得出俯视图上小立方体的个数;(2)根据(1)可得小正方体的个数为10,然后利用1个小正方体的体积乘以10即可;(3)根据三视图可得该物体的表面有多少个小正方形,然后利用1个小正方形的面积乘以个数即可.【解答】解:(1)如图所示:(2)3×3×3×10=270(cm3),答:该物体的体积是270cm3;(3)3×3×38=342(cm2),答:该物体的表面积是342cm2.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.人教版九年级数学下册期末高效复习:专题9 投影与视图人教版初中数学九年级下册第28章锐角三角函数专题9投影与视图题型一投影典例下列为某两个物体的投影,其中是在太阳光下形成投影的是(D)A B C D【解析】如答图,故选D.典例答图【点悟】判断是平行投影还是中心投影,关键是看光源,一般太阳光可以近似地看成平行光,因此,在太阳光下的投影是平行投影.在路灯、手电筒等点光源下的投影就是中心投影.变式跟进 1.某舞台的上方共挂有a,b,c,d四个照明灯,当只有一个照明灯亮时,一棵道具树和小玲在照明灯光下的影子如图Z9-1所示,则亮的照明灯是(B)图Z9-1A.a灯B.b灯C.c灯D.d灯题型二直棱柱的展开图典例[2018·雅安]下列图形不能折成一个正方体的是(B)A B C D【解析】B选项图形中含“7”字形,因此不能折成一个正方体,故选B.【点悟】正方体的展开图有“1+4+1”型、“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.变式跟进 2.[2018·大庆]将正方体的表面沿某些棱剪开,展成如图Z9-2所示的平面图形,则原正方体中与“创”字所在面相对的面的上标的字是(A)图Z9-2A.庆B.力C.大D.魅【解析】“141”型上下两个为相对面,其余的相对的面之间一定相隔一个正方形.故选A.3.[2017·海淀区一模]下列选项中,左边的平面图形能够折成右边封闭的立体图形的是(B)A BC D【解析】A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,故B选项正确;C.正方体的展开图中,不存在“田”字形,故C选项错误;D.圆锥的展开图中只有一个圆,故D选项错误.题型三几何体的三视图典例[2017·开封一模]下列四个几何体中,主视图与左视图相同的几何体有(D)A.1个B.2个C.3个D.4个【解析】①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形.故选D.【点悟】在画三视图时,一定要将物体的边、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓线画成虚线,不能漏掉.变式跟进 4.[2018·遂宁]如图Z9-3,5个完全相同的小正方体组成一个几何体,则这个几何体的主视图是(D)图Z9-3A B C D 5.[2017·聊城]如图Z9-4是由若干个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体的主视图是(C)图Z9-4 A B C D【解析】主视图是从前往后看,由俯视图可知从左到右最高层数依次为2,3,1,∴这个几何体的主视图是C.6.[2017·烟台]如图Z9-5所示的工件,其俯视图是(B)图Z9-5 A B C D题型四由视图确定几何体的形状或组成个数典例[2017·峄城区模拟]如图Z9-6,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是(C)图Z9-6A.3个B.4个C.5个D.6个【解析】由俯视图可知,这个几何体的底层有4个小正方体,结合主视图、左视图可知上层后排左侧有1个正方体,所以组成该几何体的小正方体的个数是5个.【点悟】通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了.在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.变式跟进7.[2018·武汉]一个几何体由若干个相同的正方体组成,其主视图和俯视图如图Z9-7所示,则这个几何体中正方体的个数最多是(C)A.3 B.4 C.5 D.6图Z9-7变式跟进7答图。
人教版九年级数学下册《投影与视图》单元测试题(含答案)
一、选择题:1、如图所示,一个斜插吸管的盒装饮料从正面看的图形是()2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A.变长,后变短B.变短,后变长C.向改变,长短不变D.上都不正确3、在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是()A.0米B.6米C.8米D.5米4、如图,下列选项中不是..正六棱柱三视图的是()5、关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比它矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A. 个B.个C.个D.个6、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是()A.0B.2C.4D.67、如图所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积为()A..36m2B..81m2C.m2D..24m28、如图所示是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后顺序进行排列正确的是()A.1)(2)(3)(4)B.4)(3)(1)(2)C.4)(3)(2)(1)D.2)(3)(4)(1)9、“皮影戏”作为我国一种民间艺术,对它的叙述错误的是()A.是用兽皮或纸板做成的人物剪影,来表演故事的戏曲B.演时,要用灯光把剪影照在银幕上C.光下,做不同的手势可以形成不同的手影D.演时,也可用阳光把剪影照在银幕上10、图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为()A.30ºB.36ºC.45ºD.72º11、主视图、左视图、府视图都相同的几何体为(写出两个).12、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .13、我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .14、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为米. 15、如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .16、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .17、身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影 .18、展览厅内要用相同的正方体木块搭成一个三视图如图4的展台,则此展台共需这样的正方体______块。
人教版九年级下《第29章投影与视图》单元检测试卷含答案
第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。
新人教版九年级数学下册第29章《投影与视图》单元检测及答案
人教版数学九年级下学期第29章《投影与视图》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.一个人离开灯光的过程中人的影长()A.变长B.变短C.不变D.不确定2.小强的身高和小明的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长3.在阳光的照射下,一个矩形框的影子的形状不可能是()A.线段B.平行四边形C.等腰梯形D.矩形4.如图是北半球一根电线杆在同一天不同时刻的影长图,请按其一天中发生的先后顺序进行排列,正确的是()A.(1)(2)(3)(4) B.(4)(3)(1)(2) C.(4)(3)(2)(1) D.(2)(3)(4)(1)5.下列为某两个物体的投影,其中是在太阳光下形成投影的是()DCBA6.下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径7.某同学画出了如图所示的几何体的三种视图,其中正确的是()③俯视图②左视图①主视图几何体A.①②B.①③C.②③D.②8.下列四个几何体中,左视图为圆的是()A B CD9.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()3211A B C D10.在小孔成像问题中,如图可知CD的长是物长AB长的()BAA.3倍B.12C.13D.14二、填空题(共6小题,每小题3分,共18分)11.当你走向路灯时,你的影子在你的,并且影子越来越.12.太阳光线下形成的投影是投影.(平行或中心)13.请你写出一个主视图与左视图相同的立体图形是.14.房地产开发商在介绍楼房室内结构时,宣传单上标示的结构图是房间的视图.15.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是.主视方向16.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为个.俯视图左视图三、解答题(共8题,共72分)17.(本题8分)一棵树(AB)和一根木杆(CD)在同一时刻的投影如图所示,木杆CD高3米,影BE长6米,则树AB长多少米?D18.(本题8分)在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有多少箱?左视图俯视图主视图19.(本题8分)画出下图的三视图。
人教版九年级下《第二十九章投影与视图》单元测试题(含答案).docx
第二十九章投影与视图一、选择题(本大题共7小题,每小题5分,共35分)1.下列结论中正确的有()① 同一地点、同一时刻,不同物体在阳光照射下,影子的方向是相同的; ② 不同物体在任何光线照射下影子的方向都是相同的; ③ 同一物体在路灯照射下,影子的方向与路灯的位置有关; ④ 物体在光线照射下,影子的长短仅与物体的长短有关.如图29-Z-1是某零件的直观图,则它的主视图为()图 29-Z-1如图29-Z-3是水平放置的圆柱形物体,物体中间有一根细木棒,则此几何体的左视图是()图 29-Z-45. 一个正方体被截去四个角后得到一个几何体(如图29-Z-5),它的俯视图是A. 1个B. 2个C ・3个D. 4个2. 圆形物体在阳光下的投影不可能是() A. 圆形B.线段C.矩形D.椭圆3. B C 图 29-Z-24. 正面AD止面图 29-Z-3ABCD6. 由一些大小相同的小正方体组成的几何体的三视图如图29-Z-7所示,那么组成这个几何体的小正方体有(左视图图 29-Z-7A ・4个 B. 5个 C. 6个 D. 7个7. 一个几何体的三视图如图29-Z-8所示,则这个几何体的侧面积为()图 29-Z-8 A • 2兀 cnT B • 4兀 cnT C. 8兀 cm 2 D• I671 cm 2二、填空题(本大题共6小题,每小题5分,共30分)8. 写出一个在三视图中俯视图与主视图完全相同的儿何体: _________ ・ 9. 如图29-Z-9是由四个小正方体组成的几何体,若每个小正方体的棱长都是1,则该几何体的俯视图的面积是A 图 29-Z-5图 29-Z-6D主视图 俯视图图29-Z-910. 一个几何体的三视图如图29-Z-10所示(其中标注的a, b, C 为相应的边长),则这个几何体的体积是 ________ •图 29-Z-1011. 已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为 _________ m.12. 已知某正六棱柱的主视图如图29-Z-11所示,则该正六棱柱的表面积为60 f―> 1010图 29-Z-1113. 在桌面上摆放着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图29-Z-12所示,设组成这个几何体的小正方体的个数为弘则n 的最小值为三、解答题(本大题共3小题,共35分)14. (9分)画出如图29—Z —13所示几何体的三视图.图 29-Z-1315. (12分)如图29-Z-14,已知线段AB=2cm,投影面为P,太阳光线与投影面垂直.(1)当AB 垂直于投影面P 时(如图①),请画出线段AB 的投影;b主视图图 29-Z-12(2)当AB平行于投影面P吋(如图②),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂育于投影面P的平面内逆时针旋转30。
人教版九年级数学下册第二十九章《投影与视图》单元测试题(含答案)
人教版九年级数学下册第二十九章《投影与视图》单元测试题一、选择题(本大题共9小题,每小题4分,共36分)1.下列物体的光线所形成的投影是平行投影的是()A.台灯B.手电筒C.太阳D.路灯2.正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形3.下列立体图形中,俯视图不是圆的是()图14.如图2所示的几何体的左视图为()图2图35.图4是水平放置的圆柱形物体,物体中间有一根细木棒,则此几何体的左视图是()图4图56.图6是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,下列关于新几何体的三视图描述正确的是()图6A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变7. 图7②是图①中长方体的三视图,若用S表示面积,且S主=x2+2x,S左=x2+x,则S 俯为()图7A.x2+3x+2B.x2+2C.x2+2x+1D.2x2+3x8.由一些大小相同的小正方体组成的几何体的三视图如图8所示,那么组成这个几何体的小正方体有()图8A.4个B.5个C.6个D.7个9.一个几何体的三视图如图9所示,则这个几何体的侧面积为()图9A.2π cm2B.4π cm2C.8π cm2D.16π cm2二、填空题(本大题共8小题,每小题4分,共32分)10.广场上一个大型艺术字板块在地上的投影如图10所示,则该投影属于________(填写“平行投影”或“中心投影”).图1011.写出一个在三视图中俯视图与主视图完全相同的几何体:________.12.图11是由四个相同的小正方体组成的几何体,若每个小正方体的棱长都是1,则该几何体的俯视图的面积是________.图1113.一个几何体的三视图如图12所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是________.图1214.已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为________m.15.已知某正六棱柱的主视图如图13所示,则该正六棱柱的表面积为______________.图1316.图14是由若干个相同的小正方体搭成的几何体的主视图和俯视图,则所需的小正方体的个数最少是________.图1417.如图15,小超想要测量窗外的路灯PH的高度.星期天晚上,他发现灯光透过窗户照射在房间的地板上,窗户的最高点C落在地板上的B处、窗户的最低点D落在地板上的A 处,小超测得窗户距地面的高度QD=1 m,窗高CD=1.5 m,并测得AQ=1 m,AB=2 m.则窗外的路灯PH的高度为________.图15三、解答题(本大题共3小题,共32分)18.(9分)画出如图16所示几何体的三视图.图1619.(10分)图17所示是某几何体的展开图.(1)这个几何体的名称是________;(2)画出这个几何体的三视图;(3)求这个几何体的体积(π取3.14).图1720.(13分)如图18,在同一时间,身高为1.6 m的小明(AB)在路灯下的影子BC长是3 m,而小颖(EH)刚好在路灯灯泡的正下方点H处,并测得HB=6 m.(1)在图中画出路灯灯泡所在的位置G,并求路灯灯泡的垂直高度GH;(2)如果小明沿线段BH向小颖(点H)走去,当小明走到BH的中点B1处时,画出小明的影子B1C1,并求出B1C1的长.图18参考答案1.C 2.D 3.C 4.D 5.B6.A 7.A8.C9.B 10.平行投影11.球(答案不唯一)12.313.abc14.4515.7200+1200 316.517.10 m18.解:几何体的三视图如图所示.19.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为π×52×20=500π≈1570.20.解:(1)路灯灯泡所在的位置G如图所示.∵AB∥GH,∴△ABC∽△GHC,∴ABGH=BCHC,即1.6GH=36+3,解得GH=4.8(m).即路灯灯泡的垂直高度GH是4.8 m.(2)小明的影子B 1C 1如图所示. ∵A 1B 1∥GH , ∴△A 1B 1C 1∽△GHC 1, ∴A 1B 1GH =B 1C 1HC 1. 设B 1C 1的长为x m ,则1.64.8=xx +3,解得x =1.5.经检验,x =1.5是原方程的解,且符合题意.即B 1C 1的长为1.5 m.。
人教版九年级数学下册_第29章_投影与视图_单元检测试卷【有答案】
人教版九年级数学下册_第29章_投影与视图_单元检测试卷【有答案】一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 ) 1.下列投影一定不会改变的形状和大小的是( )A.中心投影B.平行投影C.正投影D.当平行投影面时的平行投影2.某物体的三视图是如图所示的三个图形,那么该物体形状是( )A.圆锥B.圆柱C.三棱锥D.三棱柱 3.如图,是由相同的小正方体组成的立体图形,它的左视图是( )A.B.C.D.4.如图所示,灯在距地面米的处,现有一木棒米长,当处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( )A.先变长,后变短B.先变短,后变长C.不变D.先变长,再不变,后变短5.某同学画出了如图所示的几何体的三种视图,其中正确的是( )A.①②B.①③C.②③D.②6.如图所示的几何体,如果从正面观察它,得到的平面图形是( )A.B.C.D.7.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离( ) A.始终不变 B.越来越远 C.时近时远 D.越来越近 8.如图的主视图是( )A.B.C.D.9.如图是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有( )A.个B.个C.个D.个10.由个大小相同的小正方体组成的几何体,如下图所示.其俯视图是( )A.B.C.D.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.如图,组成这个几何体的小正方体的块数为,则的所有可能值为________.12.如图,在一间黑屋子里用一盏白炽灯按如图所示的方式照球、圆柱和圆锥,它们在地面上的阴影形状分别是________,________,________.(文字回答即可)13.身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较________.14.如图,三角尺在灯泡的照射下在墙上形成影子,现测得,,则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________.15.三棱柱的三视图如图所示,在中,,,,则的长为________.16.如图中,现将绕旋转一周,所得几何体的主视图是图中的________.17.桌上放着一个圆锥和一个正方体,请说出下面三幅图形分别是从哪个方向看到的________.18.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.19.如图所示,在房子的屋檐处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在________.20.如图是六个棱长为的立方块组成的一个几何体,其俯视图的面积是________.三、解答题(共6 小题,每小题10 分,共60 分)21.一个几何体由几个大小相同的小立方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请你画出从正面、左面看到的这个几何体的形状图.22.如图所示是由几个小正方块所组成的几何体俯视图,小正方形中的数字表示在该位置小正方块的个数,请你画出这个几何体的正视图和左视图.23.有一个正方体,在它的各个面上分别标上数字、、、、、.小明、小刚、小红三人从不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?24.如图是由几个小立方体所搭几何的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图、左视图.25.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成角,房屋向南的窗户高米,现要在窗子外面的上方安装一个水平遮阳蓬(如图所示).当遮阳蓬的宽度在什么范围时,太阳光线能射入室内?当遮阳蓬的宽度在什么范围时,太阳光线不能射入室内?26.李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度,,(点、、在同一直线上).已知李航的身高是,请你帮李航求出楼高.答案1.D2.A3.B4.A5.B6.C7.D8.B9.B10.B11.,,,12.椭圆圆三角形13.远14.15.16.17.正面,左面,上面18.左面上面前面19.所在的区域20.21.解:作图如下:22.解:如图所示:23.解:从个小立方体上的数可知,与写有数字的面相邻的面上数字是,,,,所以数字面对数字面,同理,立方体面上数字对.故立方体面上数字对.24.解:如图所示主视图和左视图:.25.解:在组成是的直角三角形.∴(米).当遮阳蓬的宽度小于等于米时,太阳光线能射入室内;当遮阳蓬的宽度大于米时,太阳光线不能射入室内.26.楼高为米.人教版九年级下册数学第29章投影与视图单元检测一、选择题1.如图所示的几何体的主视图是A. B. C. D.2.人离窗子越远,向外眺望时此人的盲区是A. 变小B. 变大C. 不变D. 以上都有可能3.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是A. B. C. D.4.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短5.如图是某几何体的三视图,则该几何体是A. 正方体B. 圆锥体C. 圆柱体D. 球体6.电影院呈阶梯或下坡形状的主要原因是A. 为了美观B. 减小盲区C. 增大盲区D. 盲区不变7.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是A. B.C. D.8.下列几何体中,主视图和俯视图都为矩形的是A. B. C. D.9.下列投影中,是平行投影的是A. B.C. D.10.下面属于中心投影的是A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出二、填空题(本大题共5小题,共15.0分)11.如图所示该几何体的俯视图是12.当人走在路上,后面的建筑物好像“沉”到前面的建筑物的后面,这是因为______ .13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______ .14.如图,太阳光线与地面成的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是______cm.15.如图,地面A处有一支燃烧的蜡烛长度不计,一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而______ 填“变大”、“变小”或“不变”.三、解答题16.如图,小区管理者打算在广场的地面上安装一盏路灯路灯高度忽略不计小明此刻正在某建筑物的B处向下看,请问:此路灯安在什么位置,小明在B处看不到?请把这段范围用线段表示出来.17.由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.18.如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.19.同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.几何体最多有______ 个小正方体,最少有______ 个小正方体.【答案】1. D2. B3. B4. A5. C6. B7. A8. B9. B10. B11. B12. 到了自己的盲区的范围内13. 左视图14. 2115. 变小16. 解:如图所示:线段BE以下为盲区,此路灯安在BE下面,小明在B处看不到.17. 解:如图所示:.18. 解:如图所示是灯光的光线原因是过一棵树的顶端及其影子的顶端作一条直线,再过人的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置;然后再过旗杆的顶端连接光源的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子.19. 解:如图所示:分别过木桩的顶端和它影子的顶端作直线,会发现两直线交于一点A,再过A、B画直线可得另一根木棒的影子.20. 10;4人教版九年级下册数学第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。
人教版九年级下册《第29章投影与视图》单元测试卷含参考答案
人教版九年级数学下册 第29章 投影与视图 单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 在阳光下摆弄一个矩形,它的影子不可能是( ) A.线段 B.矩形 C.等腰梯形 D.平行四边形2. 如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子( )A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长D.无法判断谁的影子长4. 电影院座位号呈阶梯状或下坡状的原因是( ) A.减小盲区 B.增大盲区 C.盲区不变 D.为了美观5. 由几个相同的小立方块组成一个立体图形,如图是从不同方向看到它的图形,小立方块的个数是( )A.3个B.4个C.5个D.6个6. 如图是某几何体的三视图及相关数据,则判断正确的是( )A.a 2+b 2=c 2B.a 2+b 2=4c 2C.a 2+c 2=b 2D.a 2+4c 2=b 2 7. 下面四个立体图形中,三视图完全相同的是( ) A.B.C.D.8. 电影院呈阶梯或下坡形状的主要原因是( ) A.为了美观 B.减小盲区 C.增大盲区 D.盲区不变9. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A.B.C.D.10. 桌面上放置的几何体中,主视图与左视图可能不同的是( ) A.圆柱 B.正方体 C.球 D.直立圆锥 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分) 11. 如图,一几何体的三视图如右:那么这个几何体是________.12. 由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积最大的是________(A 、主视图 B 、左视图 C 、俯视图)13. 在①长方体、②球、③圆锥、④圆柱、⑤正方体、⑥三棱柱这六种几何体中,其主视图、左视图、俯视图都完全相同的是________(填上序号即可). 14. ________是画三视图必须遵循的法则.15. 如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是________.16. 请将六棱柱的三视图名称依次填在横线上________.17. 如图,一位同学身高1.6米,晚上站在路灯下,他在地面上的影长是2米,若他沿着影长的方向移动2米站立时,影长增加了0.5米,则路灯的高度是________米.18. 学校的阶梯教室做成阶梯形的原因是________.19. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.20. 由视点发出的线称为________,看不到的地方称为________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 请你画出如图几何体的三视图.22. 画出此实物图的三种视图.三种视图.23. 5个棱长为1的正方体组成如图所示的几何体,画出该几何体的主视图和左视图.24. 从三个方向看某一几何体,得到图形如图所示,请描述这个几何体是由几个正方体怎样摆放而成的.25. 由一些大小相同的小正方形搭成的几何体的俯视图,如图所示,其中正方形中的数字表示该位置上的小正方形的个数,请画出该几何体的主视图和左视图.26. 如图所示,观察左图,并在右边的三视图中标出几何体中的相应字母的位置.答案1. C2. A3. D4. A5. B6. C7. B8. B9. B10. A11. 空心圆柱12. C13. ②⑤14. 长对正,高平齐,宽相等15. 5或6或7或8或9或1016. 主视图,俯视图,左视图 17. 818. 减少学生的盲区(看不见的地方),使得每人都能看到黑板 19. 从不同的角度看得到的视图不同 20. 视线盲区21. 解:如图所示:22. 解:23. 解:所画图形如下所示:24. 解:由三个方向看到的图形可以描述这个几何体:下层是由四个小正方体按正方形摆放,上层由一个小正方体摆放在正中央. 25. 解:如图所示:26. 解:根据题意如图:。
人教版数学九年级下学期第29章《投影和视角》单元测试卷(配答案)
人教版数学九年级放学期第 29 章《投影与视角》单元测试卷(配答案)(满分 120 分,限时120 分钟)一、选择题 (每题 3 分,共 30 分 )1.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不行能是( B )A .圆B .三角形C.线段D.椭圆2.三真相同的书籍叠成如下图的几何体,它的主视图是( B )3.如下图的几何体的左视图是( A )4.以下几何体中,主视图和俯视图都为矩形的是( B )5.图中三视图对应的正三棱柱是( A )6.如图是某几何体的三视图,其侧面积为( C )A .6 B. 4πC. 6π D .12π,第 6 题图 ),第 8 题图 ),第 9 题图 )7.如图是由 5 块完整相同的小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该地点小正方体的个数,其主视图是 ( B )8.由若干个形状大小相同的小正方体木块构成的几何体的主视图和俯视图如下图,则这样的小正方形木块起码有( B )A .4 块B. 5 块C.6 块D. 7 块9.如图,三棱柱ABC - A 1B 1C1的侧棱长和底面边长均为长为 2 的正方形,则此三棱柱左视图的面积为( B )2,且侧棱AA 1⊥底面ABC ,其主视图是边A.3 B . 23C. 22D. 410.如图是一个由若干个棱长为 1 cm 的正方体构成的几何体的三视图,则构成这个几何体的体积是 ( C ) A .3 cm3 B . 4 cm3C. 5 cm3 D . 6 cm3二、填空题 (每题 3 分,共 24分 )11.如图是两棵小树在同一时辰的影子,能够判定这是 __中心 __投影,而不是 __平行 __投影.,第 11 题图 ),第 12 题图 ),第 14 题图 ),第15 题图 )12.如图,为了丈量学校旗杆的高度端的影子恰巧落在地面上同一点.此时,小东用长为 3.2 m,竹竿与这一点相距的竹竿做丈量工具.挪动竹竿使竹竿、旗杆顶8 m,与旗杆相距22 m,则旗杆的高度为__12_m __.13.写出一个在三视图中俯视图与主视图完整相同的几何体14.某几何体的三视图如下图,则这个几何体的名称是__球或正方体__圆柱 __.__.15.如图是由若干个大小相同的小正方体构成的几何体,那么其三种视图中面积最小的是__左视图 __.16.如图,这是一个长方体的主视图和俯视图,由图示数据(单位: cm)能够得出该长方体的体积是__18__cm3.,第 16 题图 ),第 17 题图 ),第 18 题图 ) 17.如图,方桌正上方的灯泡(看作一个点 )发出的光芒照耀方桌后,在地面上形成暗影(正方形 )表示图,已知方桌边长 1.2 m,桌面离地面 1.2 m,灯泡离地面 3.6 m,则地面上暗影部分的面积为__3.24__m2.18.如图,在一次数学活动课上,张明用17个边长为1 的小正方体搭成了一个几何体,而后他请王亮用其余相同的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰巧能够和张明所搭几何体拼成一个无空隙的大长方体(不改变张明所搭几何体的形状),那么王亮起码还需要__19__个小正方体,王亮所搭几何体的表面积为 __48__.三、解答题 (共 66 分)19. (8 分 )如图,将第一行的四个物体与第二行其相应的俯视图连结起来.解:①- c,②- a,③- b,④- d20.(8 分 )画出下边图形的三视图:解:如图:21. (8 分 )如图是七个棱长为 1 的立方块构成的一个几何体,画出其三视图并计算其表面积.解:如图:表面积 S= (4× 2+5× 2+ 5× 2)× 1× 1=2822. (8 分 )依据以下视图,求所对应的物体的体积.(单位: mm)解:由三视图知:该几何体是两个圆柱叠放在一同,上边圆柱的底面直径为8,高为 4,下边圆柱的底面直径为16,高为 16,故体积为π (16÷ 2) 2× 16+π (8÷ 2)2× 4= 1 088π (mm 3)23. (10 分 )如图,不透明圆锥体DEC 放在地面上,在 A 处灯光照耀下形成影子心,已知圆锥体的高为 2 3 m,底面半径为 2 m, BE= 4 m.(1)求∠ B 的度数;(2)若∠ ACP = 2∠ B ,求光源 A 距地面的高度.(答案用含根号的式子表示),设 BP 过底面圆的圆DF 解:(1)设 DF 为圆锥 DEC 的高,交 BC 于点 F.由已知得 BF = BE +EF = 6 m ,DF = 23m ,∴ tanB =BF 233=6=3,∴∠ B= 30°(2)过点 A 作 AH ⊥ BP 于点 H ,∵∠ ACP = 2∠B = 60°,∴∠ BAC = 30°,∴AC = BC = 8 m ,在 Rt △ ACH 中,AH = AC ·sin ∠ ACP = 8×3= 43(m),∴光源 A 距地面的高度为 4 3 2m24.(12 分 )将向来径为 17 cm 的圆形纸片 (如图① )剪成如图②形状的纸片,再将纸片沿虚线折叠获得正方体(如图③ )形状的纸盒,则这样的纸盒体积最大为多少?解:如图 ,设小正方形的边长为2x cm ,则 AB = 4x cm , OA = 172cm ,在 Rt △ OAB 中,有 x 2+ (4x)2=(17)2, ∴ x = 17, ∴小正方形的边长最大为17cm ,则纸盒体积最大为( 17)3= 17 17(cm 3 )2 225. (12 分 )一天夜晚 ,李明和张龙利用灯光下的影长来丈量路灯D 的高度.如图 ,当李明走到点A 处时,张龙测得李明直即刻身高AM 与其影子长 AE 正好相等 ,接着李明沿 AC 方向持续向前走,走到点 B处时 ,李明直即刻身高 BN 的影子恰巧是线段 AB ,并测得 AB = 1.25 m ,已知李明直即刻的身高为 1.75 m ,求路灯的高 CD 的长. (结果精准到 0.1 m)解:设 CD 长为 x m . 由题意得 AM ⊥ EC , CD ⊥EC , BN ⊥EC , EA = MA , ∴AM ∥ CD , BN ∥ CD ,BNAB 1.75 1.25∴EC = CD = x , ∴△ ABN ∽△ ACD , ∴ CD =AC ,即 x= x - 1.75,解得 x = 6.125≈ 6.1,则路灯的高 CD的长约为 6.1 m。
新人教版九年级(下)数学投影与视图单元测试试卷
新人教版九年级(下)数学投影与视图单元测试试卷一、填空题(30分)1、甲、乙两人在太阳光下行走;同一时刻他们的身高与其影长的关系是2、身高相同的甲、乙两人分别距同一路灯2米、3米;路灯亮时;甲的影子比乙的影子(填“长”或“短”)3、小刚和小明在太阳光下行走;小刚身高1.75米;他的影长为2.0m ;小刚比小明矮5cm ;此刻小明的影长是________m 。
4、墙壁D处有一盏灯(如图);小明站在A处测得他的影长与身长相等都为1.6m ;小明向墙壁走1m 到B处发现影子刚好落在A点;则灯泡与地面的距离CD =_______。
5、(05苏州)下图的几何体由若干个棱长为数1的正方体堆放而成;则这个几何体的体积为__________。
6、(06南平)如图是某个几何体的展开图;这个几何体是 .7、(06重庆)如图;是由几个相同的小正方体搭成的几何体的三种视图; 则搭成这个几何体的小正方体的个数是8、(05南京)如图;身高为1.6m 的某学生想测量一棵大树的高度;她沿着树影BA 由B 到A 走去;当走到C 点时;她的影子顶端正好与树的影子顶端重合;测得 BC=3.2m ;CA=0.8m ; 则树的高度为9、春分时日;小明上午9:00出去;测量了自己的影长;出去一段时间后回来时;发现这时的影长和上午出去时的影长一样长;则小明出去的时间大约为 小时。
10、直角坐标系内;身高为1.5米的小强面向y 轴站在x 轴上的点A(-10;0)处;他的前方5米处有一堵墙;已知墙高2米;则站立的小强观察y(y>0)轴时;盲区(视力达不到的地方)范围是 二、选择题:(30分) 11、(06金华)下列四幅图形中;表示两颗小树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.12、在同一时刻的阳光下;小明的影子比小强的影子长;那么在同一路灯下( ) A 小明的影子比小强的影子长 B 小明的影长比小强的影子短 C 小明的影子和小强的影子一样长 D 无法判断谁的影子长俯视图左视图主视图224113A B C D第16题俯视图主(正)视图左视图13、(06武汉)下图中几何体的主视图是().(A) (B) (C) (D)14、(06苏州)对左下方的几何体变换位置或视角;则可以得到的几何体是()第Ⅱ卷(非选择题;共98分)15、(06嘉兴)若干桶方便面摆放在桌子上;实物图片左边所给的是它的三视图;则这一堆方便面共有()(A)5桶(B)6桶(C)9桶(D)12桶16、(06荆州)一个全透明的玻璃正方体;上面嵌有一根黑色的金属丝;如图;金属丝在俯视图中的形状是()17、(06常州)、下列左图表示一个由相同小立方块搭成的几何体的俯视图;小正方形中的数字表示该位置上小立方块的个数;则该几何体的主视图为()18、(06成都)右图是由一些完全相同的小立方块搭成的几何体的三种视图;那么搭成这个几何体所用的小立方块的个数是()A 5个B 6个C 7个D 8个19、(06广东)水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示;如图是一个正方体的表面展开图;若图中“2”在正方体的前面;则这个正方体的后面是 ( )A.O B. 6 C.快 D.乐20、(06常州)图1表示正六棱柱形状的高大建筑物;图2中的阴影部分表示该建筑物的俯视图;P、Q、M、N表AB C D示小明在地面上的活动区域;小明想同时看到该建筑物的三个侧面;他应在()A P区域B Q区域C M区域D N区域三、解答题(60分)21、(6分)中午;一根1.5米长的木杆影长1.0米;一座高21米的住宅楼的影子是否会落在相距18米远的商业楼上?傍晚;该木杆的影子长为2.0米;这时住宅楼的影子是否会落在商业楼上?为什么?22、(12分)画出下列几何体的三视图:23、(6分)将下列所示的几何体进行两种不同的分类;并说明理由。
最新人教版九年级数学下册第二十九章-投影与视图章节测试试卷(含答案详解)
人教版九年级数学下册第二十九章-投影与视图章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是()A.B.C.D.2、如图,几何体的左视图是()A.B.C.D.3、如图所示的几何体,从上面看到的形状图是()A.B.C.D.4、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()A.B.C.D.5、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是()A.B.C.D.6、如图所示,两个几何体各由4个相同的小正方体搭成,比较两个几何体的三视图,可以得到的正确结论是()A.主视图不同B.左视图不同C.俯视图不同D.主视图、左视图和俯视图都不相同7、如图所示的支架(一种小零件)的两个台阶的高度相等,则它的左视图为()A.B.C.D.8、如图所示的几何体的左视图是()A.B.C.D.9、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是()A.B.C.D.10、如图是由5个相同的小立方块搭成的几何体,则从左面看这个几何体的形状图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所给出的几何体的三视图,可以确定几何体中小正方体的数目为___.2、一个几何体由一些大小相同的小正方体组成,如图写出是它的主视图和左视图,那么组成该几何体所需小正方体的个数最多为____3、用一些完全相同的正方体木块搭几何体,从其正面和上面看到的形状图如图所示,则搭成这个几何体所用正方体木块的个数最少为__________.4、如图,用小木块搭一个几何体,它的主视图和俯视图如图所示.问:最少需要_________个小正方体木块,最多需要_________个小正方体木块.5、用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_____个小立方体,最多需要_____个小立方体.三、解答题(5小题,每小题10分,共计50分)1、一个几何体由大小相同的小立方块搭成,箭头所指的为正面,请画出从正面、左面、上面看到的几何体的形状图.2、5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是________(平方单位);(2)画出该几何体从正面、左面、上面看到的图形.3、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.4、如图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中画出它的三个视图;(2)如果只看三视图,这个几何体还有可能是用_________块小正方体搭成的.5、如图,在水平地面上,有一盏垂直于地面的路灯AB,在路灯前方竖立有一木杆CD.已知木杆长CD =2.5米,木杆与路灯的距离BC=5米,并且在D点测得灯源A的仰角为39°,请在图中画出木杆CD 在灯光下的影子(用线段表示),并求出影长.(结果保留1位小数,参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.8)---------参考答案-----------一、单选题1、C【分析】根据几何体的结构特征及俯视图可直接进行排除选项.【详解】解:如图是由5个大小相同的小正方体组成的几何体,则它的俯视图是;故选C.【点睛】本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键.2、C【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是:.故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3、B【分析】找出从几何体的上面看所得到的视图即可.【详解】解:从上面看到的形状图是,故选:B【点睛】此题主要考查了简单几何体的视图,注意培养学生的思考能力和对几何体三种视图的空间想象能力是解题的关键.4、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.5、A【分析】根据主视图的概念求解即可.【详解】解:由题意可得,该几何体的主视图是:.故选:A.【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念.6、C【分析】根据几何体的三视图特征进行判断即可.【详解】解:观察两个几何体的三视图,则知:主视图相同,左视图相同,俯视图不同,故选项A、B、D错误,选项C正确,故选:C.【点睛】本题考查几何体的三视图,理解三视图的意义是解答的关键.7、C【分析】找到从左面看所得到的图形即可,注意所有的看到的棱用实线表示,看不见的棱用虚线表示.【详解】解:从左面看去,是两个有公共边的矩形,如图所示:故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.8、D【分析】根据左视图的定义即可得.【详解】解:左视图是指从左面观察几何体所得到的视图,这个几何体的左视图是,故选:D.【点睛】本题考查了左视图,熟记定义是解题关键.9、B【分析】根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形.【详解】解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,故选B.【点睛】本题考查从不同方向看几何体.做此类题,最好是逐列分析每一列中正方形的个数然后组合即可.10、D【分析】观察图形可知,从左面看到的图形是2列,分别有2,1个正方形,据此即可判断.【详解】解:从左面看这个几何体的形状图如图所示:故选D.【点睛】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.二、填空题1、9或10或11.【解析】【分析】从俯视图看出底层小正方体的位置,两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,分5种情况可取定小正方体的个数.【详解】解:从俯视图可以看出分简单组合体两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,∴①简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是1+2+2+3+1=9个;如图②简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是1+2+2+3+2=10个;如图∴③简单组合体可以是第一排中间列两层2个小正方体,右边列一层1个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+1+2+3+2=10个;如图∴④简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是2+2+2+3+1=10个;如图⑤简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+2+2+3+2=11个;如图所以搭成这个几何体所用的小立方块的个数为9或10或11,故答案为:9或10或11.【点睛】本题考查根据组合体的三视图确定小正方体的个数,掌握三视图的特征,结合图形分类讨论解决问题是解题关键.2、8【解析】【分析】根据三视图还原简单几何体,由主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,即可计算出小正方体的最少块数.【详解】解:由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最多5+3=8块.故答案为8【点睛】本题主要考查了三视图,明确三视图的定义以及由三视图还原几何体的法则是解题关键.3、7【解析】【分析】由主视图和左视图确定左视图的形状,再判断最少的正方体的个数即可.【详解】解:由题中所给出的主视图知物体共3列,且最高两层的有2列,一层的有一列;由俯视图知共5列,所以小正方体的个数最少的几何体为:2+2+1+1+1=7个.故答案为:7.【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.4、 10 16【解析】【分析】综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有2×3=6个小正方体,最少有2个小正方体,第三层最多有3个小正方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块.【详解】解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,故这个几何体最少有10个小正方形,最多有16个,故答案为:10,16.【点睛】本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”得出结果.5、 7, 10.【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】解:综合主视图和俯视图,这个几何体的底层有5个小正方体,第二层最少有2个,最多有5个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:5+2=7个,至多需要小正方体木块的个数为:5+5=10个,故答案为:7,10.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题1、见解析【分析】从正面看:共有3列,从左往右分别有3,1,1个小正方形;从左面看:共有3列,从左往右分别有1,3,1个小正方形;从上面看:共分3列,从左往右分别有3,1,2个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】本题考查的是画简单组合体的三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形,理解三视图的含义是作图的关键.2、(1)5,22;(2)见解析.【分析】(1)根据立方体的体积和表面积公式进行计算即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,2;左视图有一列,小正方形的个数为2;左视图有一行,小正方形的个数为3;依此画出图形即可.【详解】解:(1)依题意得,图中几何体是由5个小正方体组成的,因此几何体的体积是:11155⨯⨯⨯=(立方单位),表面积:112222⨯⨯=(平方单位);(2)该几何体从正面、左面、上面看到的图形如图下所示:故答案为:5;22.【点睛】考查了作图 三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意表面积指组成几何体的外表面积,熟悉相关性质是解题得关键.3、见解析.【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层,再画图即可.【详解】解:如图所示:【点睛】本题考查的是小正方体堆砌图形的三视图,掌握“三视图的含义”是画图的关键.4、(1)见解析;(2)9或11【分析】(1)根据三视图的定义画图即可;(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,由此即可得到答案.【详解】(1)画出的三视图如图所示:(2)从俯视图看,最下面一层有6个小正方体,从正视图和左视图看,最上面一层只有1个小立方体,中间一层最少有2个小正方体,最多有4个小立方体,∴这个几何体还可以由9个或11个小正方体组成.【点睛】本题主要考查了画小立方体组成的几何体的三视图,由三视图求小立方体个数,解题的关键在于能够正确观察图形求解.5、DC的影长为3.1m.【分析】直接延长AD交BC的延长线于点E,可得木杆CD在灯光下的影子,进而利用锐角三角函数关系得出答案.【详解】解:在过点D的水平线上取点F,延长AD交BC于点E,光线被CD遮挡得到影子是CE,则线段EC的长即为DC的影长,∵∠ADF=39°,DF∥CE,∴∠E=∠ADF=39°,∵DC=2.5,∴在Rt△DCE中,tan39°=2.50.8 DCEC EC=≈,解得:EC=258≈3.1(m),答:DC的影长为3.1m.【点睛】本题考查解直角三角形,掌握解直角三角形的方法,选择恰当锐角三角函数是解题关键.。
第二十九章 投影与视图数学九年级下册-单元测试卷-人教版(含答案)
第二十九章投影与视图数学九年级下册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、如图所示的几何体的左视图为()A. B. C. D.2、下列水平放置的几何体中,俯视图不是圆的是()A. B. C. D.3、我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A. B. C. D.4、下图的几何体从上面看到的图形是左图的是()A. B. C. D.5、如图,线段AB和CD是正方体表面两正方形的对角线,将此正方体沿部分棱剪开,展成一个平面图形后,AB和CD可能出现下列关系中的哪几种?、B、C、D四点在同一直线上正确的结论是A. B. C. D.6、如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是()A.41B.40C.39D.387、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“疫”字所在面相对的面上的汉字是()A.春B.散C.去D.情8、下列几何体中,主视图和俯视图都为矩形的是()A. B. C.D.9、下面四个立体图形,从正面、左面、上面观察看到都是长方形的是()A. B. C. D.10、如图是由6个相同的小立方块搭成的几何体,则下列说法正确的是()A.主视图的面积最大B.俯视图的面积最大C.左视图的面积最大 D.三个视图面积一样大11、下列各种现象属于中心投影现象的是()A.上午10点时,走在路上的人的影子B.晚上10点时,走在路灯下的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子12、如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个13、如图所示正三棱柱的正视图是()A. B. C. D.14、如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是A.主视图.B.左视图.C.俯视图.D.三视图都一致.15、如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A. B. C. D.二、填空题(共10题,共计30分)16、若要使如图所示的平面展开图按虚线折叠成正方体后,相对的面上的两个数之和为6,则x=________ ,y=________ .17、如图是一个正方体的表面展开图,则原正方体中与建“字”所在的面相对的面上标的字是________.18、将图所示的Rt△ABC绕AB旋转一周所得的几何体的主视图是图中的________ (只填序号).19、已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________20、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.21、太阳光线下形成的投影是________投影.(平行或中心)22、如图是一个包装盒的三视图,则这个包装盒的体积是________.23、已知棱柱的侧棱长为6,俯视图是边长为4的等边三角形,则此棱柱的侧面积为________ .24、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是________.25、一个均匀的立方体6个面上分别标有数1、2、3、4、5、6,下图是这个立方体表面展开图,抛掷这个立方体,则朝上一面上的数恰好等于下一面上的数的的概率是________.三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=1.72米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(1)求楼房的高度约为多少米?(结果精确到0.1米)(2)过了一会儿,当α=45°时,小猫能不能晒到太阳.【参考数据:=1.732】28、如图是某工件的三视图,求此工件的全面积和体积.29、某正方体盒子,如图左边下方A处有一只蚂蚁,从A处爬行到侧棱GF上的中点M点处,如果蚂蚁爬行路线最短,请画出这条最短路线图.30、如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、A5、B6、C7、B8、B9、A10、B11、B12、B13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、30、。
第二十九章 投影与视图数学九年级下册-单元测试卷-人教版(含答案)
第二十九章投影与视图数学九年级下册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、如图是正方体的平面展开图,每个面上都标有一个汉字,与“国”字相对的面上的字为()A.建B.设C.美D.丽2、下列水平放置的几何体中,俯视图是矩形的为()A.圆柱B.长方体C.三棱柱D.圆锥3、下列图形能折叠成三棱柱的是()A. B. C. D.4、如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120°C.135°D.150°5、如图,由3个大小相同的正方体搭成的几何体,其主视图是()A. B. C. D.6、如图,由几个相同的小正方体搭成的一个几何体,它的左视图为()A. B. C. D.7、如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A. B. C. D.8、如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.9、如图所示,该几何体的主视图是()A. B. C. D.10、一个几何体的主视图、左视图、俯视图完全相同,它一定是()A.长方体B.圆柱C.圆锥D.球体11、如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A. B. C. D.12、如图是圆锥的三视图(单位:cm),则这个圆锥的侧面积等于( )A.12πcm 2B.15πcm 2C.24πcm 2D.30πcm 213、长方体的主视图与俯视图如图所示,则这个长方体的体积是( )A.52B.32C.24D.914、如图,右侧立体图形的俯视图是()A. B. C. D.15、用一个平面去截一个几何体,截面是三角形,这个几何体不可能是( )A.三棱柱B.正方体C.圆锥D.圆柱二、填空题(共10题,共计30分)16、如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则________.17、一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的侧面积是________cm2.18、某个立体图形的侧面展开图形如图所示,它的底面是正三角形,这个立体图形一定是________.19、如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是________.20、如图是一幢建筑物和一根旗杆在一天中四个不同时刻的影子.将四幅图按先后顺序排列应为________.21、小亮和他弟弟在阳光下散步,小亮的身高为1.75米,他的影子长2米.若此时他的弟弟的影子长为1.6米,则弟弟的身高为________米.22、如图为正方体的表面展开图,六个面上分别标注了“我要细心检查”.那么折成正方体后,“我”的对面是“________”.23、一个矩形薄木版在太阳光下形成的投影可能是________ (在“梯形”、“矩形”、“平行四边形”、“三角形”、“线段”、“一般四边形”中选择两个即可).24、将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有________块.25、如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为________ m.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm,长方形的长为8cm,请计算修正后所折叠而成的长方形的表面积.28、连一连:请在第二行图形中找到与第一行几何体相对应的表面展开图,并分别用连接线连起来.29、一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些有色液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(注:图1中∠CBE=α,图2中BQ=3dm).探究:如图1,液面刚好过棱CD,并与棱BB′交于点Q,其三视图及尺寸如图2所示,那么:图1中,液体形状为(填几何体的名称);利用图2中数据,可以算出图1中液体的体积为dm3.(提示:V=底面积×高)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出.若从正面看,若液面与棱C′C或CB交于点P、点Q始终在棱BB′上,设PC=x,请你在下图中把此容器主视图补充完整,并用含x的代数式表示BQ的长度.30、学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1 22 2+1.53 2+34 2+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、B5、C6、A7、A8、D9、C10、D11、D12、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
人教版九年级数学下册第二十九章 投影与视图单元测试卷
人教版九年级数学下册第二十九章 投影与视图单元测试卷一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分. 1. 如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )A .B .C .D .2. 如图的立体图形的左视图可能是( )BCD .3.如图是由5个大小相同的正方体组成的几何体,它的主视图是( )A .B .C .D .4. 如图的几何体的三视图是( )B.5.下列立体图形中,俯视图是正方形的是( )A .B .C .D .6.如图,从左面观察这个立体图形,能得到的平面图形是( )A .B .C .D .7.如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )8.某几何体的三视图如图所示,则这个几何体是( )A.圆柱B.正方体C.球D.圆锥9.如图所示的支架是由两个长方形构成的组合体,则它的主视图是()B C D.10.、如图是某一几何体的三视图,则该几何体是()11.如图是由4个大小相同的正方体搭成的几何体,其俯视图是().12.如图几何体的俯视图是()B13.如图的罐头的俯视图大致是().14.如图是某个几何体的三视图,则该几何体的形状是()15.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()C D.16、左下图是由3个完全相同的小正方体组成的立体图形,它的主视图是()DACB17.一个几何体的三视图如图所示,那么这个几何体是【】18. 如图,所给三视图的几何体是()(第1题图)19. 下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()B C20. 一个几何体的三视图如图所示,则该几何体可能是()B C D.21.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()22.甲是某零件的直观图,则它的主视图为()B C D.23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.24.一个圆锥的三视图如图所示,则此圆锥的底面积为()A.30πcm2B.25πcm2C.50πcm2D.100πcm2第Ⅱ卷(非选择题共60分)二、填空题:本大题共7小题,其中16-22题每小题5分,共35分.只要求填写最后结果.1.写出一个在三视图中俯视图与主视图完全相同的几何体.2.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是..3. 如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm3.(第1题图)4.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.5.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为__▲__cm2.(结果可保留根号)6如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为______cm2参考答案:数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共15小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1. 如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2. 如图的立体图形的左视图可能是()B C D.3. 如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:从正面看,第一层是两个正方形,第二层左边是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.如图的几何体的三视图是()B.5.下列立体图形中,俯视图是正方形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解;A、的俯视图是正方形,故A正确;B、D的俯视图是圆,故A、D错误;C、的俯视图是三角形,故C错误;故选:A.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.7.如图是由四个相同的小正方体组成的立体图形,它的俯视图为()8.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.9.如图所示的支架是由两个长方形构成的组合体,则它的主视图是()B C D.解:从几何体的正面看可得此几何体的主视图是,10.如图是某一几何体的三视图,则该几何体是()11.如图是由4个大小相同的正方体搭成的几何体,其俯视图是().12. 如图几何体的俯视图是()B13.如图的罐头的俯视图大致是().14.如图是某个几何体的三视图,则该几何体的形状是()15.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是( )CD .16、左下图是由3个完全相同的小正方体组成的立体图形,它的主视图是( )DCB A17.一个几何体的三视图如图所示,那么这个几何体是【】【答案】D.【解析】18. 如图,所给三视图的几何体是()(第1题图)19. 下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()B C D.20. 一个几何体的三视图如图所示,则该几何体可能是()B C D.21.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()22.图甲是某零件的直观图,则它的主视图为( )BCD .解:从正面看,主视图为23.下列几何体,主视图和俯视图都为矩形的是( )A .B .C .D .解:A 、圆柱主视图是矩形,俯视图是圆,故此选项错误;B 、圆锥主视图是等腰三角形,俯视图是圆,故此选项错误;C 、三棱柱主视图是矩形,俯视图是三角形,故此选项错误;D 、长方体主视图和俯视图都为矩形,故此选项正确;故选:D .点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.24.一个圆锥的三视图如图所示,则此圆锥的底面积为( )A .30πcm 2B .25πcm 2C .50πcm 2D .100πcm 2解析:根据主视图与左视图可以得到:圆锥的底面直径是10cm,利用圆的面积公式即可求解.答案:解:根据主视图与左视图可以得到:圆锥的底面直径是10cm,则此圆锥的底面积为:π()2=25πcm2.故选B.点评:本题考查了圆锥的三视图,正确理解三视图得到:根据主视图与左视图可以得到:圆锥的底面直径是10cm是关键.第Ⅱ卷(非选择题共60分)二、填空题:本大题共7小题,其中16-22题每小题5分,共35分.只要求填写最后结果.1.写出一个在三视图中俯视图与主视图完全相同的几何体.分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.故答案为:球或正方体.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.分析:根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案.解:从上面看三个正方形组成的矩形,矩形的面积为1×3=3,故答案为:3.点评:本题考查了简单组合体的三视图,先确定俯视图,再求面积.3. 如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm3.(第1题图)4.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.考点:由三视图判断几何体.[中国教^育@出~版&网%]分析:根据三视图的对应情况可得出,△EFGFG上的高即为AB的长,进而求出即可.解答:解:过点E作EQ⊥FG于点Q,由题意可得出:FQ=AB,∵EG=12cm,∠EGF=30°,∴EQ=AB=×12=6(cm).故答案为:6.点评:此题主要考查了由三视图解决实际问题,根据已知得出FQ=AB是解题关键.[来源%:中5.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为__▲__cm2.(结果可保留根号)【解析】据图形得,纸盒的底面为正六边形,正六边形的直径为10 cm,盒子的高为12 cm。
九年级下册数学单元测试卷-第二十九章 投影与视图-人教版(含答案)
九年级下册数学单元测试卷-第二十九章投影与视图-人教版(含答案)一、单选题(共15题,共计45分)1、下列如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A. B. C.D.2、如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体3、如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形()A. B. C. D.4、由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小 D.三个视图的面积相等5、如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()A.3B.4C.5D.66、如图是几何体的三视图,根据图中数据,求得该几何体的体积为()A.40πB.50πC.90πD.130π7、如图,该简单几何体的主视图是()A. B. C. D.8、如图所示的几何体,它的主视图是()A. B. C. D.9、如图是一个正方体展开图,把展开图折叠成正方体后,“抗”字一面相对面上的字是()A.新B.冠C.病D.毒10、一个等边三角形在太阳光的照射下,在地面上的投影不可能是()A. B. C. D.11、如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A. B. C. D.12、王华晚上由路灯下的处走到处时,测得影子的长为,继续往前走到达处时,测得影子的长为,他的身高是,那么路灯的高度()A. B. C. D.13、如图,路灯OP距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A 处,沿OA所在的直线行走14米到点B处时,人影的长度()A.变长了1.5米B.变短了2.5米C.变长了3.5米D.变短了3.5米14、如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0B.2C.数D.学15、如图所示的几何体,从正面看到所得的图形是()A. B. C. D.二、填空题(共10题,共计30分)16、如图是正方体的展开图,则原正方体相对两个面上的数字和的最大值是________ .17、八棱柱有________个顶点,________条棱,________个面.18、将如图所示的平面展开图折叠成正方体,则a相对面的数字是________.19、大双、小双兄弟二人的身高相同,可是在灯光下,哥哥大双的影子比弟弟小双的影子短,这是因为________ .20、如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为________ .21、一个正方体的六个面分别标有数字1、2、3、4、5、6,在桌子上翻动这个正方体,根据图中给出的三种情况,可知数字1的对面是数字________22、如图是某几何体的展开图,那么这个几何体是________23、如图是一个正方体的展开图,若此正方体的相对面上的数互为相反数,则________.24、一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要________个这样的小立方块,最多需要________个这样的小立方块.25、小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是________ m.三、解答题(共5题,共计25分)26、由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).27、如图,图1为一个长方体,AB=AD=16,AE=6,图2为左图的表面展开图,请根据要求回答问题:(1)面“学”的对面是面什么?(2)图1中,M、N为所在棱的中点,试在图2中画出点M、N的位置;并求出图2中△ABN的面积.28、已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.29、一个几何体的三视图如图所示(单位:mm),你能画出这个几何体的图形吗?并求出其表面积和体积.30、如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(下)数学 投影与视图 单元测试
一、填空题(30分)
1、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是
2、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子
(填“长”或“短”)
3、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮
5cm ,此刻小明的影长是________m 。
4、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等
都为1.6m ,小明向墙壁走1m 到B处发现影子刚好落在A点,则灯泡与地面的距离CD =_______。
5、(05苏州)下图的几何体由若干个棱长为数1的正方体堆放而成,则
这个几何体的体积为__________。
6、(06南平)如图是某个几何体的展开图,这个几何体是 .
7、(06重庆)如图,是由几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几
何体的小正方体的个数是
8、(05南京)如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 BC=3.2m ,CA=0.8m, 则树的高度为
9、春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,
发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为 小时。
10、直角坐标系内,身高为1.5米的小强面向y 轴站在x 轴上的点A(-10,0)处,他
的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是 二、选择题:(30分) 11、(06金华)下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是
( )
A. B. C. D.
12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A 小明的影子比小强的影子长 B 小明的影长比小强的影子短 C 小明的影子和小强的影子一样长 D 无法判断谁的影子长
俯视图左视图主视图224113
A B C D
第16题
俯视图
主(正)视图左视图
13、(06武汉)下图中几何体的主视图是
().
(A) (B) (C) (D)
14、(06苏州)对左下方的几何体变换位置或视角,则可以得到的几何体是()
第Ⅱ卷(
非选择题,共98分)
15、(06嘉兴)若干桶方便面摆放在桌子上,实物图片左边
所给的是它的三视图,则这一堆方便面共有()
(A)5桶
(B)6桶
(C)9桶(D)12桶
16、
(06荆州)一个全透明的玻璃正方体,上面嵌有一根黑
色的金属丝,如图,金属丝在俯视图中的形状是()
17、(06常州)、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的
数字
表示该
位置上小立方块的个数,则该几何体的主视图为()
18、(06成都)右图是由一些完全相同的小立方
块搭成的几何体的三种视图,那么搭成
这个几何体所用的小立方块的个数
是()
A 5个
B 6个
C 7个
D 8个
19、(06广东)水平放置的正方体的六面分别用“前面、后面、上面、下面、左
面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体
的前面,则这个正方体的后面是 ( )
A.O B. 6 C.快 D.乐
20、(06常州)图1表示正六棱柱形状的高大建筑物,图2
中的阴影部分表示该建筑物的俯视图,P、Q、M、N表
A
B C D
示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在
()
A P区域
B Q区域
C M区域
D N区域
三、解答题(60分)
21、(6分)中午,一根1.5米长的木杆影长1.0米,一座高21米的住宅楼的影子是否会
落在相距18米远的商业楼上?傍晚,该木杆的影子长为2.0米,这时住宅楼的影子是否会落在商业楼上?为什么?
22、(12分)画出下列几何体的三视图:
23、(6分)将下列所示的几何体进行两种不同的分类,并说明理由。
24、(9分)如图,在一间黑屋里用一白炽灯照射一个球,
(1)球在地面上的阴影是什么形状?
(2)当把白炽灯向上移时,阴影的大小会怎样变化?
(3)若白炽灯到球心距离为1米,到地面的距离是3米,球的半径是0.2米,
求球在地面上阴影的面积是多少?
25、(7分)(06厦门)如图, 水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计)
小明为了探究这个问题,将此情景画在了草稿纸上(如右图,正视图):
运动过程:木棒顶端从A点开始沿圆锥的母线下滑,速度为v1(木棒下滑为匀速)已知木棒
与水平地面的夹角为θ,θ随木棒的下滑而不断减小.θ的最大值为30°,若木棒长为
a 问:当木棒顶端重A 滑到B 这个过程中,木棒末端的速度'v 2是多少? 26、(10分)(06安徽)如图是某工件的三视图,求此工件的全面积和体积.
27、(10分)某居民小区有一朝向为正南方向的居民楼(如图12),该居民楼的一楼是高6米
的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.
(1)问超市以上的居民住房采光是否有影响,为什么?
(2)若要使超市采光不受影响,两楼应相距多少米?
(结果保留整数,参考数据:32sin °
≈10053,32cos °≈125
106
,32tan °≈85)。