数理统计的基本概念与抽样分布

合集下载

【2024版】概率论与数理统计(数理统计的基本概念)

【2024版】概率论与数理统计(数理统计的基本概念)

X
2 n
)
D(
X
2 1
)
D(
X
2 2
)
D(
X
2 n
)
nD (
X
2 i
)
n{ E (
X
4 i
)
[E(
X
2 i
)]2
}
n
x4
1
2
e
x2 2
dx
12
n3
1
2n
23
若 2 ~ 2(n) 分布函数为F ( x)
,0 1 若F ( x) P{ 2 x}
则其解称为 2 分布 的 分位数(临界值)
0.15 00.1.155
000.1..11
N(0,1)
n=10 n=10 nn==33
n增大
000.0..00555
nnn===111
000
-5--55
-4--44
-3-3
-2-2
-1-1
00
11
22
33
444
555
t 分布的密度曲线关于y轴对称 随着n的增大, t 分布的密度曲线越陡
n 时,t 分布趋于标准正态分布N (0,1)
后,还要对数据进行加工和提炼,将样本的有关 信息,利用数学的工具进行加工.
引入统计量的概念
12
定义 设( X1, X 2 ,, X n )为来自总体X的一个样本,
若n元函数f ( X1, X 2 ,, X n )不含任何未知参数,

称f
(
X
1
,
X
2
,,
X
n
)为X
1
,
X
2

数理统计学:统计量与抽样分布

数理统计学:统计量与抽样分布
主要内容
1.1 总体和样本 1.2 统计量与估计量 1.3 抽样分布 1.4 次序统计量 1.5 充分统计量 1.6 常用的概率分布族
数理统计学 是探讨随机现象统计规律性的一门学科, 它以概率论为理论基础,研究如何以有效的方式收集、 整理和分析受到随机因素影响的数据,从而对所研究对 象的某些特征做出判断。
1.1.2 样本
(2) 抽样, 即从总体抽取若干个个体进行检查或观察,用所 获得的数据对总体进行统计推断。 由于抽样费用低,时间 短,实际使用频繁。本书将在简单随机抽样的基础上研究各 种合理的统计推断方法,这是统计学的基本内容。应该说, 没有抽样就没有统计学
1.1.2 样本
• 从总体中抽出的部分(多数场合是小部分)个体组成的集合 称为样本。
(2)
(n 1)s2
2
~χ2(n-1);
(3) x与s2相互独立。
1.3.2 样本方差的抽样分布
例1.3.3
分别从正态总体N(μ1,σ2)和N(μ2,σ2)中抽取容
量为n1和n2的两个独立样本,其样本方差分别

s2 1

s2 2

(1)证明:对α∈(0,1),
s s s 2 2 (1) 2
Fn(x)依概率收敛于F(x)
1.2.3 样本的经验分布函数及样本矩
定理1.2.1(格里汶科定理)
对任给的自然数n,设x1,x2,…,xn是取自总体分布函数F(x) 的一组样本观察值,Fn(x)为其经验分布函数,记
则有
Dn sup Fn x F x
x
P
lim
n
Dn
0
1
1.2.3 样本的经验分布函数及样本矩
0
Fn x k / n

数理统计的基本概念

数理统计的基本概念

样本k阶原点矩 样本 阶原点矩 样本k阶中心矩 样本 阶中心矩
河南理工大学精品课程
1 Ak = n 1 Bk = n
∑ ∑
n
n
i =1
X ik ( k = 1, 2 , L )
i =1
( X i − X ) k ( k = 1, 2 , L )
概率论与数理统计
说明 (修正 样本方差还可表示为 修正)样本方差还可表示为 修正
n 1 S2 = [ ∑ X i2 − n X 2 ] n − 1 i =1
1 n 推导】 【推导】 S 2 = ( X i − X )2 ∑ n − 1 i =1 = = = =
河南理工大学精品课程
1 n ( X i2 − 2 X i X + X 2 ) ∑ n − 1 i =1 n n n 1 [ ∑ X i2 − 2 X ∑ X i + ∑ X 2 ] n − 1 i =1 i =1 i =1 n 1 [ ∑ X i2 − 2 n X 2 + n X 2 ] n − 1 i =1 n 1 [ ∑ X i2 −n X 2 ] n − 1 i =1
河南理工大学精品课程 概率论与数理统计
做法
从总体中随机地抽取若干个体(灯泡、 从总体中随机地抽取若干个体(灯泡、工大男
生),测试其所需数据(寿命、身高),最后对所得数据通过 ),测试其所需数据 寿命、身高), 测试其所需数据( ),最后对所得数据通过 整理加工和分析来推断总体(这批灯泡寿命、 整理加工和分析来推断总体(这批灯泡寿命、工大男生身 高)的分布情况,从而了解整体情况. 的分布情况,从而了解整体情况. 一般,我们所研究的总体的某项数量指标X 一般,我们所研究的总体的某项数量指标X是一个随 机变量,其取值在客观上有一定的分布.因此, 机变量,其取值在客观上有一定的分布.因此,对总体的研 究,就是对相应的随机变量X的研究。 就是对相应的随机变量X的研究。 今后,我们称X 今后,我们称X的分布函数和数字特征分别为总体的 分布函数和数字特征, 分布函数和数字特征,并不再区分总体与相应的随机变量 X.对总体的称呼 总体,总体X 总体F X.对总体的称呼:总体,总体X与总体F. 对总体的称呼:

习题解答 - 第六章 数理统计基本概念

习题解答 - 第六章 数理统计基本概念
2 2
么值时, η 服从 χ 分布?并给出自由度。
2
解答:因 ξ1 ,L , ξ 4 是 N (0, 2 ) 的一个样本,所以 a (ξ1 − 2ξ 2 ) 与 b (3ξ3 − 4ξ 4 ) 相互独立,
2
且由例 3.16 可知它们分别服从 N (0, 20a ) 、 N (0,100b) ,要使 η 服从 χ 分布,只要
_ _
σ2
n
, E (S 2 ) = σ 2 。 (1)因
ξ
B(k , p) , 则 E (ξ ) = μ = kp, D (ξ ) =
_
_
_
σ2
n
_
=
kp(1 − p ) , E ( S 2 ) = σ 2 = kp(1 − p ) ; n =
(2)因 ξ
π (λ ) ,则 E (ξ ) = μ = λ , D(ξ ) =
i =1
10
N (0, 0.32 ) ,所以 ξ 0.3
N (0,1) ,即从中抽取的容量为 10 的样本,去
10 10
我们有
∑ (ξ 0.3)2
i =1
10
χ 2 (10) ,所以 0.05 = P{∑ ξ 2 > λ} = P{∑ (ξ / 0.3) 2 >
i =1 i =1
λ
0.09
}
查表可知
_ 1 1 11 [∑ ni ⋅ xi2 − n( x) 2 ] = (8 ⋅ 02 + 5 ⋅12 + 7 ⋅ 32 + 3 ⋅ 42 + 2 ⋅ 62 − 25 ⋅ 22 ) = , 3 24 n −1 _ 1 n − 1 2 24 11 b2 = [∑ ni ⋅ xi2 − n( x) 2 ] = s = ⋅ = 3.52 n n 25 3

第六章 数理统计的基本概念

第六章 数理统计的基本概念

1 n 2 S S ( X X ) i n 1 i 1
2
(4) 样本k阶(原点)矩
1 n k Ak X i n i 1
k 1, 2,
k 2,3,
(5) 样本k阶中心矩
1 n Bk ( X i X )k n i 1
§2
常用统计量的分布
统计量的分布称为抽样分布.下面介绍三种由 正态总体演化而来的统计量的分布:
• 从二战后到现在,是统计学发展的第三个时期,这是一个在 前一段发展的基础上,随着生产和科技的普遍进步,而使这 个学科得到飞速发展的一个时期,同时,也出现了不少有待 解决的大问题.
学科奠基者



数理统计作为一个进一步完善的数学学科的奠基者是英国人费歇尔。他1909 年入剑桥大学,攻读数学物理专业,三年后毕业。毕业后,他曾去投资办工 厂,又到加拿大农场管过杂务,也当过中学教员。1919年,他开始对生物统 计学产生了浓厚的兴趣,参加罗萨姆斯泰德试验站的工作,致力于数理统计 在农业科学和遗传学中(费歇尔1890—1962)的应用研究。 年轻的费歇尔主要的研究工作是用数学将样本的分布给以严格的确定。 在一般人看来枯燥乏味的数学,常能带给研究者极大的慰藉,费歇尔热衷于 数理统计的研究工作,后来的理论研究成果有:数据信息的测量、压缩数据 而不减少信息、对一个模型的参数估计等。 最使科学家称赞的工作则是试验设计,它将一切科学试验从某一个侧面 “科学化”了,不知节省了多少人力和物力,提高了若干倍的工效。 费歇尔培养了一个学派,其中有专长纯数学的,有专长应用数学的。在30- 50年代费歇尔是统计学的中心人物。1959年费歇尔退休后在澳大利亚度过了 最后三年。
若 x1 , x2 , , xn 是样本的观察值, 则 g ( x1 , x2 , xn ) 是 g ( X 1 , X 2 , X n )

数理统计基本概念

数理统计基本概念
2 ( n1 1) S12 ( n2 1) S2 n1 n2 2
1 1 n1 n2
~ t ( n1 n2 2)
定理 5 (两总体样本方差比的分布)
且X与Y独立, 设X ~ N ( 1, ), Y ~ N ( 2 , ), X1, X2,…, X n1是取自X的样本, Y1,Y2,…, Yn2 是
样本是联系二者的桥梁 总体分布决定了样本取值的概率规律, 也就是样本取到样本值的规律,因而可以由 样本值去推断总体.
二、统计量和抽样分布 1. 统计量 由样本值去推断总体情况,需要对样本 值进行“加工”,这就要构造一些样本的 函数,它把样本中所含的(某一方面)的 信息集中起来.
这种不含任何未知参数的样本的函数 称为统计量. 它是完全由样本决定的量.
2. 独立性: X1,X2,…,Xn是相互独立的随机 变量.
由简单随机抽样得到的样本称为简单 随机样本,它可以用与总体独立同分布的 n个相互独立的随机变量X1,X2,…,Xn表示.
若总体的分布函数为F(x),则其简单随机 样本的联合分布函数为 F(x1) F(x2) … F(xn) 简单随机样本是应用中最常见的情 形,今后,当说到“X1,X2,…,Xn是取自某 总体的样本”时,若不特别说明,就指简 单随机样本.
数理统计的基本概 念
一、总体和样本
1.总体
一个统计问题总有它明确的研究对象.
研究对象的全体称为总体(母体), 总体中每个成员称为个体.
总体

研究某批灯泡的质量
然而在统计研究中,人们关心总体仅仅 是关心其每个个体的一项(或几项)数量指标 和该数量指标在总体中的分布情况. 这时, 每个个体具有的数量指标的全体就是总体.
统计中,总体这个概念 的要旨是:总体就是一个 概率分布.

数理统计的基本知识

数理统计的基本知识

• 这些观测值仍分别称为样本均值,样本方差,样本标准差,样本k阶原 点矩,样本k阶中心矩。 记作 k 存在,则当n→∞时 • 我们指出,若总体X的k阶原点距 E ( X k ) , p A k , k 1,2,... k • • 即:样本的k阶原点距依概率收敛于总体的k阶原点距。 • 事实上,由于X1,X2,...,Xn相互独立,且与X同分布,故 X1k,X2k,...,Xnk相互独立,且与Xk同分布,故有 • E(X1k)=E(X2k)=E(Xnk)=μk,k=1,2,... • 由第五章的辛钦大数定律知
二· 常用的统计量
• 样本均值
• 样本方差 • 样本标准差
1 n X Xi n i 1 2 n n 2 2 1 1 2 S ( Xi nX ) (Xi X ) n 1 i 1 n 1 i 1 S S2 1 n 2 (Xi X ) n 1 i 1
F (n , n ) f ( x)dx 1 2
• 的点Fɑ(n1,n2)为F(n1,n2)分布的上ɑ分位点 。 • 如图
f(x)
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0
ɑ
x
0.5 1 1.5
1 • F分布的上分位点具有如下性质:F1 (n1, n2 ) F (n2 , n1 )

如果总体X的分布函数为F(x),则样本X1,X2,...Xn的联合分布函数为 F*(x1,x2,...xn)=F(x1)F(x2)· · · F(xn)= n 如果总体X是离散型随机变量,且概率密度为 F ( xi ) P{X=xi},i=1,2,... i 1 则样本X1,X2,...Xn的联合概率密度为 P*{X1=x1,X2=x2,...Xn=xn}=P{X1=x1}P{X2=x2}· · · P{Xn=xn}=

《概率论与数理统计》第六章

《概率论与数理统计》第六章
所以,X是一个随机变量!
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .

医药统计学 第五章 抽样分布

医药统计学 第五章 抽样分布

3、总体参数(parameter): 总体X 的数字特征即总体的特征 指标。
eg: 、 。
(三)样本(sample):数理统计方法实质上是由局部来推 断整体,即通过一些个体的特征来推断总体的特征。 eg:观察某显像管厂所有显像管的平均寿命。
1、抽样研究(sampling):在实际工作中,所要研究的总 体无论是有限的还是无限的,通常都是采用抽样研究。
抽样:依照一定的规则从总体X 中抽取n个个体,然后对这
些个体进行测试或观察得到一组数据

目的:抽样研究的目的是用样本信息推断总体特征。
eg:
从上例的有限总体(浙江省2006年7岁健康男孩)中,按照随机化
原则抽取100名7岁健康男孩,他们的身高值
即为样本。因
此,从总体中抽取样本的过程为抽样,抽样方法有多种。
第四章 抽样分布
数理统计基本概念 抽样分布
学习目的和要求
掌握总体、样本、统计量、标准误等数理统计的基本概
念;查表求 2 分布、t 分布、F分布的临界值及其定理;
熟悉 X 的分布、 2分布、t 分布、F分布定义、性质和应
用。
数理统计的基本任务:
实验或 调查
以概率论为理论基础,通过样本提供的信息,对总 体的统计规律和特征进行估计与推断,其实用性较强。
1、 2分布(chi-square distribution):是指数分布的改进,
尤其当n较大时, 2分布可全面反映随机变量的分布。
eg: 寿命、保险等资料。
定义:设随机变量
为相互独立且服从标准
正态分布N(0,1),则称随机变量
2= X12 + X22 +X32 + … + … +Xn2

概率论与数理统计基本概念及抽样分布PPT课件

概率论与数理统计基本概念及抽样分布PPT课件

~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,

2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α

( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2

E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)

数理统计第二章学生

数理统计第二章学生
定理 1 (样本均值的分布) 取自正态总体 设X1 , X2 , …, Xn 是
定理2. (样本方差的分布)
设 X1 , X2 , … , Xn 是取自正态总体 样本 , 则有 的 分别为样本均值和修正样本方差
的样本, 则有
和 证明:设
相互独立。

定理3(与样本均值和样本方差有关的一个分布)
, X n )T 的次序统计量,样本的中位数定义为
X n 1 , ( 2) X 1 [ X n X n 1 ], ( ) 2 (2) 2 n为奇数, n为偶数,
其观测值为
x n 1 , ( ) 2 x 1 [ x n x n 1 ], ( ) 2 (2) 2
性质2:设
,则
0
y
(二)
t分布 设X~N(0, 1), 则称随机变量 , 并且X, Y独立,
t分布的概率密度为
h(t)
n=∞(正态) n=10
服从自由度为n的t分布. 记为t ~ t(n).
0
n=1
t
t 分布的特点: 1、其概率密度函数是偶函数。当n>30时, t 分 布与标准正态分布非常接近;当n 趋于无穷大 时,t 分布趋于标准正态分布。 2、t 分布的尾重比正态分布大。 3、t 分布只存在k<n阶矩。
抽样分布 —— 统计量的分布. 几种常用的统计统计分布 (一) 分布 设X1, …, Xn是来自总体N(0, 1)的样 本, 则称统计量 服从自由度为n的 分布.
§2.3 次序统计量与经验分布函数 §2.4 描述性统计分析
17
记为
.
分布的概率密度为
分布的性质: 性质1:设 ,则
f (x)

数理统计基本概

数理统计基本概

第五章 样本及抽样分布从本章开始, 我们将讲述数理统计的基本内容. 数理统计作为一门学科诞生于19世纪末20世纪初, 是具有广泛应用的一个数学分支, 它以概率论为基础, 根据试验或观察得到的数据, 来研究随机现象, 以便对研究对象的客观规律性作出合理的估计和判断.由于大量随机现象必然呈现出它的规律性, 故理论上只要对随机现象进行足够多次观察, 则研究对象的规律性就一定能清楚地呈现出来, 但实际上人们常常无法对所研究的对象的全体(或总体) 进行观察, 而只能抽取其中的部分(或样本) 进行观察或试验以获得有限的数据.数理统计的任务包括: 怎样有效地收集、整理有限的数据资料; 怎样对所得的数据资料进行分析、研究, 从而对研究对象的性质、特点, 作出合理的推断, 此即所谓的统计推断问题, 本课程主要讲述统计推断的基本内容.第一节 数理统计的基本概念内容分布图示★ 引言 ★ 总体与总体分布 ★ 样本与样本分布 ★ 例1★ 例2 ★ 例3 ★ 例4★ 统计推断问题简述★ 分组数据统计表和频率直方图 ★ 例5 ★ 经验分布函数 ★ 例6★ 统计量 ★ 样本的数字特征★ 例7 ★ 例8 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题5-1 ★ 返回内容要点:一、总体与总体分布总体是具有一定共性的研究对象的全体, 其大小与范围随具体研究与考察的目的而确定. 例如, 考察某大学一年级新生的体重情况, 则该校一年级全体新生就构成了待研究的总体. 总体确定后, 我们称总体的每一个可观察值为个体. 如前述总体(一年级新生) 中的每一个个体即为每个新生的体重. 总体中所包含的个体的个数称为总体的容量. 容量为有限的称为有限总体, 容量为无限的称为无限总体.数理统计中所关心的并非每个个体的所有性质, 而仅仅是它的某一项或某几项数量指标. 如前述总体(一年级新生)中, 我们关心的是个体的体重, 进而也可考察该总体中每个个体的身高和数学高考成绩等数量指标.总体中的每一个个体是随机试验的一个观察值, 故它是某一随机变量X 的值,于是, 一个总体对应于一个随机变量X , 对总体的研究就相当于对一个随机变量X 的研究, X 的分布就称为总体的分布函数, 今后将不区分总体与相应的随机变量, 并引入如下定义:定义 统计学中称随机变量(或向量)X 为总体, 并把随机变量(或向量)的分布称为总体分布.注(i) 有时个体的特性很难用数量指标直接描述, 但总可以将其数量化,如检验某学校全体学生的血型, 试验的结果有O 型、A 型、B 型、AB 型4种, 若分别以1,2,3,4依次记这4种血型,则试验的结果就可以用数量来表示了;(ii) 总体的分布一般来说是未知的, 有时即使知道其分布的类型(如正态分布、二项分布等),但不知这些分布中所含的参数等(如p ,,2σμ等).数理统计的任务就是根据总体中部分个体的数据资料对总体的未知分布进行统计推断.二、样本与样本分布由于作为统计研究对象的总体分布一般来说是未知的,为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干个体进行观察,通过观察可得到关于总体X 的一组数值),,,(21n x x x Λ,其中每一i x 是从总体中抽取的某一个体的数量指标i X 的观察值.上述抽取过程为抽样,所抽取的部分个体称为样本.样本中所含个体数目称为样本的容量.为对总体进行合理的统计推断,我们还需在相同的条件下进行多次重复的、独立的抽样观察,故样本是一个随机变量(或向量).容量为n 的样本可视为n 维随机向量),,,(21n X X X Λ,一旦具体取定一组样本,便得到样本的一次具体的观察值),,,(21n x x x Λ,称其为样本值.全体样本值组成的集合称为样本空间.为了使抽取的样本能很好地反映总体的信息, 必须考虑抽样方法,最常用的一种抽样方法称为简单随机抽样, 它要求抽取的样本满足下面两个条件:1. 代表性: n X X X ,,,21Λ与所考察的总体具有相同的分布;2. 独立性: n X X X ,,,21Λ是相互独立的随机变量.由简单随机抽样得到的样本称为简单随机样本, 它可用与总体独立同分布的n 个相互独立的随机变量n X X X ,,,21Λ表示. 显然, 简单随机样本是一种非常理想化的样本, 在实际应用中要获得严格意义下的简单随机样本并不容易.对有限总体, 若采用有放回抽样就能得到简单随机样本,但有放回抽样使用起来不方便, 故实际操作中通常采用的是无放回抽样, 当所考察的总体很大时, 无放回抽样与有放回抽样的区别很小, 此时可近似把无放回抽所得到的样本看成是一个简单随机样本. 对无限总体, 因抽取一个个体不影响它的分布, 故采用无放回抽样即可得到的一个简单随机样本.注: 今后假定所考虑的样本均为简单随机样本, 简称为样本.设总体X 的分布函数为)(x F ,则简单随机样本),,,(21n X X X Λ的联合分布函数为∏==ni i n x F x x x F 121)(),,,(Λ并称其为样本分布.特别地, 若总体X 为连续型随机变量,其概率密度为)(x f ,则样本的概率密度为∏==ni i n x f x x x f 121)(),,,(Λ分别称)(x f 与),,,(21n x x x f Λ为总体密度与样本密度.若总体X 为离散型随机变量,其概率分布为}{)(i i x X P x p ==, x 取遍X 所有可能取值, 则样本的概率分布为,)(},,,{),,,(12121∏======ni i n n x p x X x X x X p x x x p ΛΛ分别称)(i x p 与),,,(21n x x x p Λ为离散总体密度与离散样本密度.三、统计推断问题简述总体和样本是数理统计中的两个基本概念. 样本来自总体,自然带有总体的信息,从而可以从这些信息出发去研究总体的某些特征(分布或分布中的参数). 另一方面,由样本研究总体可以省时省力(特别是针对破坏性的抽样试验而言). 我们称通过总体X 的一个样本n X X X ,,,21Λ对总体X 的分布进行推断的问题为统计推断问题.总体、样本、样本值的关系:总体↙ ↖推断(个体)样本 → 样本值抽样在实际应用中, 总体的分布一般是未知的, 或虽然知道总体分布所属的类型, 但其中包含着未知参数. 统计推断就是利用样本值对总体的分布类型、未知参数进行估计和推断.为对总体进行统计推断, 还需借助样本构造一些合适的统计量, 即样本的函数, 下面将对相关统计量进行深入的讨论.四、分组数据统计表和频数直方图 通过观察或试验得到的样本值,一般是杂乱无章的,需要进行整理才能从总体上呈现其统计规律性. 分组数据统计表或频率直方图是两种常用整理方法. 1. 分组数据表:若样本值较多时,可将其分成若干组,分组的区间长度一般取成相等, 称区间的长度为组距. 分组的组数应与样本容量相适应. 分组太少,则难以反映出分布的特征,若分组太多,则由于样本取值的随机性而使分布显得杂乱. 因此,分组时,确定分组数(或组距)应以突出分布的特征并冲淡样本的随机波动性为原则. 区间所含的样本值个数陈为该区间的组频数. 组频数与总的样本容量之比称为组频率.2. 频数直方图:频率直方图能直观地表示出频数的分布,其步骤如下: 设n x x x ,,,21Λ是样本的n 个观察值.(i) 求出n x x x ,,,21Λ中的最小者)1(x 和最大者)(n x ;(ii) 选取常数a (略小于)1(x )和b (略大于)(n x ),并将区间],[b a 等分成m 个小区间(一般取m 使nm 在101左右): mab t m i t t t i i -=∆=∆+,,,2,1),,[Λ, 一般情况下,小区间不包括右端点.(iii) 求出组频数i n ,组频率i i f nn ∆=,以及),,2,1(,n i tfh i i Λ=∆=(iv) 在),[t t t i i ∆+上以i h 为高,t ∆为宽作小矩形,其面积恰为i f ,所有小矩形合在一起就构成了频率直方图五、经验分布函数样本的直方图可以形象地描述总体的概率分布的大致形态,而经验分布函数则可以用来描述总体分布函数的大致形状。

数理 统计

数理 统计
《数据结构(Java版)(第4版)》2第21/章2022
3.线性表的顺序存储结构
• 线性表可以采用顺序存储和链式存储两种结构。 • 顺序存储结构是将线性表中的数据元素依次存放在一个连
续的存储空间中。这种顺序表示的线性表又称顺序表。
• 顺序存储结构的特点:是随机存取的存储结构,只要确定 了存储线性表的起始位置,线 性表中的任一数据元素可随 机存取。
1460 1430)1460 ,
S
1 n 1
n i1
(xi
x )2
1[(1450 1460)2 (1360 1460)2 (1430 1460)2 63.6 9
因此这批灯泡寿命均值为 1460 小时,标准差为 63.6 小时.
7/20
例 6.1.3 设总体 X ~ P() ,现从该总体中抽出 4 个样本 X1, X2, X3, X4 ,判断下面哪些函 数是统计量
t X Yn
(6.2.6)
服从自由度为 n 的 t 分布,记为 t ~ t(n) .
对于给定的(0 1) 和自由度 n ,称满足下式 P{t ≥ t (n)}
的数 t (n) 是自由度为 n 的 t 分布的上侧 临界值
(6.2.8)
11/20
F 分布
定义 6.2.3 设随机变量 X ~ 2 (n1) , Y ~ 2 (n2) ,且 X 与 Y 独立,则称随机变量
定义 6.2.1 设随机变量 X1, X2, , Xn 相互独立且都服从标准正态分布 N(0,1) ,则称随机 变量
n
2
X
2 i
i1
(6.2.1)
服从自由度为 n 的 2 分布,记为 2 ~ 2 (n) .
对于给定的(0 1) 和自由度 n ,称满足下式 P{ 2 ≥ 2 (n)}

概率论与数理统计6-8

概率论与数理统计6-8

无关的样本的连续函数,则称g(X1,X2,…,Xn)为
统计量。 统计量是样本的函数,它是一个随机变量, 如果x1, x2, …, xn是样本观察值, 则g(x1, x2, …, xn)是统计量g(X1, X2, …, Xn)的一个观察值.X i ; n i 1 2 n 1 2 2. 样本方差 S (X i X ) ; n - 1 i 1 1 n k 3. 样本k阶原点矩 A k X i , k 1, 2, ; n i 1 1 n 4. 样本k阶中心矩 Bk (X i X ) k , k 2, 3, . n i 1
§7.1 点估计 一. 问题的提法:
设总体X的分布函数F ( x; θ )的形式为已知 ,
是待估参数, 1 , X 2 , , X n 是X的一个样本, X
x1, x2 , , xn 是相应的一个样本值。
点估计问题就是要构造 一个适当的统计量 ˆ ( X , X , X ),用它的观察值 ˆ( x , x , , x )
2
分布具有可加性,定义 X 1 ,X 2 , ,X n 独立 中 n 1 同服从N (0,1),所以 = X ~ ( , ) 2 2 i 1
2 2 i n
β α α-1 -x x e , x 0, 分布的概率密度为 f ( x) Γ (α ) : 0 , 其它. n 1 2 2 比较 (n)的密度可知: (n) 分布就是 , 2 2 2 的分布, 即 (n) (n / 2, 1/2).
N (0, 2 ) ,X1,X2,X3 为取自总体的一个样本, 2.设总体 X~
试求:(1)3X1-2X2+X3 的分布;(2)
2 X1 X 22 X 32
的分布。

数理统计的基本知识数理统计的内容主要包括以下两个方面一

数理统计的基本知识数理统计的内容主要包括以下两个方面一

第六章数理统计的基本知识数理统计的内容主要包括以下两个方面:一、如何收集、整理数据资料;二、如何对所得的数据资料进行分析、研究,从而对所研究的对象的性质、特点作出推断.后者就是我们所说的统计推断问题.本书只讲述统计推断的基本内容,即数理统计的基本知识、参数估计、假设检验、方差分析及回归分析等.在概率论中,我们是在假设随机变量的分布已知的前提下去研究它的性质、特点和规律性,例如介绍常用的各种分布、讨论其随机变量的函数的分布、求出其随机变量的数字特征等.在数理统计中,我们研究的随机变量,其分布是未知的,或者是不完全知道的,人们是通过对所研究的随机变量进行重复独立的观察,得到许多观察值,对这些数据进行分析,从而对所研究的随机变量的分布作出种种推断的.本章我们将介绍总体、随机样本及统计量等基本概念,并着重介绍几个常用统计量及抽样分布.§6.1 随机样本一、总体与总体分布1.总体:将研究对象的某项数量指标的值的全体称为总体.总体中的每个元素称为个体.总体中所包含的个体的个数称为总体的容量.容量为有限的称为有限总体.否则称为无限总体.注:有些有限总体,它的容量很大,我们可以认为它是一个无限总体.例如考察全国正在使用的某种型号灯泡的寿命所形成的总体,由于个体的个数很多,就可以认为是无限总体.在总体中,由于每个个体的出现是随机的,所以研究对象的该项数量指标X的取值就具有随机性,X是一个随机变量.因此,我们所研究的总体,即研究对象的某项数量指标X,它的取值在客观上有一定的分布.我们对总体的研究,就是对相应的随机变量X的分布的研究.X的分布函数和数字特征就称为总体的分布函数和数字特征,今后将不区分总体与相应的随机变量,笼统称为总体X.二、样本与样本分布在实际中,总体的分布一般是未知的,或只知道它具有某种形式,其中包含着未知参数.在数理统计中,人们都是通过从总体中抽取一部分个体,然后根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的一个样本.从总体抽取一个个体,可以看作是对代表总体的随机变量X 进行一次试验(或观测),得到X 的一个试验数据(或观测值).从总体中抽取一部分个体,就看作是对随机变量X 进行若干次试验(或观测),得到X 的一些试验数据(或观测值).从总体中抽取若干个个体的过程称为抽样.抽样结果得到X 的一组试验数据(或观测值)称为样本.样本中所含个体的数量称为样本容量.为了使样本能很好地反映总体的情况,从总体中抽取样本,必须满足下述两个条件: 1.代表性因抽取样本要反映总体,自然要求每个个体和总体具有相同分布. 2.独立性各次抽取必须是相互独立的,即每次抽样的结果既不影响其他各次抽样的 结果,也不受其他各次抽样结果的影响.这种随机的、独立的抽样方法称为简单随机抽样.由此得到的样本称为简单随机样本.从总体中进行放回抽样,显然是简单随机抽样,得到的是简单随机样本.从 有限总体中进行不放回抽样,显然不是简单随机抽样,但是当总体容量N很大而样本容量n 较小0.1n N ⎛⎫≤ ⎪⎝⎭时,也可以近似地看作是放回抽样,即可以近似地看作是简单随机抽样,得到的样本可以近似地看作是简单随机样本. 注:从总体抽取容量为n 的样本,就是对代表总体的随机变量X在相同条件下随机地、独立地进行n 次试验(或观测),将n 次试验结果按试验的次序记为n X X X ,,,21 .由于n X X X ,,,21 是对随机变量X 试验的结果,且各次试验是在相同条件下独立地进行的,所以可认为n X X X ,,,21 是相互独立的,且与总体X 服从相同的分布.定义1:设总体X 是具有某一分布函数的随机变量,如果随机变量n X X X ,,,21 相互独立,且都与X 具有相同的分布,则称n X X X ,,,21 为来自总体X 的简单随机样本,简称样本.n 称为样本容量.在对总体X 进行一次具体的抽样并做观测之后,得到样本n X X X ,,,21 的确切数值12,,,n x x x ,称为样本观察值(或观测值),简称为样本值.如果总体X 的分布函数为()F X ,则样本n X X X ,,,21 的联合分布函数为*12121(,,,)()()()()nn n i i F x x x F x F x F x F x ===∏如果总体X 是离散型随机变量,且概率分布为{},1,2,i P X x i ==则样本n X X X ,,,21 的联合概率分布为12121{,,,}{}{}{}{}nn n i i i P X x X x X x P X x P X x P X x P X x ∙==========∏如果总体X 是连续型随机变量,且具有概率密度)(x f ,则样本n X X X ,,,21 的联合概率密度为12121(,,,)()()()()nn n i i f x x x f x f x f x f x ∙===∏三、统计推断问题简述总体和样本是数理统计中的两个基本概念. 样本来自总体,自然带有总体的信息,从而可以从这些信息出发去研究总体的某些特征(分布或分布中的参数). 另一方面,由样本研究总体可以省时省力(特别是针对破坏性的抽样试验而言). 我们称通过总体X 的一个样本n X X X ,,,21 对总体X 的分布进行推断的问题为统计推断问题.总体、样本、样本值的关系:总体↙ ↖推断(个体)样本 → 样本值抽样在实际应用中, 总体的分布一般是未知的, 或虽然知道总体分布所属的类型, 但其中包含着未知参数. 统计推断就是利用样本值对总体的分布类型、未知参数进行估计和推断.为对总体进行统计推断, 还需借助样本构造一些合适的统计量, 即样本的函数, 下面将对相关统计量进行深入的讨论.例1:设总体X 服从正态分布),(2σμN ,概率密度为22()2(), x f x x R μσ--=∈则其样本n X X X ,,,21 的联合概率密度为22211()()2212/211(,,,).(2)ni i x nx n n ni f x x x e μμσσπσ=----*=∑==§6.2 抽样分布样本是进行统计推断的依据.在应用时,往往不是直接使用样本本身,而是针对不同的问题构造样本的适当函数,利用这些样本的函数进行统计推断.一、统计量的概念定义1:设12,,,n X X X 是来自总体X 的一个样本,()12,,,n g X X X 是 12,,,n X X X 的函数,若g 中不含未知参数,则称()12,,,n g X X X 是一个统计量.设12,n x x x 是相应于样本12,,,n X X X 的样本值,则12(,)n g x x x 称为()12,,,n g X X X 的观察值.注: 统计量是随机变量.不一定和总体同分布,不同的统计量有不同的分布.二、常用的统计量1. 样本均值 ∑==ni i X n X 11 观测值记为 11nii x xn==∑2. 样本方差 ()2222111111nn i i i i S X X X nX n n ==⎛⎫=-=- ⎪--⎝⎭∑∑ 观测值记为 ()2222111111nn i i i i s x x x nx n n ==⎛⎫=-=- ⎪--⎝⎭∑∑ 3. 样本标准差S ==观测值记为s ==4. 样本(k 阶)原点矩 ,2,1,11==∑=k X n A n i ki k观测值记为 11,1,2,n kk i i a xk n ===∑5. 样本(k 阶)中心矩 ,3,2,)(11=-=∑=k X X n B ni k i k观测值记为 ()11,1,2,knk i i b x x kn ==-=∑注: (1)上述五种统计量可统称为矩统计量,简称为样本矩,它们都是样本的显示函数,它们的观察值仍分别称为样本均值、样本方差、样本标准差、样本(k 阶)原点矩、样本(k 阶)中心矩.(2)样本的一阶原点矩就是样本均值,样本一阶中心矩恒等于零21121,0,n A X B B S n-===, 三、矩估计法的理论根据若总体X 的k 阶矩()k k E X μ=存在,则当n →∞时Pk k A μ−−→ 1,2,k=证:12,,,n X X X 独立且与X 同分布12,,,k k knX X X ∴独立且与k X 同分布.故有 ()()()()12k kkk n k E X E X E X E X μ=====从而由第五章的大数定理知11n P k k i k i A X n μ==−−→∑ 1,2,k=进而由第五章中关于依概率收敛的序列的性质知道()()1212,,,,,,Pk k g A A A g μμμ−−→其中g 为连续函数,这就是下一章所要介绍的矩估计法的理论根据。

概率论与数理统计-第五章

概率论与数理统计-第五章

【数理统计简史】
1. 近代统计学时期
18 世纪末到 19 世纪,是近代统计学时期.这一 时期的重大成就是大数定律和概率论被引入统计 学.之后最小二乘法、误差理论和正态分布理论 等相继成为统计学的重要内容.这一时期有两大 学派:数理统计学派和社会统计学派.
【数理统计简史】 数理统计学派始于19世纪中叶,代表人物是比 利时的凯特莱( A.Quetelet , 1796-1874 ),著有 《概率论书简》《社会物理学》等,他主张用研 究自然科学的方法研究社会现象,正式把概率论 引入统计学,并最先用大数定律证明了社会生活 中随机现象的规律性,提出了误差理论.凯特莱 的贡献,使统计学的发展进入个了一个新的阶 段.
i =1 36
1 2 2 3 2 2 2 2 D( X ) = E ( X ) − E ( X ) = ( 0 + 1 + 2 + 3 ) − 4 2 5 = 4
2
二、样本与抽样 由于X1,X2,...,X36均与总体X同分布,且相互独 立,所以,Y的均值和方差分别为
E (Y ) = E ( ∑ X i ) = 36 E ( X ) = 54,
【数理统计简史】 18世纪到 19世纪初期,高斯从描述天文观测的 误差而引进正态分布,并使用最小二乘法作为估 计方法,是近代数理统计学发展初期的重大事件, 对社会发展有很大的影响.
【数理统计简史】 用正态分布描述观测数据的应用是如此普遍,以 至 在 19 世 纪 相 当 长 的 时 期 内 , 包 括 高 尔 顿 ( Galton )在内的一些学者,认为这个分布可用 于描述几乎是一切常见的数据.直到现在,有关 正态分布的统计方法,仍占据着常用统计方法中 很重要的一部分.最小二乘法方面的工作,在 20 世纪初以来,经过一些学者的发展,如今成了数 理统计学中的主要方法.

概率论与数理统计 第6章

概率论与数理统计  第6章
第 6 章 数理统计的基本概念
6.1 基本概念 6.2 抽样分布 习题 6
数理统计是具有广泛应用的一个数学分支,它以概率论 为基础,根据试验或观察得到的数据来研究随机现象,对研 究对象的客观规律性作出种种合理的估计和判断。数理统计 的内容包括:如何收集、整理数据资料;如何对所得的数据
资料进行分析、研究,从而对所研究的对象的性质、特点作
设总体 X 的分布律为 P ( X = x ) = p ( x ), X 1 , X
2
,…, X n为来自总体 X 的一个样本,则 X 1 , X 2 ,…, , X 2 ,…, X n)的联合分布律为
X n的分布律都是 P ( X i = x ) = p ( x ),从而 n 维随机变量(X
1
设总体 X 的概率密度为 f ( x ), X 1 , X 2 ,…, X n为 来自总体 X 的一个样本,则 X 1 , X 2 ,…, X n的概率密度 都是 f ( x ),从而 n 维随机变量(X 1 , X 2 ,…, X n)的联合 概率密度为
( n ) ,则称函数
为总体 X 的经验分布函数。
需要指出的是,若在 F n (x )的定义中将样本值换成对 应的样本,则当 n 固定时,它是一个随机变量,此时仍称之 为总体 X 的经验分布函数。所以用样本值定义的 F n (x )其 实是经验分布函数的观察值,在不致混淆的情况下统称为总 体 X 的经验分布函数。
出推断。数理统计的重要分支有统计推断、试验设计、多元 分析等,其具体方法甚多,应用相当广泛,已成为各学科从
事科学研究及生产、经济等部门进行有效工作的必不可少的
数学工具。

本章从数理统计的基本概念开始,讨论抽样分布及其重 要定理,这些抽样分布及其重要定理在概率论中尚未提到,

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案统计量和抽样分布

一、统计量和抽样分布的概念介绍1.1 统计量的定义讲解统计量的概念,即根据样本数据所定义的量,用来描述样本的某些特征。

例如,样本均值、样本方差等。

1.2 抽样分布的定义解释抽样分布是指在一定的抽样方法下,统计量的概率分布。

例如,正态分布、t分布等。

二、统计量的估计方法2.1 点估计介绍点估计的概念,即用一个具体的数值来估计总体参数。

例如,用样本均值来估计总体均值。

2.2 区间估计讲解区间估计的方法,即根据样本数据,给出总体参数估计的一个区间,该区间以一定的概率包含总体参数。

例如,置信区间。

三、抽样分布的性质及应用3.1 抽样分布的性质讲解抽样分布的一些基本性质,如独立性、对称性、无偏性等。

3.2 抽样分布的应用介绍抽样分布在实际问题中的应用,如利用抽样分布来判断总体均值的假设检验问题。

四、假设检验的基本概念和方法4.1 假设检验的定义解释假设检验是一种统计推断方法,通过观察样本数据,对总体参数的某个假设进行判断。

4.2 假设检验的方法讲解常见的假设检验方法,如单样本t检验、双样本t检验、卡方检验等。

4.3 假设检验的判断准则介绍假设检验的判断准则,如P值、显著性水平等,并解释其含义和作用。

六、正态分布及其应用6.1 正态分布的定义与性质详细介绍正态分布的概念、概率密度函数、累积分布函数以及其性质,如对称性、钟形曲线等。

6.2 标准正态分布解释标准正态分布的概念,即均值为0,标准差为1的正态分布。

讲解标准正态分布表的使用方法。

6.3 正态分布的应用介绍正态分布在实际问题中的应用,如利用正态分布来分析和估计总体均值、方差等参数。

七、t 分布及其应用7.1 t 分布的定义与性质讲解t 分布的概念、概率密度函数、累积分布函数以及其性质。

解释t 分布与正态分布的关系。

7.2 t 分布的自由度介绍t 分布的自由度概念,即样本量。

讲解自由度对t 分布形状的影响。

7.3 t 分布的应用介绍t 分布在实际问题中的应用,如利用t 分布进行小样本推断、假设检验等。

数理统计讲义

数理统计讲义

《数理统计》教案第一章统计量及其抽样分布第一节总体与样本教学目的:要求学生理解数理统计的两个基本概念:总体和样本,以及与这两个基本概念相关的统计基本思想和样本分布。

教学重点: 掌握数理统计的基本概念和基本思想.教学难点:掌握数理统计的基本概念和基本思想.一、总体与个体在一个统计问题中,我们把研究对象的全体称为总体,构成总体的每个成员称为个体。

对多数实际问题。

总体中的个体是一些实在的人或物。

比如,我们要研究某大学的学生身高情况,则该大学的全体学生构成问题的总体,而每一个学生即是一个个体。

事实上,每个学生有许多特征:性别、年龄、身高、体重、民族、籍贯等。

而在该问题中,我们关心的只是该校学生的身高如何,对其他的特征暂不予以考虑。

这样,每个学生(个体)所具有的数量指标值——身高就是个体,而将所有身高全体看成总体。

这样一来,若抛开实际背景,总体就是一堆数,这堆数中有大有小,有的出现的机会多,有的出现的机会少,因此用一个概率分布去描述和归纳总体是恰当的。

从这个意义上看,总体就是一个分布,而其数量指标就是服从这个分布的随机变量。

以后说“从总体中抽样”与“从某分布中抽样”是同一个意思。

例1.考察某厂的产品质量,将其产品只分为合格品与不合格品,并以0记合格品,以1记不合格品,则总体={该厂生产的全部合格品与不合格品}={由0或1组成的一堆数}。

若以p表示这堆数中1的比例(不合格品率),则该总体可由一个二点分布表示:不同的p反映了总体间的差异。

例如,两个生产同类产品的工厂的产品总体分布为:我们可以看到,第一个工厂的产品质量优于第二个工厂。

实际中,分布中的不合格品率是未知的,如何对之进行估计是统计学要研究的问题。

二、样本为了了解总体的分布,我们从总体中随机地抽取n个个体,记其指标值为x1,x2,…,x n,则x1,x2,…,x n称为总体的一个样本,n称为样本容量,或简称样本量,样本中的个体称为样品。

我们首先指出,样本具有所谓的二重性:一方面,由于样本是从总体中随机抽取的,抽取前无法预知它们的数值,因此,样本是随机变量,用大写字母X1,X2,…,X n表示;另一方面,样本在抽取以后经观测就有确定的观测值,因此,样本又是一组数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用统计
第1章 数理统计的基本概念与抽样分布
中南大学数学与统计学院
数理统计的基本概念与抽样分布
例:某钢筋厂每天可以生产某型号钢筋10000根, 钢筋厂每天需要对生产过程进行控制,对产品 的质量进行检验。如果把钢筋的强度作为钢筋 质量的重有指标,于是质量管理人员需要做如 下方面的工作 第一,对生产出来的钢筋的强度进行检测, 获得必要的数据。 第二,对通过抽样获取的部分数据进行整理、 分析并推断出这10000根钢筋的质量是否合乎要 求。
1 P ( X x , X x ,, X x ) 1 2 n
1 P ( X x ) 1 [ 1 F ( x )] i
n i 1 n
如果总体中服从均匀分布则
0 n x F( n ) ( x ) n 1 x0 0 x x
称样本的分布为样本分布。如果 (X Xn)为简单 1,..., 随机样本, F ( x ) 为总体X的分布函数,则样本分布有 比较简单的形式 。
F ( x , x , , x ) P ( X x , X x , , X x ) 1 2 n 1 1 2 2 n n
P ( X x ) P ( X x )P ( X x ) 1 1 2 2 n n
P ( X x ) p ( 1 p ),
x
1 x
所 以 (, X X ,, X ) 的 概 率 分 布 为 1 2 n
x 1 x i i P ( X x , X x , , X x ) p ( 1 p ) 1 1 2 2 n n i 1 n
x n x i i pi1 ( 1p ) i1
• •
充分统计量 例:某厂要了解其产品的不合格率p,检验员 检查了10件产品,检查结果是,除前二件是 不合格品(记为 X )外,其它都是 1 ,X 1 1 2 0 , i 3 , 4 , , n 合格品(记为 X )。当厂长问 i 及检查结果时检验员可作如下两种回答: (1) 10件中有两件不合格; (2) 前两件不合格。 这两种回答反映了检验员对样本的两种不同 的加工方法。其所用的统计量分别为
x0 0 x x
0 ( x)n F(1) ( x) 1 n 1
其分布密度为
n 1 nx n 0 x f(n) (x) 其它 0
1 n ( x )n 0 x n f(1)(x ) 0 其它
定义1.1 设总体X的样本满足 ⑴ 独立性:每次观测结果既不影响其它结果,也不受其 它结果的影响;即相互独立; ⑵ 代表性:样本中每一个个体都与总体X有相同分布。 则称此样本为简单随机样本。 进行有放回抽样就是简单随机样本 ,无放回抽样就 不是简单随机样本。但N很大,n相对较小时无放回抽 样得到的样本可以近似看作简单随机样本.
n
n
2 , 例1.2 设总体X服从参数为 的正态分布 (X ,X ,X 1 2, n) ,求样本 的分布密度。 解:总体X的分布密度为 1x ( ) 1 2 f ( x ) e , x 2
2 2
,X ,X 1 2,
i1
n
它完全由总体X的分布函数确定
两种形式
f( x ,x , ,x ) f( x 1 2 n i)
i 1 n
P ( X x , X x , , X x ) p 1 1 2 2 n n i
i 1
n
X 0 ” 例1.1 设有一批产品,其次品率为p,如果记“ 表示抽取一件产品是次品;“ X 1” 表示抽取一件 产品是正品;那么,产品的质量可以用X的分布来衡量。 X服从0-1分布,参数就是次品率p。如果为简单随机样 本,求样本分布. 解:总体X的概率分布为
• 常见的统计量 1.样本均值 2.样本方差 3.k 阶原点矩 4.k 阶中心矩
5.顺序统计量
最大顺序统计量:X(1) 最小顺序统计量:X(n) 第K顺序统计量:X (k)
6.样本极差 与中位数
例1.3 设总体X为连续型的,求最大顺序统计量 与最小顺序统计量的分布密度 . 解: 最大顺序统计量 X ( n ) 的分布函数为
1n 1 2 fx (, x , , x ) ( ) e x p ( ( x ) ) 12 n i 2 2 2
• 统计量 • 统计量的定义 ,X ,X 定义1.2 设 (X 1 2, n) 为总体X的一个样本, T T ( XX , 2 , , X ) ,X X 为 X 1 n 1 2, n 的连续函数, 且不含有任何未知参数,则称T为一个统计量。 注:1.统计量是完全由样本确定的一个量,即样 本有一个观测值时,统计量就有一个唯一确定的 值; 2.统计量是一个随机变量,它将高维随机变 量问题转化为一维随机变量来处理 ,但不会损 失所讨论问题的信息量.
F ( x ) P ( X x ) P ( X x , X x , X x ) ( n ) ( n ) 1 2 n
n P ( X x ) [ F ( x )] i i 1 n
最小顺序统计量 的分布函数为
F ( x ) P ( X x ) 1 P ( X x ) ( 1 ) ( 1 ) ( 1 )
§1.2 总体、个体、样本
1.2.1 总体与个体 我们把所研究对象的全体称为总体或母体。 组成总体的每个单元称为个体 总体X可看作一个随机变量 ,称X的概率分布 为总体分布,称X的数字特征为总体的数字特 征 ,对总体进行研究就是对总体的分布或对总体 的数字特征进行研究 . 1.2.2 样本 从总体中抽取的一部分个体称为样本或者子 样,其中所含个体的个数称为样本容量 . 样本具有二重性:随机性和确定性
相关文档
最新文档