13.1.2线段的垂直平分线的性质(第二课时)
13.1.2线段的垂直平分线(第二课时)教学设计2
13.1.2 线段的垂直平分线的性质(第二课时)【教学目标】1.进一步了解线段的垂直平分线的性质,能够确定两个图形成轴对称的对称轴,掌握住线段的垂直平分线的画法。
2.通过线段的垂直平分线的画法的学习进一步培养学生的画图能力。
【教学重点、难点】重点:线段垂直平分线的作法.难点:探索轴对称图形对称轴的作法【教学准备】启发引导、尝试研讨、动手操作【教学过程设计】一、合作学习,探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题【1】轴对称图形的性质是什么?◆如果两个图形关于某条直线对称,•那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.◆轴对称图形的对称轴如何来作呢?只要我们找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.【2】如何作出线段的垂直平分线?◆提示:由两点确定一条直线和线段垂直平分线的性质,只要作出到线段两端点距离相等的两点即可.已知:线段AB[如图(1)].求作:线段AB的垂直平分线.作法:如图(2)(1)分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧相交于C和D两点;(2)作直线CD.直线CD就是线段AB的垂直平分线.◆在上述作法中,为什么要以“大于12AB的长”为半径作弧?(1)如果以12AB长为半径作弧,两弧只有一个交点,正好是线段AB的中点.•这样就找不到到端点A、B距离相等的两点,也就作不出线段AB的垂直平分线.(2)如果以小于12AB长为半径,两弧就没有交点,这样找不到到A、B两端点距离相等的点,也就作不出线段AB的垂直平分线了.只有以大于12长为半径作弧才可以作出线段AB的垂直平分线.【3】根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线,请与同伴进行交流.(1)从作法的第一步可知AC=BC,AD=BD.∴C、D都在AB的垂直平分线上(线段垂直平分线的判定定理).∴CD就是线段AB的垂直平分线(两点确定一条直线).【4】我们曾用刻度尺找线段的中点,当我们学习了线段垂直平分线的作法时,一旦垂直平分线作出,线段与线段垂直平分线的交点就是线段的中点,所以我们也用这种方法作线段的中点.【5】同学们不要忘了,我们作线段的垂直平分线是为了什么.(1)是为了作出轴对称图形的对称轴.(2)那怎么作出一个轴对称图形的对称轴呢?(3)我们只要找到任意一组对应点,作出这对对应点连线的垂直平分线,就可以得到此图形的对称轴.四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:2、运用新知解决问题:(重点例习题的强化训练)【1】我们来看下面的例题.下图中的五角星有几条对称轴?作出这些对称轴.作法:(1)找出五角星的一对对应点A和A′,连结AA′.(2)作出线段AA′的垂直平分线L.则L就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.【2】现在同学们自己画一个轴对称图形,再按照上述方法,作出这个轴对称图形的对称轴.【3】画出下图甲中的各图的对称轴.【4】如图所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半4题图5题图【5】如上图小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,•要符合条件:(1)若要使厂部到A、B的距离相等,则应选在哪儿?(2)若要使厂部到A村、B村的水管最省料,应建在什么地方?附:板书设计。
13.1.2__线段的垂直平分线性质
平分线的性质
M P
定理:线段垂直平分线上的点到这 条线段两个端点距离相等.
B
A N
C
提示:这个结论是经常用来证明两条 线段相等的根据之一.
几何语言:
∵AC=BC,MN⊥AB,P是MN上任意一点(已知), ∴PA=PB(线段垂直平分线上的点与这条线段两个端 点距离相等).
P A B
小结与作业:
(1)本节课学习了哪些内容? (2)线段垂直平分线的性质和判定是如何得到的? 两者之间有什么关系? (3)如何判断一条直线是否是线段的垂直平分线?
教科书习题13.1第6、9题.
12.3 角的平分线
D A P O E
13.1 线段的垂直平分线
M P A N 定 理 线段垂直平分线上的点和 这条线段两个端点的距离相等. 逆定理 和一条线段两个端点距离相 等的点,在这条线段的垂直平分线上. 线段的垂直平分线可以看作是和线段 两个端点距离相等的所有点的集合. B
你能用其 他方法证线的判定:
定理:与一条线段两个端点距离相等的点, 在这条线段的垂直平分线上. P ∵ ∴
用数学符号表示为: PA =PB, 点P 在AB 的垂直平分线上. A
B
提示:这个结论是经常用来证明点在直线上(或直线 经过某一点)的根据之一.
归纳:
你能再找一些到线段AB 两端点的距离相 等的点吗?能找到多少个到线段AB 两端点距 离相等的点? P 这些点能组成什么几何图形? 线段AB 的垂直平分线l 上的 点与A,B 的距离都相等;反过来, 与A,B 的距离相等的点都在直线l A 上,所以直线l 可以看成与两点A、 B 的距离相等的所有点的集合.
C
B
课堂练习
新人教版八年级上册数学13.1.2_线段的垂直平分线的性质[2]
聚焦中考
• △ABC中,AB>AC ,∠A的平分线与BC的 垂直平分线DM相交于D,过D作DE ⊥AB 于E,作DF⊥AC于F,求证:BE=CF
A
C
E
M
F
B
D
随堂练习
1、如图,已知AB是线段CD的垂直 平分线,E是AB上的一点,如果 EC=7cm,那么ED= 7 cm;如果 ∠ECD=600,那么∠EDC= 60 0.
C
AE
B D
A 2、如图所示,
在△ABC中,
AB=AC=32, MN是AB的垂
M
直平分线,且
N
有BC=21,求
△BCN的周长。 B
C
已知:P为MON内一点。P与A关于ON对称,
P与B关于OM对称。若AB长为15cm
求:PCD的周长.
解: P与A关于ON对称
N A
ON为PA的中垂线(
反过来,如果PA=PB,那麽点P是否在线段 AB的垂直平分线上呢?
通过探究可以得到:
与一条线段两个端点距离相等的点,在这条 l
线段的垂直平分线上。
∵PA=PB
P
∴点P在线段AB的垂直平分线上
A
C
B
已知:PA=PB
求证:点P在线段AB的垂直平分线上
证明:作PC⊥AB,垂足为C
l
∴∠ACP=∠BCP= 90
13.1.2线段的垂直平分线的性质
A
A
M PP1 P2 P3
C
B
B
•已,MAN如 AA是知C上BB=左l :任B钉 ,的如C图在 P意,点,图1M一,一、N木⊥起分P点条2A,别、.BLL,量与PP垂3一木是直…量条于…点 求P证1、:PPA2=、PBP.3……到A与
人教版八年级数学上册13.1.2.2《线段的垂直平分线的性质(2)》教学设计
人教版八年级数学上册13.1.2.2《线段的垂直平分线的性质(2)》教学设计一. 教材分析人教版八年级数学上册13.1.2.2《线段的垂直平分线的性质(2)》的内容主要包括线段的垂直平分线的性质和应用。
这部分内容是学生在学习了线段的垂直平分线的基本性质后的进一步拓展,对于学生理解和掌握几何知识,提高解决问题的能力具有重要意义。
二. 学情分析八年级的学生已经掌握了线段的垂直平分线的基本性质,对于图形的性质有一定的理解。
但学生在应用这些性质解决实际问题时,往往会因为对性质的理解不够深入而遇到困难。
因此,在教学过程中,需要引导学生深入理解线段的垂直平分线的性质,提高学生解决问题的能力。
三. 教学目标1.理解并掌握线段的垂直平分线的性质。
2.能够运用线段的垂直平分线的性质解决实际问题。
3.提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:线段的垂直平分线的性质。
2.难点:运用线段的垂直平分线的性质解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察、思考、讨论,自主探索线段的垂直平分线的性质,提高学生的参与度和积极性。
同时,结合例题讲解,让学生在实践中掌握知识,提高解决问题的能力。
六. 教学准备1.教材和人教版八年级数学上册相关资料。
2.课件和教学素材。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾线段的垂直平分线的基本性质,为新课的学习做好铺垫。
2.呈现(10分钟)讲解线段的垂直平分线的性质,结合PPT展示相关图形,让学生直观地理解性质。
3.操练(10分钟)让学生通过自主探究、小组讨论的方式,探索线段的垂直平分线的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生运用所学的性质解决问题,巩固所学知识。
5.拓展(10分钟)出示一些综合性的问题,引导学生运用线段的垂直平分线的性质解决实际问题,提高学生的解决问题的能力。
13.1.2 第2课时 线段垂直平分线的有关作图 说课稿 2022-2023学年人教版数学八年级上册
13.1.2 第2课时线段垂直平分线的有关作图说课稿一、说教材本节课是《数学八年级上册》第13章几何基础第1节直线与角的有关概念中的第2课时线段垂直平分线的有关作图,这是一个非常重要的基础概念,也是学习几何知识的关键。
二、说教学目标和要求本节课的教学目标主要有两个:1.能够理解线段垂直平分线的概念,能够准确描述线段垂直平分线的特点;2.能够灵活运用直尺和圆规进行线段垂直平分线的作图。
教学要求如下:1.掌握线段垂直平分线的定义和性质;2.能够根据已知条件使用直尺和圆规进行线段垂直平分线的作图;3.能够运用线段垂直平分线解决实际问题。
三、教学重难点教学重点:1.线段垂直平分线的定义和性质;2.使用直尺和圆规进行线段垂直平分线的作图。
教学难点:1.在作图过程中的准确使用直尺和圆规;2.灵活运用线段垂直平分线解决实际问题。
四、教学过程1. 引入新知识首先,我会通过提问的方式引入线段垂直平分线的概念。
我会问学生是否了解线段垂直平分线是什么,并请他们描述线段垂直平分线的特点。
通过学生的回答,我可以了解他们对这个概念的理解程度。
2. 理论讲解接下来,我会进行线段垂直平分线的理论讲解。
我会使用简洁明了的语言,结合具体的例子,向学生介绍线段垂直平分线的定义和性质。
我会告诉学生,线段垂直平分线是指可以将一个线段垂直平分成两个相等的线段的直线。
同时,我会强调线段垂直平分线的特点,比如与线段垂直相交,将线段平分成两个相等的线段等。
3. 作图练习接着,我会进行线段垂直平分线的作图练习。
我会给学生一些具体的线段,要求他们使用直尺和圆规完成线段垂直平分线的作图过程。
我会逐步指导学生,提醒他们在作图过程中准确使用直尺和圆规。
同时,我会注重学生的思考和发现,鼓励他们灵活运用已学知识,探索解决问题的方法。
4. 实际问题应用最后,我会给学生一些实际问题,要求他们运用线段垂直平分线的知识进行解答。
我会设计一些具体的情景,让学生理解线段垂直平分线在实际生活中的应用。
人教版八年级上册数学教案:13.1.2线段的垂直平分线的性质
小组合作学习
如下图.木条L与AB钉在一起,
L垂直平分AB,P1,P2,P3,…是L
上的点,•分别量一量点P1,P2,
P3,…到A与B的距离,你有什么
发现?
小组内个人展示先学成
果,相互交流,明确答案。
对疑难问题,小组内共同
讨论完成。
提出质疑,组长解答。
汇报交流
教师指导学生归纳总结,并适时点拨、
评价。
线段垂直平分线上的点与这
条线段两个端点的距离相等.即
AP1=BP1,AP2=BP2,…
与一条线段两个端点距离相等
的点,在这条线段的垂直平分线上.
各小组代表汇报小组合作学习成
果,并讨论各小组提出的疑难问题。
班级集体讨论给出各种解决方
案.师生共同解决疑难,记录要点。
巩固拓展练习:P62 1、2
小结:
本节课你有何收获?
学生独立完成练习,小组长
批改,小组内纠正。
个别学生总结收获,相互补
充,让全班学生更加明确本节课
的知识点。
作 业 布 置
课后作业: 习题13.1的第6题 第9题
前置性作业设计: 1.到三角形的三个顶点距离相等的点是 的交点.
2. 线段是轴对称图形,它有两条对称轴;分别是_________________.
3. 如图,已知△ABC 中,BC=4,AB 的垂直平分线交AC 于点D ,若AC=6,则△BCD 的周长=_____________
板书预设
13.1.2 轴对称(二) 一、线段垂直平分线的定义
二、线段垂直平分线的性质
教导处(教研组)审阅意见。
线段的垂直平分线的性质(第2课时)
A
B ⑵作直还线可CD以. 折叠、
CD即为用所刻求度的尺直等线.
D
你还有其他的方法作一条线段的垂直平分线吗?
三、解决问题
例2 如图,△ABC和△AˊBˊCˊ是两个成轴对称 的图形,请作出它的对称轴.
三、解决问题
上述提到的都是两个成轴对称的图形, 如果是一个轴对称图形,你怎样作出它的 对称轴?如图所示的正五角星有几条对称轴?
• 线段垂直平分线的性质是解决线段相等问题的一种重要 方法;线段垂直平分线的判定可用来证明两线的位置关 系(垂直平分).
四、应用新知,解决问题
2. 如图,已知AB是线段CD的垂直平分线,E是 AB上的一点,如果EC=7 cm,那么 ED=_____cm,如果∠ECD=60°,那么 ∠EDC=___.
第十三章 轴对称
13.1 轴对称
13.1.2 线段的垂直平分线的性质 第2课时
线段垂直平分线性质:线段垂直平分线上的 点与这条线段两个端点的距离相等.分线上的点
与这条线段两个端点的距离相等)
线段垂直平分线判定定理:与一条线段两个端点 距离相等的点,在这条线段的垂直平分线上.
A
P
B
C
一、提出问题 1.如果我们感觉两个平面图形是成轴对称 的,你准备用什么方法去验证?
2.两个成轴对称的图形,不经过折叠, 你用什么方法作出它的对称轴?
二、学习新知
例1 如图,已知线段AB,用直尺和圆规作 AB 的垂直平分线.
C
⑴分别以点A、B为圆心,以大
于 1 AB的长为半径作弧,两弧
2
相交于C折、叠D、两用点刻度;尺等
四、应用新知,解决问题
1. 如图,A、B表示两个仓库,要在A、B一侧的
最新人教版八年级数学上册《13.1.2 线段的垂直平分线的性质(第2课时)》优质教学课件
课后作业
1.基础型作业:梳理本节课知识点。 2.发展型作业:完成本课时练习。
总结点评 反思
同学们,这节课你们表现得都非常棒。 在以后的学习中,请相信你们是存在着巨 大的潜力的,发挥想象力让我们的生活更 精彩吧。
于
1 2
AB的长为半径作弧,两弧交于
C,D两点.
A
(2)作直线CD. CD即为所求.
C B
特别说明:这个作法实际上就是线段垂直平分线的
D
尺规作图,我们也可以用这种方法确定线段的中点.
探究新知
如图,A,B是路边两个新建小区,要在公路边增设一
个公共汽车站.使两个小区到车站的路程一样长,该公共汽
车站应建在什么地方?
人教版 数学 八年级 上册
13.1 轴对称
13.1.2 线段的垂直平分线的性质 第2课时
导入新知
如图,A,B是路边两个新建小区,要在公路边增设一 个公共汽车站,使两个小区到车站的路程一样长,该公共 汽车站应建在什么地方?
B A
公路
素养目标
3. 能够运用尺规作图的方法解决简单的作 图问题.
2. 进一步了解尺规作图的一般步骤和作图语 言,理解作图的依据.
课堂小结
尺规 作图
属于基本作图之一,必须熟熟练掌握.
线段的垂直 平分线的 有关作图
作对称轴的 常见方法
(1)将图形对折; (2)用尺规作图; (3)用刻度尺先取一对对称点连线的 中点,然后作垂线.
你还有什么疑惑?
请与同伴交流!
小 结 与 思 考
这节课的学习你有 什么收获?
课后总结
通过这节课的学习,你明白了什 么? 还有什么疑问吗?
M A
O N
B
八年级上册数学13.1.2线段的垂直平分线的性质(第二课时)
求作:AB的垂线,使它经过点C.
D
C
作法: (1)以点C为圆心,任意长为半径作弧, A
交AB于点D和点E;
F
(2)分别以点D和点E为圆心,大于1DE
2
的长为半径作弧,两弧交于点F.
(3)作直线CF.
∴ 直线CF即为所求作的垂线.
E B
例1
(1)经过已知直线外一点 作这条直线的垂线
变式练习
(2)经过已知直线上一点 作这条直线的垂线
一样吗?
A
D
B
C
归纳: 轴对称图形的对称轴可能是一条,也可能是两条,还可能
是三条、四条甚至是无数条.轴对称图形的对称轴的条数是由
图形本身的特点决定的,不一定是唯一的.
线段 的 垂 直平分线 的性质 (第二课 时)
课堂小结
用尺规作图作 线段垂直平分 线
作轴对称图 形的对称轴
这 是 作对称轴的 重要方法, 也 是 作线段的中点和 直线的垂线的方 法.
2
点C了.同样的方法可以找到点D.
为了方便,我们使作点C和作点D时所取的半径 相等,这样作一次弧就可以同时得到点C和点D了. 再由两点确定一直线可知:直线CD就是所求作的线 段AB的垂直平分线了.
C
B
D
问题探究
问题2:如何作出线段AB的垂直平分线?
作法:
(1)分别以点A和点B为圆心,大于
1 2
AB
八年级—人教版—数学—第十三章
13.1.2线段的垂直平分线的性质(第二课时)
学习目标
1.能用尺规作出已知线段的垂直平分线; 2.进一步了解尺规作图的一般步骤和作图语言,理解
作图的依据; 3.能用尺规作出已知轴对称图形的对称轴; 4.能够运用尺规作图的方法解决简单的作图问题.
八年级数学上册13.1.2 线段的垂直平分线的性质 (2)
作品编号:51897654258769315745896学校:五朱角市鸟砟镇四灵小学*教师:猴挪黑*班级:占卜参班*13.1.2 线段的垂直平分线的性质一、新课导入1.导入课题:前面我们已经学习了轴对称图形和两个图形成轴对称的意义和性质,这节课我们一起运用轴对称来探索线段垂直平分线的性质和判定.2.学习目标:(1)能述出线段垂直平分线的性质.(2)能运用线段垂直平分线的性质解决有关问题.(3)能说出线段垂直平分线的判定方法.3.学习重、难点:重点:线段垂直平分线的性质.难点:线段垂直平分线的性质与判定的运用.二、分层学习1.自学指导:(1)自学内容:探究线段垂直平分线上的点与两个端点的距离有什么关系?(2)自学时间:10分钟.(3)自学方法:通过作图、猜想、验证,得出结论.(4)探究提纲:①如图,直线l垂直平分线段AB,P1、P2、P3是l上的点.a.P1到端点A、B的距离是什么?分别表示为P1A、P1B.b.量一量这两个距离,你能猜想出什么结论?P1A= P1Bc.你能用什么方法来证明你的猜想,试写出论证(或说明).证明:∵l⊥AB,∴∠P1CA=∠P1CB.又CA=CB,P1C= P1C,∴△P1CA≌△P1CB (SAS).∴P1A= P1B.d.P2,P3分别到A、B点的距离也满足上述关系吗?满足e.由折叠的方法能否验证你的结论?试试看.②归纳:线段垂直平分线的性质.文字语言叙述:线段垂直平分线上的点与这条线段两个端点的距离相等.几何语言叙述:∵l垂直平分AB,P是l上一点;∴PA=PB.③如图,在△PAB中,如果PA=PB,那么点P是否在线段AB的垂直平分线上?请证明这个结论?点P在线段AB的垂直平分线上证明:作PC⊥AB,垂足为C,则∠ACP=∠BCP=90°,在Rt△PAC 和Rt△PBC中,PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC.∴PC是AB的垂直平分线,即点P在线段AB的垂直平分线上.这个结论与②中的结论之间有何关(联)系?它们互为逆定理.④归纳:线段垂直平分线性质的逆定理.文字语言叙述:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.几何语言叙述:∵PA=PB;∴P点在AB的垂直平分线上.⑤比较这两个性质之间的区别和联系.2.自学:学生结合自学指导进行探究式学习.3.助学:(1)师助生:①明了学情;这节的难点是性质的证明,看学生对文字语言的证明过程是否熟练.②差异指导:引导学生用全等三角形的知识对性质进行证明.(2)生助生:在区别两个性质的因果关系时,小组合作交流共同完成区分条件与结论.4.强化:(1)交流学习成果:①线段垂直平分线的定义;②线段垂直平分线的性质.(2)练习:到三角形三个顶点的距离相等的点是(B)A.三条角平分线的交点B.三边垂直平分线的交点C.三边高线的交点D.没有这样的点1.自学指导:(1)自学内容:教材第62页例1.(2)自学时间:5分钟.(3)自学方法:动手画图,分析作图的原理.(4)自学参考提纲:①复习:什么是尺规作图?尺规作图的步骤有哪些?尺规作图是指用没有刻度的直尺和圆规作图.步骤:a.已知;b.求作;c.作法;d.作图.②画图:按照例题的步骤动手画一画.③分析:a.以C为圆心,CK为半径作弧交AB于D、E,则CD与CE是何关系?CD=CEb.分别以D、E为圆心,大于1DE长为半径作弧交于F,说明2DF与EF如何?DF=EFDE的长为半径画弧”?c.为什么要“大于12解:这样所画的弧才能相交.d.作直线CF得出CF⊥AB的道理是什么?解:先由SSS证明∠DCF=∠ECF,再结合CD=CE,∠CDE=∠CED,证得CF⊥DE,即CF⊥AB.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:学生知道“过已知直线外一点作这条直线的垂线有且只有一条”,但不会用尺规作图作线段的垂线.②差异指导:引导学生阅读作法,分析作图原理.(2)生助生:小组讨论作图原理,有不明白的地方小组合作交流帮助解决.4.强化:练习:教材第62页练习1、2题.学生板演.练习1:AB=AC=CE,AB+BD=DE.练习2:直线AM是线段BC的垂直平分线.1.自学指导:(1)自学内容:教材第62页“思考”到第63页的内容.(2)自学时间:8分钟.(3)自学方法:通过观察、分析、操作、总结归纳得出作对称轴的方法.(4)自学参考提纲:①如果两个图形成轴对称,其对称轴与对应点所连线段的关系是怎样的?解:对称轴垂直平分对应点所连线段.②为什么说例2的作法本质上就是线段垂直平分线的尺规作图?你能用尺规作图的方法作一条线段的垂直平分线吗?动手试试,并简要说明作图方法?解:因为A,B两点关于CD对称,根据两个图形成轴对称的性质可知例2的作法就是线段垂直平分线的尺规作图.作法:如图所示:(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弦相交于C、D两点;(2)作直线CD.CD即为AB 的垂直平分线.③请你动手作出教材中五角星及它的对称轴.并简要说明理由?2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情;通过前两节的学习,了解学生对对称轴的画法是否已经熟悉.②差异指导:引导学生画复杂图形的对称轴,关键是先找出对应点,然后再画任意一对对应点所连线段的垂直平分线.(2)生助生:学生之间相互交流帮助解疑难.4.强化:(1)交流学习成果:作线段垂直平分线的方法;作成轴对称的两个图形的对称轴的方法和依据.(2)总结:对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.(3)练习:教材第64页“练习”.练习2:角的平分线所在的直线是角的对称轴.练习3:与A成轴对称的是B.三、评价1.学生的自我评价(围绕三维目标):学生相互交谈自己的学习收获和学习困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课教学力求充分体现内容的基础性,方法的灵活性,学生学习的主体性和教学的主导性,在学习活动中,要求学生主动参与,认真思考,比较观察、动手交流和表述,并借助多媒体的手段辅助教学,增强直观性、激发学习兴趣,强调分组讨论,学生与学生之间很好的交流与合作,利用师生的双边活动,激发学生学习兴趣,教师从中发现、搜集学生的学习情况,查漏补缺,适时调度,从而顺利达到教学的目的.一、基础巩固(每题10分,共60分)1.如图,直线CD是线段AB的垂直平分线,M是直线CD上的一点.已知线段MA=12cm,则线段MB的长为12cm.2.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D ,△ABD的周长是12cm,AC=5cm,则AB+BC=12cm,△ABC的周长是17cm.3.下列几何图形:①线段;②正方形;③圆;④等腰梯形;⑤平行四边形,其中一定是轴对称图形的是①②③④(填序号).4.在△ABC中,AB的中垂线与AC边所在直线相交所得的锐角为50°,则∠A的度数为(C)A.50°B.40°C.40°或140°D.40°或50°5.将一正方形纸片按图(1),图(2)的方式依次对折之后,再沿图(3)中的虚线裁剪得图(4).最后将图(4)的纸片打开铺平,所得到的图案是(B)6.画出下列图形的对称轴(有几条对称轴就画出几条,不要遗漏).二、综合应用(20分)7.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在点C′处,BC′交AD于E;(1)若∠DBC=22.5°,则在不添加辅助线的情况下,图中45°的角(虚线也视为角的边)有多少个?(2)你认为图中有多少组全等三角形,并把他们写下来.解:(1)5个.(2)4组,△BCD≌△BC′D,△ABE≌△C′DB,△ABD ≌△CDB,△ABD≌△C′DB.三、拓展延伸(每题10分,共20分)8.电信部门要修建一座电视信号发射塔,如图,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应修建在什么位置?在图上标出它的位置.解:如图所示,两条高速公路相交的角的角平分线和AB的垂直平分线的交点P1与P2点.9.△ABC中,AB=AC,∠A=120°,AB的垂直平分线交于BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.证明:连接AM,AN.∵ME垂直平分AB,NF垂直平分AC,∴MB=MA,NA=NC,∴∠B=∠MAB,∠C=∠NAC.又AB=AC,∠A=120°,∴∠B=∠C=30°∴∠MAB+∠NAC=∠B+∠C=60°,∴∠MAN=∠BAC-(∠MAB+∠NAC)=60°,∵∠MAN=∠AMN=∠ANM=60°,∴AM=AN=MN,∴BM=MN=NC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无数条
如初多媒体 制 作 中 心
2.如图,角是轴对称图形吗?如果是, 画出它的对称轴.
3.如图,与图形A成轴对称的是哪个图形? 作出它们的对称轴.
A
B
如初多媒体 制 作 中 心
C
D
线段的垂直平分线
例1 已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P. 求证:PA=PB=PC;
定 理 线段垂直平分线上的点和 这条线段两个端点的距离相等。 逆定理 和一条线段两个端点距离相 等的点,在这条线段的垂直平分线 上。 线段的垂直平分线可以看作是和线段 两上端点距离相等的所有点的集合
点的集合是一条射线
点的集合是一条直线
A
B
C
线段的垂直平分线
实际问题
1、求作一点P,使 它和△ABC的三个 顶点距离相等.
B
数学化
A
实 际 问 题 1
C
p
PA=PB=PC
A
实际问题2
在104国道L(济南—泰安段) 的同侧,有两个工厂A、B,为了便 于两厂的工人看病,市政府计划在 公路边上修建一所医院,使得两个 工厂的工人都没意见,问医院的院 址应选在何处?
二、学习新知 如图,已知线段AB,用直尺和圆规作 AB 的垂直平分线. 例1
C
⑴分别以点A、B为圆心,以大
1 于 AB的长为半径作弧,两弧 2
相交于C、 D 两点; 折叠、用刻度尺等
A
B
⑵作直线 CD . 还可以折叠、
用刻度尺等. CD即为所求的直线
D
如初多媒体
你还有其他的方法作一条线段的垂直平分线吗?
分析:
点P在线段AB的 垂直平分线上 PA=PB 点P在线段BC的 垂直平分线上 PB=PC
B
A M
M’
P C N N’
PA=PB=PC
例1 已知:如图,在ΔABC中,边AB,BC的垂直平分 线交于P. 求证:PA=PB=PC; A
证明:
∵点P在线段AB的垂直平分线MN上, ∴PA=PB(?). 同理 PB=PC.
§13.1.2
线段的垂直平分线
线段的垂直平分线
一、性质定理:线段垂直平分线上的点和这条线段两个端 点的距离相等。
二、判定定理:和一条线线段 AB的垂直 平分线上
线段垂直平分线上的点和这 条线段两个端点的距离相等
PA=PB
和一条线段两个端点距离相等的 点,在这条线段的垂直平分线上
制 作 中 心
三、解决问题
例2 如图,△ABC和△AˊBˊCˊ是两个成轴 对称的图形,请作出它的对称轴.
如初多媒体 制 作 中 心
三、解决问题 上述提到的都是两个成轴对称的图形, 如果是一个轴对称图形,你怎样作出它的 对称轴?如图所示的正五角星有几条对称轴?
如初多媒体 制 作 中 心
四、实践和应用
B M M’ P C
N N’
∴PA=PB=PC.
你能依据例1得到什么结论? 结论: 三角形三边垂直平分线交于一点, 这一点到三角形三个顶点的距离相等。
实际问题1
泰安市政府为了方便居民的生活,计划 在三个住宅小区 A、 B、C之间修建一个购 物中心,试问,该购物中心应建于何处, 才能使得它到三个小区的距离相等。
B
L
104 国 道
线段的垂直平分线
实际问题
2、如图,在直线L上求 作一点P,使PA=PB.
数学化
A
实 际 问 题 2
B
L
p
数学问题源于生活实践,反过来数学又为生活实践服务
PA=PB
角的平分线
A D
线段的垂直平分线
M
P
O E
C
A
P
B
B
N
定理1 在角的平分线上的点到这个 角的两边的距离相等。 定理2 到一个角的两边的距离相等 的点,在这个角的平分线上。 角的平分线是到角的两边距离 相等的所有点的集合