分组分解法
分组分解法因式分解课件
在分组后,需要对每个组内的项式进行因式分解。常用的因式分解技巧包括提公 因式法、十字相乘法、公式法等。根据不同组内项式的特征,选择合适的因式分 解技巧,并灵活运用,以获得最佳的分解结果。
问题三:如何确定分组分解法的正确性?
总结词
确定分组分解法的正确性是确保因式分解结果准确无误的重要步骤。
详细描述
03
原理概述
分组分解法是一种将多项 式分组,然后对每组进行 因式分解的方法。
分组依据
分组依据是多项式的项数 和各项系数的特征,通常 是将系数相近或具有某种 关系的项分为一组。
分解步骤
分组后,对每组进行因式 分解,最后将各组的因式 结果组合起来。
原理应用示例
示例1
将多项式$2x^2 + 3x - 5$分组为$(2x^2 - 5) + 3x$,然后 分别对$2x^2 - 5$和$3x$进行因式分解,得到结果$(2x + 5)(x - 1) + 3x = 2x^2 + x - 5$。
特点
分组分解法适用于多项式的因式 分解,尤其在处理复杂的多项式 时具有高效性和实用性。
分组分解法的应用场景
多项式的因式分解
适用于任何可以分组提取公因式的多 项式,如二次、三次、四次多项式等 。
代数方程的求解
数学竞赛和数学教育
分组分解法是数学竞赛和中学数学教 育中的重要内容,用于提高学生的数 学思维和解题能力。
06 分组分解法的总结与展望
总结
定义
分组分解法是一种将多项式分 组并提取公因式进行因式分解
的方法。
适用范围
适用于具有明显分组特征的多 项式,如三项一组、二项一组 等。
步骤
首先观察多项式的项数和系数 特点,然后选择合适的分组方 式,提取公因式进行因式分解 。
分组分解法因式分解
因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b (3)4x2-9y2-24yz-16z2(4)x3-x2-x+1 分析:首先注意前两项的公因式2x和后两项的公因式-3,此题也可以考虑含有y的项分在一组。
解法1:解法2:说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
(2)分析:若将此题按上题中法2分组将含有a的项分在一组即a2+4a=a(a+4),含有b的项一组,即-b2-4b=-b(b+4),那a(a+4)与-b(b+4)再没有公因式可提,不可再分解下去。
可先将a2-b2一组应用平方差公式,再提出因式。
解:(3)若将此题应用(2)题方法分组将4x2-9y2一组应用平方差公式,或者将4x2-16z2一组应用平方差公式后再没有公因式可提,分组失败。
观察题中特点,后三项符合完全平方公式,将此题二、三、四项分组先用完全平方公式,再用平方差公式完成分解。
解:(4)分析:此题按照系数比为1或者为-1,可以有不同的分组方法。
解法1:解法2:原式=例2、分解因式:(1)m2+n2-2mn+n-m分析:此题还是一个五项式,其中m2-2mn +n2是完全平方公式,且与-m+n=-(m-n)之间有公因式可提取,因而可采用三项、二项分组。
《分组分解法》课件
分组分解法的原理
原理概述
分组分解法的原理基于代数的基本性 质,通过分组和因式分解,将复杂的 多项式简化为易于处理的形式。
原理应用
在数学中,分组分解法广泛应用于解 决代数方程、不等式和函数问题。通 过分组分解,可以简化多项式的计算 过程,提高解题效率。
分组分解法的应用场景
01
02
03
代数方程
在解代数方程时,分组分 解法可以用于简化方程左 侧的多项式,使其更容易 进行因式分解或化简。
要点一
总结词
分组分解法在求解矩阵的逆时也具有重要应用,能够帮助 我们快速找到矩阵的逆。
要点二
详细描述
矩阵的逆是线性代数中一个重要的概念,但在某些情况下 ,直接求逆的计算量非常大。分组分解法提供了一种有效 的替代方法,通过将原矩阵分解为若干个子矩阵,然后分 别求出这些子矩阵的逆,最后再组合起来得到原矩阵的逆 。这种方法在处理大型矩阵时特别有用,能够大大减少计 算时间和计算机存储空间的使用。
求解每个子问题,得到每个因式或公 因式的值。
合并子问题的解
将各个子问题的解合并起来,得到原多项式的分组分解结果 。
检查合并后的结果是否正确,确保所有项都已包含在内,且 没有重复或遗漏。
03 分组分解法的实例分析
实例一:求解线性方程组
总结词
分组分解法在求解线性方程组中具有广 泛应用,能够简化计算过程,提高解题 效率。
实例三:求解特征值和特征向量
总结词
分组分解法在求解特征值和特征向量时同样适用,能 够简化计算过程并提高准确性。
详细描述
特征值和特征向量是矩阵分析中的重要概念,它们在许 多实际问题中都有应用。然而,求解特征值和特征向量 有时会面临计算量大、精度要求高等挑战。分组分解法 提供了一种有效的解决方案,通过将原矩阵分解为若干 个子矩阵,然后分别求出这些子矩阵的特征值和特征向 量,最后再组合起来得到原矩阵的特征值和特征向量。 这种方法能够大大简化计算过程,提高求解的准确性和 效率。
分组分解法
三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。
分组分解法分组后能直接运用公式
分组分解法分组后能直接运用公式具体来说,分组分解法的步骤如下:步骤一:将问题进行合适的分组。
这一步骤需要根据问题的特点,将元素按照一定的规则进行合理的分组。
分组的目的是为了将原问题分解成若干个较为简单的子问题。
步骤二:运用已知的公式或结论求解每个分组的子问题。
这一步骤需要根据子问题的特点,选择合适的公式、结论或方法来求解。
步骤三:根据子问题的求解结果,得到原问题的解。
这一步骤需要根据子问题的求解结果,通过组合、运算等方法得到原问题的解。
下面以一个具体的例子来说明分组分解法的应用。
例子:设有n个人,要组成m个小组,每个小组的人数可以不同。
求分组方案的总数。
解:首先,我们将n个人进行合适的分组。
假设分成了k个小组,每个小组的人数分别为n1,n2,...,nk。
接下来,我们需要运用已知的公式来求解每个分组的子问题。
我们知道,对于每个小组,可以通过排列或组合的方式来计算出人数的不同情况下的分组方案的总数。
具体而言,对于一个小组,假设人数为ni,可以采用的方案总数为C(ni,1) + C(ni,2) + ... + C(ni,ni)。
然后,我们需要根据子问题的求解结果来得到原问题的解。
根据以上的求解,每个小组的方案总数为C(ni,1) + C(ni,2) + ... + C(ni,ni),则原问题的解为所有小组方案总数的乘积,即:分组方案的总数 = (C(n1,1) + C(n1,2) + ... + C(n1,n1)) *(C(n2,1) + C(n2,2) + ... + C(n2,n2)) * ... * (C(nk,1) + C(nk,2)+ ... + C(nk,nk))。
通过以上的步骤,我们可以将原问题分解成若干个较为简单的子问题,并根据已知的公式求解每个子问题,最终得到原问题的解。
综上所述,分组分解法能够将原问题分解成若干个较为简单的子问题,并能够运用已知的公式或结论来求解每个子问题,最终得到原问题的解。
因式分解-分组分解法
例4 分解因式.
mx 2my x 4 xy 4 y
2
2
因式分解:
2 2 (1)a +2ab+b -ac-bc 2 2 2 2 (2)a -2ab+b -m -2mn-n
例:
2 2 2 2 x -x y+xy -x+y-y
解:原式 = (x2-y2)-(x2y-xy2)-(x-y) = (x-y)(x+y)-xy(x-y)-(x-y) = (x-y)(x+y-xy-1) = (x-y)[(x-xy)+(y-1)] = (x-y)[x(1-y)-(1-y)] = (x-y)(1-y)(x-1)
用分组分解法分解因式时,一定要想 想分组后能否继续进行因式分解.
解:原式 ( x y ) (ax ay)
2 2
( x y)( x y) a( x y) ( x y)(x y a)
练一练
分解因式
(1)5m(a+b)-a-b (2)2m-2n-4x(m-n) (3)a3-a2b-ab2+b3 (4)2ax-10ay+5by-bx (5)4x2-y2+2x-y
例3、把 a 解:
(a b) c (a b c)(a b c)
2 2
(a 2ab b ) c
2 2
2ab b c 分解因式。 2 2 2 a 2ab b c
2 2 2
2
分组分解法因组间能分解 因式,且在各小组分解完后,各大组间又能 继续分解因式,那么,这个多项式就可以用 分组分解法分解因式.
2 解:a -ab+ac-bc
=(a2-ab)+(ac-bc) =a(a-b)+c(a-b) =(a-b)(a+c)
因式分解的分组分解方法(一)
因式分解的分组分解方法(一)因式分解的分组分解方法引言因式分解是数学中的重要概念,它能将多项式分解成乘积的形式,帮助我们简化计算和解题。
其中,分组分解方法是一种常用且有效的因式分解方法,本文将介绍一些常见的分组分解方法。
方法一:拆项分组法拆项分组法在因式分解中经常使用,它将多项式的项按照特定的规则进行分组,从而便于我们进行因式分解。
步骤如下: 1. 观察多项式,将其项按照相似的部分进行分组;2. 列出每个组的公因式; 3. 将每个组的公因式提取出来,并写在一起,形成因式分解式。
方法二:配方法配方法也是一种常用的分组分解方法,适用于某些特定的多项式。
步骤如下: 1. 观察多项式,如果存在两项可以通过配方法相乘得到另一项,那么可以使用配方法; 2. 根据配方法的公式进行运算,并将结果写在一起,形成因式分解式; 3. 检查分解后的乘积是否与原多项式相同。
方法三:差的平方分解法差的平方分解法适用于差的平方形式的多项式,它可以将其分解为两个因式的乘积。
步骤如下: 1. 观察多项式,如果存在差的平方形式,即a2−b2,那么可以使用差的平方分解法; 2. 将差的平方形式分解为两个因式的乘积; 3. 检查分解后的乘积是否与原多项式相同。
方法四:公因式提取法公因式提取法是一种简单而常见的因式分解方法,它适用于多项式中存在公因式的情况。
步骤如下: 1. 观察多项式,找出各个项的公因式; 2. 将公因式提取出来,并写在一起,形成因式分解式; 3. 检查分解后的乘积是否与原多项式相同。
方法五:完全平方公式法完全平方公式法适用于多项式中存在完全平方公式的情况。
步骤如下: 1. 观察多项式,如果存在完全平方公式形式,即a2+2ab+b2,那么可以使用完全平方公式法; 2. 将完全平方公式分解为两个因式的乘积; 3. 检查分解后的乘积是否与原多项式相同。
结论分组分解方法是因式分解中常用的方法之一,它能帮助我们将多项式简化成更简单的形式。
初中数学因式分解-分组分解法
3 分组分解整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.1 三步曲我们用上面的整式来说明如何分组分解.例1 分解因式:ax by bx ay --+.解 ax by bx ay --+=()()ax bx ay by -+- [分为两组]=()()x a b y a b -+- [“提”]=()()x y a b +- [再“提”]一般地,分组分解大致分为三步:1.将原式的项适当分组;2.对每一组进行适当分组;3.将经过处理后的每一组当作一项,再采用“提”或“代”进行分解.一位高明的棋手,在下棋时,决不会只看一步,同样,在进行分组时,不仅要看到第二步,而且要看到三步.一个整式的项有许多种分组的方法,初学者往往需要经过尝试才能找到适当的分组方法,但是只要努力实践,多加练习,就会成为有经验,多加练习,就会成为有经验的“行家”.3.2 殊途同归分组的方法并不是唯一的,对于上面的整式ax by bx ay --+,也可以采用下面的做法: ax by bx ay --+=()()ax ay ax by +-+=()()a x y b x y +-+=()()x y a b +-.两种做法的效果是一样的,殊途同归!可以说,一种是按照x 与y 来分组(含x 的项在一组,含y 的项在另一组);另一种是按a 与b 来分组.例2 分解因式:221x ax x ax a +++--.解法一 按字母x 的幂来分组.221x ax x ax a +++--=()()()221x ax x ax a +++-+=()()()2111x a x a a +++-+=()()211a x x ++-解法二 按字母a 的幂来分组.221x ax x ax a +++--=()()221ax ax a x x +-++-=()()2211a x x x x +-++-=()()211a x x ++-.3.3 平均分配在例2中,原式的6项是平均分配的,或都要分成三组,每组两项;或者分成两组,每组三项.如果分组的目的是使第二步与第三步都有公因式可提,那么就必须平均分配. 例3 分解因式:3254222x x x x x --++-.解 6项可以分成三组,每组两项.我们把幂次相近的项放在一起,即3254222x x x x x --++-=()()()5432222x x x x x -+---=()()()42222x x x x x x -+---=()()4221x x x -+-.本例也可以将6项分为两组,每组三项,即将系数为1的放在一组,系数为-2的放在另一组,详细过程请读者自己完成.例4 分解因式:2222ac bd ad bc +--.解 2222ac bd ad bc +--整式ax by bx ay --+的四项没有公因式可以提取,也无法直接应用公式,这样的式子需要分组分解.3.4瞄准公式如果在第二步或第三步中需要应用乘法公式,那么各组中的项数不一定相等,应当根据公式的特点来确定。
分组分解法难得的好资料
分组分解法在计算机 科学中用于处理大规 模数据集,通过分组 和分解的方式提高数 据处理效率。
分组分解法在数据库查 询优化中广泛应用,通 过合理分组和分解查询 条件,提高查询速度。
在机器学习中,分组分 解法常用于特征降维和 矩阵分解,降低计算复 杂度并提高模型训练速 度。
分组分解法在数学教育中的应 用
分组分解法在计算机科学中的 应用
分组分解法在物理学中的应用
分组分解法在经济学中的应用
深度学习与分组 分解法的结合
分组分解法在自 然语言处理领域 的应用
分组分解法在图 像处理领域的应 用
分组分解法的理 论完善与创新
更多的应用场景:随着数学和其他学科的发展,分组分解法有望在更多领域得到应用。
理论体系的完善:随着研究的深入,分组分解法的理论体系将进一步完善。 算法优化:未来将不断优化分组分解法的算法,提高其效率和适用性。 与其他方法的结合:分组分解法有望与其他数学方法结合,形成更强大的工具。
添加文档副标题
目录
01.
02.
03.
04.
05.
06.
分组分解法是一种数 学方法,通过分组的 方式将多项式进行分 解,将其转化为几个 简单的因式。
分组分解法通常按照一 定的规律将多项式分组, 然后对每组进行因式分 解,最后得到原多项式 的因式分解结果。
分组分解法在数学中 有着广泛的应用,可 以用于解决各种数学 问题,如代数方程、 几何图形等。
对每组进行因式分解 确定分组分解法的分组方式
将各组的因式相乘,得到原 多项式的因式分解形式
整理得到最简结果
实例名称:分组分解法在因式分解中的应用
因式分解——分组分解法
因式分解——分组分解法一、分组分解法分解因式的意义我们把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果。
这种分解因式的方法叫做分组分解法。
二、学习指导:如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
分组分解法适用于不能直接使用提取公因式法,公式法和十字相乘法的多项式。
分组分解法并不是一种独立的因式分解的方法。
通过对多项式进行适当的分组,把多项式转化为可以应用基本方法分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用基本方法进行分解因式的目的。
我们有目的地将多项式的某些项组成一组,从局部考虑,使每组能够分解,从而达到整个多项式因式分解的目的,至于如何恰当地分组,需要具体问题具体分析,但分组时要有预见性,要统筹思考,减少盲目性,分组的好坏直接影响到因式分解能否顺利进行。
通过适当的练习,不断总结规律,便能掌握分组的技巧。
三、例题分析例1、分解因式:(1)2x2+2xy-3x-3y (2)a2-b2+4a-4b(3)4x2-9y2-24yz-16z2 (4)x3-x2-x+1分析:首先注意到前两项的公因式2x和后两项的公因式-3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解。
此题也可以考虑含有y的项分在一组。
如下面法(二)解法。
解(一)2x2+2xy-3x-3y=(2x2+2xy)-(3x+3y)=2x(x+y)-3(x+y)=(x+y) (2x-3)解(二)2x2+2xy-3x-3y=(2x2-3x)+(2xy-3y)=x(2x-3)+y(2x-3)=(2x-3)(x+y)说明:解法1和解法2虽然是不同的分组方式,但却有着相同的内在联系,即两组中的对应项系数成比例,分别为1:1和2:(-3)。
这也是分组中必须遵循的规律之一。
因式分解之分组分解法
因式分解之分组分解法【知识精读】分组分解法并不是一种独立的因式分解的方法,分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。
使用这种方法的关键在于分组适当,而在分组时,必须有预见性。
能预见到下一步能继续分解。
而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。
注意问题提示:(1)分组分解法主要应用于四项以上的多项式的因式分解。
(2)分析题时仍应首先考虑公因式的提取,公式法的应用,其次才考虑分组。
(3)分组方法的不同,仅仅是因为分解的手段不同,各种手段的目的都是把原多项式 进行因式分解。
常见分组方法方法一:分组后能提取公因式1.按字母分组例如:分解因式:ax+ay+bx+by 可以按某一字母为准分组,若按含有字母a 的分为一组, 含有字母b 的分为一组,即ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y),这样就产生了公因式(x+y)。
2.按系数分组例如:分解因式:a 2-ab+3b-3a ,我们观察到前两项的系数之比和后两项系数之比恰好 相等,即1:(-1)=3:(-3),则a 2-ab+3b-3a=(a 2-ab)-(3a-3b)=a(a-b)-3(a-b)。
3.按次数分组例如:分解因式:x 3+x 2+x-y 3-y 2-y ,此多项式有两个三次项,有两个两次项,有两个一次项,按次数分组为:(x 3-y 3)+(x 2-y 2)+(x-y)方法二:分组后能运用公式例如:x 2-2xy+y 2-z 2可以把前三项作为一组,它是一个完全平方式,可以分解为(x-y)2。
而(x-y)2-z 2又是平方差形式的多项式,还可以继续分解。
方法三:重新分组例如:分解因式4x 2+3y-x(3y+4),此多项式必须先去括号,进行重新分组。
4x 2+3y-x(3y+4)=4x 2+3y-3xy-4x=(4x 2-4x)+(3y-3xy)=4x(x-1)-3y(x-1)=(4x-3y)(x-1)。
人教版八年级数学上册14.3分组分解法
西充县复安小学 何建军
方法聚焦
一、分组的目的: ⑴ 分组后有公因式可提 ⑵ 分组后可以运用公式 二、分组的方法: ⑴ 对于多项式中有四项的一般可分 为两种①“一•三”型,②“二•二”型 ⑵ 对于多项式中有四项以上,根据 情况灵活分组。
典型例题
• 把下列各式分解因式 • 1 a²+b²-2ab-1 • 2 ab-a+b-1 • 3 x²-y²+x-y • 4 a²-b²-2a+1
综合训练(三)
1、已知多项式 2 x 4 3x3 ax2 7 x b能被
x 2x 1整除,则 a ___,b ___。
2 2
5 2、已知 x、y满足 x y 2 x y, 4 2011 则x 2 y ___。
3、已知 a b 2,则 a b 4b ___ 。
因式分解要注意以下几点:
• (1)因式分解的结果,从整体上看必须是 乘积的形式,局部变为乘积形式不是因式 分解; • (2) 因式分解的结果中,每一个因式都 必须是整式; • (3)因式分解必须是恒等变形; • (4)分解因式必须把每个因式分解到不能 再分解为止,即分解因式一定要彻底。
把下列各式分解因式 ① (x+2)(x+4)+x² -4
2
2
课பைடு நூலகம்练习
• • • • • • • 把下列各式分解因式: 1 2x+2m+ax+am 2 x² -xy+a² x-a² y 3 a² -b² +2a-2b 4 a² +6ab+9b² -x² 5 a² -4ab+4b² -x² +2x-1 5 6 y-11y³ +y
数学分组分解法知识点总结
初中数学学问点:因式分解 下面是对数学中因式分解内容的学问讲解,盼望同学们仔细学习。 因式分解 因式分解定义:把一个多项式化成几个整式的积的形式的变形叫 把这个多项式因式分解。
魏
第3页共4页
本文格式为 Word 版,下载可任意编辑
④结果按数单字母单项式多项式顺序排列 ⑤相同因式写成幂的形式 ⑥首项负号放括号外 ⑦括号内同类项合并。
魏
第4页共4页
因式分解要素:①结果必需是整式②结果必需是积的形式③结果是 等式④
因式分解与整式乘法的关系:m(a+b+c) 公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各 项的公因式。 公因式确定方法:①系数是整数时取各项最大公约数。②相同字母 取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多 项式各项的公因式。 提取公因式步骤: ①确定公因式。②确定商式③公因式与商式写成积的形式。 分解因式留意; ①不准丢字母 ②不准丢常数项留意查项数 ③双重括号化成单括号
二二分法:
= -(x^2-2xy+y^2)+1
ax+ay+bx+by
= 1-(x-y)^2
=(ax+ay)+(bx+by)
= (1+x-y)(1-x+y)
=a(x+y)+b(x+y)
温馨提示:大家看过初二数学学问点之分组分解法,通过试题的
=(a+b)(x+y)
练习可bx 和 by 分一组,利用乘法安排律,两两
初中数学学问点总结:平面直角坐标系
分组分解的八种技巧
分组分解的八种技巧
分组分解法是多项式不能应用提取公因式、公式法、十字相乘法进行分解的情况下产生的,它是因式分解的基本方法之一,分组是难点.下面介绍八种常见的分组技巧.
一、按公因式分组
【例1】bc ad cd ab +++.
分析:一、三项有公因式a ,二、四项有公因式c ,故把一、三和二、四项分别分为一组.
二、按乘法公式分组
【例2】1222++-x y x .分析:由于一、三、四项合在一起能用完全平方公式,故将其分为一组.
三、同时按公因式和公式分组
【例3】y x y x 2222-+-.分析:由于一、二项能用平方差公式,三、四项有公因式2,故把一、二和三、四项分别分为一组.
四、按系数比分组
【例4】124323+--x x x .分析:由于12:)4()3(:1-=-,故把一、二和三、四分别分为一组.
五、按次数分组
【例5】y x y xy x 824322-+--.分析:因为前三项的次数均为2,后二项的次数为1,所以分别划为一组.
六、先拆项后分组
【例6】 653++x x .
分析:此题难以分组,故可将6拆为5+1,再将一、四和二、三项分别分为一组.
解:原式...)55()1(15533=+++=+++=x x x x
七、先展开后分组
【例7】)()(2222b a xy y x ab +++.
分析:此题直接分组行不通,故把括号展开,再按公因式分组.
八、先添项后分组
【例8】 84+x .分析:此题可添减24x 这一项,使之能按公式分组. 解:原式=)22)(22()2()2(4)44(22222224+-++=-+=-++x x x x x x x x x
2
520t t h -=。
4.分组分解法及分解因式的方法课件
知1-练
1 多项式x2-4与x2-4x+4的公因式为( ) A.x+4 B.x-4 C.x+2 D.x-2
2 把多项式4x2-2x-y2-y用分组分解法分解因 式,正确的分组方法应该是( ) A.(4x2-y)-(2x+y2) B.(4x2-y2)-(2x+y) C.4x2-(2x+y2+y) D.(4x2-2x)-(y2+y)
4.3.3 分组分解法及分解因式的方法
1 课堂讲授 分组分解法
因式分解的方法
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复
习
回
顾
1.如何找出多项式的公因式? 2.公式法的两种情势是什么?
知识点 1 分组分解法
知1-讲
1.定义:分组分解法指通过分组分解的方式来分解提 公因式法和公式分解法无法直接分解的因式,分解 方式一般分为“1+3”式和“2+2”式 .
解:(1)原式=a(a-b)+c(a-b)=(a-b)(a+c). (2)原式=(x3-x)+(6x2-6)=x(x2-1)+6(x2-1) =(x2-1)(x+6)=(x+1)(x-1)(x+6).
例2 分解因式:-x2-2xy+1-y2.
知1-讲
导引:按分组分解法,第一、二、四项提出负号后符 合完全平方式,再与“1”又组成平方差公式.
1.分组分解法的几种情势是什么? 2.因式分解的一般方法和具体步骤是什么?
1.必做: 完成教材P105复习题T10-12 2.补充: 请完成练习册剩余部分习题
(2)xy2-2xy+2y-4;
(3)a2-b2+2a+1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.4.4因式分解——分组分解法
学习目标:
1、理解分组分解法的概念和意义;
2、掌握分组分解法中使用“二二”、“一三”分组的不同题型的解题方法;
3、渗透化归数学思想和局部、整体的思想方法
学习重点:分组分解法中筛选合理的分组方案,掌握分组的规律与方法;
学习难点:综合运用提公因式法和公式法完成因式分解.
教学过程
一、学前准备
我们已经学习了在分解因式中,根据项数的不同,可以选择不同的分解方法,如,两项用平方差、三项完全平方公式,当然,分解的前提是如果有公因式,通常首先提取公因式,那我们来看一道题目: 分解因式:am +an +ab +ac.
二、课堂探究:
师生探究·合作交流
把上面的式子改为am +an +bm +bn ,还能用刚刚我们回顾过的方法分解因式吗?
小组讨论:分组规律(即根据项之间的什么特点进行分组的)
分解步骤:
例题讲解
例1把下列多项式分解因式:
① ②
例2. 把下列多项式分解因式
① ② ③ bx by ay ax -+-5102bx
ay by ax 3443+++ay ax y x ++-2
22222c b ab a -+-43223y xy y x y x --+
小组讨论:(规律总结)
1、合理分组:1. 2. 3. 4.
2、组内分解(提公因式或套用公式)
3、组间分解(整体提因式或套用公式)
例3.分解因式 a(a -2b)+(b+1)(b -1)
独立思考·解决问题
1、 把下列多项式分解因式
2、分解因式:
⑴4x 2-4xy+y 2-a 2 ⑵22
161681m n m -++
3、分解因式:ab(x 2-y 2) +xy(a 2-b 2
) 三、学习体会:
1、本节课你有哪些收获?预习时的疑惑解决了吗?
2、你还有哪些疑惑?
四、当堂检测:
分解因式: bc ac ab a -+-2)1(z y xz xy 6834)2(-+-
⑴2a ab ac bc -+-; ⑵2
7321x y xy x -+-
⑶ 4a 2-b 2+6a-3b
(5)a 2+2ab+b 2-c 2 ;
⑹mn n m 2122+--
16269)7(22+--++y x xy y x ;
)-1( -)-( (8) 222b cd d c b b a b a m --+)(5)4(。