Momentum-Space Topology of Standard Model
声学超构材料术语
声学超构材料术语1范围本文件规定了包括声子晶体、声超材料等人工微结构的声学超构材料等相关术语的定义。
本文件适用于声学超构材料及其相关领域的活动。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T32005-2015电磁超材料术语GB/T3947-1996声学名词术语3基础定义3.1超构材料metamaterials一种特种复合材料或结构,通过对材料关键物理尺度上进行一定序构设计,使其获得常规材料所不具备的超常物理性能。
3.2声学超构材料acoustic metamaterials具备超常声学特性的一类超构材料3.3声子晶体phononic crystal由两种以上具有不同弹性参数的材料按一定空间序构周期排列的复合人工介质形成的一种声学超构材料。
4分类4.1固体弹性波超构材料solid elastic wave metamaterials用于调控固体中弹性波的声学超构材料。
4.2水声超构材料underwater acoustic metamaterials用于调控水中声波的声学超构材料。
4.3空气声超构材料用于调控空气中声波的声学超构材料。
4.4次声声学超构材料infrasound metamaterials工作频率在20Hz以下的声学超构材料4.5超声声学超构材料ultrasonic metamaterials工作频率在20kHz以上的声学超构材料4.6可听声超构材料audible sound metamaterials工作频率在20Hz-20kHz范围的声学超构材料4.7局域共振型声学超构材料resonant acoustic metamaterials基于局域共振原理的声学超构材料4.8非局域共振型声学超构材料non-resonant acoustic metamaterials 不基于局域共振原理的声学超构材料4.9线性声学超构材料linear metamaterials具有线性动力学效应的声学超构材料4.10非线性声学超构材料nonlinear metamaterials具有非线性动力学效应的声学超构材料4.11各向同性声学超构材料isotropic acoustic metamaterials具有各向同性的声学特性的声学超构材料4.12各向异性声学超构材料anisotropic acoustical metamaterials具有各向异性的声学特性的声学超构材料4.13复合声学超构材料composite acoustic metamaterials与其他材料复合的声学超构材料4.14可重构声学超构材料reconfigurable acoustic metamaterials宏观或微观结构可重构的声学超构材料4.15可编程声学超构材料programmable acoustic metamaterials利用逻辑基元对声场进行程序化调控的声学超构材料4.16微纳声学超构材料micro-scale acoustic metamaterials微观结构的绝对尺度在微米或纳米级的声学超构材料4.17多物理场耦合型超构材料multi-physical coupled metamaterials 声场与其他物理场相互耦合的声学超构材料4.18吸声超构材料sound absorption metamaterials能够有效控制噪声且尺寸小巧的声学超构材料。
物理学英文词汇
物理专业英语词汇(M)Favorite m center m 中心mach angle 马赫角mach cone 马赫锥mach number 马赫数mach wave 马赫波mach zehnder interferometer 马赫曾德耳干涉仪mach's principle 马赫原理machine language 机骑言machine oriented language 面向机颇语言macleod gage 麦克劳计macro crystal 粗晶macrography 宏观照相术macroinstability 宏观不稳定性macromolecule 高分子macron 宏观粒子macroparticle 宏观粒子macrophysics 宏观物理学macroscopic brownian motion 宏观布朗运动macroscopic particle 宏观粒子macroscopic quantization 宏观量子化macroscopic system 宏观系统macrostate 宏观态macrostructure 宏观结构macrosystem 宏观系统magdeburg hemispheres 马德堡球magellanic clouds 麦哲伦星系magellanic galaxy 麦哲伦星系magic eye 光党指示管magic lantern 幻灯magic number 幻数magic t t 形波导支路magma 岩浆magneli structure 马格涅利结构magnesium 镁magnet 磁铁magnetic 磁的magnetic amplifier 磁放大器magnetic analyzer 磁分析器magnetic anisotropy 磁蛤异性magnetic anomaly 磁异常magnetic axis 磁轴magnetic balance 磁力天平magnetic birefringence 磁双折射magnetic breakdown 磁哗magnetic bubble 磁泡magnetic bubble storage 磁泡存储器magnetic character figure 磁特正magnetic charge 磁荷magnetic chart 磁图magnetic circuit 磁路magnetic conductance 磁导magnetic core storage 磁芯存储器magnetic current 磁流magnetic declination 磁偏角magnetic deflection 磁偏转magnetic deflection mass spectrometer 磁偏转型质谱仪magnetic dip 磁倾角magnetic dipole 磁偶极子magnetic dipole moment 磁偶极矩magnetic dipole radiation 磁偶极辐射magnetic disk 磁盘magnetic disturbances 磁扰magnetic domain 磁畴magnetic domain walls 磁畴壁magnetic drum 磁鼓magnetic elements 磁元magnetic energy 磁能magnetic entropy 磁熵magnetic equator 磁赤道magnetic field 磁场magnetic field energy 磁场能量magnetic field intensity 磁场强度magnetic field strength 磁场强度magnetic fluid 磁铃magnetic flux 磁通量magnetic flux compression 磁通量紧缩magnetic flux density 磁通密度magnetic flux quantization 磁通量量子化magnetic fluxmeter 磁通量计magnetic focusing 磁致聚焦magnetic force 磁力magnetic head 磁头magnetic hysteresis 磁滞magnetic image 磁象magnetic inclination 磁倾角magnetic induction 磁感应magnetic induction flux 磁感应束magnetic kerr effect 克尔氏磁效应magnetic latitude 磁纬度magnetic leakage 磁漏magnetic lens 磁透镜magnetic line of force 磁力线magnetic loss 磁损耗magnetic map 磁图magnetic material 磁性材料magnetic memory 磁存储器magnetic mirror 磁镜magnetic moment 磁矩magnetic monopole 磁单极子magnetic needle 磁针magnetic north 磁北magnetic permeability 磁导率magnetic perturbation 磁扰magnetic point group 磁点群magnetic polarization 磁极化magnetic polaron 磁极化子magnetic pole 磁极magnetic potential 磁势magnetic pressure 磁压magnetic prism 磁棱镜magnetic probe 磁探针magnetic prospecting 磁法勘探magnetic quantum number 磁量子数magnetic recorder 磁记录器magnetic recording 磁记录magnetic refrigeration 磁冷却magnetic refrigerator 磁致冷机magnetic relaxation 磁弛豫magnetic reluctance 磁阻magnetic remanence 顽磁magnetic resistance 磁阻magnetic resonance 磁共振magnetic reynolds number 磁雷诺数magnetic rigidity 磁刚性magnetic rotatory dispersion 磁致旋光色散magnetic saturation 磁饱和magnetic semiconductor 磁性半导体magnetic separation 磁力选矿magnetic shell 磁壳magnetic shield 磁屏蔽magnetic sound recording 磁录音magnetic space group 磁空间群magnetic spectrometer 磁谱仪magnetic spin quantum number 自旋磁量子数magnetic star 磁星magnetic store 磁存储器magnetic storm 磁暴magnetic structure 磁结构magnetic substance 磁体magnetic superconductor 磁超导体magnetic surface 磁面magnetic susceptibility 磁化率magnetic tape 磁带magnetic thermometer 磁温度计magnetic thin film 磁薄膜magnetic torque 磁转矩magnetic transition 磁跃迁magnetic trap 磁阱magnetic variable 磁变星magnetic variable star 磁变星magnetic variations 磁变magnetic viscosity 磁粘滞性magnetics 磁学magnetism 磁magnetization 磁化magnetization curve 磁化曲线magnetization vector 磁化矢量magnetized black hole 磁化黑洞magnetizing 磁化magnetizing coil 磁化线圈magnetizing current 磁化电流magnetizing force 磁化力magneto aerodynamics 磁空气动力学magneto optic effect 磁光效应magneto oscillatory absorption 磁振荡吸收magneto rotation 磁致旋光magneto volume effect 磁体积效应magnetoacoustic effect 磁声效应magnetoacoustic wave 磁声波magnetocaloric effect 磁热效应magnetochemistry 磁化学magnetocircular dichroism 磁圆二向色性magnetodielectric 磁性电介质magnetodiode 磁敏二极管magnetoelastic effect 磁弹性效应magnetoelastic wave 磁弹性波magnetoelectricity 磁电学magnetogram 磁强记录图magnetograph 磁强记录仪magnetohydrodynamic instability 磁铃力学不稳定性magnetohydrodynamic wave 磁铃波magnetohydrodynamics 磁铃动力学magnetology 磁学magnetomechanical factor 磁力学因数magnetomechanics 磁力学magnetometer 磁强计magnetomotive force 磁通势magneton 磁子magnetooptics 磁光学magnetophotophoresis 磁光致泳动magnetoplasma 磁等离子体magnetoplasmadynamics 磁等离子体动力学magnetoplumbite 氧化铅铁淦氧磁体magnetopolaron 磁极化子magnetoreflection 磁反射magnetoresistance 磁阻效应magnetoresistor 磁致电阻器magnetosphere 磁层magnetostatic field 静磁场magnetostatics 静磁学magnetostriction 磁致伸缩magnetostriction oscillator 磁致伸缩振荡器magnetostrictive effect 磁致伸缩效应magnetothermal effect 磁致热效应magnetothermoelectric effect 磁致热电效应magnetron 磁控管magnetron vacuum gage 磁控管真空计magnification 放大率magnifier 放大镜magnifying glass 放大镜magnitude 量magnitude of the eclipse 食分magnon 磁振子magnus effect 马格努斯效应main quantum number 挚子数main sequence 烛main sequence stars 烛星main storage 宙储器major planets 大行星majorana force 马约喇纳力majorana neutrino 马约喇纳中微子majorana particle 马约喇纳粒子majorana spinor 马约喇纳旋量majority carrier 多数载劣majoron 马约喇纳量子maksutov telescope 马克苏托夫望远镜malleability 展性malter effect 马尔特效应malus law 马吕斯定律man made satellite 人造卫星mandelstam representation 曼德尔斯坦表象mandrin 细探针manganese 锰manganin 锰镍铜合金manifold 廖manipulator 机械手manometer 压力表manoscope 气体密度计manoscopy 气体密度测定manostat 稳压器mantle 地幔mantle convection 地幔对流mantle rayleigh wave 地幔瑞利波manual 手册many body force 多体力many body problem 多体问题many body system 多体系many wave approximation 多波近似mare 海margin 余量margin of error 误差范围margin of safety 安全因子marginal rays 边缘光线marine physics 海洋物理学mariner project 马里纳计划marisat system 海洋卫星系统mark 标记markoff chain 马尔柯夫链markoff process 马尔柯夫过程marriage of cable and satellites 电缆和人造卫星的联接mars 火星martensite 马氏体maser 微波激射器脉塞mass 质量mass absorption coefficient 质量吸收系数mass analysis 质量分析mass analyzer 质谱仪mass defect 质量筐mass effect 聚集效应mass energy conversion formula 质能换算公式mass energy equivalence principle 质能相当性原理mass energy relation 质能关系mass filter 滤质器mass flowmeter 质量量计mass formula 质量公式mass luminosity relation 质量发光度关系mass number 质量数mass renormalization 质量重正化mass separator 质量分离器mass shell 质壳mass spectrograph 质谱仪mass spectrometer 质谱仪mass spectroscopy 质谱法mass spectrum 质谱mass stopping power 质量阻止本领mass transfer 质量传递mass unit 质量单位massey criterion 梅涡据master equation 纸程master gyroscope 自由陀螺仪matching 匹配material 物质material point 质点material wave 物质波materials science 材料科学materials testing reactor 材料试验反应堆mathematical crystallography 数学晶体学mathematical expectation 数学期望值mathematical pendulum 单摆mathematical physics 数学物理mathematical programming 数学规划mathieu functions 马提厄函数matrix mechanics 矩阵力学matrix representation 矩阵表示matter 物质matter dominated universe 物质为诸宙matter wave 德布罗意波matthias rule 马赛厄斯定则matthiessen rule 马苇定则maupertuis' principle 莫佩尔秋原理maximum deviation 最大偏差maximum load 最大负载maximum lyapunov index 最大李亚普诺夫指数maximum permissible concentration 最大容许浓度maximum permissible dose 最大容许剂量maximum postulated accident 最大假设事故maximum speed 最大速度maximum stress 最大应力maximum temperature 最高温度maximum thermometer 最高温度表maximum velocity 最大速度maxwell 麦克斯韦maxwell boltzmann distribution 麦克斯韦玻耳兹曼分布maxwell boltzmann statistics 麦克斯韦玻耳兹曼统计maxwell bridge 麦克斯韦电桥maxwell demon 麦克斯韦妖maxwell field 麦克斯韦场maxwell relations 麦克斯韦关系maxwell velocity distribution 麦克斯韦的速度分布maxwell's distribution law 麦克斯韦分布律maxwell's equations 麦克斯韦方程maxwellian distribution 麦克斯韦分布maxwellmeter 磁通计mb 微巴mean acceleration 平均加速度mean deviation 平均偏差mean ergodic theorem 平均脯历经定理mean error 平均误差mean free path 平均自由程mean life 平均寿命mean lifetime 平均寿命mean solar day 平太阳日mean solar time 平太阳时mean square error 均方误差mean sun 平太阳mean value 平均值mean velocity 平均速度mean velosity 平场速度measure 测度measurement 测量measurement error 测量误差measuring 测量measuring apparatus 测量仪器measuring eyepiece 目镜测微计measuring instrument 测试仪器度量仪表measuring method 测量法measuring technique 测量技术mechanical energy 力学能mechanical equivalent of heat 热功当量mechanical filter 机械滤波器mechanical monochromator 机械单色器mechanical motion 力学运动mechanical system 力学系mechanical vibrations 机械振动mechanical world view of nature 机械的自然观mechanics 力学mechanism 机构mechanocaloric effect 机械热效应mechanochemistry 机械化学mechanoelectric conversion 机电变换mechanostriction 机致伸缩mechnical equivalent of light 光功当量medical electronics 医疗电子学medical physics 医用物理学medium 介质medium energy electron diffraction 中能电子衍射medium energy electron scattering spectroscopy 中能电子散射能谱学mega 兆mega electron volt 兆电子伏megacycle 兆周megawatt 兆瓦megger 高阻表megohm 兆欧meissner effect 迈斯纳效应meldometer 熔点测定计melt growth 熔体生长melting 熔化melting heat 熔化热melting point 熔点melting temperature 熔解温度membrane 膜memory 存储;记忆memory capacity 存储容量memory cell 存储单元memory effect 记忆效应memory register 存储寄存器mendeleev's periodic law 门捷列夫周期律mendelevium 钔meniscus 弯月面meniscus lens 弯月透镜mensa 山案座mercury 水星;水银mercury arc lamp 水银灯mercury arc rectifier 汞弧整流mercury barometer 水银气压表mercury cell 汞电池mercury diffusion pump 汞扩散泵mercury i chloride structure 氯化汞i型结构mercury relay 水银继电器mercury telemetry 水星遥测术mercury thermometer 水银温度表mercury vacuum gage 水银真空计mercury vapor lamp 水银灯meridian 子午线meridian passage 中天meridian transit 中天meridional ray 子午光线mesa transistor 台面型晶体管mesoatom 介子原子mesodynamics 介子动力学mesomolecule 介子分子mesomorphic state 介晶态meson 介子meson factory 介子工厂meson theory 介子理论meson theory of nuclear forces 核力的介子理论mesonic atom 介子原子mesonic molecule 介子分子mesopic vision 黄昏黎糜觉mesoscopic effect 介观效应mesosphere 中间层messier catalog 梅味星云星团表metacenter 定倾中心metal 金属metal film resistor 金属薄膜电阻器metal foil 金属箔metal insulator semiconductor light emitting diod 金属绝缘膜半导体发光二极管metal insulator transition 金属绝缘体跃迁metal nonmetal transition 金属非金属跃迁metal organic compound 有机金属化合物metal oxide semiconductor structure mos 结构metal vapor laser 金属蒸汽激光器metallic 金属的metallic binding 金属键metallic bond 金属键metallic crystal 金属晶体metallic element 金属元素metallic glass 金属玻璃metallic lustre 金属光泽metallic microcluster 金属微簇metallic reflection 金属反射metallic thin film 金属薄膜metallic valence 金属原子价metallized paper capacitor 镀金属纸介电容器metallography 金相学metallomicroscope 金相显微镜metallurgy 冶金学metamagnetism 亚磁性metastability 亚稳定性metastable atom 亚稳原子metastable equilibrium 亚稳平衡metastable level 亚稳能级metastable molecule 亚稳分子metastable nucleus 亚稳核metastable phase 亚稳相metastable state 亚稳状态meteor 燎meteor astronomy 燎天文学meteor camera 燎照相机meteor shower 燎雨meteor stream 燎群meteoric dust 燎尘meteoric iron 陨铁meteoric stone 石陨星meteorite 陨星meteorite crater 陨星坑meteoritic iron 陨铁meteoritics 陨石学meteorological acoustics 气象声学meteorological optics 气象光学meteorological radar 气象雷达meteorological satellite 气象卫星meteorological thermodynamics 气象热力学meteorology 气象学meter 米meter convention 米条约meter standard 米原器meter wave 米波metering 计量metglass 金属玻璃method 方法method of approximation 近似法method of crystal projection 晶体投影法method of difference 差分法method of images 镜象法method of iteration 迭代法method of least squares 最小二乘法method of measurement 测量法method of molecular orbitals 分子轨迹法method of perturbation 微扰法method of steepest descent 最陡下降法method of successive approximation 逐次逼近法method of undetermined coefficients 待定系数法metonic cycle 太阴周metre 米metre wave 米波metric 度规metric space 度量空间metric system 米制metric tensor 度规张量metrology 计量学metronome 节拍器mhd arc mpd 弧光mho 闻子mica 云母micelle 胶体微粒michel parameter 米歇尔参数michelson interferometer 迈克耳逊干涉仪michelson morley experiment 迈克耳逊莫雷实验michelson stellar interferometer 迈克耳逊恒星干涉计micro 微microaccelerometer 微加速计microaerotonometer 微量气体张力计microampere 微安microanalysis 微量化字分析microbalance 微量天平microbar 微巴microcanonical ensemble 微正则系综microchemical analysis 微量化字分析microchemistry 微量化学microcomputer 微型计算机microcrystal 微晶microcrystalline 微晶的microcrystallography 微观结晶学microengineering 微工程学microfarad 微法microfield 微场microfilm 缩微胶片micrography 显微照相术microinstability 微不稳定性microlaser 微型激光器microlock 卫星遥测系统micromagnetics 微磁学micromanometer 微压力计micrometer 测微计micrometer microscope 测微显微镜micrometron 自动显微镜micromicrocurie 微微居里micromicrofarad 微微法micron 微米microoscillograph 显微示波仪microparticle 微观粒子microphone 传声器microphotograph 显微镜照片microphotometer 测微光度计microphysics 微观物理学microplasma 微等粒子体microprobe 微探针microprogram 微程序microprojector 显微投影仪micropyrometry 微测高温术microscope 显微镜microscopic brownian motion 微观布朗运动microscopic particle 微观粒子microscopic state 微观状态microscopic system 微观系统microscopium 显微镜座microsecond 微秒microseismics 微地震学microseismograph 微震记录仪microspectrofluorimeter 显微荧光光谱仪microspectrograph 显微光谱仪microspectrophotometry 显微分光光度学microspectroscope 显微分光镜microspectroscopy 显微光谱学microstate 微观状态microstructure 显微结构microsystem 微观系统microtelescope 显微望远镜microthermometer 微温度计microthermometry 显微温度学microtron 电子回旋加速器microwave 微波microwave circuit 微波电路microwave diode 微波二极管microwave method 微波法microwave resonator 微波谐振器microwave spectroscopy 微波谱学microwave spectrum 微波频谱microwave transistor 微波晶体管microwave tube 微波电子管microwave ultrasound 微波超声microwave weapon 微波武器mie scattering 米散射migdal approximation 米格达尔近似migration length 迁移长度mil 密耳mile 英里milky way 银河miller index 密勒指数miller's notation 密勒记号milli 毫milliampere 毫安millibar 毫巴millimeter 毫米millimeter wave 毫米波millimetre 毫米million electorn volt 兆电子伏millisecond 毫秒millivolt 毫伏millivoltmeter 毫状计mimosa seismic foreteller 含羞草地震预报器miniature tube 微型管miniature valve 微型管minicomputer 小型计算机miniinfraredtracer 微型红外示踪器minilaser 微型激光器minimal interaction 最小耦合相互酌minimax principle 极大极小原理minimum b field 最小磁场minimum deviation 最小偏向minimum entropy production 最小熵产生minimum thermometer 最低温度表minkowski space time 闵科夫斯基时空minor planet 小行星minority carrier 少数载劣minus 减minus sign 减号minute 分mira stars 刍藁变星mira type variables 刍藁变星mirage 蜃景mirror field 磁镜场mirror nuclei 镜象核mirror reflection 镜反射mirror surface 镜面mirror telescope 反射望远镜misfit dislocation 错配位错missile 导弹missing line 丢失线missing mass 暗物质mistake 错误mixed crystal 混合晶体mixed state 混合态mixer diode 基模mixer tube 混频管mixing length 混合长度mixing ratio 混合比mixture 混合物mks system of units mks 单位制;mks单位制mksa system of units mksa 单位制mobile laser tracking station 移动激光追踪站mobility 迁移率mobility of ions 离子迁移率mode 模mode coupling 模耦合mode locked laser 锁模激光器mode locking 锁模mode of oscillation 振动型mode of vibration 振动型mode pulling 波模牵引model 模型model of nucleus 核模型model of the galaxy 银河系模型moderated neutron 慢化中子moderation 减速moderation of neutrons 中子减速moderator 减速剂modern biology 现代生物学modern physics 现代物理学modification 变形modular invariance 模数不变性modulated structure 灯结构modulation 灯modulation method 灯法modulation spectroscopy 灯光谱学modulation transfer function 灯传递函数modulator type vacuum gage 灯仆真空计module 模件modulus 模数modulus of elasticity 弹性模数modulus of rigidity 剪切殚性模量moffatt's vortex 莫法特涡旋mohoroviris discontinuity 莫霍洛维奇不连续性mohs hardness 莫氏硬度moist labile energy 潮湿不稳能moisture examining instrument 水气检查仪mol 克分子molar fraction 克分子分率molar heat 分子热molar polarization 克分子极化molar refraction 分子折射molar susceptibility 克分子磁化率molar volume 克分子体积molding 制模mole 克分子mole fraction 克分子分率molectronics 分子电子学molecular absorption coefficient 分子吸收系数molecular acoustics 分子声学molecular astronomy 分子天文学molecular beam 分子束molecular beam epitaxy 分子束外延molecular beam magnetic resonance 分子束磁共振molecular beam maser 分子束微波激射器molecular beam scattering 分子束散射molecular beam spectroscopy 分子束光谱学molecular biology 分子生物学molecular bond 分子键molecular chaos 分子混沌态molecular clock 分子钟molecular cloud 分子云molecular compound 分子化合物molecular conductivity 分子导电率molecular crystal 分子晶体molecular diffusion 分子扩散molecular dynamics 分子动力学molecular electronics 分子电子学molecular field 分子场molecular field approximation 分子场近似molecular flow 分子流molecular force 分子力molecular force field 分子力场molecular gas laser 分子气体激光器molecular heat 分子热molecular image 分子图象molecular integral 分子积分molecular inversion 分子倒转molecular ion 分子离子molecular kinetic theory 分子运动论molecular lattice 分子晶格molecular magnet 分子磁铁molecular mass 分子质量molecular motion 分子运动molecular orbital 分子轨函数molecular physics 分子物理学molecular polarizability 分子极化度molecular polarization 分子极化molecular pump 分子泵molecular radius 分子半径molecular rays 分子束molecular reaction 分子反应molecular refraction 分子折射molecular rotation 分子转动molecular scattering 分子散射molecular science 分子科学molecular sieve 分子筛molecular structure 分子结构molecular structure theory 分子结构论molecular viscosity 分子粘性molecular volume 克分子体积molecular weight 分子量molecule 分子moletron 分子加速器molten high polymer 熔融高聚物molybdenum 钼moment 矩moment of couple 力偶矩moment of force 力矩moment of impulse 冲量矩moment of inertia 转动惯量moment of momentum 角动量momentum 动量momentum space 动量空间momentum transfer 动量转移momentum transfer cross section 动量转移截面momentum transfer theory 动量转移理论monaural audition 单耳听力monitor 监测器监视器monoatomic gas 单原子气体monoatomic layer 单原子层monoceros 座monochord 弦音计monochromat 单色透镜monochromatic aberration 单色象差monochromatic light 单色光monochromatic radiation 单色辐射monochromatic rays 单色射线monochromaticity 单色性monochromatization of neutron 中子的单色化monochromatization of x rays x 射线单色化monochromator 单色器单色光镜monoclinic system 单斜晶系monocrystal 单晶monocular 单筒望远镜monodispersive system 单分散系monolithic circuit 单片电路monomer 单体monomode laser 单模激光器monomolecular film 单分子膜monopole 单极monopole moment 单极子矩monopole transition 单极跃迁monostable multivibrator 单稳多谐振荡器monotectic 偏晶体monte carlo method 蒙特卡罗法month 月moon 月球moon power station 月球发电站moon's age 月龄morning star 晨星morphophysics 形态物理学morse potential curve 莫尔斯势能曲线mos diode mos 二极管mos field effect transistor mos 金属氧化物半导体场效应晶体管mos integrated circuit mos 集成电路mos structure mos 结构mosaic crystal 嵌镶晶体mosaic structure 嵌镶结构moseley's law 莫塞莱定律mosfet mos 金属氧化物半导体场效应晶体管motion 运动motion equation 运动方程motor 电动机mott insulator 莫脱绝缘体mott scattering 莫脱散射mott transition 莫脱跃迁mottelson valatin effect 莫特尔逊瓦拉廷效应movement of the pole 极运动movement stability 运动的稳定性moving cluster 移动星团moving coil galvanometer 动圈检疗moving iron vane instrument 动叶式仪表moving magnet galvanometer 动磁型电疗moving magnet instrument 动磁式仪表moving medium acoustics 运动介质声学moving striation 活动条纹mpd arc mpd 弧光mtller scattering 摩利尔散射mts system of units mts单位制mu factor 放大系数multi color photometry 多色测光multi crystal x ray spectrometer 多晶x 射线光谱仪multi function observer 多功能观测器multichannel interferometric spectrometer 多道干涉光谱仪multichannel pulse height analyzer 多道脉冲高度分析器multienzymatic reaction 多酶反应multifilament composite wire 多丝结构复合线multigroup model 多群模型multilayer film 多层胶片multilayer mirror 多层反射镜multimode laser 多模激光器multimolecular layer 多分子层multiparticle correlation 多粒子关联multiparticle production 多粒子产生multiphase flow 多相流multiphoton absorption 多光子吸收multiphoton dissociation 多光子离解multiphoton process 多光子过程multiphoton transition 多光子跃迁multiple beam interference 多光束干涉multiple beam interferometry 多光束干涉测量法multiple collision 多次碰撞multiple correlation 多重相关multiple coulomb scattering 多次库仑散射multiple electrode tube 多栅管multiple electrode valve 多栅管multiple excitation 多次激发multiple galaxy 多重星系multiple ionization 多次电离multiple mirror telescope 多镜望远镜multiple periodic motion 多周期运动multiple process 多重过程multiple production 多重产生multiple reflection 多次反射multiple refraction 多次折射multiple scattering 多次散射multiple star 聚星multiple structure 多重结构multiplet 多重线multiplet term 多重项multiplication 增殖multiplication factor 倍增系数multiplicity 多重性multiplier 倍增器multiply connected region 多连通域multiply periodic motion 多重周期运动multiply twinned particle 多重孪晶粒子multiplying factor 倍率multipole 多极multipole expansion 多极展开multipole moment 多极矩multipole radiation 多极辐射multipurpose minicamera 多功能缩微照相机multipurpose reactor 多用堆multislit spectrometry 多狭缝能谱测定法multispectral photography 多谱照像术multispectral satellite data 多谱卫星数据multitarget tracking 多目标跟踪multivariate analysis 多变量分析multivibrator 多谐振荡器multiwire chamber 多丝室multiwire counter 多丝计数管mumeson 介子muon 介子muon beam 子束muon capture 子俘获muon catalyzed fusion 子催化聚变muon neutrino 子中微子muon number 子数muon spin rotation 子自旋转动muonic atom 原子muonic catalysis 子催化muonium 子偶素murchison meteorite 默基森陨星musca 苍蝇座musical acoustics 音乐声学musical scale 音阶musical sound 乐音muspace 空间mutarotation 变旋mutation 突变mutual conductance 互导mutual inductance 互感mutual induction 互感应mutual neutralization 互中性化myopia 近视myria 万myriad 一万myriads 无数myriameter 万米myriametric wave 超长波。
倒易空间的г和m点与晶胞的价带和导带
倒易空间的г和m点与晶胞的价带和导带The question you are asking is about the г and m points of the reciprocal lattice in relation to the valence and conduction bands of a crystal.In crystallography, the reciprocal lattice is used to describe the periodicity of a crystal. It is essentially a mathematical construct that represents the Fourier transform of the direct lattice, with points corresponding to diffraction vectors. The reciprocal lattice's Brillouin zone, which is bounded by its corresponding direct lattice planes, plays a crucial role in understanding electronic properties of crystals.The г point (Gamma point) and m point are special high-symmetry points within the first Brillouin zone. The гpoint corresponds to zero wavevector (k=0) and lies at the center of the Brillouin zone. It represents the point where all plane waves interfere constructively and also serves as a reference for energy calculations. On an energy-momentum diagram, it usually marks the minimum of the valence bandor maximum of the conduction band.The m point, on the other hand, lies at one edge (boundary) between different planes in reciprocal space. It corresponds to finite wavevector (k≠0) and reflects translational symmetry breaking along that direction. In terms of electronic band structure, it often shows important features such as band crossings or strong dispersion - indicating transitions between different bands or regions with high density-of-states.In terms of valence and conduction bands, theirrelationship with these high-symmetry points can provide valuable insights into a material's electronic behavior. By mapping out how these bands evolve around г and m points, we can determine key information such as band gaps, band topology, and even predict collective phenomena like superconductivity or topological insulator properties.To summarize, studying the г and m points within acrystal's reciprocal lattice allows for an in-depth analysis of its electronic properties. These special high-symmetry points provide valuable information regarding the valence and conduction bands, allowing for a better understanding of the material's behavior and potential applications.我问题的关键点是:倒易空间的г和m点与晶胞的价带和导带之间的关系。
固体物理英语
固体物理英语固体物理基本词汇(汉英对照)一画一维晶格 One-dimensional crystal lattice一维单原子链 One-dimensional monatomic chain 一维双原子链 One-dimensional diatomic chain 一维复式格子One-dimensional compound lattice 二画二维晶格 Two-dimensional crystal lattice二度轴 Twofold axis二度对称轴 Twofold axis of symmetry几何结构因子 Geometrical structure factor三画三斜晶系 Triclinic system三方晶系 Trigonal system三斜晶系 Triclinic system刃位错 Edge dislocation小角晶界 Low angle grain boundary马德隆常数 Madelung constant四画元素晶体 Element crystal元素的电负性 Electronegativities of elements元素的电离能 Ionization energies of the elements 元素的结合能 Cohesive energies of the elements 六方密堆积 Hexagonal close-packed六方晶系 Hexagonal system反演 Inversion分子晶体 Molecular Crystal切变模量 Shear module双原子链 Diatomic linear chain介电常数 Dielectric constant化学势 Chemical potential内能 Internal energy分布函数 Distribution function夫伦克耳缺陷 Frenkel defect比热 Specific heat中子散射 Neutron scattering五画布喇菲格子 Bravais lattice布洛赫函数 Bloch function布洛赫定理 Bloch theorem布拉格反射 Bragg reflection布里渊区 Brillouin zone布里渊区边界 Brillouin zone boundary 布里渊散射 Brillouin scattering正格子 Direct lattice正交晶系 Orthorhombic crystal system正则振动 Normal vibration正则坐标 Normal coordinates立方晶系 Cubic crystal system立方密堆积 Cubic close-packed四方晶系 Tetragonal crystal system对称操作 Symmetry operation对称群 Symmetric group正交化平面波 Orthogonalized plane wave电子-晶格相互作用 Electron-lattice interaction 电子热容量 Electronic heat capacity电阻率 Electrical resistivity电导率 Conductivity电子亲合势 Electron affinity电子气的动能 Kinetic energy of electron gas 电子气的压力 Pressure of electron gas电子分布函数 Electron distribution function 电负性 Electronegativity电磁声子 Electromagnetic phonon功函数 Work function长程力 Long-range force立方晶系 Cubic system平面波方法 plane wave method平移对称性 Translation symmetry平移对称操作 Translation symmetry operator 平移不变性 Translation invariance石墨结构 Graphite structure闪锌矿结构 Blende structure六画负电性 Electronegativity共价结合 Covalent binding共价键 Covalent bond共价晶体 Covalent crystals共价键的饱和 Saturation of covalent bonds 光学模 Optical modes光学支 Optical branch光散射 Light scattering红外吸收 Infrared absorption压缩系数 Compressibility扩散系数 Diffusion coefficient扩散的激活能 Activation energy of diffusion 共价晶体 Covalent Crystal价带 Valence band导带 Conduction band自扩散 Self-diffusion有效质量 Effective mass有效电荷 Effective charges弛豫时间 Relaxation time弛豫时间近似 Relaxation-time approximation扩展能区图式 Extended zone scheme自由电子模型 Free electron model自由能 Free energy杂化轨道 Hybrid orbit七画纯金属 Ideal metal体心立方 Body-centered cubic体心四方布喇菲格子 Body-centered tetragonal Bravais lattices 卤化碱晶体 Alkali-halide crystal劳厄衍射 Laue diffraction间隙原子 Interstitial atom间隙式扩散 Interstitial diffusion肖特基缺陷 Schottky defect位错 Dislocation滑移 Slip晶界 Grain boundaries伯格斯矢量 Burgers vector杜隆-珀替定律 Dulong-Petit’s law粉末衍射 Powder diffraction里查孙-杜师曼方程 Richardson-Dushman equation 克利斯托夫方程 Christofell equation克利斯托夫模量Christofell module位移极化 Displacement polarization声子 Phonon声学支 Acoustic branch应力 Stress 应变 Strain切应力 Shear stress切应变 Shear strain八画周期性重复单元 Periodic repeated unit底心正交格子 Base-centered orthorhombic lattice 底心单斜格工 Base-centered monoclinic lattices 单斜晶系 Monoclinic crystal system金刚石结构 Diamond structure金属的结合能 Cohesive energy of metals金属晶体 Metallic Crystal转动轴 Rotation axes转动-反演轴 Rotation-inversion axes转动晶体法 Rotating crystal method空间群 Space group空位 Vacancy范德瓦耳斯相互作用 Van der Waals interaction 金属性结合 Metallic binding单斜晶系 Monoclinic system单电子近似 Single-erection approximation极化声子 Polarization phonon拉曼散射 Raman scattering态密度 Density of states铁电软模 Ferroelectrics soft mode空穴 Hole万尼尔函数 Wannier function平移矢量 Translation vector非谐效应 Anharmonic effect周期性边界条件 Periodic boundary condition九画玻尔兹曼方程 Boltzman equation点群 Point groups迪. 哈斯-范. 阿耳芬效应 De Hass-Van Alphen effect胡克定律Hooke’s law氢键 Hydrogen bond亲合势 Affinity重迭排斥能 Overlap repulsive energy结合能 Cohesive energy玻恩-卡门边界条件 Born-Karman boundary condition费密-狄喇克分布函数 Fermi-Dirac distribution function费密电子气的简并性 Degeneracy of free electron Fermi gas 费密 Fermi费密能 Fermi energy费密能级 Fermi level费密球 Fermi sphere费密面 Fermi surface费密温度 Fermi temperature费密速度 Fermi velocity费密半径 Fermi radius恢复力常数 Constant of restorable force绝热近似 Adiabatic approximation十画原胞 Primitive cell原胞基矢 Primitive vectors倒格子 Reciprocal lattice倒格子原胞 Primitive cell of the reciprocal lattice 倒格子空间 Reciprocal space倒格点 Reciprocal lattice point倒格子基矢Primitive translation vectors of the reciprocal lattice倒格矢 Reciprocal lattice vector倒逆散射 Umklapp scattering粉末法 Powder method原子散射因子 Atomic scattering factor配位数 Coordination number原子和离子半径 Atomic and ionic radii原子轨道线性组合 Linear combination of atomic orbits离子晶体的结合能 Cohesive energy of inert crystals离解能 Dissociation energy离子键 Ionic bond离子晶体 Ionic Crystal离子性导电 Ionic conduction洛伦兹比 Lorenz ratio魏德曼-佛兰兹比 Weidemann-Franz ratio 缺陷的迁移 Migration of defects缺陷的浓度 Concentrations of lattice defects 爱因斯坦 Einstein爱因斯坦频率 Einstein frequency爱因斯坦温度 Einstein temperature格波 Lattice wave格林爱森常数 Gruneisen constant索末菲理论 Sommerfeld theory热电子发射 Thermionic emission热容量 Heat capacity热导率 Thermal conductivity热膨胀 Thermal expansion能带 Energy band能隙 Energy gap能带的简约能区图式 Reduced zone scheme of energy band 能带的周期能区图式 Repeated zone scheme of energy band 能带的扩展能区图式 Extended zone scheme of energy band 配分函数 Partition function准粒子 Quasi- particle准动量 Quasi- momentum准自由电子近似 Nearly free electron approximation十一画第一布里渊区 First Brillouin zone密堆积 Close-packing密勒指数 Miller indices接触电势差 Contact potential difference基元 Basis基矢 Basis vector弹性形变 Elastic deformation排斥能Repulsive energy弹性波 Elastic wave弹性应变张量 Elastic strain tensor弹性劲度常数 Elastic stiffness constant弹性顺度常数 Elastic compliance constant 弹性模量 Elastic module弹性动力学方程 Elastic-dynamics equation 弹性散射 Elastic scattering十二画等能面 Constant energy surface晶体 Crystal晶体结构 Crystal structure晶体缺陷 Crystal defect晶体衍射 Crystal diffraction晶列 Crystal array晶面 Crystal plane晶面指数 Crystal plane indices晶带 Crystal band晶向 direction晶格 lattice晶格常数 Lattice constant晶格周期势 Lattice-periodic potential 晶格周期性 Lattice-periodicity晶胞 Cell, Unit cell晶面间距 Interplanar spacing晶系 Crystal system晶体 Crystal晶体点群 Crystallographic point groups晶格振动 Latticevibration晶格散射 Lattice scattering散射 Scattering等能面 surface of constant energy十三画隋性气体晶体的结合能 Cohesive energy of inert gas crystals 滑移 Slip滑移面 Slip plane简单立方晶格 Simple cubic lattice简单晶格 Simple lattice简单单斜格子 Simple monoclinic lattice简单四方格子 Simple tetragonal lattice简单正交格子 Simple orthorhombic lattice简谐近似 Harmonic approximation简正坐标 Normal coordinates简正振动 Normal vibration简正模 Normal modes简约波矢 Reduced wave vector简约布里渊区 Reduced Brillouin zone禁带 Forbidden band紧束缚方法 Tight-binding method零点振动能 Zero-point vibration energy 雷纳德-琼斯势 Lenard-Jones potential 满带 Filled band十四画磁致电阻 Magnetoresistance模式密度 Density of modes漂移速度 Drift velocity漂移迁移率 Drift mobility十五至十七画德拜 Debye德拜近似 Debye approximation德拜截止频率 Debye cut-off frequency 德拜温度 Debye temperature霍耳效应 Hall effect螺位错 Screw dislocation赝势 Pseudopotential。
Fluent 菜单命令
Grid Array ArrayModels 模型 : solver 解算器Pressure based 基于压力 density based 基于密度implicit 隐式, explicit 显示Space 空间:2D,axisymmetric(转动轴),axisymmetric swirl (漩涡转动轴);Time时间 :steady 定常,unsteady 非定常Velocity formulation 制定速度:absolute绝对的; relative 相对的Gradient option 梯度选择: 以单元作基础;以节点作基础;以单元作梯度的最小正方形。
Porous formulation 多孔的制定:superticial velocity 表面速度;physical velocity物理速度;Name 定义物质的名称 chemical formula 化学反应式 material type 物质类型(液体,固体) Fluent fluid materials 流动的物质 mixture 混合物 order materials by 根据什么物质(名称/化学反应式)Fluent database 流体数据库 user ‐defined database 用户自定义数据库 Propertles 物质性质 从上往下 分别是 密度 比热容 导热系数 粘滞系数操作压力操作压力设置:operating pressure操作压力 reference pressure location 参考压力位置gravity 重力,地心引力gravitational Acceleration 重力加速度operating temperature 操作温度variable‐density parameters 可变密度的参数specified operating density 确切的操作密度边界条件设置定于流体Zone name区域名 material name 物质名 edit 编辑Porous zone 多空区域 laminar zone 薄层或者层状区域 source terms (源项?)Fixed values 固定值motion 运动rotation‐axis origin旋转轴原点Rotation‐axis direction 旋转轴方向Motion type 运动类型 : stationary静止的; moving reference frame 移动参考框架;Moving mesh 移动网格Porous zone 多孔区Reaction 反应Source terms (源项)Fixed values 固定值速度入口(velocity‐inlet)Momentum 动量? thermal 温度 radiation 辐射 species 种类DPM DPM模型(可用于模拟颗粒轨迹) multipahse 多项流UDS(User define scalar 是使用fluent求解额外变量的方法)Velocity specification method 速度规范方法 : magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成? Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区Velocity magnitude 速度的大小Turbulence 湍流Specification method 规范方法k and epsilon K‐E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率Intensity and length scale 强度和尺寸 : 1湍流强度 2 湍流尺度=0.07L(L为水力半径) intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径压力入口(pressure‐inlet)Gauge total pressure 总压 supersonic/initial gauge pressure 超音速/初始 表压 constant常数direction specification method 方向规范方法 :1direction vector方向矢量;2 normal to boundary 垂直于边界质量入口(mass‐flow‐inlet)Mass flow specification method 质量流量规范方法 :1 mass flow rate 质量流量;2 mass Flux 质量通量 3mass flux with average mass flux 质量通量的平均通量supersonic/initial gauge pressure 超音速/初始 表压direction specification method 方向规范方法 :1direction vector方向矢量;2 normal to boundary 垂直于边界Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区压力出口(pressure‐outlet)Gauge pressure表压backflow direction specification method 回流方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界 ;3 from neighboring cell 邻近单元Radial equilibrium pressure distribution 径向平衡压力分布Target mass flow rate 质量流量指向压力远程(pressure‐far‐field)Mach number 马赫数 x‐component of flow direction X分量的流动方向自由出流 (outlet)Flow rate weighting 流量比重进口通风( inlet vent)Loss coeffcient 损耗系数 1 constant 常数;2 piecewise‐linear分段线性;3piecewise‐polynomial 分段多项式;4 polynomial 多项式EditDefine 定义 in terms of 在一下方面 normal‐velocity 正常速度 coefficients系数进口风扇(intake Fan)Pressure jump 压力跃 1 constant 常数;2 piecewise‐linear分段线性;3piecewise‐polynomial 分段多项式;4 polynomial 多项式排气扇(exhaust fan)对称边界(symmetry)周期性边界(periodic)固壁边界(wall)adjicent cell zone相邻的单元区Wall motion 室壁运动 :stationary wall 固定墙Shear condition 剪切条件 : no slip 无滑 ;specified shear 指定的剪切;specularity coefficients 镜面放射系数 marangoni stress 马兰格尼压力?Wall roughness 壁面粗糙度:roughness height 粗糙高度 roughness constant粗糙常数Moving wall 移动墙壁Translational 平移 rotational 转动 components 组成Solve/controls/solutionEquations 方程 under‐relaxation factors 松弛因子: body forces 体积力 Momentum动量 turbulent kinetic energy 湍流动能turbulent dissipation rate湍流耗散率 Turbulent viscosity 湍流粘度 energy 能量Pressure‐velocity coupling 压力速度耦合: simple ,simplec,plot和coupled是4种不同的算法。
计算流体力学中英文词汇对照
流体动力学fluid dynamics 连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics液体静力学hydrostatics 支配方程governing equation伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law 欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem涡片vortex sheet 库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number 施特鲁哈尔数Strouhal number随体导数material derivative 不可压缩流体incompressible fluid质量守恒conservation of mass 动量守恒conservation of momentum能量守恒conservation of energy 动量方程momentum equation能量方程energy equation 控制体积control volume液体静压hydrostatic pressure 涡量拟能enstrophy压差differential pressure 流[动] flow流线stream line 流面stream surface流管stream tube 迹线path, path line流场flow field 流态flow regime流动参量flow parameter 流量flow rate, flow discharge涡旋vortex 涡量vorticity涡丝vortex filament 涡线vortex line涡面vortex surface 涡层vortex layer涡环vortex ring 涡对vortex pair涡管vortex tube 涡街vortex street卡门涡街Karman vortex street 马蹄涡horseshoe vortex对流涡胞convective cell 卷筒涡胞roll cell涡eddy 涡粘性eddy viscosity环流circulation 环量circulation速度环量velocity circulation 偶极子doublet, dipole驻点stagnation point 总压[力] total pressure总压头total head 静压头static head总焓total enthalpy 能量输运energy transport速度剖面velocity profile 库埃特流Couette flow单相流single phase flow 单组份流single-component flow均匀流uniform flow 非均匀流nonuniform flow二维流two-dimensional flow 三维流three-dimensional flow准定常流quasi-steady flow 非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow振荡流oscillatory flow 分层流stratified flow无旋流irrotational flow 有旋流rotational flow轴对称流axisymmetric flow 不可压缩性incompressibility不可压缩流[动] incompressible flow 浮体floating body定倾中心metacenter 阻力drag, resistance减阻drag reduction 表面力surface force表面张力surface tension 毛细[管]作用capillarity来流incoming flow 自由流free stream自由流线free stream line 外流external flow进口entrance, inlet 出口exit, outlet扰动disturbance, perturbation 分布distribution传播propagation 色散dispersion弥散dispersion 附加质量added mass ,associated mass收缩contraction 镜象法image method无量纲参数dimensionless parameter 几何相似geometric similarity运动相似kinematic similarity 动力相似[性] dynamic similarity平面流plane flow 势potential势流potential flow 速度势velocity potential复势complex potential 复速度complex velocity流函数stream function 源source汇sink 速度[水]头velocity head拐角流corner flow 空泡流cavity flow超空泡supercavity 超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics气动热力学aerothermodynamics 亚声速流[动] subsonic flow跨声速流[动] transonic flow 超声速流[动] supersonic flow锥形流conical flow 楔流wedge flow叶栅流cascade flow 非平衡流[动] non-equilibrium flow细长体slender body 细长度slenderness钝头体bluff body 钝体blunt body翼型airfoil 翼弦chord薄翼理论thin-airfoil theory 构型configuration后缘trailing edge 迎角angle of attack失速stall 脱体激波detached shock wave波阻wave drag 诱导阻力induced drag诱导速度induced velocity 临界雷诺数critical Reynolds number 前缘涡leading edge vortex 附着涡bound vortex约束涡confined vortex 气动中心aerodynamic center气动力aerodynamic force 气动噪声aerodynamic noise气动加热aerodynamic heating 离解dissociation地面效应ground effect 气体动力学gas dynamics稀疏波rarefaction wave 热状态方程thermal equation of state 喷管Nozzle 普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow 可压缩流[动] compressible flow可压缩流体compressible fluid 绝热流adiabatic flow非绝热流diabatic flow 未扰动流undisturbed flow等熵流isentropic flow 匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state 完全气体perfect gas拉瓦尔喷管Laval nozzle 马赫角Mach angle马赫锥Mach cone 马赫线Mach line马赫数Mach number 马赫波Mach wave当地马赫数local Mach number 冲击波shock wave激波shock wave 正激波normal shock wave斜激波oblique shock wave 头波bow wave附体激波attached shock wave 激波阵面shock front激波层shock layer 压缩波compression wave反射reflection 折射refraction散射scattering 衍射diffraction绕射diffraction出口压力exit pressure 超压[强] over pressure反压back pressure 爆炸explosion爆轰detonation 缓燃deflagration水动力学hydrodynamics 液体动力学hydrodynamics泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave斯托克斯波Stokes wave 瑞利数Rayleigh number自由面free surface 波速wave speed, wave velocity波高wave height 波列wave train波群wave group 波能wave energy表面波surface wave 表面张力波capillary wave规则波regular wave 不规则波irregular wave浅水波shallow water wave深水波deep water wave 重力波gravity wave椭圆余弦波cnoidal wave 潮波tidal wave涌波surge wave 破碎波breaking wave船波ship wave 非线性波nonlinear wave孤立子soliton 水动[力]噪声hydrodynamic noise 水击water hammer 空化cavitation空化数cavitation number 空蚀cavitation damage超空化流supercavitating flow 水翼hydrofoil水力学hydraulics 洪水波flood wave涟漪ripple 消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula欧拉数Euler number 弗劳德数Froude number水力半径hydraulic radius 水力坡度hvdraulic slope高度水头elevating head 水头损失head loss水位water level 水跃hydraulic jump含水层aquifer 排水drainage排放量discharge 壅水曲线back water curve压[强水]头pressure head 过水断面flow cross-section明槽流open channel flow 孔流orifice flow无压流free surface flow 有压流pressure flow缓流subcritical flow 急流supercritical flow渐变流gradually varied flow 急变流rapidly varied flow临界流critical flow 异重流density current, gravity flow堰流weir flow 掺气流aerated flow含沙流sediment-laden stream 降水曲线dropdown curve沉积物sediment, deposit 沉[降堆]积sedimentation, deposition沉降速度settling velocity 流动稳定性flow stability不稳定性instability 奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation 泊肃叶流Poiseuille flow奥辛流Oseen flow 剪切流shear flow粘性流[动] viscous flow 层流laminar flow分离流separated flow 二次流secondary flow近场流near field flow 远场流far field flow滞止流stagnation flow 尾流wake [flow]回流back flow 反流reverse flow射流jet 自由射流free jet管流pipe flow, tube flow 内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity动力粘性dynamic viscosity 泊poise厘泊centipoise 厘沱centistoke剪切层shear layer 次层sublayer流动分离flow separation 层流分离laminar separation湍流分离turbulent separation 分离点separation point附着点attachment point 再附reattachment再层流化relaminarization 起动涡starting vortex驻涡standing vortex 涡旋破碎vortex breakdown涡旋脱落vortex shedding 压[力]降pressure drop压差阻力pressure drag 压力能pressure energy型阻profile drag 滑移速度slip velocity无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss磨擦因子friction factor 耗散dissipation滞后lag 相似性解similar solution局域相似local similarity 气体润滑gas lubrication液体动力润滑hydrodynamic lubrication 浆体slurry泰勒数Taylor number 纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid 边界层理论boundary later theory边界层方程boundary layer equation 边界层boundary layer附面层boundary layer 层流边界层laminar boundary layer湍流边界层turbulent boundary layer 温度边界层thermal boundary layer边界层转捩boundary layer transition 边界层分离boundary layer separation边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness 能量厚度energy thickness焓厚度enthalpy thickness 注入injection吸出suction 泰勒涡Taylor vortex速度亏损律velocity defect law 形状因子shape factor测速法anemometry 粘度测定法visco[si] metry流动显示flow visualization 油烟显示oil smoke visualization孔板流量计orifice meter 频率响应frequency response油膜显示oil film visualization 阴影法shadow method纹影法schlieren method 烟丝法smoke wire method丝线法tuft method 氢泡法nydrogen bubble method相似理论similarity theory 相似律similarity law部分相似partial similarity 定理pi theorem, Buckingham theorem 静[态]校准static calibration 动态校准dynamic calibration风洞wind tunnel 激波管shock tube激波管风洞shock tube wind tunnel 水洞water tunnel拖曳水池towing tank 旋臂水池rotating arm basin扩散段diffuser 测压孔pressure tap皮托管pitot tube 普雷斯顿管preston tube斯坦顿管Stanton tube 文丘里管Venturi tubeU形管U-tube 压强计manometer微压计micromanometer 多管压强计multiple manometer静压管static [pressure]tube 流速计anemometer风速管Pitot- static tube 激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer 流量计flow meter粘度计visco[si] meter 涡量计vorticity meter传感器transducer, sensor 压强传感器pressure transducer热敏电阻thermistor 示踪物tracer时间线time line 脉线streak line尺度效应scale effect 壁效应wall effect堵塞blockage 堵寒效应blockage effect动态响应dynamic response 响应频率response frequency底压base pressure 菲克定律Fick law巴塞特力Basset force 埃克特数Eckert number格拉斯霍夫数Grashof number 努塞特数Nusselt number普朗特数prandtl number 雷诺比拟Reynolds analogy施密特数schmidt number 斯坦顿数Stanton number对流convection 自由对流natural convection, free convec-tion强迫对流forced convection 热对流heat convection质量传递mass transfer 传质系数mass transfer coefficient热量传递heat transfer 传热系数heat transfer coefficient对流传热convective heat transfer 辐射传热radiative heat transfer动量交换momentum transfer 能量传递energy transfer传导conduction 热传导conductive heat transfer热交换heat exchange 临界热通量critical heat flux浓度concentration 扩散diffusion扩散性diffusivity 扩散率diffusivity扩散速度diffusion velocity 分子扩散molecular diffusion沸腾boiling 蒸发evaporation气化gasification 凝结condensation成核nucleation 计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem 伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem 数值模拟numerical simulation 大涡模拟large eddy simulation数值粘性numerical viscosity 非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis 相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition狄里克雷边界条件Dirichlet boundarycondition熵条件entropy condition 远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition 近似因子分解法approximate factorization method 人工压缩artificial compression 人工粘性artificial viscosity边界元法boundary element method 配置方法collocation method能量法energy method 有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method 伽辽金法Galerkin method积分方法integral method 标记网格法marker and cell method, MAC method 特征线法method of characteristics 直线法method of lines矩量法moment method 多重网格法multi- grid method板块法panel method 质点网格法particle in cell method, PIC method 质点法particle method 预估校正法predictor-corrector method投影法projection method 准谱法pseudo-spectral method随机选取法random choice method 激波捕捉法shock-capturing method激波拟合法shock-fitting method 谱方法spectral method稀疏矩阵分解法split coefficient matrix method 不定常法time-dependent method时间分步法time splitting method 变分法variational method涡方法vortex method 隐格式implicit scheme显格式explicit scheme 交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme 守恒差分格式conservation difference scheme 克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme 戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme 拉克斯-温德罗夫格式Lax-Wendroff scheme 蛙跳格式leap-frog scheme 单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme 半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain 物理区域physical domain影响域domain of influence 依赖域domain of dependence区域分解domain decomposition 维数分解dimensional split物理解physical solution 弱解weak solution黎曼解算子Riemann solver 守恒型conservation form弱守恒型weak conservation form 强守恒型strong conservation form散度型divergence form 贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh 适应网格生成adaptive grid generation自动网格生成automatic grid generation 数值网格生成numerical grid generation交错网格staggered mesh 网格雷诺数cell Reynolds number数植扩散numerical diffusion 数值耗散numerical dissipation数值色散numerical dispersion 数值通量numerical flux放大因子amplification factor 放大矩阵amplification matrix阻尼误差damping error 离散涡discrete vortex熵通量entropy flux 熵函数entropy function分步法fractional step method。
211274798_FeCoCrNiCu高熵合金纳米压痕力学响应的分子动力学模拟★
加载速度
中图分类号:
O3
4
1
文献标识码:
A
/
DO
I:
1
0.
1
6
3
5
5
c
n
k
i.
i
s
s
n
1
0
0
7
9
4
3
2
t
u
t.
2
0
2
3.
0
3.
0
2
0
j.
y
文章编号:
1
0
0
7
9
4
3
2(
2
0
2
3)
0
3
0
5
6
2
0
8
Nano
i
nd
en
t
a
t
i
on Me
chan
i
c
a
lPr
ope
r
t
i
e
so
fFeCoCrNiCuHi
gh
En
t
r
opyAl
l
oy
s:
A Mo
l
e
c
u
l
a
rDynami
c
sS
t
udy
a
a
a,
b
a
a,
b
SUN Yewe
i ,ZHANG Lumi
ng ,MAShe
ng
i ,XIN Ha
o
guo ,ZHANG Tuanwe
(
a.
In
s
t
i
固体物理专业术语
费密能级 Fermi level 费密球 Fermi sphere 费密面 Fermi surface 费密温度 Fermi temperature 费密速度 Fermi velocity 费密半径 Fermi radius 恢复力常数 Constant of restorable force 绝热近似 Adiabatic approximation
反演 Inversion 分子晶体 Molecular Crystal 切变模量 Shear module 双原子链 Diatomic linear chain 介电常数 Dielectric constant 化学势 Chemical potential 内能 Internal energy
分布函数 Distribution function 夫伦克耳缺陷 Frenkel defect 比热 Specific heat 中子散射 Neutron scattering
纯金属 Ideal metal 体心立方 Body-centered cubic 体心四方布喇菲格子 Body-centered tetragonal Bravais lattices 卤化碱晶体 Alkali-halide crystal 劳厄衍射 Laue diffraction 间隙原子 Interstitial atom 间隙式扩散 Interstitial diffusion 肖特基缺陷 Schottky defect
有效电荷 Effective chaБайду номын сангаасges 弛豫时间 Relaxation time 弛豫时间近似 Relaxation-time approximation 扩展能区图式 Extended zone scheme 自由电子模型 Free electron model 自由能 Free energy 杂化轨道 Hybrid orbit
拓扑绝缘体与拓扑半金属(方忠) [350658]
Edge States
TKNN
Z2
Chern number
Surface States
Femi points (in bulk)
2. 拓扑绝缘体:T-broken vs T-Invariant
QHE
QSHE in HgTe/CdTe (S. C. Zhang, SCIENCE 2006)
Fermi surface
No fermi surface
Ef
Femi points (in bulk) Fermi arcs (on surface)
Normal Insulators +
Topological Insulators (Weyl points at Boundary)
Our Subjects
Penetration Depth of Surface state, 2nm
Chiral Spin texture
W. Zhang, et.al., New J. Phys, 12, 065013 (2010)
2. TI Materials: Exp. evidence ARPES
Y. L. Chen,et.al. SCIENCE (2009) Bi2Te3
“twisted band”
2. 拓扑绝缘体:Bi2Te3, Bi2Se3, Sb2Te3
Predictions for Bi2Te3 family: Basic Properties
1. Found 70 years ago. Naturwissenschaften, 27, 133 (1939)
“能带 twist”
1. 简介:Surface state vs Graphene
大口径非球面加工中最接近参考球面的精确计算
第44卷第2期航天返回与遥感2023年4月SPACECRAFT RECOVERY & REMOTE SENSING91大口径非球面加工中最接近参考球面的精确计算张建华1,2栗孟娟2李春林2,*(1 北京空间机电研究所,北京 100094)(2 中国空间技术研究院,北京 100080)摘要摆臂轮廓测量技术要求将摆臂精准的装调至待检测非球面的最接近参考球面上,需要精确确定非球面的最接近参考球半径及球心位置,而常规的近似法、精确公式法以及最小二乘法不能满足计算的精度和效率等要求。
为了弥补现有算法的不足,文章介绍了一种分阶段逼近最接近参考球半径的计算方法,该算法在最小二乘法的基础上,通过精确线搜索技术以及牛顿迭代法,实现了最接近参考球半径求解的高精度、高效率,并且应用于大口径非球面计算时迭代效率有了较大提高。
计算实例结果显示,该算法满足摆臂测量时大口径非球面的最接近参考球半径的求解要求。
关键词最接近比较球摆臂测量牛顿迭代非球面最小二乘法空间光学中图分类号: TQ171文献标志码: A 文章编号: 1009-8518(2023)02-0091-10DOI: 10.3969/j.issn.1009-8518.2023.02.010Accurate Calculation of the Best-fit Reference Spherical Surface inLarge Diameter Aspheric MachiningZHANG Jianhua1,2 LI Mengjuan2 LI Chunlin2,*(1 Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China)(2 China Academy of Space Technology, Beijing 100080, China)Abstract The swing arm profile measurement technology requires the swing arm to be precisely mounted to the best-fit reference sphere of the aspheric surface to be detected, and the best-fit reference sphere radius and sphere center position of the aspheric surface need to be accurately determined, while the conventional approximation method, the exact formula method and the least squares method cannot satisfy the requirements of calculation accuracy and efficiency. In order to make up for the deficiencies of existing algorithms, the paper introduces a calculation method for approximating the best-fit reference spherical radius in stages. The algorithm achieves high accuracy and efficiency in the solution of the best-fit reference spherical radius based on the least squares method, the exact line search technique and the Newtonian iteration method, and the iteration efficiency is greatly improved when applied to the calculation of large-aperture aspheres. The results of the calculation example show that the algorithm satisfies the requirement of solving for the best-fit reference sphere radius for large-aperture aspheric surfaces during swing-arm measurements.Keywords best-fit reference sphere; the swing arm profile mersurement; newton iteration; aspherical; least s quare method; space optics收稿日期:2022-09-22基金项目:中国航天科技集团自主研发项目(20210297)引用格式:张建华, 栗孟娟, 李春林. 大口径非球面加工中最接近参考球面的精确计算[J]. 航天返回与遥感, 2023, 44(2): 91-100.ZHANG Jianhua, LI Mengjuan, LI Chunlin. Accurate Calculation of the Best-fit Reference Spherical Surface in92航天返回与遥感2023年第44卷0 引言非球面光学元件相比于球面光学元件,能够有效提升光学性能并减少所需光学元件数量,其中大口径非球面反射镜是空间观测和对地遥感等领域的重要光学元件[1-4],直接决定望远镜的观测性能。
(完整版)量子力学英语词汇
(完整版)量子力学英语词汇1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation 角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
相空间,光场,与计算光学成像
相空间,光场,与计算光学成像英文回答:Phase space, optical field, and computational optical imaging are all concepts in the field of optics that are used to describe and analyze the behavior of light and its interactions with various systems. Let me explain each of these concepts in more detail.Phase space is a mathematical concept that is used to describe the state of a physical system. In optics, phase space refers to the space in which the position and momentum of a light wave are represented. It is a four-dimensional space, with two dimensions representing the position of the wave and the other two dimensions representing the momentum of the wave. The position and momentum of the wave are related by the uncertainty principle, which states that the more precisely we know the position of the wave, the less precisely we can know its momentum, and vice versa.The optical field refers to the distribution of light intensity and phase in space. It is a fundamental conceptin optics that is used to describe the behavior of light waves. The optical field can be described by a complex-valued function, known as the electric field, which represents the amplitude and phase of the light wave ateach point in space. The optical field can be manipulated and controlled using various optical components, such as lenses, mirrors, and wave plates, to achieve desiredoptical functionalities, such as focusing, imaging, and polarization manipulation.Computational optical imaging is a branch of opticsthat combines optical systems with computational algorithms to enhance and improve the imaging capabilities of optical systems. It involves the use of digital image processing techniques to extract useful information from optical images. For example, in traditional optical imaging systems, the resolution of the image is limited by the diffractionof light. However, by using computational algorithms, it is possible to overcome the diffraction limit and achievesuper-resolution imaging. Another example is the use of computational algorithms to correct for aberrations in optical systems, which can improve the image quality and sharpness.中文回答:相空间、光场和计算光学成像都是光学领域中用来描述和分析光的行为及其与不同系统的相互作用的概念。
汉英地质学名词
汉英地质学名词汉英地质学名词(1993)面角守恒定律||law of constancy of angle 面金属量||areal productivity面状构造||planar structure庙坡组||Miaopo Formation妙高阶||Miaogaoan Stage妙高期||Miaogaoan Age妙高组||Miaogao Formation敏感系数||sensitivity ratio敏感粘土||sensitive clay明矾石||alunite明化镇组||Minghuazhen Formation明水组||Mingshui Formation模||mold模拟实验||simulation experiment模式年龄||model age磨拉石||molasse磨蚀[作用]||abrasion莫尔包络线||Mohr failure envelope莫尔图||Mohr diagram莫尔应力圆||Mohr stress circle莫来石||mullite莫氏硬度||Moh's hardness莫斯科阶||Moscovian Stage莫斯科期||Moscovian Age墨西拿阶||Messinian Stage墨西拿期||Messinian Age木栓质体||suberinite穆斯堡尔谱||Moessbauer spectrum穆斯堡尔效应||Moessbauer effect钠长石-绿帘石-角岩相||albite-epidote-hornfels facies钠长石||albite钠交代型铀矿||sodic-metasomatism type uranium deposit钠闪石||riebeckite钠铁闪石||arfvedsonite; 又称“亚铁钠闪石”。
钠硝石||soda niter, nitronatrite, nitratine; 又称“智利硝石”。
热力学相关单词
热力学相关单词thermodynamics n. 热力学system n. 体系thermodynamic state 热力学状态 dimension 量纲 SI= International System of Units 国际单位制 intensive thermodynamic variable 强度(热力学)变量extensive thermodynamic variable 广度(热力学)变量celsius scale 摄氏刻度→ fahrenheit scale 华氏刻度 kelvin scale 开尔文刻度→ Rankine scale dead-weight gauge 静压、压力表mano meter (流体)压力计 product 乘积 kinetic energy 动能 22 1mu E k = potential energy 势能mgz E P =conservation守恒* Terms in chapter 2sublimation curve 升华线 fusion curve 熔融线vaporization curve (蒸发)汽化线single-phase region 单相区 triple point 三相点univariant 单变量 divariant 多变量critical point 临界点 critical pressure 临界压力critical temperature 临界温度dome-shaped curve 圆拱形曲线saturated vapors at their condensation temperatures 露点的饱和蒸汽saturated liquids at their vaporization(boiling) temperatures 泡点的饱和液体vapor pressure 蒸汽压subcooled-liquid region 过冷液体区superheated-vapor region 过热蒸汽区partial derivative 偏导数differentiate v. 求微分,求导 differentiation n. derivate n. 求导数 derivation 求导数,求解incompressible fluid 不可压缩流体 ideal-gas理想气体simple fluid简单流体(argon 、krypton 、xenon )virial expansion维里展开式 virial coefficients 维里系数 virial equation维里方程equation of state状态方程compressibility factor 压缩因子 RTPVZ = volume expansivity体积膨胀系数PT V V ??? ????=1βisothermal compressibility 等温压缩系数 TP V V ??? ????=1κ acentric factor偏心因子isothermal process等温过程isobaric process 等压过程isochoric process 等容过程adiabatic process 绝热过程 polytropic process多变过程throttling process节流过程 0=?Htruncate equation to two terms 截断方程前二项cubic equation of state 立方型状态方程reduced pressure 对比压力reduced temperature 对比温度reduced density对比密度corresponding-state parameters 对应态参数generalized correlations 普遍化关联nonpolar非极性的 slightly polar 弱极性的 highly polar高极性的volumetric properties 容积性质 realistic 现实主义的,逼真的dashed line虚线dotted line 点线straight line 实线Terms in chapter 3internal energy 内能 transport across kinetic energy 动能 22 1mu E t =potential energy 势能 m g z E p = conservation 守恒operator 算符,运算符(such as “Δ”)system 体系surroundings 环境 closed system 封闭体系 open system 开放体系finite change 有限的变化infinitesimal change 无限的变化differential change 微分(小)的变化 intensive property 强度性质extensive property 广度性质specific or molar property 单位(比)性质或摩尔性质property — variable — functionthermodynamics state of the system 体系热力学状态thermodynamics properties 热力学性质 state function(s) 状态函数equilibrium 平衡 (the) phase rule 相率reversible process 可逆过程irreversible process 不可逆过程mechanically reversible 机械可逆thermostate 恒温箱constant—temperature bath 恒温浴efficiency 效率,(有效)系数enthalpy 焓heat capacity 热容constant—volume heat capacity 恒容热容constant—pressure heat capacity 恒压热容vector quantity 矢量scalar magnitude 数量,纯量continuity equation 连续方程steady state (flow process) 移去(流动过程)datum level 基准面shaft work 体积功stirring work 搅拌功work associated with moving the flow streams 流动功expansion work 膨胀功surface work 表面功electricity work 电功calorimeter 量热计(测定焓)intensive property 强度性质extensive property 广度性质shaft work 轴功enthalpy 焓entropy 熵heat-capacity 热容Gibbs energy (G) 吉布斯自由能Helmholtz energy (A) 亥姆霍茨自由能internal energy 内能system 系统,体系close system 封闭体系equilibrium state 平衡态total differential of F F的全微分exact differential expression 全微分表达式Maxwell equations 麦克斯威尔方程homogeneous fluid 均相流体residual property 剩余性质real gas 真实气体actual gasideal gas 理想气体explicit function 显函数volume explicit 体积显函数pressure explicit 压力显函数isentropic process 等熵过程reversible adiabatic process 绝热可逆过程pseudocritical parameter 虚拟临界参数path variables 过程变量state variables 状态变量等压热容constant pressure heat capacity Cconstant volume heat capacity C V 等容热容residual property 剩余性质reference state 参比态reference conditionpartial derivative 偏导数total derivative 全导数β volume expansivity 体积膨胀系数κ isothermal compressibility 等温压缩系数quality 干度fugacity 逸度fugacity coefficient 逸度系数*Terms in Chapter 4chemical potential 化学势,化学位partial property 偏性质partial molar property 偏摩尔性质ideal solution 理想溶液real solution 真实溶液excess property 超额/过量性质excess Gibbs energy 超额/过量自由焓partial excess property 偏摩尔超额/过量性质activity 活度activity coefficient 活度系数standard state 标准态property change of mixing 混合性质regular solution 正规溶液atherpical solution 无热溶液local-composition 局部组成local molar fraction 局部摩尔分数*Terms in Chapter 5First Law of thermodynamics(energy conservation law)热力学第一定律steady-state flow processes 稳定状态流动过程control volume 控制体heat Engines 热机Carnot engine 卡诺热机thermal efficiency 热效率thermodynamic efficiency 热力学效率isentropic efficiency 等熵效率ideal work and lost work 理想功和损耗功exergy 火用available Energy, availability, utilizable Energy 有效能*Terms in Chapter 6steam Power cycle 蒸汽动力循环Carnot-engine cycle 卡诺循环cycle with feed water heaters 抽气回热循环heat-power cycle 热电循环exhaust steam 乏气heat reservoir 热源working substance of the engine 工质specific steam consumption 汽耗率SSCrefrigeration Cycle 制冷循环vapor-compression cycle 蒸汽压缩(制冷)循环absorption refrigeration 吸收式制冷Carnot refrigeration 卡诺冷机reversed heat-engine cycle 逆热机循环multi-stage compression refrigeration多级压缩制冷heat pump 热泵throttling expansion process 节流膨胀过程reversible adiabatic expansion process 可逆绝热膨胀过程inversion curve and inversion point 转变曲线和转变点condenser 冷凝器expander 膨胀机compressor 压缩机evaporator 蒸发器supheater 过热器turbine 透平机boiler 锅炉pump 泵*Statements of the second lawstatement1: No apparatus can operate in such a way that its only effect (in system and surrounings) is to convert heat absorbed by a system completely into work done by the system。
拉曼与AFM联用 TERS
AFM-microRaman and nanoRaman TMIntroductionThe use of Raman microscopy has become animportant tool for the analysis of materials on themicron scale. The unique confocal and spatialresolution of the LabRAM series has enabled opticalfar field resolution to be pushed to its limits withoften sub-micron resolution achievable.The next step to material analysis on a smallerscale has been the combination of Ramanspectroscopic analysis with near field optics and anAtomic force microscope (AFM). The hybridRaman/AFM combination enables nanometrictopographical information to be coupled to chemical(spectroscopic) information. The unique designsdeveloped by HORIBA Jobin Yvon enable in-situRaman measurements to be made upon variousdifferent AFM units, and for the exploration of newand evolving techniques such as nanoRamanspectroscopy based on the TERS (tip enhancedRaman spectroscopy) effect.AFM image of nano-structures on a SiN sampleHORIBA Jobin Yvon offers both off-axis and on-axisAFM/Raman coupling to better match your sampleand analysis requirements.Off-axis and inverted on-axis configurations forAFM/Raman coupling showing the laser (blue) andRaman (pink) optical pathThe LabRAM-Nano Series is based on the provenLabRAM HR system providing unsurpassedperformance for classical Raman analysis. With theAFM coupling option, it becomes the platform ofchoice for AFM/Raman experiments. The off-axisgeometry offers large sample handling capabilitiesand is ideally suited for the analysis ofsemiconductor materials, wafers and more generallyopaque samples.For biological and life science applications, theLabRAM-Nano operates in inverted on-axisconfiguration with a confocal inverted Ramanmicroscope on top of which the AFM unit is directlymounted. This system is ideally suited for the studyof transparent biological samples such as singlecells, tissue samples and bio-polymers.In both systems, AFM and SNOM fluorescencemeasurements can be combined with Ramananalysis to provide a more completecharacterisation of sample chemistry andmorphology on the same area. Several AFMsystems from leading AFM manufacturers can beadapted on these two instruments. Please contactus to find out which one is best for you!AFM- microRaman dual analysisThe seamless integration of hardware and software of both systems onto the same platform enables fast and user-friendly operation of both systems at the same time. Furthermore, the AFM/Raman coupling does not compromise the individual capabilities of either system and the imaging modes of the AFM remain available (EFM, MFM, Tapping Mode, etc.)The operator has direct access to both the nanometric topography of a sample given by the AFM, and the chemical information from the micro-Raman measurement. An AFM image can berecorded as an initial survey map, in which regions of interest can be defined for further Raman analysis, using the same software.An example of such analysis is illustrated below by an AFM image of Carbon Nanotubes (CNTs) giving information on the CNTs’ length, diameters and aggregation state. A more detailed AFM image is then obtained in which Raman analysis can be performed.Carbon nanotubes AFM images with a gold-coated tip in contact mode. The diameter of the bundles of nanotubes is between 10 and 30 nm.NanoRaman for TERS experimentsSurface Enhance Raman Scattering (SERS) has long been used to enhance weak Raman signals by means of surface plasmon resonance using nanoparticle colloids or rough metallic substrates, allowing to detect chemical species at ppm levels.The TERS effect is based on the same principle, but uses a metal-coated AFM tip (instead of nanoparticles) as an antenna that enhances the Raman signal coming from the sample area which is in contact (near-field). Although not yet fully understood, the TERS effect has attracted a lot of interest, as it holds the promise of producing chemical images with nanometric resolution.The LabRAM-Nano offers an ideal platform,combining state-of-the-art AFMs with our Raman expertise to perform exploratory TERS experiments with confidence.Raman signal TERS enhancement on a Silicon sample with far field suppression thanks to adequate polarization configuration. Red : Far field + Near Field (tip in contact)– Blue : Far field only (tip withdrawn)Technical specificationsFlexure guided scanner is used to maintain zero background curvature below 2 nm out-of-planeFor non-TERS measurements, classical Raman measurements can be made on the same spot as AFM images by translating the sample with a high-accuracy positioning stage from the AFM setup to the Raman setup (and vice et versa). The AFM map can be used to define a region of interest for the Raman analysisusing a common software.LabRAM-Nano coupled with Veeco’s Dimension 3100 AFMThe on-axis coupling configuration enables both AFM-microRaman dual analysis and TERS measurementson transparent and biological samples. The AFM is directly coupled onto the inverted microscope and directlyinterfaced to the LabRAM HR microprobe. It can also be taken off the optical microscope to obtain AFMimages in a different location. Seamless software integration is realized to provide a common platform to bothsystems for both AFM and Raman analysis of the same area and TERS investigation.Bioscope II from VeecoLabRAM-Nano coupled with Park Systems(formerly PSIA) XE-120Off-axis coupling for AFM-microRaman and nanoRaman (TERS)For both dual AFM-microRaman dual analysis and TERS measurements, the off-axis coupling is ideally suited for opaque and large samples. For opaque samples, the inverted on-axis coupling is not possible as the sample will not transmit the laser beam. This can be solved by setting the microscope objective at some angle to avoid “shadowing” effects from the AFM cantilever. Here also, seamless software integration is realized to provide a common platform to both systems. The AFM can be controlled by the Raman software (LabSpec), and mapping areas can be defined on AFM images for further Raman analysis.France : HORIBA Jobin Yvon S.A.S., 231 rue de Lille, 59650 Villeneuve d’Ascq. Tel : +33 (0)3 20 59 18 00, Fax : +33 (0)3 20 59 18 08. Email : raman@jobinyvon.fr www.jobinyvon.frUSA : HORIBA Jobin Yvon Inc., 3880 Park Avenue, Edison, NJ 08820-3012. Tel : +1-732-494-8660, Fax : +1-732-549-2571. Email : raman@ Japan : HORIBA Ltd., JY Optical Sales Dept., 1-7-8 Higashi-kanda, Chiyoda-ku, Tokyo 101-0031. Tel: +81 (0)3 3861 8231, Fax: +81 (0)3 3861 8259. Email: raman@ LabRAM-Nano coupled with Park Systems (formerly PSIA) XE-100Combined polarized Raman and atomic force microscopy:In situ study of point defects and mechanical properties in individual ZnO nanobelts Marcel Lucas,1Zhong Lin Wang,2and Elisa Riedo1,a͒1School of Physics,Georgia Institute of Technology,Atlanta,Georgia30332-0430,USA2School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta,Georgia30332-0245,USA͑Received8June2009;accepted23June2009;published online4August2009͒We present a method,polarized Raman͑PR͒spectroscopy combined with atomic force microscopy͑AFM͒,to characterize in situ and nondestructively the structure and the physical properties ofindividual nanostructures.PR-AFM applied to individual ZnO nanobelts reveals the interplaybetween growth direction,point defects,morphology,and mechanical properties of thesenanostructures.In particular,wefind that the presence of point defects can decrease the elasticmodulus of the nanobelts by one order of magnitude.More generally,PR-AFM can be extended todifferent types of nanostructures,which can be in as-fabricated devices.©2009American Instituteof Physics.͓DOI:10.1063/1.3177065͔Nanostructured materials,such as nanotubes,nanobelts ͑NBs͒,and thinfilms,have potential applications as elec-tronic components,catalysts,sensors,biomarkers,and en-ergy harvesters.1–5The growth direction of single-crystal nanostructures affects their mechanical,6–8optoelectronic,9 transport,4catalytic,5and tribological properties.10Recently, ZnO nanostructures have attracted a considerable interest for their unique piezoelectric,optoelectronic,andfield emission properties.1,2,11,12Numerous experimental and theoretical studies have been undertaken to understand the properties of ZnO nanowires and NBs,11,12but several questions remain open.For example,it is often assumed that oxygen vacancies are present in bulk ZnO,and that their presence reduces the mechanical performance of ZnO materials.13However,no direct observation has supported the idea that point defects affect the mechanical properties of individual nanostructures.Only a few combinations of experimental techniques en-able the investigation of the mechanical properties,morphol-ogy,crystallographic structure/orientation and presence of defects in the same individual nanostructure,and they are rarely implemented due to technical challenges.Transmis-sion electron microscopy͑TEM͒can determine the crystal-lographic structure and morphology of nanomaterials that are thin enough for electrons to transmit through,4,14–17but suf-fers from some limitations.For example,characterization of point defects is rather challenging.14–17Also,the in situ TEM characterization of the mechanical and electronic properties of nanostructures is very challenging or impossible.15–17 Alternatively,atomic force microscopy͑AFM͒is well suited for probing the morphology,mechanical,magnetic, and electronic properties of nanostructures from the micron scale down to the atomic scale.3,6,7,10In parallel, Raman spectroscopy is effective in the characterization of the structure,mechanical deformation,and thermal proper-ties of nanostructures,18,19as well as the identification of impurities.20Furthermore,polarized Raman͑PR͒spectros-copy was recently used to characterize the crystal structure and growth direction of individual single-crystal nanowires.21Here,an AFM is combined to a Raman microscope through an inverted optical microscope.The morphology and the mechanical properties of individual ZnO NBs are deter-mined by AFM,while polarized Raman spectroscopy is used to characterize in situ and nondestructively the growth direc-tion and randomly distributed defects in the same individual NBs.Wefind that the presence of point defects can decrease the elastic modulus of the NBs by almost one order of mag-nitude.The ZnO NBs were prepared by physical vapor deposi-tion͑PVD͒without catalysts14and deposited on a glass cover slip.For the PR studies,the cover slip was glued to the bottom of a Petri dish,in which a hole was drilled to allow the laser beam to go through it.The round Petri dish was then placed on a sample plate below the AFM scanner,where it can be rotated by an angle,or clamped͑see Fig.1͒.The morphology and mechanical properties of the ZnO NBs were characterized with an Agilent PicoPlus AFM.The AFM was placed on top of an Olympus IX71inverted optical micro-scope using a quickslide stage͑Agilent͒.A silicon AFM probe͑PointProbe NCHR from Nanoworld͒,with a normal cantilever spring constant of26N/m and a radius of about 60nm,was used to collect the AFM topography and modulated nanoindentation data.The elastic modulus of the NBs was measured using the modulated nanoindentation method22by applying normal displacement oscillations at the frequency of994.8Hz,at the amplitude of1.2Å,and by varying the normal load.PR spectra were recorded in the backscattering geometry using a laser spot small enough ͑diameter of1–2m͒to probe one single NB at a time.The incident polarization direction can be rotated continuouslywith a half-wave plate and the scattered light is analyzedalong one of two perpendicular directions by a polarizer atthe entrance of the spectrometer͑Fig.1͒.Series of PR spec-tra from the bulk ZnO crystals and the individual ZnO NBswere collected with varying sample orientation͑the NBs are parallel to the incident polarization at=0͒,in the co-͑parallel incident and scattered analyzed polarizations͒and cross-polarized͑perpendicular incident and scattered ana-lyzed polarizations͒configurations.For the ZnO NBs,addi-tional series of PR spectra were collected where the incidenta͒Electronic mail:elisa.riedo@.APPLIED PHYSICS LETTERS95,051904͑2009͒0003-6951/2009/95͑5͒/051904/3/$25.00©2009American Institute of Physics95,051904-1polarization is rotated and the ZnO NB axis remained paral-lel or perpendicular to the analyzed scattered polarization ͑see supplementary information 25͒.The exposure time for each Raman spectrum was 10s for the bulk crystals and 20min for NBs.After each rotation of the NBs,the laser spot is recentered on the same NB and at the same location along the NB.Prior to the PR characterization of ZnO NBs,PR data were collected on the c -plane and m -plane of bulk ZnO crystals ͓Fig.2͑a ͔͒.In ambient conditions,ZnO has a wurtzite structure ͑space group C 6v 4͒.Group theory predicts four Raman-active modes:one A 1,one E 1,and two E 2modes.11,20,23The polar A 1and E 1modes split into transverse ͑TO ͒and longitudinal optical branches.On the c -plane ͑0001͒-oriented sample,only the E 2modes,at 99͑not shown ͒and 438cm −1,are observed,and their intensity is independent of the sample orientation ͓Fig.2͑a ͔͒.On them -plane ͑101¯0͒-oriented sample,the E 2,E 1͑TO ͒,and A 1͑TO ͒modes are observed at 99,438,409,and 377cm −1,respectively ͓Fig.2͑a ͔͒,and their intensity depends on .Peaks at 203and 331cm −1in both crystals are assigned to multiple phonon scattering processes.The intensity,center,and width of the peaks at 438,409,and 377cm −1were obtained by fitting the experimental PR spectra with Lorent-zian lines ͑see supplementary information 25͒.The successful fits of the angular dependencies by using the group theory and crystal symmetry 23indicate that PR data can be used to characterize the growth direction of ZnO NBs.It is noted that the ZnO NBs studied here have dimensions over 300nm,so the determination of the growth direction is not ex-pected to be affected by any enhancement of the polarized Raman signal due to their high aspect ratio.24AFM images and PR data of three individual ZnO NBs are presented in Figs.2͑b ͒–2͑d ͒.These NBs,labeled NB1,NB2,and NB3,have different dimensions and properties assummarized in Table I .A comparison of the PR spectra in Figs.2͑a ͒–2͑d ͒reveals differences between bulk ZnO and individual NBs.First,the glass cover slip gives rise to a weak broadband centered around 350cm −1on the Raman spectra of the NBs ͓see bottom of Fig.2͑d ͔͒.Second,there are additional Raman bands around 224and 275cm −1for NB2and NB3.These bands are observed in doped or ion-implanted ZnO crystals.11,20Their appearance is explained by the disorder in the crystal lattice due to randomly distrib-uted point defects,such as oxygen vacancies or impurities.The defect peaks area increases in the order NB1ϽNB2ϽNB3.Since the laser spot diameter is larger than the width of all three NBs,but smaller than their length,L ,the NB volume probed by the laser beam is approximated by the product of the width,w ,with the thickness,t .ThevolumeFIG.1.͑Color online ͒Schematic of the experimental setup,showing the path of the laser beam.The ZnO NBs are deposited on a glass slide,which is placed inside a rotating Petridish.FIG.2.͑Color online ͒͑a ͒PR spectra from the c and m planes of a ZnO crystal,shown in blue and green,respectively.The wurtzite structure ͑Zn atoms are brown,O atoms red ͒is also shown,where a ء,b ء,and c ءare the reciprocal lattice vectors.͓͑b ͒–͑d ͔͒AFM images ͑3ϫ3m ͒of three NBs labeled NB1,NB2,and NB3and corresponding PR spectra.In ͑d ͒a PR spectrum of the glass substrate is shown at the bottom.All the PR spectra in ͑a ͒–͑d ͒are collected in the copolarized configuration for =0and 90°.The spectra are offset vertically for clarity.TABLE I.Summary of the PR-AFM results for NB1,NB2,and NB3.w ͑nm ͒t ͑nm ͒w /t L ͑m ͒͑°͒E ͑GPa ͒Defects NB11080875 1.24028Ϯ1562Ϯ5No NB21150710 1.64972Ϯ1538Ϯ5Yes NB315104553.35966Ϯ1517Ϯ5Yesprobed decreases in the order NB1͑wϫt=9.45ϫ103nm2͒ϾNB2͑8.17ϫ103nm2͒ϾNB3͑6.87ϫ103nm2͒.This indi-cates that the density of point defects is highest in NB3,and increases with the width to thickness ratio,w/t,in the order NB1ϽNB2ϽNB3.The PR intensity variations of the438cm−1peak as a function ofin the various polarization configurations were fitted by using group theory and crystal symmetry to deter-mine the anglebetween the NB long axis͑or growth di-rection͒and the c-axis͓͑0001͔axis͒of the constituting ZnO wurtzite structure21,23͑see supplementary information25͒.In-tensity variations of the377cm−1peak,when present,are used to confirm the obtained values of.The results are shown in Table I and indicate that growth directions other than the most commonly observed c-axis are possible,par-ticularly when point defects are present.Finally,the elastic properties of NB1,NB2,and NB3are characterized by AFM using the modulated nanoindentation method.6,7,22In a previous study,the elastic modulus of ZnO NBs was found to decrease with increasing w/t and this w/t dependence was attributed to the presence of planar defects in NBs with high w/t.6,7By using PR-AFM,we can study the role of randomly distributed defects,morphology,and growth direction on the elastic properties in the same indi-vidual ZnO NB.The measured elastic moduli,E,are62GPa for NB1,38GPa for NB2,and17GPa for NB3.These PR-AFM results confirm the w/t dependence of the elastic modulus in ZnO NBs,but more importantly they reveal that the elastic modulus of ZnO NBs can significantly decrease, down by almost one order of magnitude,with the presence of randomly distributed point defects.In summary,a new approach combining polarized Raman spectroscopy and AFM reveals the strong influence of point defects on the elastic properties of ZnO NBs and their morphology.Based on a scanning probe,PR-AFM pro-vides an in situ and nondestructive tool for the complete characterization of the crystal structure and the physical properties of individual nanostructures that can be in as-fabricated nanodevices.The authors acknowledge thefinancial support from the Department of Energy under Grant No.DE-FG02-06ER46293.1Y.Qin,X.Wang,and Z.L.Wang,Nature͑London͒451,809͑2008͒.2X.Wang,J.Song,J.Liu,and Z.L.Wang,Science316,102͑2007͒.3D.J.Müller and Y.F.Dufrêne,Nat.Nanotechnol.3,261͑2008͒.4H.Peng,C.Xie,D.T.Schoen,and Y.Cui,Nano Lett.8,1511͑2008͒. 5U.Diebold,Surf.Sci.Rep.48,53͑2003͒.6M.Lucas,W.J.Mai,R.Yang,Z.L.Wang,and E.Riedo,Nano Lett.7, 1314͑2007͒.7M.Lucas,W.J.Mai,R.Yang,Z.L.Wang,and E.Riedo,Philos.Mag.87, 2135͑2007͒.8M.D.Uchic,D.M.Dimiduk,J.N.Florando,and W.D.Nix,Science305, 986͑2004͒.9D.-S.Yang,o,and A.H.Zewail,Science321,1660͑2008͒.10M.Dienwiebel,G.S.Verhoeven,N.Pradeep,J.W.M.Frenken,J.A. Heimberg,and H.W.Zandbergen,Phys.Rev.Lett.92,126101͑2004͒. 11Ü.Özgür,Ya.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Doğan,V. Avrutin,S.-J.Cho,and H.Morkoç,J.Appl.Phys.98,041301͑2005͒. 12Z.L.Wang,J.Phys.:Condens.Matter16,R829͑2004͒.13G.R.Li,T.Hu,G.L.Pan,T.Y.Yan,X.P.Gao,and H.Y.Zhu,J.Phys. Chem.C112,11859͑2008͒.14Z.W.Pan,Z.R.Dai,and Z.L.Wang,Science291,1947͑2001͒.15P.Poncharal,Z.L.Wang,D.Ugarte,and W.A.De Heer,Science283, 1513͑1999͒.16A.M.Minor,J.W.Morris,and E.A.Stach,Appl.Phys.Lett.79,1625͑2001͒.17B.Varghese,Y.Zhang,L.Dai,V.B.C.Tan,C.T.Lim,and C.-H.Sow, Nano Lett.8,3226͑2008͒.18M.Lucas and R.J.Young,Phys.Rev.B69,085405͑2004͒.19I.Calizo,A.A.Balandin,W.Bao,F.Miao,and u,Nano Lett.7, 2645͑2007͒.20H.Zhong,J.Wang,X.Chen,Z.Li,W.Xu,and W.Lu,J.Appl.Phys.99, 103905͑2006͒.21T.Livneh,J.Zhang,G.Cheng,and M.Moskovits,Phys.Rev.B74, 035320͑2006͒.22I.Palaci,S.Fedrigo,H.Brune,C.Klinke,M.Chen,and E.Riedo,Phys. Rev.Lett.94,175502͑2005͒.23C.A.Arguello,D.L.Rousseau,and S.P.S.Porto,Phys.Rev.181,1351͑1969͒.24H.M.Fan,X.F.Fan,Z.H.Ni,Z.X.Shen,Y.P.Feng,and B.S.Zou, J.Phys.Chem.C112,1865͑2008͒.25See EPAPS supplementary material at /10.1063/ 1.3177065for more information on the PR spectra.Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic forcemicroscopy and polarized Raman spectroscopyMarcel Lucas,1,*Zhong Lin Wang,2and Elisa Riedo1,†1School of Physics,Georgia Institute of Technology,Atlanta,Georgia30332-0430,USA 2School of Materials Science and Engineering,Georgia Institute of Technology,Atlanta,Georgia30332-0245,USA ͑Received26June2009;revised manuscript received28September2009;published14January2010͒Control over the morphology and structure of nanostructures is essential for their technological applications,since their physical properties depend significantly on their dimensions,crystallographic structure,and growthdirection.A combination of polarized Raman͑PR͒spectroscopy and atomic force microscopy͑AFM͒is usedto characterize the growth direction,the presence of point defects and the morphology of individual ZnOnanobelts.PR-AFM data reveal two growth modes during the synthesis of ZnO nanobelts by physical vapordeposition.In the thermodynamics-controlled growth mode,nanobelts grow along a direction close to͓0001͔,their morphology is growth-direction dependent,and they exhibit no point defects.In the kinetics-controlledgrowth mode,nanobelts grow along directions almost perpendicular to͓0001͔,and they exhibit point defects.DOI:10.1103/PhysRevB.81.045415PACS number͑s͒:61.46.Ϫw,61.72.Dd,78.30.Ly,81.10.ϪhI.INTRODUCTIONControl over the morphology and structure of nanostruc-tured materials is essential for the development of future de-vices,since their physical properties depend on their dimen-sions and crystallographic structure.1–15In particular,the growth direction of single-crystal nanostructures affects their piezoelectric,1,2transport,3catalytic,4mechanical,5–9 optoelectronic,10and tribological properties.11ZnO nano-structures with various morphologies͑wires,belts,helices, rings,tubes,…͒have been successfully synthesized in solu-tion and in the vapor phase,14–19but little is known about their growth mechanism,particularly in a process not involv-ing catalyst particles.17Understanding the growth mecha-nism and determining the decisive parameters directing the growth of nanostructures and tailoring their morphology is essential for the use of ZnO nanobelts as power generators or electromechanical systems.1,2,5,6From a theoretical stand-point,a shape-dependent thermodynamic model showed that the morphology of ZnO nanobelts grown in equilibrium con-ditions depends on their growth direction,but the role of defects was not considered.20Experimentally,it was shown that the growth direction of ZnO nanostructures can be di-rected by the synthesis conditions,such as the oxygen con-tent in the furnace.19A previous study combining scanning electron microscopy and x-ray diffraction suggested a growth-direction-dependent morphology.20An atomic force microscopy͑AFM͒combined with transmission electron mi-croscopy also suggested that the morphology of ZnO nano-belts is correlated with their growth direction and highlighted the potentially important role of planar defects.5 Growth modes out of thermodynamic equilibrium and the role of point defects5,17are particularly challenging to inves-tigate experimentally,21due to the lack of appropriate experi-mental techniques.Electron microscopy can determine the crystallographic structure and morphology of conductive nanomaterials,3,17,22–24but is not suitable for the character-ization of point defects,especially when their distribution is disordered.17,22–24Raman spectroscopy has been used for the characterization of the structure of carbon nanotubes,25,26the identification of impurities,27and the determination of the crystal structure28and growth direction of individual single-crystal nanowires.29Recently,polarized Raman͑PR͒spec-troscopy has been coupled to AFM to study in situ the inter-play between point defects and mechanical properties of ZnO nanobelts.30Here,PR-AFM is used to study the growth mechanism and the relationship between growth direction,point defects, and morphology of individual ZnO nanobelts.The morphol-ogy of an individual ZnO nanobelt is determined by AFM, while the growth direction and randomly distributed defects in the same individual nanobelt are characterized by polar-ized Raman spectroscopy.II.EXPERIMENTALThe ZnO nanobelts were prepared by physical vapor deposition͑PVD͒without catalysts following the method de-scribed in Ref.17.The ZnO nanobelts were deposited on a glass cover slip,which was glued to a Petri dish.The rotat-able Petri dish was then placed on a sample plate under an Agilent PicoPlus AFM equipped with a scanner of100ϫ100m2range.Topography images of the ZnO nanobelts were collected in the contact mode with CONTR probes͑NanoWorld AG,Neuchâtel,Switzerland͒of normal spring constant0.21N/m at a set point of2nN.The AFM was placed on top of an Olympus IX71inverted optical micro-scope that is coupled to a Horiba Jobin-Yvon LabRam HR800.PR spectra were recorded in the backscattering ge-ometry using a40ϫ͑0.6NA͒objective focusing a laser beam of wavelength785nm on the sample to a power den-sity of about105W/cm2and a spot size of about2m. The incident polarization direction can be rotated continu-ously with a half-wave plate.The scattered light was ana-lyzed along one of two perpendicular directions by a polar-izer at the entrance of the spectrometer.The intensity,center, and width of the Raman bands were obtained byfitting the spectra with Lorentzian lines.The polarization dependence of the quantum efficiency of the Raman spectrometer was tested by measuring the intensity variations of the377,409,PHYSICAL REVIEW B81,045415͑2010͒1098-0121/2010/81͑4͒/045415͑5͒©2010The American Physical Society045415-1and 438cm −1bands from two bulk ZnO crystals ͑c -plane and m -plane ZnO crystals,MTI Corporation ͒.The PR data from bulk crystals were successfully fitted using group theory and crystal symmetry 28without further calibration of the spectrometer or data correction.III.RESULTS AND DISCUSSIONAFM images and PR data of two individual ZnO nano-belts are presented in Fig.1.These nanobelts have different cross-sections,1320ϫ1080nm 2͑nanobelt labeled NB A͒FIG.1.͑Color online ͒PR-AFM results on individual ZnO nanobelts.͑a ͒AFM topography image,͑b ͒typical PR spectra for different sample orientations and polarization configurations,and ͑c ͒–͑f ͒polar plots of the angular dependence of the Raman intensities for the nanobelt NB A.͑g ͒AFM topography image,͑h ͒typical PR spectra,and ͑i ͒–͑l ͒polar plots of the angular dependence of the Raman intensities for the nanobelt NB B.The Raman spectra in ͑h ͒exhibit peaks centered at 224and 275cm −1͑triangles ͒that are characteristic of defects in the nanobelt NB B.The Raman spectra are offset vertically for clarity.In ͑c ͒,͑d ͒,͑i ͒,and ͑j ͒,the nanobelt axis is rotated in a fixed polarization configuration ͑solid squares:copolarized;open squares:cross polarized ͒and is parallel to the incident polarization for =0°.In ͑e ͒,͑f ͒,͑k ͒,and ͑l ͒,the incident polarization is rotated,while the analyzed polarization and the nanobelt axis are fixed.In ͑e ͒,͑f ͒,͑k ͒,and ͑l ͒,at the angle 0°,the nanobelt is perpendicular to the incident polarization and the incident and analyzed polarizations are parallel ͑solid squares ͒or perpendicular ͑open squares ͒.Typical Raman spectra of the glass cover slip in the copolarized and cross-polarized configurations are shown as a reference in ͑b ͒and ͑h ͒,respectively.LUCAS,WANG,AND RIEDO PHYSICAL REVIEW B 81,045415͑2010͒045415-2。
粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据,截图,很全面的)
毕业论文题目粒子群算法及其参数设置专业信息与计算科学班级计算061学号3060811007学生xx指导教师徐小平2010年I粒子群优化算法及其参数设置专业:信息与计算科学学生: xx指导教师:徐小平摘要粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。
它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。
论文介绍了粒子群优化算法的基本原理,分析了其特点。
论文中围绕粒子群优化算法的原理、特点、参数设置与应用等方面进行全面综述,重点利用单因子方差分析方法,分析了粒群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置。
最后对其未来的研究提出了一些建议及研究方向的展望。
关键词:粒子群优化算法;参数;方差分析;最优解IIParticle swarm optimization algorithm and itsparameter setSpeciality: Information and Computing ScienceStudent: Ren KanAdvisor: Xu XiaopingAbstractParticle swarm optimization is an emerging global based on swarm intelligence heuristic search algorithm, particle swarm optimization algorithm competition and collaboration between particles to achieve in complex search space to find the global optimum. It has easy to understand, easy to achieve, the characteristics of strong global search ability, and has never wide field of science and engineering concern, has become the fastest growing one of the intelligent optimization algorithms. This paper introduces the particle swarm optimization basic principles, and analyzes its features. Paper around the particle swarm optimization principles, characteristics, parameters settings and applications to conduct a thorough review, focusing on a single factor analysis of variance, analysis of the particle swarm optimization algorithm in the inertia weight, acceleration factor setting the basic properties of the algorithm the impact of the experience of the algorithm given parameter setting. Finally, its future researched and prospects are proposed.Key word:Particle swarm optimization; Parameter; Variance analysis; Optimal solutionIII目录摘要 (II)Abstract ............................................................................................................................. I II 1.引言. (1)1.1 研究背景和课题意义 (1)1.2 参数的影响 (1)1.3 应用领域 (2)1.4 电子资源 (2)1.5 主要工作 (2)2.基本粒子群算法 (3)2.1 粒子群算法思想的起源 (3)2.2 算法原理 (4)2.3 基本粒子群算法流程 (5)2.4 特点 (6)2.5 带惯性权重的粒子群算法 (7)2.7 粒子群算法的研究现状 (8)3.粒子群优化算法的改进策略 (9)3.1 粒子群初始化 (9)3.2 邻域拓扑 (9)3.3 混合策略 (12)4.参数设置 (14)4.1 对参数的仿真研究 (14)4.2 测试仿真函数 (15)4.3 应用单因子方差分析参数对结果影响 (33)4.4 对参数的理论分析 (34)5结论与展望 (39)致谢 (43)附录 (44)IV11.引言1.1 研究背景和课题意义“人工生命”是来研究具有某些生命基本特征的人工系统。
纳米计量科学中的分子测量机2.0
纳米计量科学中的分子测量机John A Kramar美国国家标准与技术研究所(NIST),盖瑟斯堡,MD20899,USA投稿于2005年3月18日,定稿于2005年6月2日发布于2005年9月23日在线版本/MST/16/2121摘要得益于纳米制造工艺的进步,纳米精度和分辨率的计量技术在相关领域正变得越来越重要。
在美国国家标准与技术研究所,我们正在开发分子测量机,它是一种基于迈克尔逊干涉仪原理的扫描探针显微镜(SPM)计量仪器,旨在50mm×50mm的工作区域内实现纳米级点至点不确定度测量。
其显着的设计特点以及测量演示,表示了其迄今所取得的非凡测量能力。
不论是远程的超过10毫米的次微米节距光栅,还是短程的高分辨率分子晶格测量,它都可以完成。
迄今所取得的测量间距的估计相对不确定度为6×10−5,包含因子k=2。
我们也用这种仪器,基于扫描探针显微镜(SPM)探针定位精度,通过氧化光刻创建一些简单的纳米级尺寸的样本,来作为原型校准标准。
关键词:纳米计量,扫描隧道显微镜,迈克尔逊干涉仪,光栅,校准,真空(本文中的一些数字的颜色高亮只存在于电子版)1.引言在纳米技术和纳米制造研究领域,研究兴趣和希望正呈现爆炸性增长。
令人难以置信的设备已经在医药,信息技术和军事应用等不同的领域被提出。
几种新的设备已通过原型形式或有限初始生产被展示,例如人工鼻[1],分子电子存储器和逻辑元件[2]和生物探针的医学诊断和治疗[3]。
因为这些令人印象深刻的早期想法和成就,将成长为一个广泛的,稳定的和拥有巨大经济前景的市场,这就要求我们计量的基础设施必须扩展到纳米级领域[4]。
大规模生产需要过程控制,这需要准确计量。
任何商业或贸易中,为了保证质量和实现通信的规格以及功能需求,计量都是必不可少的。
基于这种需求会不断增长的观点,美国国家标准与技术研究所承担的任务中,都尽可能的将多样化的空间计量技术延伸到纳米区域,包括光学显微镜,扫描电子显微镜和扫描探针显微镜(SPM)。
贵金属AAO纳米有序阵列复合结构光学特性的理论模拟
2r。
(s,一rz);:i彘(63)式中,厶是椭球在电场方向的去极化系数.由于极化强度F=n。
远,则该方向的有效介电函数为沪¨尚基淼黼㈣。
1一町i(F1一£2池他2+£f(£I—F2)】、’当体积分数的分布函数是常数时有s。
=s:+(·一詈砉t。
卢。
)1警砉s:卢这是普通的M“welI.Gamett公式用于椭球的情形.此式也可以写为生二兰!;n£c+”2q:)盟£1+“2式巾,r是颗粒的形状系数,称作屏蔽参数.。
:堕上l2j.2M.G理论模拟金属,AA0薄膜的光学特性(65)(66)(67)圈2—1.Ag,AA0纳米有序阵列复合结构的理想微结构模型(A)金属纳米犄于有序阵列的分布;(B)金属纳米粒子旋转椭球相对入射电场矢量的取向(C)金属,从。
复合结构的三分层模型.根据金属^~AO纳米有序阵列复合结构的特点,我们采用如图所示的三分层光学模型.其中幽A为金属纳米有序阵列的分布圈,当光垂直薄膜表面八剁时,金属纳米阵列尺度远小于入射波长,各个粒了独立散射,无相互作用.这与Maxwe】1.GarⅡett有敛介质理论模型一致.图B是在垂直入射光场下的纳米粒子取向,第三章A∥AAO纳米有序阵列复合结构光学常数模拟可以清晰的看到,膜面上的微孔分布均匀有序,呈近乎精确的六方点阵周期性结构排列,孔径分布均匀.FEsEM对AAo模板截面的表征结果说明模板内形成的微孔取向一致,互不连通,彼此平行且垂直于膜面,如图3—2㈣所示.(∞模板表面结构形貌图(B)模板断面的形貌结构图图3-2.AAO模板(H2S04,1.3mol/I々O℃,12、‘2h)形貌结构的FESEM照片在阳极氧化过程中采用不同的工艺条件,可以得到平均孔径10~lOOnm(经扩孔处理还可使孔径增至200~300衄),孔隙率(或孔密度)为108~1011cm_2,模板厚度约300nm~100舯】等不同结构参数的系列多孔AAo模板图2—3AA0模板的x射线衍射谱A:硫酸电解液中制备的样品谱图,B:草酸电解液中制各的样品谱图x射线衍射仪对AAO模板物相的分析结果说明,由阳极氧化生成的舢203的物相是一种。
一类交错空间图补空间中的不可压缩、两两不可压缩曲面
一类交错空间图补空间中的不可压缩、两两不可压缩曲面王树新;闫雪;丁兆辉;霍承刚【摘要】利用 Menasco W的纽结补空间中不可压缩、两两不可压缩曲面的拓扑图理论,结合三维流形的组合讨论技巧和方法,证明一类交错空间图补空间中具有子午线边界分支的不可压缩、两两不可压缩曲面是穿孔球面。
%By Menasco's topological graph theory of incompressible pairwise incompressible surfaces in knot complements and the combinatorial methods and techniques in three dimensional manifolds,the result that incompressible pairwise incompressible surfaces with meridian boundaries in a class of alternating spa-tial graph complements are punctured spheres is proved.【期刊名称】《曲阜师范大学学报(自然科学版)》【年(卷),期】2014(000)004【总页数】4页(P26-28,33)【关键词】不可压缩;两两不可压缩曲面;交错空间图;穿孔球面【作者】王树新;闫雪;丁兆辉;霍承刚【作者单位】辽宁师范大学数学学院,116029,辽宁省大连市;辽宁师范大学数学学院,116029,辽宁省大连市;辽宁师范大学数学学院,116029,辽宁省大连市;宿州学院数学与统计学院,234000,安徽省宿州市【正文语种】中文【中图分类】O189.24;O189.31 引言纽结补空间中不可压缩、两两不可压缩曲面的性质对于研究纽结的分类具有非常重要的意义.纽结补空间中不可压缩、两两不可压缩曲面的研究结果主要包括:Menasco W[1,2]证明了交错纽结补空间中具有子午线边界分支的不可压缩、两两不可压缩曲面的合痕有限性,确定了具有子午线边界分支的、穿孔不大于6的不可压缩、两两不可压缩曲面都是穿孔球面;韩友发[3]证明了几乎交错纽结补空间中具有子午线边界分支的、穿孔不大于6的不可压缩、两两不可压缩曲面都是穿孔球面.由于纽结理论与空间图理论具有天然和紧密地联系,所以研究空间图补空间中不可压缩、两两不可压缩曲面的性质及其分类,显然是值得关注的.特别的,Adams C等人[4]证明了交错图补空间中穿孔不大于7的不可压缩、两两不可压缩曲面都是穿孔球面.上述关于纽结补空间、空间图补空间中具有子午线边界分支的不可压缩、两两不可压缩曲面的研究通过对曲面的边界分支数进行限制,得到了唯一性的结果,本文不对空间图补空间中不可压缩、两两不可压缩曲面的边界分支数进行约束,证明一类交错空间图补空间中的不可压缩、两两不可压缩曲面都是穿孔球面.2 预备知识定义2.1 设M是紧致的、可定向三维流形,F或是M中真嵌入的曲面,或是∂M上连通的子曲面.如果F上存在本质的闭曲线界定M中一个内部不与F相交的圆盘,或者F是M中的一个界定三维实心球的二维球面,则称F在M中是可压缩的;否则称F在M中是不可压缩的.定义2.2 设Γ是一个有限抽象图,称Γ在R3中的一个嵌入为一个空间图,记为G. 定义2.3 设G是一空间图,η(G)是G在S3中的开的正则邻域,称S3-η(G)是空间图G的补空间.定义2.4 设G是一个空间图,DG是G的一个投影图,W是DG所有顶点和不被穿越边的并集,N是W在投影平面上的一个正则邻域.如果DG满足下列两个条件:(1) 沿着DG的任何一条边前进,交叉点都是一上一下交替出现;(2) 沿着∂N的任何一个方向前进,离开N的相邻边之间的第一个交叉点都是一上一下交替出现,则称DG是G的一个交错投影图.定义2.5 设G是一个空间图,如果G的某一个投影图π(G):S3→S2是交错的,则称G是一个交错空间图,其中S2=R2∪{∞}.定义2.6 设G′是具有一个顶点{P}的连通空间图.若,其中Gi(1≤i≤n)是与G′同样的空间图且顶点均为{P},则称G是G′的束.定义2.7 设G是一个空间图,F是S3-G中的一个不可压缩曲面.如果对于S3中任意一个横截相交G于一点且满足D∩F=∂D的圆盘D,都存在一个与D具有相同边界且横截相交G于一点的圆盘D′⊂F∪G,则称F是S3-G中的一个不可压缩、两两不可压缩曲面.设G⊂S3是一个空间图,将G投影到某一个S2=R2∪{∞}⊂S3得到G的一个投影图DG,将DG的每一个交叉点对应一个空心球(bubble),如图2.1所示.如果DG 存在n个交叉点,则存在n个实心球,,…,.不失一般性,设∩S2=Δi,∂(i=1,2,…,n).进一步的,设∪Δi)∪(∪,∪Δi)∪(∪,∂,∂,其中,分别是的上半球面和下半球面.设G是一个空间图,F是S3-G中具有子午线边界分支的曲面.通过合痕变换可以使得F的边界不与空心球相交且F与DG的交点对应的空心球横截相交,F的内部交实心球,,…,的内部为一些马鞍形圆盘(Saddle),如图2.2 所示.图2.1 图2.2通过上述标记和合痕变换使得F与横截相交,此时F∩的每一个分支都是简单闭曲线.将F投影到图DG所在的投影球面上,此时F∩的每一个分支都对应一个简单的字表示,字表示的规则是:若曲线被G穿越一次P,则记一个,若曲线经过某一个马鞍形圆盘的边界,则记一个S.∀c∈F∩,若记c的字表示为W±(c),则W±(c)=Pi1Si1Pi2Si2…PinSin.定义2.8 设F是空间图补空间中的曲面.若F∩满足下列条件,则称F处于标准位置:(1) F∩中每条曲线对应的字表示都是非空的;(2) F∩的任何一个分支至多经过每一个空心球一次;(3) F∩∩的每个分支在中都界定一个圆盘.引理2.1[5] 设L是一个素的交错链环,F是S3-L中的不可压缩、两两不可压缩曲面,则一定可经过合痕变换使得F处于标准位置.引理2.2[5] 设L是一个素的交错链环,F是S3-L中处于标准位置的不可压缩、两两不可压缩曲面,进一步的我们还可以通过合痕变换使得F满足:(1) F∩中的曲线不能同时经过某一个空心球及端点落在此空心球上的L∩S2的弧;(2) F∩的任何一个分支至多与L∩的每一个分支相交一次;(3) 对于F∩的任一分支α,F∩的任一分支β,不存在弧段a,b⊂α∩β,使得a和b落在(S2∩的相邻分支,且∂a∩∂b=Ø.注2.1 对于素的交错空间图及其补空间中的不可压缩、两两不可压缩曲面,引理2.1和引理 2.2 显然成立.文中未给出的定义和术语都是标准的[6,7].3 主要结果证明首先由引理2.1可知,我们可以通过合痕变换使得F处于标准位置.进一步的,我们可以要求F∩满足引理2.2.假设F∩含有n(n≥2)个分支.由F连通及F处于标准位置可知,DG的每一个交叉点对应的空心球处都有偶数条曲线经过,并且相应的曲线成对的出现在每一个交叉点对应穿线的左右两侧.为了说明的方便,我们将DG的交叉点从下到上依次标记为Ⅰ,Ⅱ,Ⅲ,交叉点Ⅰ,Ⅱ,Ⅲ 对应的空心球依次标记为,,,如图3.1所示.不失一般性,假设F∩的经过的一条最外的曲线为c*,如图3.1所示.由于F满足引理2.2,则c*或者经过,或者经过,或者与交点Ⅱ对应的上穿线相交.图3.1下面我们将分情况说明c*的以上三种可能走势均与F处于标准位置矛盾.(1)此时,由于F满足引理2.2,则必存在的某一条曲线或者经过两次,或者经过两次,这与F处于标准位置矛盾.(2)此时,由于F满足引理2.2,则c*必经过两次,这与F处于标准位置矛盾.(3) c*与交点Ⅱ对应的上穿线相交.由于F满足引理2.2,则必存在的某一条曲线或者经过至少两次,这与F处于标准位置矛盾.综上,有且仅有一个分支.不失一般性,设,由F处于标准位置可知,W+(c)=pi,其i中F是的边界分支数目.由引理2.1 可知F是S3-G中的穿孔球面.定理3.1 设是一个交错空间图束,其中Gi(1≤i≤n)的投影图如图3.1所示,且顶点均为{P},若F是G补空间中的具有子午线边界分支的、连通的不可压缩、两两不可压缩曲面,则F是S3-G中的穿孔球面.证明首先通过合痕变换使得F处于标准位置且满足引理2.2.假设含有n(n≥2)条曲线,由F连通可知,的每一条曲线的字表示均非Pi形式.不失一般性,,设W+(c)=pi1Si1Pi2Si2…PinSin,其中i1,i2,…,in均为非负整数,且不全为零.由对应曲线字表示的定义,易知曲线c必经过的某一个Gi(1≤i≤n).由F处于标准位置,可知Gi的每一个交叉点对应的空心球处都有偶数条曲线经过,通过命题3.1可知,此时F一定不能处于标准位置,与假设矛盾,故F∩有且仅有一个分支.进一步的由命题3.1可知,F是S3-G中的穿孔球面.参考文献:[1] Menasco W.Closed incompressible surfaces in alternating knot and link complements[J].Topology,1984,23(1):37-44.[2] Menasco W.Surfaces with boundary in alternating knot exteriors[J].J Reine Angew Math,1992(426):47-65.[3] Han Y F.Incompressible pairwise incompressible surfaces in almost alternating knot complements[J].Topology and ItsApplication,1997(80):239-249.[4] Adams C,Dorman R,Foley K,et al.Alternating graphs[J].Journal of Combinatorial,1999,77(B):96-120.[5] Menasco.Determining incompressibility of surfaces in alternating knot and link complements[J].Pacific Journal of Mathematics,1985,117(2):353-370.[6] Hempel J.3-Manifolds.Princeton:Princeton University Press,1976.[7] Jaco W.Lectures on three-manifold topology[M].Regional Conference Series in Mathematics 43,Amer Math Soc Provience 81.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
where F is any matrix function of any operator which commutes with the Green’s function G . For example, in the Standard Model above the electroweak transition there is a U (1)Y symmetry generated by the hypercharge Y . Since the hypercharge matrix Y commutes with the Green’s function, the matrix F can be any power of the hypercharge, F = Y n . One can easily verify that the perturbations of the Green’s function, which conserve the U (1)Y symmetry, do not change the integral N (Y n ). In the planar phase of 3 He the corresponding U (1) symmetry is combined rotations in spin and orbital space with generator J3 = S3 + L3 . Let us introduce the generating function for all the topological invariants containing powers of the hypercharge N (θY ) = tr eiθY Y N . (4)
Here σ are 2 × 2 Pauli spin matrices, so that tr in Eq.(1) is the trace over the spin indices; the sign + is for a right-handed particle and − for a lefthanded one; the spin of the particle is oriented along or opposite to its momentum, respectively. The Green’s function has a singularity at the point p = 0, p0 = 0, and such singularity cannot be removed because of the momentum-space topology. Substituting this Green’s function into the topological invariant, Eq.(1), one obtains that this invariant is nonzero: it is N = 1 for the righthanded particle and N = −1 for the lefthanded one. What is important here that the Eq.(1), being the topological invariant, does not change under any (but not very large) perturbations. This means that even if the interaction between the particles is introduced and the Green’s functions changes drastically, the result remains the same: N = 1 for the righthanded particle and N = −1 for the lefthanded one. The singularity of the Green’s function remains, which means that the quasiparticle spectrum remain gapless: fermions are massless even in the presence of interaction. The nonzero value of the momentum-space topological invariant thus provides the mass protection for fermions. This mass protection mechanism based on the topological properties in the momentum space is ideologically different from that based on gauge invariance arguments.3 Now let us consider what happens if there are several fermionic species. In this case the trace operation is also over all the fermions. If the fermionic system has an equal number of lefthanded and righthanded fermions, then the topological invariant in Eq.(1) is N = 0, and the above mass protection mechanism does not work. This situation occurs in the planar phase of superfluid 3 He (for planar phase see4 ) and the Standard Model. If the righthanded
The momentum-space topological invariants, which characterize the ground state of the Standard Model, are continuous functions of two parameters, generated by the hypercharge and by the weak charge. These invariants provide the absence of the mass of the elementary fermionic particles in the symmetric phase above the electroweak transition (the mass protection). All the invariants become zero in the broken symmetry phase, as a result all the elementary fermions become massive. Relation of the momentum-space invariants to chiral anomaly is also discussed. PACS numbers:71.10.-w, 11.30.-j, 67.57.-z, 11.30.R
G.E. Volovik
semiconductors.2 The massless (gapless) character of the fermionic spectrum in the system with the Fermi point is protected by the topological invariant of the ground state, which is expressed as the integral over the Green’s function in the 4D momentum-frequency space: N = tr N , N = 1 eµνλγ 24π 2 dS γ G ∂pµ G −1 G ∂pν G −1 G ∂pλ G −1 . (1)
σ
The integral here is over the surface σ embracing the point p = 0, p0 = 0. in the 4D momentum space p, p0 , and p0 is the energy (frequency) along the imaginary axis; tr is the trace over the fermionic indices. As an example let us consider the chiral spin-1/2 particle. In the limit of the noninteracting particles, the Green’s function matrix considered on the imaginary frequency axis, z = ip0 , is G = (ip0 − H)−1 , H = ±cσ · p . (2)
Momentum-Space Topology of Standard Model
neutrino is present, as follows from the Kamiokande experiments, then each generation contains 8 lefthanded and 8 righthanded fermions. Here we show that, as in the case of the planar state of superfluid 3 He, there are modified topological invariants which provide the mass protection even for equal number of left and right fermions. 2. Generating Function for Invariants One can introduce these invariants in the following way: N (F ) = tr [N F ] , (3)