全等三角形专题训练

合集下载

专题18 全等三角形(专项训练)(解析版)

专题18 全等三角形(专项训练)(解析版)

专题18 全等三角形一、单选题1.(2021·湖南怀化·九年级)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分△EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【答案】C【详解】由尺规作图的痕迹可得:GH垂直平分线段EF.故选C.2.(2021·江苏南京·九年级)如图,在等腰△ABC中,AB=AC,D、E分别在BC、AC上,AD=DE,BD=CE,若△ADE=m°,则△BAD的度数是()A.m°B.1902m⎛⎫-⎪⎝⎭°C.(90-m)°D.3902m⎛⎫-⎪⎝⎭°【答案】D【分析】分别过点E、G作EF△CD、DG△AB,证明△CEF△△BDG、△DEF△△ADG,从而证明△CDE△△ADB,得到△EDC=△BAD,再利用等边对等角,用m表示出△AED和△CED,再利用平角的定义即可表示出△BAD的度数.【详解】解:分别过点E、G作EF△CD、DG△AB,垂直分别为F、G,△AB=AC , △△B =△C ,△EF △CD ,DG △AB , △△EFC =△DGB =90°, 在△CEF 和△BDG 中△△EFC =△DGB ,△C =△B ,CE =BD , △△CEF △△DGB (AAS ), △EF =DG ,在Rt △DEF 和Rt △ADG 中 △DE =AD ,EF =DG , △Rt △DEF △Rt △ADG (HL ), △△CED =△ADB ,△EDC =△DAB , △AD =ED ,△ADE =m °, △△DEA =180-()2m °△△ADB =△CED =180-(180-)2m°, △△BAD =△EDC =180°-(△ADB +△ADE )=180°-180-(180-+)2mm ° =3(90-)2m° , 故选:D . 【点睛】本题主要考查了全等三角形的判定、等腰三角形的性质等知识,能够根据线段相等等已知条件构造全等三角形是解答此题的关键.3.(2021·江苏九年级)如图,Rt AOB Rt COD △≌△,直角边分别落在x 轴和y 轴上,斜边相交于点E ,且tan 2OAB ∠=.若四边形OAEC 的面积为12,反比例函数(0)ky x x=>的图像经过点E ,则k 的值是( )A .7B .8C .9D .10【答案】B 【分析】过点E 作EF OA ⊥于F ,EG OC ⊥于G ,连接OE ,证明三角形全等,得对应边相等,用来证明四边形为正方形,再根据tan 2OAB ∠=,建立边与边之间的等量关系,利用两直线平行和四边形的面积,即可求出解. 【详解】解:过点E 作EF OA ⊥于F ,EG OC ⊥于G ,连接OE ,如图:Rt AOB Rt COD △≌△,,,OA OC OB OD ABO CDO ∴==∠=∠,OB OC OD OA ∴-=-,即:BC AD =, 在BCE DAE =中,{ABO CDO BEC DEA BC AD ∠=∠∠=∠=,()BCE DAE AAS ∴≌, EC AE ∴=,在CEO 和AEO △中, OC OA OE OE EC EA =⎧⎪=⎨⎪=⎩()CEO AEO SSS ∴≌,45COE AOE ∴∠=∠=︒,COEAOESS=,,,EG OC EF AO OA OC ⊥⊥⊥,∴四边形OFEG 为正方形,EG EF OG OF ∴===,tan 2,2OBOAB OA∠=∴=, 设OA OC a ==,则2OB OD a ==, 设EG EF x ==,则OG OF x ==,//EG OA ,EG BGOA BO ∴=, 即:22x a x a a-=, 解得:23x a =, 22(,)33E a a ∴,四边形OAEC 的面积为12, 162AEOSS ∴==四边形OAEC, 162OA EF ∴⨯=, 12623a a ∴⨯⨯=, 解得:218a =, 22248339k a a a ∴=⨯==, 故选:B . 【点睛】本题考查了反比例函数k 的几何意义,待定系数法,三角形全等的判定与性质,正方形的判定与性质,三角形的面积,解直角三角形,解题的关键是:利用点的坐标表示出相应线段的长度.4.(2021·山东九年级)如图,在ABC中,AB AC=,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若5,1AE BE==,则EC的长度是()AB.C.9D【答案】A【分析】利用基本作图得到CE△AB,根据线段的和差关系可得AC=AB=6,然后利用勾股定理计算CE的长.【详解】△AE=5,BE=1,△AB=6,由作图可知CM为AB的垂线,即CE△AB,△在△ACE中,AC2=AE2+CE2,△AB=AC,△62=52+CE2,解得:CE(负值舍去),故选:A.【点睛】本题考查了基本作图及勾股定理,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题关键.5.(2021·江苏省天一中学九年级)如图,ABC中,△C=90o,BC=8,AC=6,点P在AB上,AP=3.6,点E从点A出发,沿AC运动到点C,连接PE,作射线PF垂直于PE,交直线BC于点F,EF的中点为Q,则在整个运动过程中,线段PQ扫过的面积为()A.8B.6C.94πD.2516π【答案】B【分析】连接CQ,PQ,证明点Q在CP的垂直平分线上,连接CP,作CP的垂直平分线交BC于M,交AC于N,即点Q在MN上,可得PQ扫过的面积为△PMN的面积,证明△ABC△△ACP,得到MN△AB,再证明△CMN△△CBA,得到相似比,求出△CMN的面积即可得解.【详解】解:连接CQ,PQ,△△ACB=90°,PE△PF,Q为EF中点,△PQ=CQ=12EF,△点Q在CP的垂直平分线上,如图,连接CP,作CP的垂直平分线交BC于M,交AC于N,即点Q在MN上,△PQ扫过的面积为△PMN的面积,△△ACB=90°,AC=6,BC=8,△AB,△AP=3.6,则35AP ACAC AB==,又△C=△C,△△ABC△△ACP,△△APC =△ACB =90°,即CP △AB , △MN △CP , △MN △AB ,△△CMN △△CBA ,又MN 垂直平分CP , △12CM CN CB CA ==,且△CMN 和△PMN 的面积相等, △S △PMN =S △CMN =14S △ABC =116842⨯⨯⨯=6,故选B .【点睛】本题考查了相似三角形的判定和性质,垂直平分线的性质,勾股定理,直角三角形斜边中线的性质,解题的关键是推出点Q 的路径,得到点Q 在CP 的垂直平分线上.6.(2021·吉林)如图,在ABC 中,90ACB ∠>︒按以下步骤作图:分别以点A 和C 为圆心,大于12AC 的边长为半径作圆弧,两弧相交于点M 和N ;作直线MN 交AB 于点D ,连结CD .若5cm AB =,则BC 的长可能是( )A .7cmB .6cmC .5cmD .4cm【答案】D 【分析】由基本作图得到MN 垂直平分AC ,则DA =DC ,根据三角形三边的关系得到BC <CD +DB ,然后对各选项进行判断. 【详解】解:由作法得MN 垂直平分AC , △DA =DC ,△CD +BD =DA +DB =AB =5, △BC <CD +DB , △BC <5. 故选:D . 【点睛】本题考查了作图-基本作图-作已知线段的垂直平分线.也考查了线段垂直平分线的性质.7.(2021·广西柳州·)如图,在Rt △ABC 中,△ACB =90°,AC =BC ,点M 在AC 边上,且A M=2,M C =6,动点P 在AB 边上,连接PC ,P M ,则PC +P M 的最小值是( )A .B .8C .D .10【答案】A 【分析】首先利用等腰三角形和垂直平分线的性质求出8AC '=和90C AC ∠'=︒,然后利用勾股定理求解即可. 【详解】解:如解图,过点C 作CO AB ⊥于点O ,延长CO 到点C ',使OC OC '=,连接MC ',交AB 于点P ',此时MC P M P C P M P C '='+''='+'的值最小,连接AC ',,,90CO AB AC BC ACB ⊥=∠=︒,1245ACO ACB ∴∠=∠=︒.,CO OC CO AB ='⊥,268AC CA AM MC ∴'==+=+=, 45OC A OCA ∴∠'=∠=︒, 90C AC ∴∠'=︒, C A AC ∴'⊥,MC ∴'=PC PM ∴+的最小值为故选:A .【点睛】本题主要考查等腰三角形的性质,垂直平分线的应用和勾股定理,找到P 点的位置是关键.8.(2021·湖南长沙·九年级)如图,用直尺和圆规作图,以点O 为圆心,适当长为半径画弧,分别交OB ,OA 于点E 、D ,再分别以点E 、D 为圆心,大于12ED 的长为半径画弧,两弧交于点C ,连接OC ,则△ODC △OEC 的理由是( )A .SSSB .SASC .AASD .HL【答案】A 【分析】连接EC 、DC .根据作图的过程知,OE=OD ,CE=CD ,利用SSS 即可证明△ODC △OEC . 【详解】如图,连接EC 、DC .根据作图的过程知,OE=OD ,CE=CD , 在△EOC 与△DOC 中, OE OD OC OC CE CD =⎧⎪=⎨⎪=⎩, △△EOC △△DOC (SSS ). 故选A . 【点睛】本题考查了基本作图及三角形全等的判定方法,根据作图方法确定出三角形全等的条件是解决问题的关键. 9.(2021·四川宜宾市·)如图,在ABC 中,90,16,C AC AB ∠=︒=的垂直平分线MN 交AC 于点D ,交AB 于点E ,连接BD ,若:3:5CD DB =,则ABC 的面积为( )A .16B .32C .48D .64【答案】D 【分析】由于CD :DB =3:5,可设DC =3x ,BD =5x ,由于MN 是线段AB 的垂直平分线,故AD =DB ,AD =5x ,又知AC =16,即可据此列方程解答. 【详解】解:△CD :DB =3:5, △设DC =3x ,BD =5x ,又△MN 是线段AB 的垂直平分线, △AD =DB =5x ,又△AC=16cm,△3x+5x=16,解得,x=2,△CD=6,DB=10,在Rt△BDC中,CD=6,DB=10,BC8=,△△ABC的面积=12AC×BC=12×16×8=64.故选D.10.(2021·河北唐山·)如图,所示的正方形网格中,一条A,B,C三点均在格点上,那么ABC的外接圆圆心是()A.点E B.点F C.点G D.点H【答案】C【分析】由ABC的外接圆圆心在AB与BC的垂直平分线上,根据网格可知EG所在直线是AB的垂直平分线,BC 的垂直平分线是点G所在直线即可.【详解】解:△A,B,C三点均在格点上,连结BC,△ABC的外接圆圆心在AB与BC的垂直平分线上,由网格可知EG所在直线是AB的垂直平分线,BC的垂直平分线是点G所在直线,△点G是ABC的外接圆圆心.故选择:C.【点睛】本题考查网格三角形,三角形外接圆圆心,线段垂直平分线,掌握网格三角形,三角形外接圆圆心,线段垂直平分线是解题关键.二、填空题11.(2021·建昌县教师进修学校九年级)如图,在ABC中,AC=4,BC=8,分别以点A,B为圆心,等长为半径作弧,交AB,BC,AC于点D,E,F,再以点F为圆心,DE长为半径作弧,交前弧于点G,连接AG并延长交BC于点H.则BH长_____.【答案】6【分析】根据尺规作图可得△CAH=△B,故可得到△ACH△△BCA,得到AC HCBC AC=,故可求出CH,从而求出BH的长.【详解】根据尺规作图可得△CAH=△B,又△C=△C△△ACH△△BCA△AC HC BC AC=△484HC =△HC=2故BH=BC-HC=6故答案为6.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知尺规作角相等的方法及相似三角形的判定定理. 12.(2021·建昌县教师进修学校九年级)如图,E 是正方形ABCD 外一点,连接AE ,BE ,DE ,AP △AE 交DE 于点P ,连接BP ,若AE =AP =1,PB △EB △ED ;△点B 到直线DE 的距离是1;△APDAPBSS+=;△S 正方形ABCD .其中正确结论的序号为______.【答案】△△△ 【分析】根据正方形性质可得AD =AB ,△BAD =ADC =90°,再由AP △AE ,易证△ABE △△ADP ,再利用等腰直角三角形性质可得:△AEB =135°,进而可得:EB △ED ;由勾股定理即可求得BE =1,即点B 到直线DE 的距离为1;设正方形ABCD 边长为a ,根据勾股定理可得22212a a ⎛⎛⎫ -+= ⎪ ⎝⎭⎝⎭,解得:22a=+,即可求得:APDAPBS S+=,2正方形2ABCD S a ==+,即可求解.【详解】解:△四边形ABCD 是正方形, △AD =AB ,△BAD =△ADC =90° △AP △AE , △△EAP =90°△△BAE +△BAP =△BAP +△DAP =90°, △△BAE =△DAP , △AE =AP =1,△△ABE △△ADP (SAS ), △△AEB =△APD ,BE =DP △△AEP 是等腰直角三角形,△△AEP =△APE =45°,EP ===,△△APD =180°-△APE =180°-45°=135°, △△AEB =135°,△△BED =△AEB -△AEP =135°-45°=90°, △EB △ED ,故△正确;△1BE ==,故△正确;过点E 作EF △AB 于点F ,过点P 作PG △AB 于点G ,△AF =BF ,△AFE =△PGA =90°, △△EAF +△P AG =△P AG +△APG =90°, △△EAF =△APG , △△EAF △△APG (AAS ), △EF =AG ,AF =PG ,设正方形ABCD 边长为a ,则AB =a ,12AF PG a ==,△AG EF ====,△BG AB AG a =-=-, 在Rt BPG △ 中,由勾股定理得:22212a a ⎛⎛⎫ -+= ⎪ ⎝⎭⎝⎭,解得:22a =+,△()12APDAPBAEBAPBSSSSAB EF PG +=+=+1122a a ⎫⎪=+=⎪⎝⎭,故△正确;△2正方形2ABCD S a ==+,故△错误,故正确的有△△△. 故答案为:△△△. 【点睛】本题主要考查了正方形性质,等腰直角三角形性质,勾股定理,全等三角形判定和性质,三角形面积和正方形面积等;熟练掌握相关知识点是解题的关键.13.(2021·东莞市东莞中学初中部九年级)如图,OA =OB ,AC =BC ,△ACO =30°,则△ACB =__.【答案】60° 【分析】利用SSS 证明△AOC △△BOC 可得△BCO =△ACO =30°,进而可求解△ACB 的度数. 【详解】解:在△ACO 和△BCO 中, OA OB AC BC OC OC =⎧⎪=⎨⎪=⎩, △△AOC △△BOC (SSS ), △△BCO =△ACO =30°, △△ACB =△BCO +△ACO =60°, 故答案为:60°. 【点睛】本题考查了全等三角形判定与性质,熟知全等三角形的判定定理是解题的关键.14.(2021·江苏)如图,在四边形ABCD 中,AB △DC ,过点C 作CE △BC ,交AD 于点E ,连接BE ,△BEC =△DEC ,若AB =6,则CD =___.【答案】3 【分析】延长AD ,BC 交于点P ,先证明BCE PCE ≅△△,可得到PC =BC ,从而得到CD 是ABP △ 的中位线,即可得出答案. 【详解】如图,延长AD ,BC 交于点P , △CE △BC ,△90PCE BCE ∠=∠=︒ , 又△△BEC =△DEC ,CE =CE , △()BCE PCE ASA ≅ , △PC =BC , △AB △DC ,△CD 是ABP △ 的中位线, △116322CD AB ==⨯= , 故答案为3. 【点睛】本题主要考查了三角形的中位线定理和三角形全等,解题的关键是做辅助线构造出三角形,找到三角形的中位线.15.(2021·江苏九年级)如图所示的网格是正方形网格,图形的各个顶点均为格点,则△1+△2=___.【答案】135°【分析】直接利用网格证明△ABC△△CDE,得出对应角△1=△3,进而得出答案.【详解】解:如图所示:可知:AB=CD=3,BC=DE=1,△B=△D=90°,△△ABC△△CDE(SAS),△△1=△3,则△1+△2=△2+△3=135°.故答案为:135°.【点睛】此题主要考查了全等三角形的判定和性质,正确借助网格分析是解题关键.三、解答题16.(2021·西安市铁一中学九年级)如图,已知直线l外有一点P,请用尺规作图的方法在直线l上找一点Q,使得Q到P的距离最小(保留作图痕迹,不写作法).【答案】见解析.【分析】以点P为圆心,适当长为半径,作弧交直线l于两点,再作以这两点为线段的垂直平分线,交直线于点Q 即可.【详解】解:如图,点Q即是所求作的点.【点睛】本题考查过直线外一点,作直线的垂直平分线,是重要考点,掌握相关知识是解题关键.17.(2021·建昌县教师进修学校九年级)如图,在ABC中,△BAC=90°,AB=AC=4,过点C作MN△AB,点P为斜边BC上一点,点Q为直线MN上一点,连接PQ,作PR△PQ交直线AC于点R.(1)当点Q在射线CM上时△如图1,若P是BC的中点,则线段PQ,PR的数量关系为;△如图2,若P不是BC的中点,写出线段CP,CQ,CR之间的数量关系,并证明你的结论;(2)若14CP BC=,3CQ=,请直接写出CR的长.【答案】(1)△PQ=PR;CQ CR+=,见解析;(2)5或1【分析】(1)△PQ=PR;连结AP,△BAC=90°,AB=AC,可得△ACP=45°,由点P为BC中点,可得AP△BC,AP平分△BAC,可得△APQ+△QPC=90°,△P AC=45°,可求△RAP=135°,△ACP=△P AC=45°,可证△RAP△△QCP (ASA)即可;CQ CR+=.作PE △PC交AC于点E,可得△EPC=90°,可得△EPQ+△QPC=90°,由PR△PQ,可得△RPE+△EPQ=90°,可得△RPE=△QPC,再证△PER△△PCQ(ASA),可得ER=CQ,在Rt△CEP中,利用三角函数可求CE=即可;(2)由△BAC=90°,AB=AC=4,利用勾股定理可求BC=14CP BC=,可14CP BC=Q在MN上位置分两种情况:当点Q在CM上与点Q在CN上时,利用结论可求CR.【详解】(1)△连结AP,△△BAC=90°,AB=AC,△△ACP=45°,△点P为BC中点△AP△BC,AP平分△BAC,△△APQ+△QPC=90°,△P AC=45°,△△RAP=180°-△P AC=135°,△ACP=△P AC=45°△AP=CP,△RP△PQ,△△RP A+△APQ=90°,△△RP A=△QOC,△MN∥AB,△△ACQ=△BAC=90°,△△QCP=△ACQ+△PCA=90°+45°=135°=△RAP,在△RAP和△QCP中,RAP QCPAP CPRPA QPC∠=∠⎧⎪=⎨⎪∠=∠⎩△△RAP△△QCP(ASA),△PR=PQ,故答案为:PQ =PR ;CQ CR +=.证明:作PE △PC 交AC 于点E ,则△EPC =90°, △△EPQ+△QPC =90° △PR △PQ △△RPQ =90°, △△RPE +△EPQ =90°, △△RPE =△QPC ,△△BAC =90°,AB =AC ,MN △AB△△ABC =△ACB =45°,△ACM =△BAC =90° △△PEC =45°△PE =PC ,△PER =△PCQ =135°, 在△REP 和△QCP 中,REP QCP EP CPRPE QPC ∠=∠⎧⎪=⎨⎪∠=∠⎩△△PER △△PCQ (ASA ), △ER =CQ ,在Rt △CEP 中,cos △PEC =PC CE =CE = 又△CE ER CR +=,CQ CR +=.(2)△△BAC =90°,AB =AC =4,△BC = △14CP BC =△1144CP BC ==⨯ 当点Q 在CM 上时CR CQ =+当点Q 在CN 上时证明:作PE △PC 交CN 于点E , 则△EPC =90°, △△EPR+△RPC =90° △PR △PQ △△RPQ =90°, △△RPE +△EPQ =90°, △△RPC =△QPE ,△△BAC =90°,AB =AC ,MN △AB△△ABC =△ACB =45°=△BCQ ,△ACN =△ACB +△BCQ =90°=△BAC△△PEC =45°△PE =PC ,△PEQ =△PCR =135°, 在△QEP 和△RCP 中,QEP RCP EP CPQPE RPC ∠=∠⎧⎪=⎨⎪∠=∠⎩△△QEP △△RCP (ASA ), △EQ =CR ,在Rt △CEP 中,cos △PEC=PC CE =CE = 又△CR CE CR -=,△CQ CR =.=3CR CQ =△CR 的长为5或1. 【点睛】本题考查等腰直角三角形的性质与判定,平行线性质,勾股定理,三角形全等判定与性质,线段的和差,锐角三角函数,掌握等腰直角三角形的性质与判定,平行线性质,勾股定理,三角形全等判定与性质,线段的和差,锐角三角函数是解题关键.18.(2021·广东广州·铁一中学)如图,90A ∠=︒,//AD BC ,点E 是AB 上的一点,且AE BC =,12∠=∠.求证:ADE BEC △△≌.【答案】见解析 【分析】根据等角对等边可得ED EC =,由此根据HL 证明Rt ADE △和Rt BEC △全等解答即可. 【详解】证明:12∠=∠,ED EC ∴=,△90A ∠=︒,//AD BC , △18090B A ∠=︒-=︒∠, 在Rt ADE △和Rt BEC △中,AE BC ED EC=⎧⎨=⎩, Rt Rt (HL)ADE BEC ∴△≌△.【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定方法是解决本题的关键.19.(2021·江苏高港区·高港实验学校九年级)如图,在正方形ABCD 中,F 为BC 为边上的定点,E 、G 分别是AB 、CD 边上的动点,AF 和EG 交于点H 且AF △EG .(1)求证:AF =EG ; (2)若AB =6,BF =2.△若BE =3,求AG 的长;△连结AG 、EF ,求AG +EF 的最小值. 【答案】(1)见解析;(2)△【分析】(1)过点G 作GM △AD 交AB 于点M ,则可得AD =MG ,然后证明△GME △△ABF 即可;(2)△过点G 作GM △AD 交AB 于点M ,连接AG ,由(1)可得EM =BF =2,从而可求得AM ,在Rt △AMG 中由勾股定理即可求得AG 的长;△过点F 作FP △EG ,FP =EG ,连接AP ,则易得GP =EF ,当A 、G 、P 三点共线时,AG +EF 最小,在Rt △AFP 中由勾股定理即可求得AP 的长即可. 【详解】(1)过点G 作GM △AD 交AB 于点M △四边形ABCD 是正方形△△BAD =△B =90゜,AB △CD ,AD =AB △△EMG =△BAD =△B =90゜ △AB △CD ,GM △AD△四边形AMGD 是平行四边形 △△BAD =90゜△四边形AMGD 是矩形 △MG =AD △MG =AB △AF △EG△△AEH +△EAH =90゜ △△EAH +△AFB =90゜ △△AEH =△AFB 在△GME 和△ABF 中EMG B AEH AFB MG AB ∠=∠⎧⎪∠=∠⎨⎪=⎩△△GME △△ABF (AAS ) △AF =EG(2)△过点G作GM△AD交AB于点M,连接AG,如图由(1)知,△GME△△ABF△EM=BF=2△AB=6,BE=3△AE=AB-BE=3△AM=AE-EM=1在Rt△AMG中,GM=AD=6,由勾股定理得:AG=△过点F作FP△EG,FP=EG,连接AP,如图则四边形EFPG是平行四边形△GP=EF△AG+GP≥GP△当A、G、P三点共线时,AG+EF=AG+GP最小,最小值为线段AP的长△AF△EG,FP△EG△FP△AF在Rt△ABF中,由勾股定理得AF==△AF=EG,EG=FP△FP=AF=在Rt△AFP中,由勾股定理得AP=所以AG+EF的最小值为【点睛】本题考查了正方形的性质,平行四边形的判定与性质,矩形的判定与性质,全等三角形的判定与性质,勾股定理,两点间线段最短等知识,灵活运用这些知识是解决的关键,确定AG+EF最小值是线段AP的长是难点.20.(2021·杭州市丰潭中学九年级)如图,已知AB是△O的弦,OB=1,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交△O于点D,连接AD.设△B=α,△ADC=β.(1)求△BOD的度数(用含α,β的代数式表示);(2)若α=30°,当AC的长度为多少时,以点A、C、D为顶点的三角形与B、C、O为顶点的三角形相似?请写出解答过程.(3)若α=β,连接AO,记△AOD、△AOC、△COB的面积分别为S1,S2,S3,如果S2是S1和S3的比例中项,求OC的长.【答案】(1)△BOD=2α+2β;(2)AC(3)OC.【分析】(1)作辅助线OA,根据同弧所对的圆周角是圆心角的一半即可确定△DOB的值;(2)分析△ACD中只有△D可能等于30°,得出△D的对应角为△B,根据相垂径定理可得出AC的长;(3)先根据比例中项得出a和b的关系式,再证明△ACD△△OCA,再得出AD和AC的关系式,两式联立即可求出AC、AD,从而求出OC.【详解】解:(1)连接AO,如图:△OA =OD ,OA =OB ,△B =α,△ADC =β, △△OAD =△ADC =α,△OAB =△B =β,△△BOD =2△DAB =2(△OAD +△OAB )=2α+2β; (2)△点C 不与A 、B 重合, △△DAC >30°,△ACD >30°, △△ACD △△OCB , △△D =△B =α=30°,由(1)知△DOB =2(30°+30°)=120°, △△BOC =60°, △△OCB =90°,根据垂径定理知C 是AB 的中点,△AC =BC =OB •cos 30°=1=(3)△α=β, △△ADO =△ABO , △OA =OD =OB ,△△ADO =△OAD =△ABO =△OAB , △△ADO △△ABO ,△OA 是△DAC 的角平分线,设AD =a ,AC =b ,AD 、AC 边上的高为h , 则:112S ah =,212S bh =,3()12S a b h =-,又△S 2是S 1和S 3的比例中项,△2213S S S =•,即211()()1222bh ah a b h =•-,化简得a 2﹣b 2=ab △,△α=β, △△DOB =4α, △△DCB =3α, △△AOC =△DAC =2α, △△ACO ~△DCA , △AO COA C A C D A C D ==, △11b OCa OC b+==,整理得:bOC a=,a 2b =a +b △, 联立△△得:1a b ⎧=⎪⎨⎪=⎩△OC=21.(2021·珠海市九洲中学九年级)如图,AC 是平行四边形ABCD 的对角线.(1)利用尺规作出AC 的垂直平分线(要求保留作图痕迹,不写作法);(2)设AC 的垂直平分线分别与AB 、AC 、CD 交于点E 、O 、F ,求证:OE OF =. 【答案】(1)答案见详解;(2)答案见详解 【分析】(1)如图可得AC 的垂直平分线;(2)由根据作图知,PQ 是AC 的垂直平分线,又由四边形ABCD 是平行四边形,易证得△AOE △△COF ,继而证得结论. 【详解】 解:(1)如图:(2)证明:根据作图知,PQ 是AC 的垂直平分线, △OA =OC ,且EF △AC , △四边形ABCD 是平行四边形, △AB △CD , △△OAE =△OCF , 在△OAE 和△OCF 中, OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△AOE △△COF (ASA ), △OE =OF . 【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质与作法以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22.(2021·温州绣山中学九年级)如图,在△ABCD 中,对角线AC ,BD 交于点O ,AE △BD ,CF △BD ,垂足分别为E ,F . (1)求证:EO =FO ;(2)若AE =EF =4,求AC 的长.【答案】(1)见解析;(2) 【分析】(1)由平行四边形的性质得到AB =CD ,△ABE =△CDF ,然后根据题意证明ABE CDF △≌△即可.(2)根据OE =OF =12EF 求出OE 的长度,然后根据勾股定理求出AO 的长度,即可根据平行四边形对角线互相平分求出AC 的长度. 【详解】(1)△四边形ABCD 是平行四边形, △AB =CD ,AB △CD , △△ABE =△CDF , △AE △ED ,CF △BD , △△AEB =△CFD =90°, 在△ABE 和△CDF 中,AEB CFD ABE CDF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, △()ABE CDF AAS △≌△, △BE =DF , △OB =OD , △OB -BE =OD -DF , △OE =OF .(2)△AE =EF =4, △OE =OF =122EF =,△在Rt AEO中,AO =△2AC AO == 【点睛】此题考查了平行四边形的性质,三角形全等和勾股定理的运用,解题的关键是熟练掌握平行四边形的性质,三角形全等和勾股定理.23.(2021·福建泉州五中)如图,在ABCD 中,AE BC ⊥于点E ,CF AD ⊥于点F ,求证:BE DF =.【答案】见解析.【分析】根据平行四边形的性质可得AB =CD ,△B =△D ,然后利用AAS 定理证明△ABE △△CFD 可得BE =DF【详解】 证明:四边形ABCD 是平行四边形,AB CD ∴=,B D ∠=∠,AE BC ⊥,CF AD ⊥,90AEB CFD ∴∠=∠=︒在ABE ∆和CDF ∆中,AEB CFD B DAB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE CDF AAS ∴∆≅∆,BE DF ∴=.【点睛】此题主要考查了平行四边形的性质和全等三角形的性质与判定,平行四边形的性质的作用:平行四边形对应边相等,对应角相等,对角线互相平分,是我们证明直线的平行、线段相等、角相等的重要方法.。

全等三角形专题训练

全等三角形专题训练
点就娃 《 、 I 心顶 点


G: B
:( 一 一
B.
/ _ 一
/ / /

【 J . 若 两 个 一 角 形 全 等 , 则 对 j = 、 { , = 边 所 对 的 角 } j D : 就 是 对 成 角 ) ・ 4 C=B C
r i me
仝等三角形专 题i l l l  ̄

1 . 已知 △ 4 BC通 过平 移得 到 △A B C .则 这 两 个 角 形
对 应边 是
~ ~ … 一
【 : .△ A 曰E 坌 △


记作


AB 的

~ 一
D. △


曰 的对 应角 是


4 。 下列 选项 是 全等 二 三 角 形 的足 (


D . 能够 完 全或 合 的 两 个- 一 们形
5 .如 , AAB C


AC DA. A B干 H C I ) , BC 和
- பைடு நூலகம்I
够 2

一 一 \ > 、 ≥ B
一 一
D A 是对 应边 . 写 其 他对 应边 及对 应角
\\
一 一 一 … 一 ~ 一 … 一 一 ~


一 穷
, /

j |


w h ? _ f !
a v :
l s i n g e e, i
. . .
— —
S ? ? 璺 !

… 一 一 ~ 一 一 , /

全等三角形培优专题训练

全等三角形培优专题训练

探索三角形全等1、一长方形纸片沿对角线剪开,得到两三角形纸片,再将这两纸片摆成如以下图形式,使点B 、F 、C 、D 在同一条直线上.⑴求证:AB ⊥ED ;⑵假设PB =BC ,请找出图中与此条件有关的一对全等三角形,并给予证明2、如图,在△ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC ,BE ⊥AD 交AC 的延长线于F ,E 为垂足,那么结论:①AD =BF ;②CF =CD ;③AC +CD =AB ;④BE =CF ;⑤BF =2BE.其中正确的选项是〔 〕3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFC的度数.中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线M、N上,且OE=OF.⑴图中共有几对全等三角形,请把它们都写下来;⑵求证:∠MAE=∠NCF全等三角形的应用全等三角形常用来转移线段和角,用它来证明:①线段和角的等量关系②线段和角的和差倍分关系③直线与直线的平行或垂直等位置关系1、如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.试判断AP与AQ的关系,并证明.2、如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,求证:BE⊥ACB3、如图,在△ABC中,AB=AC,AD=AE,∠BAC=∠DAC=90°.⑴当点D在AC上时,如图①,线段BD,CE有怎样的数量和位置关系"证明你猜测的结论.⑵将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°) ,如图②,线段BD、CE有怎样的数量关系和位置关系?问明理由.4、在△ABC中,AB=AC,点D是直线BC上一点〔不与B、C重合〕,以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.⑴如图①,当点D在线段BC上时,假设∠BAC=90°,那么∠BCE=_______度.⑵设∠BAC=α,∠BCE=βa、如图②,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②B①①b、当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.辅助线作法之连接法在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.证明∶AC=ABA2、AB =DE ,BC =EF ,∠B =∠E ,AF =CD 求证:AC ∥DF3、如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA =OC ,EA =EC.∠A =∠C 吗?点O 在∠AEC 的平分线上吗?辅助线作法之倍长中线法在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对BE全等三角形,将分散的条件集中到一个三角形中去.1、△ABC中,AB=5,AC=3,求中线AD的取值围.2、如图,在△ABC中,AD是∠BAC的平分线,又是BC上的中线求证:AB=ACBB3、在△ABC 中,D 是边BC 上的一点,且CD =AB ,∠BAD =∠BDA ,AE 是△ABD 的中线.求证∶AC =2AE4、△ABC 中,D 为BC 的中点,DE ⊥DF 交AB ,AC 于点E ,F.求证:BE +CF >EF辅助线作法之截长补短法截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余局部与另一条相等. 补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等.B1、AC ∥BD ,EA ,EB 分别平分∠CAB 和∠DBA ,点E在CD 上.求证:AB =AC +BD2、在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =½〔AB +AD 〕.求证∶∠B +∠D =180°ABD3、如图,△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC 于F.求证:∠ADB=∠CDF4、如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证∶AC+CD=AB12、如图,AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.B辅助线作法之利用特殊条件构造全等三角形2、如图,在△ABC 中,AC =½AB ,AD 平分∠BAC ,且AD =BD求证:CD ⊥AC全等三角形在动态几何中的运用1、如图,△ABC 的边BC 在直线l 上,AC ⊥BC ,且AC =BC.△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF =FP.⑴在图①中,请你通过观察、测量、猜测并写出AB 与AP 所满足的数量关系和位置关系; ⑵将△EFP 沿直线l 向左平移到图②的位置时,EP 交AC 于点Q,连接AP,BQ.猜测并写出BQ 与AP 所满足的数量关系和位置关系,并证明你的猜测;⑶将△EFP 沿直线l 向左平移到图③的位置时,EP 的延长线交AC 的延长线于点Q,连接AP,BQ.你认为⑵中所猜测的BQ 与AP 的数量关系和位置关系还成立吗"假设成立,给出证明;假设不成立,请说明理由.B探究角平分线1、如图,△ABC 的外角∠ACD 的平分线CP 与角∠ABC 的平分线BP 相交于点P ,假设∠BPC =40°,那么∠CAP =_____________.2、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC.求证:AM 平分∠DAB3、如图,在△ABC 中,∠BAC =90°,AB =AC,BE 平分∠ABC,CE ⊥BE.求证:CE =12BD4、如图,在△ABC 中,AD 平分∠BAC ,BD =CD 求证:∠B =∠CBB5、如图,在Rt △ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,交BC 于D ,DE ⊥AB 于E ,假设AB =10cm ,那么△DBE 的周长是多少?6、AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,那么△EDF 的面积为多少?7、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:BE =CFB8、在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且∠EDF +∠BAF =180°⑴求证:DE =DF⑵如果把最后一个条件改为AE >AF ,且∠AED +∠AFD =180°,那么结论还成立吗?9、如图,AB =AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 与CF 交于点D求证:点D 在∠BAC 的平分线上.10、如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,以下结论正确的选项是( )A.AB-AD>CB-CDB.AB-AD=CB-CDC.AB-AD<CB-CDD.AB-CD与CB-CD的大小关系不确定11、如图,△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.求证:DC+AE=AC12、如图,△ABC,P为角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。

八年级上册数学第十二章全等三角形解答题 专题训练 4916含解析.docx

八年级上册数学第十二章全等三角形解答题 专题训练 4916含解析.docx

第十二章《全等三角形》解答题专题训练⑷一、解答题1.如图所示,点P位于等边&ABC的内部,且ZACP=ZCBP.(l)ZBPC的度数为°;⑵延长BP至点D,使得PD=PC,连接AD, CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在⑵的条件下,若BD的长为2,求四边形ABCD的面积.2.(1)如图1,在四边形ABCD 中,AB=AD, ZBAD=120°, ZB=ZADC=90°, E、F 分别是BC、CD上的点.且BE+DF=EF.试求ZEAF度数.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明AABE^AADG,再证明AAEF^AAGF,可得求出/EAF度数,他求出的ZEAF度数应是.请你根据他的思路完成论证过程.⑵如图2,若在四边形ABCD中,AB=AD, ZB+ZD=180°. E, F分别是BC, CD上的点,试探究当ZEAF 与ZBAD满足什么关系时有BE+DF=EF,并说明理由.3.(类比学习,从图1中找方法在图2中运用)(1)如图1,在正方形ABCD (四条边都相等,每个内角都是90°)中,E是AB上一点,G 是AD 上一点,F是AD延长线上一点,且ZGCE=45° , BE=DF.求证:GE=BE+GD.(2)如图2,已知:AC 平分ZBAD, CE±AB, CD=CB, ZB+ZD=180°.求证:AE=AD+BE.求证:AABD^ACDB.5.如图,在四边形A3CD中,BC = DC, AC平分ZS4D.(1)当A3>AO时,求证:ZB + ZD = 180°.(2)当AB = AD时,Z。

应满足什么条件时,等式ZB + ZD = 180°才成立?6.如图,CA — CD, Z7 = Z2, ZA — Z£).求ijE:BC = EC7.如图所示,AE1AB, BC1AB, AE BA, ED = AC.求证:EDLAC.8.教材呈现:如图是华师版八年级上册数学教材第96页的部分内容.3.角'F 分线我们已经知道角是轴对称图形,角平分线所在的直 线是角的对称轴.如图13. 5. 4, OC 是Z.4Ofi 的平分线. P 是OC 上任一点,作PD ± 04, P£ J. OB,垂足分别为 点D 和点E.将LA0B 沿OC 对折,我们发现PD 与PE 完全重:合.由此即有:角平分线的性质定理角平分线上的点到角两边 的距离相等.已知:如图13. 5. 4, 0C 是^AOB 的平分线,点P 是 °C 上的任意一点,PD ± 0A, PE x OB.垂足分别为点 0和点E.求证:PD 图中有两个直角三角形PDO ffl 证明这两个三角形全等,便可证得PD =(1)定理证明:请根据教材中的分析,结合图①,写出"角平分线的性质定理"完整的证明 过程.(2) 定理应用:如图②,在ZkABC 中,AD 、BE 分别是ZBAC, ZABC 的角平分线,AD 、BE 的交点为0,连结C0交AB 于点F,求证:ZACF=ZBCF.(3) 如图③,在(2)的条件下,若BE=CE, ZC=30°, Z\ABD 沿AD 翻折使点B 落在边AC上的点M 处,连结DM,其中AB=也,则S ADCM = ________ .图①9,如图,ZV4BC 中,AD_LBC 于 0,若 BD=AD, FD=CD. 求证:BE±AC. 10. 如图,ZA=ZB, AE = BE,点D 在AC 边上,Z1=Z2, AE 和BD 相交于点0.求证:AAEC 丝Z\BED ;PE.图②图③E11.(1)如图1,求证:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)如图2,若ZABC的平分线与4CB外角ZACZ)的平分线相交于点P连接AP ,若ABAC = 62° ,则/PAC 是度.12.如图1,在平面直角坐标系中,P (3, 3),点4、B分别在x轴正半轴和y轴负半轴上,且PA = PB.(1)求证:PA1PB;(2)若点4 (9, 0),则点B的坐标为;(3)当点B在y轴负半轴上运动时,求OA - OB的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.13.已知:如图,在四边形ABCD中,AC是对角线,AD=BC, Z1=Z2.求证:AB=CDB14.如图,点B:E如:F在一条直线上,AB=DE,AC = DF,BE = CF.求证:15.已知一个三角形的两条边长分别是lcm和2cm, 一个内角为40度.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由;(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm, 一个内角为40° ", 那么满足这一条件,且彼此不全等的三角形共有几个.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.16.(本题6分)已知Z\ABC中,AB=AC=5, BC=6, AM平分ZBAC, D为AC的中点,E为BC延长线上一点,且CE=-BC. (1)求ME的长;(2)求证:DB=DE217.如图:△础7中CA=CB, 2/争90°,直线〃经过点G ADLm, BE里田,垂足分别是点D、E(1)在图(甲)中,求证:△46Z2△翊你能探索出线段应?、BE、庞之间的关系吗?(2)在图(乙)中上面的结论还成立吗?为什么?(甲)18.如图,平行四边形ABCD中,点。

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。

全等三角专题训练形

全等三角专题训练形

全等三角形一、选择题1.(2013贵州安顺,5,3分)如图,已知AE =CF ,∠AFD =∠CEB ,那么添加一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠A =∠CB .AD =CBC .BE =DFD .AD ∥BC【方法指导】本题考查了平行线性质,全等三角形的判定的应用,求出AF=CE ,再根据全等三角形的判定定理判断即可.注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS . 【易错警示】注意:不能应用SSA 证明两个三角形全等. 2.(2013山东临沂,10,3分)如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定...成立的是( )A .AB =AD B .AC 平分∠BCD C .AB =BD D .△BEC ≌△DEC【方法指导】通过垂直平分线的性质,得到相等的线段或相等的角,从而找到全等三角形。

3.(2013湖南邵阳,10,3分)如图(三)所示,点E 是矩形ABCD 的边AD 延长线上的一点,且AD =DE ,连结BE 交CD 于点O ,连结AO .下列结论不正确的是( ) A .△AOB ≌△BOC B .△BOC ≌△EOD C .△AOD ≌△EOD D .△AOD ≌△BOC 【方法指导】:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 4.(2013浙江台州,10,4分)已知△A 1B 1C 1与△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B1C1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确, ② 错误B . ①错误, ②正确C .①,② 都错误D . ①,② 都正确【方法指导】本题考查全等三角形的判定定理、相似三角形的判定定理。

初二数学全等三角形经典题型

初二数学全等三角形经典题型

专题训练:全等三角形专题一全等三角形的性质及应用1.如图,△ABC ≌△EBD ,问∠1与∠2相等吗?若相等请证明,若不相等说出为什么?解析:由三角形全等,得到对应角相等,然后再沟通∠1和∠2之间的关系.2.如图,已知△EAB ≌△DCE ,AB 、EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.专题二全等三角形的探究题3.全等三角形又叫合同三角形, 平面内的合同三角形分为真正合同三角形与镜面合同三角形.假设△ABC 和△A 1B 1C 1是全等(合同)三角形,且点A 与A 1对应,点B 与B 1对应,点C 与点C 1对应,当沿周界A →B →C →A 及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形,如图1;若运动方向相反,则称它们是镜面合同三角形,如图2.C 1B 1A 1C B AC 1B 1A 1CB A (1)(2)BA E 21FC D O两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中一个翻折180°,下列各组合同三角形中,是镜面合同三角形的是().DC B A 4.如图所示,A ,D ,E 三点在同一直线上,且△BAD ≌△ACE .(1)试说明BD =DE +CE ;(2)△ABD 满足什么条件时,BD ∥CE ?5.如图所示,△ABC 绕着点B 旋转(顺时针)90°到△DBE ,且∠ABC =90°.(1)△ABC 和△DBE 是否全等?指出对应边和对应角;(2)直线AC 、直线DE 有怎样的位置关系?AB C DE【知识要点】1.能够完全重合的两个图形叫全等形,能够完全重合的两个三角形叫全等三角形.2.全等三角形的对应边相等,对应角相等.【温馨提示】1.利用全等三角形的性质解决问题时,一定要找准对应元素.2.全等三角形的对应边相等、对应角相等、周长相等、面积相等,但周长、面积相等的两个三角形不一定是全等三角形.【方法技巧】1.全等三角形是指能够完全重合的两个三角形,准确的找出两个全等三角形的对应元素是解决全等三角形问题的关键.在表示两个三角形全等时,对应的顶点要写在对应的位置上.2.全等三角形的对应边相等,对应角相等,利用这两个性质可以说明线段或角相等,以及线段的平行或垂直等.3.一个图形经过平移、翻折、旋转后,位置发生了变化,但形状和大小都没有改变,即经过平移、翻折、旋转前后的图形全等.像这样只改变图形的位置而不改变图形的形状和大小的变换叫全等变换,常见的有平移变换,翻折变换,旋转变换.参考答案:1.解:∠1和∠2∵△ABC≌△EBD,∴∠A=∠E(全等三角形对应角相等),又∵∠A+∠AOF+∠1=180°,∠E+∠EOB+∠E=180°(三角形内角和定理),∠AOF=∠BOE(对顶角相等),∴∠1=∠2(等式的性质).2.解:因为AB、EC是对应边,所以∠AEB=∠CDE=100°,又因为∠C=35°,所以∠CED=180°-35°-100°=45°,又因为∠DEB=10°,所以∠BEC=45°-10°=35°,所以∠AEC=∠AEB-∠BEC=100°-35°=65°.3.B提示:A与C中的两个三角形可以通过旋转,使它们重合.D中的两个三角形可以用平移、旋转相结合的方式使之重合.而B中的两个三角形可以用翻折的方法使之重合,故B 中的三角形是镜面合同三角形.4.解:(1)因为△BAD≌△ACE,所以BD=AE,AD=CE,又因为AE=AD+DE=CE+DE,所以BD=DE+CE.(2)∠ADB=90°,因为△BAD≌△ACE,所以∠ADB=∠CEB,若BD ∥CE,则∠CED=∠BDE,所以∠ADB=∠BDE,又因为∠ADB+∠BDE=180°,所以∠ADB=90°.5.解:(1)由题知可得:△ABC≌△DBE,AC和DE,AB和DB,BC和BE是对应边;∠A和∠D,∠ACB和∠DEB,∠ABC和∠DBE是对应角;(2)延长AC交DE于F.∵△ABC≌△DBE∴∠A=∠D,又∵∠ACB=∠DCF(对顶角相等),∠A+∠ACB=90°,∴∠D+∠DCF=90°,即∠AFD =90°.∴AC与DE是垂直的位置关系.。

全等三角形证明题集锦

全等三角形证明题集锦

三角形全等的判定专题训练题1、如图(1):AD ⊥BC ,垂足为D ,BD=CD .求证:△ABD ≌△ACD .2、如图(2):AC ∥EF ,AC=EF ,AE=BD .求证:△ABC ≌△EDF .3、 如图(3):DF=CE ,AD=BC ,∠D=∠C .求证:△AED ≌△BFC .4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE .求证:(1)∠B=∠C ,(2)BD=CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE .求证:AC ⊥CE .(图1)D CB AF E D C B A F E (图3)DC BA E(图4)D CBA EDBA6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上. 求证:(1)AF=EG ,(2)BF ∥DG .7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC . 求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM .8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF .求证:△ABE ≌△DCF .9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF .求证:AM 是△ABC 的中线.10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE . 求证:AB=AC .GF E(图6)D CBA NM(图7)CBA F E (图8)D CBA MF E(图9)C BAE (图10)DC B A11、如图(11)在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点.求证:PA=PD.12、如图(12)AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF.求证:EB∥CF.13、如图(13)△ABC≌△EDC.求证:BE=AD.14、如图(14)在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作BD⊥CB交CF的延长线于点D.(1)求证:AE=CD,(2)若BD=5㎝,求AC的长.15、如图15△ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD=12AB,延长AC到E,使CE=AC.求证:△ABC≌△AED.P4321(图11)DBAOFE(图12)DCBAE(图13)DCBAFE(图14)DC BAE16、如图(16)AD ∥BC ,AD=BC ,AE=CF .求证:(1)DE=DF ,(2)AB ∥CD .17、如图:在△ABC 中,AD ⊥BC 于D ,AD=BD ,CD=DE ,E 是AD 上一点,连结BE 并延长交AC 于点F . 求证:(1)BE=AC ,(2)BF ⊥AC .18、如图:在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 上一点,AE ⊥GD 于E ,BF ⊥CD 交CD 的延长线于F .求证:AE=EF+BF .19、如图:AB=DC ,BE=DF ,AF=DE .求证:△ABE ≌△DCF .20、如图;AB=AC ,BF=CF .求证:∠B=∠C . F (图16)EDCB A F (图17)E DCB AF(图18)EDC BA F(图19)E DC BA FE D C BA21、如图:AB ∥CD ,∠B=∠D ,求证:AD ∥BC .22、如图:AB=CD ,AE=DF ,CE=FB .求证:AF=DE .23、如图:AB=DC ,∠A=∠D .求证:∠B=∠C .24、如图:AD=BC ,DE ⊥AC 于E ,BF ⊥AC 于F ,DE=BF .求证:(1)AF=CE ,(2)AB ∥CD .25、如图:CD ⊥AB 于D ,BE ⊥AC 于E ,OD=OE . 求证:AB=AC .(图21)D CBAF(图22)E D CB A (图23)D CB AF(图24)E D C BA O (图25)ED C BA26、如图:在△ABC 中,AB=AC ,AD 和BE 都是高,它们相交于点H ,且AH=2BD . 求证:AE=BE .27、如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG . 求证:(1)AD=AG ,(2)AD ⊥AG .28、如图:AB=AC ,EB=EC ,AE 的延长线交BC 于D .求证:BD=DC .29、如图:△ABC 和△DBC 的顶点A 和D 在BC 的同旁,AB=DC ,AC=DB ,AC 和DB 相交于O . 求证:OA=OD .H(图26)EDC B A GHF(图27)E D C B AED C BAO DC B A30、如图:AB=AC ,DB=DC ,F 是AD 的延长线上的一点.求证:BF=CF .31、如图:AB=AC ,AD=AE ,AB 、DC 相交于点M ,AC 、BE 相交于点N ,∠DAC=∠EAC . 求证:AM=AN .32、如图:AD=CB ,AE ⊥BD ,CF ⊥BD ,E 、F 是垂足,AE=CF .求证:AB=CD .33、如图:在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ,DF 分别垂直AB ,AC ,垂足为E ,F .求证:EB=FC .34、如图:CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE ,CD 相交于点O . 求证:(1)当∠1=∠2时,OB=OC .(2)当OB=OC 时,∠1=∠2. FD C BAN M ED CBAFED C B AFE DC B AE D A35、如图:在△ABC 中,∠BAC=90°,∠ABD=12∠ABC ,BC ⊥DF ,垂足为F ,AF 交BD 于E .求证:AE=EF .36、如图:在△ABC 中,,O 是∠ABC 与∠ACB 的平分线的交点.求证:点O 在∠A 的平分线上.37、如图:在△ABC 中,∠B ,∠C 相邻的外角的平分线交于点D .求证:点D 在∠A 的平分线上.38、如图:AD 是△ABC 中∠BAC 的平分线,过AD 的中点E 作EF ⊥AD 交BC 的延长线于F ,连结AF .求证:∠B=∠CAF .39、如图:AD 是△ABC 的中线,DE ⊥AC 于E ,DF ⊥AB 于F ,且BF=CE ,点P 是AD 上一点,PM ⊥AC于M ,PN ⊥AB 于N . 求证:(1)DE=DF ,(2)PM=PN .FED C B AO C BA D CB A FE DC B AA40、如图:在△ABC 中,∠A=60°,∠B ,∠C 的平分线BE ,CF 相交于点O . 求证:OE=OF .41、如图:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足为C ,D . 求证:(1)OC=OD ,(2)DF=CF .42、如图:在△ABC 中,∠C=90°,AC=BC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=12BD ,DF ⊥AB 于F .求证:CD=DF .43、如图:AB=FE ,BD=EC ,AB ∥EF .求证:(1)AC=FD ,(2)AC ∥EF ,(3)∠ADC=∠FCD .FOECB AOFEDCBAF ED CB AE D C B A44、如图:AD=AE ,∠DAB=∠EAC ,AM=AN .求证:AB=AC .45、如图:AB=AC ,BD=CE .求证:OA 平分∠BAC .46、如图:AD 是△ABC 的BC 边上的中线,BE 是AC 边上的高,OC 平分∠ACB ,OB=OC .求证:△ABC 是等边三角形.47、如图△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N .(1)求证:MN=AM+BN .(2)若过点C 在△ABC 内作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N ,则AM 、BN 与MN 之间有什么关系?请说明理由. NM ED C BAO ED CBAO ED C B AN MCBA NMCBA。

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)

中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。

专题 全等三角形压轴题(30题)(解析版)

专题 全等三角形压轴题(30题)(解析版)

八年级上册数学《第十二章全等三角形》专题全等三角形压轴题训练(30题)1.(2022秋•忠县期末)在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.【分析】(1)在BC上截取BM=BD,连接FM,证明△BFD≌△BFM,△ECF≌△MCF,进而可以解决问题;(2)根据已知条件证明△BDF≌△CDA,进而可以解决问题.【解答】证明:(1)如图,在BC上截取BM=BD,连接FM,∵∠A=60,∴∠BFC=90°+60°÷2=120°,∴∠BFD=60°,∵BE平分∠ABC,∴∠1=∠2,在△BFD和△BFM中,BD=BM∠1=∠2,BF=BF∴△BFD≌△BFM(SAS),∴∠BFM=∠BFD=60°,DF=MF,∴∠CFM=120°﹣60°=60°,∵∠CFE=∠BFD=60°,∴∠CFM=∠CFE,∵CD平分∠ACB,∴∠3=∠4,又CF=CF,在△ECF和△MCF中,∠CFE=∠CFMFC=FC,∠3=∠4∴△ECF≌△MCF(ASA),∴EF=MF,∴DF=EF;(2)∵BE⊥AC,CD⊥AB,∴∠BDF=∠CDA=90°,∴∠1+∠BFD=90°,∠3+∠CFE=90°,∠BFD=∠CFE,∴∠1=∠3,∵BD=CD,在△BDF和△CDA中,∠BDF=∠CDABD=CD,∠1=∠3∴△BDF≌△CDA(ASA),∴DF=DA,∵∠ADF=90°,∴∠6=45°,∵∠G=∠6,∴∠5=45°∴∠G=∠5,∴GD=DA,∴GD=DF.【点评】本题属于三角形的综合题,考查了全等三角形的判定与性质,角平分线的性质,解决本题的关键是掌握全等三角形的判定与性质.2.如图,△ABC中,AB=AC,D为AC边上一点,E为AB延长线上一点,且CD=BE,DE与BC相交于点F.(1)求证:DF=EF.=5,求EG的长.(2)过点F作FG⊥DE,交线段CE于点G,若CE⊥AC,CD=4,S△EFG【分析】(1)过点D作DH∥AB交BC于点H,根据等腰三角形的性质及平行线的性质得到∠BEF=∠HDF,∠DHC=∠DCH,则DH=CD,结合∠BFE=∠HFD,即可利用AAS判定△BEF≌△HDF,根据全等三角形的性质即可得解;(2)根据三角形的面积公式求解即可.【解答】(1)过点D作DH∥AB交BC于点H,∵AB=AC,∴∠ABC=∠ACB,∵DH∥AB,∴∠DHC=∠ABC,∴∠DHC=∠ACB=∠DCH,∴DH=CD,∵CD=BE,∴DH=BE,∵DH∥AB,∴∠BEF=∠HDF,在△BEF和△HDF中,∠BFE=∠HFD∠BEF=∠HDFBE=DH,∴△BEF≌△HDF(AAS),∴DF=EF;(2)连接DG,∵DF=EF,FG⊥DE,∴S△DFG =S△EFG=5,∴S△DEG=10,∵CE⊥AC,CD=4,∴S△DEG =12EG•CD=12EG×4,∴12EG×4=10,∴EG=5.【点评】此题考查了全等三角形的判定与性质,利用AAS判定△BEF≌△HDF是解题的关键.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点P为BC边上的一个动点,连接AP,以AP为直角边,A为直角顶点,在AP右侧作等腰直角三角形PAD,连接CD.(1)当点P在线段BC上时(不与点B重合),求证:△BAP≌△CAD;(2)当点P在线段BC的延长线上时(如图2),试猜想线段BP和CD的数量关系与位置关系分别是什么?请给予证明.【分析】(1)证得∠BAP=∠CAD,根据SAS可证明△BAP≌△CAD;(2)可得∠BAP=∠CAD,由SAS可证明△BAP≌△CAD,可得BP=CD,∠B=∠ACD,则结论得证.【解答】(1)证明:∵∠BAC=∠PAD=90°,∴∠BAC﹣∠PAC=∠PAD﹣∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS);(2)猜想:BP=CD,BP⊥CD.证明:∵∠BAC=∠PAD=90°,∴∠BAC+∠PAC=∠PAD+∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS),∴BP=CD(全等三角形的对应边相等),∠B=∠ACD(全等三角形的对应角相等),∵∠B+∠ACB=90°,∴∠ACD+∠ACB=90°,即:BP⊥CD.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.4.在△ABC中,∠ABC=90°.点G在直线BC上,点E在直线AB上,且AG与CE相交于点F,过点A 作边AB的垂线AD,且CD∥AG,EB=AD,AE=BC.(1)如图①,当点E在△ABC的边AB上时,求∠DCE的度数;(2)如图②,当点E在线段BA的延长线上时,求证:AB=BG.【分析】(1)如图①,连接ED,根据已知条件得到△ADE≌△BEC(SAS),根据全等三角形的性质得到∠AED=∠BCE,ED=CE,于是得到结论;(2)如图②,连接DE,根据已知条件得到△ADE≌△BEC(SAS),根据全等三角形的性质得到∠AED =∠BCE,ED=CE,根据等腰三角形的性质得到∠EDC=∠ECD,推出AF平分∠DAE,于是得到结论.【解答】解:(1)如图①连接ED,∵AD⊥AB,∴∠DAE=90°,∵∠ABC=90°,∵AD=EB,AE=BC,∴△ADE≌△BEC(SAS),∴∠AED=∠BCE,ED=CE,∴∠AED+∠BEC=∠BCE+∠BEC;∴∠AED+∠CEB=90°,∴∠DEC=90°,∴∠DCE=45°;(2)如图②,连接DE,∵AD⊥AB,∴∠DAE=90°,∵∠ABC=90°,∴∠DAE=∠ABC,∵AD=EB,AE=BC,∴△ADE≌△BEC(SAS),∴∠ADE=∠BEC,ED=CE,∵ED=CE,∴∠EDC=∠ECD,即∠ADE+∠ADC=∠ECD,∴∠BEC+∠DAF=∠AFC,∵∠BEC+∠EAF=∠AFC,∴∠DAF=∠EAF,∴AF平分∠DAE,∵∠DAE=90°,∴∠EAF=45°,∵∠EAF=∠BAG,∴∠BAG=45°,∵∠ABC=90°,∴∠ABG=90°,∴∠BGA=∠BAG,∴AB=BG.【点评】本题考查了平行线的性质,全等三角形的判定和性质,角平分线的定义,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.5.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.【分析】(1)证明Rt△ACB≌Rt△DEB即可解决问题;(2)作BM平分∠ABD交AK于点M,证明△BMK≌△BGK,△ABM≌△DBG,即可解决问题.【解答】证明:(1)在Rt△ACB和Rt△DEB中,AC=DEBC=BE,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,∠MBD=∠GBDBK=BK,∠AKB=∠BKG∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,AB=BD∠ABM=∠DBG,BM=BG∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△BMK≌△BGK.6.(2023春•市南区期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠FAG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.【分析】(1)根据已知条件可得∠BAD=∠CAG,然后利用ASA即可证明△ABF≌△ACG;(2)结合(1)的结论,再证明△AEF≌△AEG,即可解决问题.【解答】(1)证明:∵∠BAC=∠FAG,∴∠BAC﹣∠CAD=∠FAG﹣∠CAD,∴∠BAD=∠CAG,在△ABF和△ACG中,∠BAD=∠CAGAB=AC,∠ABF=∠ACG∴△ABF≌△ACG(ASA);(2)证明:∵△ABF≌△ACG,∴AF=AG,BF=CG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵∠BAD=∠CAG,∴∠CAD=∠CAG,在△AEF和△AEG中,AF=AG∠FAE=∠GAE,AE=AE∴△AEF≌△AEG(SAS).∴EF=EG,∴BE=BF+FE=CG+EG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△AEF≌△AEG.7.(2022秋•新市区校级期中)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【分析】(1)由△BCD和△BEA为等腰三角形,∠ABD=∠EBC,得出∠BCD=∠BEA,由△ABD≌△EBC可得∠BCE=∠BDA,由∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA得出∠BCD+∠DCE=∠DAE+∠BEA,进而得出∠DCE=∠DAE,即可证明AE=EC;(2)过点E作EG⊥BC交BC的延长线于点G,由“HL”得出Rt△BFE≌Rt△BGE和Rt△BFE≌Rt△BGE,从而得出BF=BG,FA=CG,再通过等量代换即可得出结论.【解答】(1)证明:∵BD为△ABC的角平分线,∴∠ABD=∠EBC,在△ABD与△EBC中,AB=EB∠ABD=∠EBD,BD=BC∴△ABD≌△EBC(SAS),∴∠BCE=∠BDA,∵∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∴∠BCD+∠DCE=∠DAE+∠BEA,∵BD=BC,BE=BA,∴△BCD和△BEA为等腰三角形,∵∠ABD=∠EBC,∴∠BCD=∠BEA,∴∠DCE=∠DAE,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=EC=AE;(2)证明:如图,过点E作EG⊥BC交BC的延长线于点G,∵BE平分∠ABC,EF⊥AB,EG⊥BG,∴EF=EG,在Rt△BFE与Rt△BGE中,EF=EGBE=BE,∴Rt△BFE≌Rt△BGE(HL),∴BF=BG,在Rt△AFE与Rt△CGE中,EF=EGEA=EC,∴Rt△AFE≌Rt△CGE(HL),∴FA=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.【点评】本题考查了全等三角形的判定与性质,掌握三角形全等的判定方法是解决问题的关键.8.(2023春•余江区期末)如图,大小不同的两块三角板△ABC和△DEC直角顶点重合在点C处,AC=BC,DC=EC,连接AE、BD,点A恰好在线段BD上.(1)找出图中的全等三角形,并说明理由;(2)当AD=AB=4cm,则AE的长度为 cm.(3)猜想AE与BD的位置关系,并说明理由.【分析】(1)根据SAS证明△CBD≌△CAE即可;(2)根据全等三角形的性质解答即可;(3)根据全等三角形的性质和垂直的定义解答即可.【解答】解:(1)△CBD≌△CAE,理由如下:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△CBD与△CAE中,BC=AC∠BCD=∠ACE,DC=EC∴△CBD≌△CAE(SAS);(2)∵△CBD≌△CAE,∴BD=AE=AD+AB=4+4=8(cm),故答案为:8;(3)AE⊥BD,理由如下:AE与CD相交于点O,在△AOD与△COE中,∵△CBD≌△CAE,∴∠ADO=∠CEO,∵∠AOD=∠COE,∴∠OAD=∠OCE=90°,∴AE⊥BD.【点评】此题考查全等三角形的判定和性质,关键是根据SAS得出△CBD与△CAE全等解答.9.已知,△ABC中,∠ACB=90°,AC=BC,点E是BC上一点,连接AE(1)如图1,当AE平分∠BAC时,EH⊥AB于H,△EHB的周长为10m,求AB的长;(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.【分析】(1)根据等腰三角形的性质得到∠B=45°,根据角平分线的性质得到CE=EH=BH,根据全等三角形的性质得到AH=AC,于是得到结论;(2)先连接AD,依据AAS判定△ADF≌△ABE,得到DF=BE,再判定△BCG≌△DCF,得出DF=BG,进而得到BG=BE.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠B=45°,∵AE平分∠BAC时,EH⊥AB于H,∴CE=EH=BH,在Rt△ACE与Rt△AHE中,CE=EH AE=AE,∴Rt△ACE与Rt△AHE(HL),∴AH=AC,∴AH=BC,∵△EHB的周长为10m,∴AB=AH+BH=BC+BH=10m;(2)如图所示,连接AD,线段AE绕点A顺时针旋转90°得线段AF,则AE=AF,∠EAF=90°,∵AC⊥BD,DC=BC,∴AD=AB,∠ABE=∠ADC=45°,∴∠BAD=90°=∠EAF,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴DF=BE,∠ADF=∠ABE=45°,∴∠FDC=90°,∵BG⊥BC,∴∠CBG=∠CDF=90°,又∵BC=DC,∠BCG=∠DCF,∴△BCG≌△DCF(ASA),∴DF=BG,∴BG=BE.【点评】本题主要考查了旋转的性质,等腰直角三角形的性质以及全等三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造全等三角形,依据全等三角形的对应边相等得出结论.10.在△ABC中,∠ABC=45°,AM⊥MB,垂足为M,点C是BM延长线上一点,连接AC.(1)如图①,点D在线段AM上,且DM=CM.求证:△BDM≌△ACM;(2)如图②,在(1)的条件下,点E是△ABC外一点,且满足EC=AC,连接ED并延长交BC于点F,且F为线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)利用SAS即可证明△BMD≌△AMC.(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠CEF.【解答】(1)证明:∵∠ABM=45°,AM⊥BM,在△BMD和△AMC中,DM=CM∠BMD=∠AMC BM=AM,∴△BMD≌△AMC(SAS);(2)证明:延长EF到点G,使得FG=EF,连接BG.如图所示:∵△BMD≌△AMC∴BD=AC,又∵CE=AC,∴BD=CE,在△BFG和△CFE中,BF=FC∠BFG=∠EFC FG=FE,∴△BFG≌△CFE(SAS),∴BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDF=∠G=∠CEF.∴∠BDF=∠CEF.【点评】本题主要考查全等三角形的判定与性质,等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.11.如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE =AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,∠BAE=∠FAE∠ABE=∠AFE,AE=AE∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=12(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.12.(2022秋•渝北区校级期末)已在等腰Rt△ABC中,∠ABC=90°,AB=CB,D为直线AB上一点,连接CD,过点C作CE⊥CD,且CE=CD,连接DE,交AC于点F.(1)如图1,当点D在线段AB上,且∠DCB=30°时,请探究DF,EF,CF之间的数量关系,并说明理由;(2)如图2,在(1)的条件下,在FC上任取一点G,连接DG,作射线GP使∠DGP=60°,交∠DFG 的平分线于点Q,求证:FD+FG=FQ.【分析】(1)在EF上找到G点使得FG=CF,易证△CFG是等边三角形,可得CG=CF=GF,即可求得∠ECG=∠ACD,即可证明△ECG≌△CDF,可得DF=EG,即可解题;(2)在FP上找到H点,使得FH=FG,易证△FGH是等边三角形,可得∠GHF=∠FGH=60°,GH =FG=FH,即可求得∠FGD=∠QGH,即可证明△DFG≌△QHG,可得DF=QH,即可解题.【解答】(1)解:EF=DF+CF;在EF上找到G点使得FG=CF,如图2,∵∠BCD=30°,∠ACB=45°,∴∠ACD=15°,∴∠CFG=∠CDE+∠ACD=60°,∵FG=CF,∴△CFG是等边三角形,∴CG=CF=GF,∠FCG=60°,∴∠GCE=90°﹣15°﹣60°=15°,在△ECG和△CDF中,CG=CF∠ECG=∠ACD,CE=CD∴△ECG≌△CDF,(SAS)∴DF=EG,∵EF=EG+GF,∴EF=DF+CF;(2)证明:在FQ上找到H点,使得FH=FG,如图3,∵FQ平分∠DFG,∴∠QFG=60°,∵FG=FH,∴△FGH是等边三角形,∴∠GHF=∠FGH=60°,GH=FG=FH,∵∠AFD=∠CDE+∠ACD=60°,∴∠GHQ=∠DFG=120°,∵∠FGD+∠DGH=60°,∠DGH+∠QGH=60°,∠QGH=∠DGF,∴∠FGD=∠QGH,在△DFG和△QHG中,∠DFG=∠QHG=120°FG=HG,∠FGD=∠QGH∴△DFG≌△QHG,(ASA)∴DF=QH,∵FQ=FH+QH,∴FQ=FG+FD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ECG≌△CDF和△DFG≌△QHG是解题的关键.13.(2022春•运城期末)综合与探究如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD于点F.(1)求证:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠AEC=∠ADB,结合平角的定义可得∠DAE+∠DFE=180°,根据∠BFC+∠DFE=180°,可求得∠BFC=∠DAE,即可求解;(3)连接AF,过点A作AJ⊥CF于点J.结合全等三角形的性质利用HL证明Rt△AFJ≌Rt△AFH,Rt△AJE≌Rt△AHD可得FJ=FH,EJ=DH,进而可证明结论.【解答】(1)证明:∵∠BAC=∠DAE.∴∠CAE=∠BAD.在△ACE和△ABD中,AC=AB∠CAE=∠BAD,AE=AD∴△ACE ≌△ABD (SAS );(2)解:∵△ACE ≌△ABD ,∴∠AEC =∠ADB ,∴∠AEF +∠AEC =∠AEF +∠ADB =180°.∴∠DAE +∠DFE =180°,∵∠BFC +∠DFE =180°,∴∠BFC =∠DAE =∠BAC =50°;(3)证明:如图,连接AF ,过点A 作AJ ⊥CF 于点J .∵△ACE ≌△ABD ,∴S △ACE =S △ABD ,CE =BD ,∵AJ ⊥CE ,AH ⊥BD .∴12CE ⋅AJ =12BD ⋅AH ,∴AJ =AH .在Rt △AFJ 和Rt △AFH 中,AF =AF AJ =AH ,∴Rt △AFJ ≌Rt △AFH (HL ),∴FJ =FH .在Rt △AJE 和Rt △AHD 中,AE =AD AJ =AH ,∴Rt △AJE ≌Rt △AHD (HL ),∴EJ =DH ,∴EF +DH =EF +EJ =FJ =FH .【点评】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定条件是解题的关键.14.(2022春•沙坪坝区校级期中)如图,在△ABC 中,∠ABC 、∠ACB 的平分线交于点D ,延长BD 交AC 于E ,G 、F 分别在BD 、BC 上,连接DF 、GF ,其中∠A =2∠BDF ,GD =DE .(1)当∠A =80°时,求∠EDC 的度数;(2)求证:CF =FG +CE .【分析】(1)方法一:先求∠ABC 和∠ACB 的和为100°,再根据角平分线求∠DBC +∠DCB =50°,再根据外角即可解决问题;方法二:在BC 上取点M ,使CM =CE ,证明△CDE ≌△CDM (SAS ),可得DE =DM ,∠DEC =∠DMC ,∠EDC =∠MDC ,证明∠BDM =180°−12∠ABC ﹣∠DMB =180°−12∠ABC ﹣∠AEB =∠A =80°,进而可以解决问题.(2)结合(1)然后证明△DGF ≌△DMF (SAS ),可得GF =MF ,进而可以解决问题.【解答】(1)解:方法一:∵∠A =80°,∴∠ABC +∠ACB =100°,∵BE 平分∠ABC 、CD 平分∠ACB ,∴∠DBC +∠DCB =50°,∴∠EDC =∠DBC +∠DCB =50°;方法二:如图,在BC 上取点M ,使CM =CE ,∵CD 平分∠ACB ,∴∠ACD=∠BCD,在△CDE和△CDM中,CE=CM∠ECD=∠MCDCD=CD,∴△CDE≌△CDM(SAS),∴DE=DM,∠DEC=∠DMC,∠EDC=∠MDC,∵GD=DE,∴GD=MD,∵∠DEC+∠AEB=180°,∠DMC+∠DMF=180°,∴∠AEB=∠DMF,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∴∠BDM=180°−12∠ABC﹣∠DMB=180°−12∠ABC﹣∠AEB=∠A=80°,∴∠EDM=100°,∴∠EDC=50°;(2)证明:∵∠A=2∠BDF,∴∠BDM=2∠BDF,∴∠FDM=∠BDF,在△DGF和△DMF中,DG=DM∠GDF=∠MDFDF=DF,∴△DGF≌△DMF(SAS),∴GF=MF,∴CF=CM+FM=CE+GF.∴CF=FG+CE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解决本题的关键是根据题意准确作出辅助线得到△DGF≌△DMF.15.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)求证:∠BAC+∠FDB=180°;(3)若AB=9.5,AF=1.5,求线段BE的长.【分析】(1)证△ACD≌△AED(AAS),即可得出结论;(2)设∠DAC=∠DAE=α,在AB上截取AM=AF,连接MD,证△FAD≌△MAD(SAS),得FD=MD,∠ADF=∠ADM,再证Rt△MDE≌Rt△BDE(HL),得∠DME=∠B,然后证∠FDB=90°+90°﹣2α=180°﹣2α,即可得出结论;(3)求出MB=AB﹣AM=8,由全等三角形的性质得ME=BE,即可求解.【解答】(1)证明:∵AD平分∠BAC,∴∠DAC=∠DAE,∵DE⊥BA,∴∠DEA=∠DEB=90°,∵∠C=90°,∴∠C=∠DEA=90°,在△ACD和△AED中,∠C=∠DEA∠DAC=∠DAE,AD=AD∴△ACD≌△AED(AAS),∴AC=AE;(2)证明:设∠DAC=∠DAE=α,∵∠C=∠DEA=90°,∴∠ADC=90°﹣α,∠ADE=90°﹣α,则∠FDB=∠FCD+∠DFC=90°+∠DFC,在AB上截取AM=AF,连接MD,如图所示:在△FAD和△MAD中,AF=AM∠DAF=∠DAM,AD=AD∴△FAD≌△MAD(SAS),∴FD=MD,∠ADF=∠ADM,∵BD=DF,∴BD=MD,在Rt△MDE和Rt△BDE中,MD=BDDE=DE∴Rt△MDE≌Rt△BDE(HL),∴∠DME=∠B,∵∠DAC=∠DAE=α,∴∠DAC+∠ADF=∠ADM+∠ADM,在△FAD中,∠DAC+∠ADF=∠DFC,在△AMD中,∠DAE+∠ADM=∠DME,∴∠DFC=∠DME,∴∠DFC=∠B,∵∠C=90°,在△ABC中,∠B=90°﹣2α,∴∠DFC=90°﹣2α,∴∠FDB=90°+90°﹣2α=180°﹣2α,∵∠BAC=∠DAC+∠DAE=2α,∴∠FDB+∠BAC=180°﹣2α+2α=180°;(3)解:∵AF=AM,且AF=1.5,∴AM=1.5,∵AB=9.5,∴MB=AB﹣AM=9.5﹣1.5=8,由(2)得:Rt△MDE≌Rt△BDE,∴ME=BE,∴BE=12BM=4,即BM的长为4.【点评】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD≌△MAD和Rt△MDE≌Rt△BDE是解题的关键.16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接DE,CE.(1)如图,当点D在BC延长线上移动时,求证:BD=CE.(2)设∠BAC=α,∠DCE=β.①当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由.②当点D分别在线段BC上、线段BC的反向延长线上移动时,α与β之间有什么数量关系?请说明理由.【分析】(1)根据SAS证△BAD≌△CAE,可得结论;(2)①由△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】(1)证明:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),(2)解:①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:由(1)知△BAD≌△CAE,∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:i)当D在线段BC上时,如图2,α+β=180°,理由是:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE,∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°,ii)当点D在线段BC反向延长线上时,如图3,α=β.如图3,同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;ii)当点D在线段BC的延长线上时,如图1,α=β.综上,当点D在BC上移动时,α=β或α+β=180°.【点评】本题是三角形的综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(2022春•南海区校级月考)如图,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),试探讨CF与BD的数量关系和位置关系;②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图②中画出相应的图形并说明理由;(2)如图③,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动,试探究CF与BD 的位置关系.【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,根据全等三角形的性质及等腰直角三角形的性质求解即可;②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF 和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF ⊥BD.【解答】解:(1)①CF=BD,CF⊥BD,理由如下:∵∠BAC=90°,△ADF是等腰直角三角形,AB=AC,∴∠CAF+∠CAD=90°,∠BAD+∠CAD=90°,∠B=∠ACB=45°,∴∠CAF=∠BAD,在△ACF和△ABD中,AC=AB∠CAF=∠BAD,AF=AD∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B=45°,∵∠ACB=45°,∴∠FCB=45°+45°=90°,∴CF⊥BD;②①中的结论成立,理由如下:如图②:∵∠BAC=90°,△ADF是等腰直角三角形,AB=AC,∴∠BAC=∠DAF=90°,∠B=∠ACB=45°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,AC=AB∠CAF=∠BAD,AF=AD∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(3)如图③,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,AC=AE∠CAF=∠EAD,AF=AD∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BC.【点评】此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,作出合理的辅助线根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.18.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)△ABC≌△ADE吗?为什么?(2)求∠FAE的度数;(3)延长BF到G,使得FG=FB,试说明CD=2BF+DE.【分析】(1)由“SAS”可证△ABC≌△ADE;(2)由等腰直角三角形的性质可得∠AEC=∠ACE=45°,由全等三角形的性质可得∠ACB=∠AED=45°,即可求解;(3)由全等三角形的性质可得∠ABC=∠ADE,BC=DE,由线段垂直平分线的性质和等腰三角形的性质可得AB=AG=AD,∠ABG=∠AGB=∠ADC,由“AAS”可证△ACD≌△ACG,可得CD=CG,可得结论.【解答】证明:(1)△ABC≌△ADE,理由如下:∵∠BAD=∠CAE=90°,∴∠EAD=∠CAB,在△ABC和△ADE中,AB=AD∠BAC=∠DAE,AC=AE∴△ABC≌△ADE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠AEC=∠ACE=45°,∵△ABC≌△ADE,∴∠ACB=∠AED=45°,∵AF⊥CB,∴∠FAC=45°,∴∠FAE=135°;(3)∵△ABC≌△ADE,∴∠ABC=∠ADE,BC=DE,∴∠ADC=∠ABG,∵AF⊥BF,BF=FG,∴AB=AG,∴AG=AD,∠ABG=∠AGB=∠ADC,又∵∠ACG=∠ACD=45°,∴△ACD≌△ACG(AAS),∴CD=CG,∴CD=BG+CB=2BF+DE.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的判定和性质,线段垂直平分线的性质等知识,证明△ACD≌△ACG是解题的关键.19.Rt△ABC中,∠C=90°,点D在直线AC上,点E在直线AB上,∠ADE=∠ABC.(1)如图1,当点D、E分别在边AC、AB上时,求证:DE⊥AB;(2)如图2,当点D在CA延长线上,点E在BA延长线上时,DE、BC延长线交于点F,作∠EAC的角平分线AG交DF于点G,求证:∠D+2∠DGA=90°;(3)如图3,在(2)的条件下,连接BG交CD于点H,若∠DGH=∠DHG,∠AGB=3∠CBH,求∠DGA的度数.【分析】(1)根据直角三角形的两锐角互余得到∠ABC+∠A=90°,等量代换得出∠ADE+∠A=90°,进而得出∠AED=90°,根据垂直的定义即可得解;(2)过点G作GN∥FB交CD于点N,根据平行线的性质及垂直的定义推出∠AEG=∠ANG=90°,根据角平分线定义得出∠EAG=∠NAG,利用AAS证明△EAG≌△NAG,根据全等三角形的性质及直角三角形的性质即可得解;(3)根据直角三角形的性质及对顶角相等得出∠DGH=90°−13∠AGB,根据等腰三角形的性质推出∠DGH=90°−12∠D,则90°−13∠AGB=90°−12∠D,进而推出∠AGB=32∠D,则∠DGA+32∠D=90°−12∠D,结合(2)求解即可.【解答】(1)证明:∵∠C=90°,∴∠ABC+∠A=90°,∵∠ADE=∠ABC,∴∠ADE+∠A=90°,∴∠AED=90°,∴DE⊥AB;(2)证明:如图2,过点G作GN∥FB交CD于点N,则∠GNC=∠ACB=90°,∴GN⊥CD,∵∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠ADE=∠ABC,∠BAC=∠DAE,∴∠ADE+∠DAE=90°,∴∠DEA=90°,∴BE⊥DF,∴∠AEG=∠ANG=90°,∵AG平分∠EAC,∴∠EAG=∠NAG,在△EAG和△NAG中,∠AEG=∠ANG∠EAG=∠NAGAG=AG,∴△EAG≌△NAG(AAS),∴∠DGA=∠NGA,∴∠DGN=2∠DGA,∵∠D+∠DGN=90°,∴∠D+2∠DGA=90°;(3)解:∵∠AGB=3∠CBH,∴∠CBH=13∠AGB,∵∠DHG=∠CHB=90°﹣∠CBH,∴∠DGH=90°−13∠AGB,∵∠DGH=∠DHG,∴∠DGH=12(180°﹣∠D)=90°−12∠D,∴90°−13∠AGB=90°−12∠D,∴∠AGB=32∠D,∵∠DGH=∠DGA+∠AGB,∴∠DGA+∠AGB=90°−12∠D,∴∠DGA+32∠D=90°−12∠D,∴2∠D+∠DGA=90°,由(2)知,∠D+2∠DGA=90°,∴∠D=∠DGA,∴3∠DGA=90°,∴∠DGA=30°.【点评】此题是三角形综合题,考查了直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质并作出合理的辅助线是解题的关键.20.(2023春•新市区期末)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.(1)如图1,当点D为线段AB上的任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明;(3)如图3,当点D在线段AB的延长线上时,直接写出线段EF、CF、AC之间的数量关系.【分析】(1)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论;(2)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.(3)过D作DH⊥CB交CB的延长线于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.【解答】解:(1)结论:AC=EF+FC.理由如下:过D作DH⊥CB于H,∴∠DHC=∠DHB=90°,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠EFC=∠DHC=90°∠FCE=∠DCH,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠ACB=90°,AC=BC,∴∠B=45°,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CB+HB,∴AC=FC+EF;(2)依题意补全图形,结论:AC=EF﹣CF,理由如下:过D作DH⊥CB交BC的延长线于H,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠FCE=∠DCH∠EFC=∠DHC=90°,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=HB﹣CH,∴AC=EF﹣CF;(3)AC=CF﹣EF.如图3,过D作DH⊥CB交CB的延长线于H,同理可证△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CH﹣BH,∴AC=CF﹣EF.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.21.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F 不重合),并说明理由.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(1)如图1,∠B=∠D=90°,E是BD的中点,AE平分∠BAC,求证:CE平分∠ACD.(2)如图2,AM∥CN,∠BAC和∠ACD的平分线并于点E,过点E作BD⊥AM,分别交AM、CN于B、D,请猜想AB、CD、AC三者之间的数量关系,请直接写出结论,不要求证明.(3)如图3,AM∥CN,∠BAC和∠ACD的平分线交于点E,过点E作不垂直于AM的线段BD,分别交AM、CN于B、D点,且B、D两点都在AC的同侧,(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【分析】(1)过点E作EF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OB=OE,从而求出OE=OD,然后根据到角的两边距离相等的点在角的平分线上证明;(2)如图2,过E作EF⊥AC于F,根据平行线的性质得到BD⊥CD,由角平分线的性质得到BE=EF,证得Rt△AEF≌Rt△ABE,根据全等三角形到现在得到AF=AB,同理CF=CD,等量代换得到结论;(3)成立,如图3,在AC上截取AF=AB,根据角平分线的定义得到∠BAE=∠FAE,推出△ABE≌△AFE,根据全等三角形的性质得到∠AFE=∠ABE,根据角平行线的性质得到∠ABE+∠CDE=180°,求得∠CFE=∠CDE,证得△CEF≌△CDE,根据全等三角形的性质即可得到结论.【解答】解:(1)如图1,过E作EF⊥AC于F,∵∠B=90°,AE平分∠BAC,∴EF=BE,∵E是BD的中点,∴BE=DE,∴EF=DE,∵∠D=90°,∴CE平分∠ACD;(2)如图2,过E作EF⊥AC于F,∵AM∥CN,BD⊥AM,∴BD⊥CD,∵AE平分∠BAC,∴BE=EF,在Rt△AEF与Rt△ABE中,BE=EF AE=AE,∴Rt△AEF≌Rt△ABE,∴AF=AB,同理CF=CD,∵AC=AF+CF,∴AC=AB+CD;(3)成立,如图3,在AC上截取AF=AB,∵AE平分∠BAC,∴∠BAE=∠FAE,在△ABE与△AFE中,AB=AF∠BAE=∠FAEAE=AE,∴△ABE≌△AFE,∴∠AFE=∠ABE,∵AM∥CN,∴∠ABE+∠CDE=180°,∵∠AFE+∠EFC=180°,∴∠CFE=∠CDE,∵CE平分∠ACD,∴∠FCE=∠DCE,在△CEF与△CDE中,∠CFE=∠CDE ∠FCE=∠DCE CE=CE,∴△CEF≌△CDE,∴CF=CD,∵AC=AF+CF,∴AC=AB+CD.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,角平分线的定义,平行线的性质,正确的作出辅助线构造全等三角形是解题的关键.23.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【分析】(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了;(2)解题思路和辅助线的作法与(1)完全一样;(3)结论不成立.结论:AF=DE+EF.同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.【解答】(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,BF=BFBC=BE∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.结论:AF=DE+EF.。

八年级数学 《全等三角形》专题训练 (5)

八年级数学   《全等三角形》专题训练 (5)

八年级数学 《全等三角形》专题训练1. 已知:如图,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD =CE .2. 已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF .求证:AB ∥DC .3. 如图,E 、B 、F 、C 在同一条直线上,若∠D =∠A =90°,EB =FC ,AB =DF .则ΔABC ≌_____,全等的根据是_____.4. 直角三角形全等的判定方法有_____ (用简写).5. 已知如图,CD ⊥AB 于D ,BE ⊥AC 于E ,CD 、BE 交于O ,∠1=∠2.求证:OB =OC .6. 如图,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( )A .90°-∠AB .A ∠-2190oC .180°-2∠AD .A ∠-2145o7. 已知:如图,△AB C .求作:点P ,使得点P 在△ABC 内,且到三边AB 、BC 、CA 的距离相等.作法:8. 已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;9. 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =DC :(2)AD ∥BC .10.如图,已知∠C =90°,AD 平分∠BAC ,BD =2CD ,若点D 到AB 的距离等于5cm ,则BC 的长为_____cm .11.如图,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.12.已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.13.已知:如图,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.14.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.15.已知:如图所示,以B 为中心,将Rt △EBC 绕B 点逆时针旋转90°得到△ABD ,若∠E =35°,求∠ADB 的度数.16.已知:如图,△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F .求证:DE =DF .17.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A ∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?18.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.(2)如图,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.19.已知:如图,在RtΔABC中,∠C=90°,沿着过点B的一条直线BE折叠ΔABC,使C点恰好落在AB边的中点D处,则∠A的度数等于_____.20.已知:如图,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证PA=______,只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______ ∴ △______≌△______ ( ).∴PA =______ ( ).∵PM =PN ( ),∴PM -______=PN -______,即AM =______.21.已知:如图,AD =BC .AC =BD .试证明:∠CAD =∠DBC.22.如图0,△ABC 的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D 、E 、F ,使得△DEF ≌△ABC ,这样的三角形你能找到几个?请一一画出来.23.角的平分线的性质是___________________________.它的题设是_________,结论是_____.24.已知:如图,ΔABC 的外角∠CBD 和∠BCE 的平分线BF 、CF 交于点F.求证:一点F必在∠DAE的平分线上.25.已知:如图,AB=AC,BE=CD.求证:∠B=∠C.26.已知:如图,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.27.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.128.已知:如图,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.29.到角的两边距离相等的点,在_____.所以,如果点P 到∠AOB 两边的距离相等,那么射线OP 是_____.30.能确定△ABC ≌△DEF 的条件是 ( )A .AB =DE ,BC =EF ,∠A =∠EB .AB =DE ,BC =EF ,∠C =∠EC .∠A =∠E ,AB =EF ,∠B =∠DD .∠A =∠D ,AB =DE ,∠B =∠E31.已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).32.已知:如图,在ΔABC 中,BD 、CE 分别平分∠ABC 、∠ACB ,且BD 、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.33.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等34.已知:如图,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.35.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1 B.2 C.3 D.436.如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?37.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.38.如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC39.如图,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?40.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.41.已知:如图,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______.证明:∵BE =CF ( ),∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB∴______≌______( ).∴ ∠A =∠D (______).42.已知:如图,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点,求证:OE=OF .43.已知:如图,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)44.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.45.如图,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.646.如图,要判定ΔABC≌ΔADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B=∠D,AB=AD();(2)_____,_____();(3)_____,_____();(4)_____,_____();(5)_____,_____();(6)_____,_____();(7)_____,_____().47.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF48.“三月三,放风筝”.图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.49.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=ODC.∠CPO=∠DPO D.OC=PC50.如图,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD =6,AD =4,那么BC 等于 ( )A .6B .5C .4D .无法确定51.已知:如图,A 、B 、C 、D 四点在∠MON 的边上,AB =CD ,P 为∠MON 内一点,并且△PAB 的面积与△PCD 的面积相等.求证:射线OP 是∠MON 的平分线.52.如图,CE =DE ,EA =EB ,CA =DB ,求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______,即______=______.在△ABC 和△BAD 中,=______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知∴△ABC ≌△BAD ( ).53.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.54.如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.55.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()56.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.57.已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______,只要证______≌______证明:∵ M 为PQ 的中点(已知),∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知 ∴______≌______( ).∴ ∠PRM =______(______).即RM .58.已知:如图,四条直线两两相交,相交部分的线段构成正方形ABCD .试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.59.已知:如图,△ABC ≌△DEF ,∠A =85°,∠B =60°,AB =8,EH=2.(1)求∠F 的度数与DH 的长;(2)求证:AB ∥DE .60.已知:(1)如图,线段AC 、BD 交于O ,∠AOB 为钝角,AB =CD ,BF⊥AC 于F ,DE ⊥AC 于E ,AE =CF .求证:BO =DO .(2)若∠AOB 为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.61.已知:如图,AC BD .求证:OA =OB ,OC =OD .分析:要证OA =OB ,OC =OD ,只要证______≌______.证明:∵ AC ∥BD ,∴ ∠C =______.在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC ∴______≌______ ( ).∴ OA =OB ,OC =OD ( ).62.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE=4.求BM、CF的长.63.画一画.已知:如图,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.64.下列各组条件中,可保证△ABC与△A'B'C'全等的是()A.∠A=∠A',∠B=∠B',∠C=∠C'B.AB=A'B',AC=A'C',∠B=∠B'C.AB=C'B',∠A=∠B',∠C=∠C'D.CB=A'B',AC=A'C',BA=B'C'65.已知:如图,∠AOB.求作:∠AOB的平分线OC.66.如图,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.67.利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?68.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.69.如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°70.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.71.如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN72.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.73.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形74.在一池塘边有A、B两棵树,如图.试设计两种方案,测量A、B两棵树之间的距离.75.如图,若AB=CD,DE=AF,CF=BE,∠AFB=80°,∠D=60°,则∠B的度数是()A.80° B.60° C.40° D.20°76.如图,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:______________________________________________________,理由是:_____________________________________________________.77.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.78.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC=DF,贝ΔABC和ΔDEF是否全等?答:______,理由是______.79.已知:如图,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ______≌△______,理由为______.80.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()81.如图,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.82.如图,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?83.如图,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.84.如图所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____ (2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.85.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.86.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙87.已知:如图,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D=∠B .分析:要证∠D =∠B ,只要证______≌______证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ).∴ ∠D =∠B (______).88.如图,AB =CD ,AD =CB ,AC 、BD 交于O ,图中有 ( )对全等三角形.A .2B .3C .4D .589._____的两个图形叫做全等形.90.填空(1)三角形的三条角平分线_____它到_____________.(2)三角形内....,到三边距离相等的点是______________. 91.判定两直角三角形全等的“HL ”这种特殊方法指的是_____.92.已知:如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?93.已知:如图,在ΔABC 中,AD 是△ABC 的角平分线,E 、F 分别是AB 、AC 上一点,并且有∠EDF +∠EAF =180°.试判断DE 和DF 的大小关系并说明理由.94.如图,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21 C .mn D .2mn95.请分别按给出的条件画△ABC (标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么? ①∠B =120°,AB =2cm ,AC =4cm ;②∠B =90°,AB =2cm ,AC =3cm ;③∠B =30°,AB =2cm ,AC =3cm ;④∠B =30°,AB =2cm ,AC =2cm ;⑤∠B =30°,AB =2cm ,AC =1cm ;⑥∠B=30°,AB=2cm,AC=1.5cm.96.已知:如图,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD。

全等三角形专题训练习题与答案

全等三角形专题训练习题与答案

1、 如图,已知MB=ND ,∠MBA=∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )(A ) ∠M=∠N (B ) AB=CD(C ) AM=CN(D ) AM ∥CN 2、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍无法判断△ABE ≌△ACD 的是( )(A ) AD=AE(B ) ∠AEB=∠ADC(C ) BE=CD(D ) AB=AC3、已知,如图,M 、N 在AB 上,AC=MP ,AM=BN ,BC=PN 。

求证:AC ∥MP4、已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。

求证:AF=CE 。

5、已知,如图,AB 、CD 相交于点O ,△ACO ≌△BDO ,CE ∥DF 。

求证:CE=DF 。

6、已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求证:BE =CD 。

M P C A B N F E O D C B A A EDC B N M A BD E B D A C F E A C D B7、、已知,如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点,求证:△BCF ≌△DCE8、如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。

① AB=AC ② BD=CD ③ BE=CF9、如图,EG ∥AF ,请你从下面三个条件中任选出两个作为已知条件,另一个作为结论,推出一个正确的命题。

① AB=AC ② DE=DF ③ BE=CF10、如图,四边形ABCD 中,AB=AD ,AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,图中有没有和△ABE 全等的三角形?请说明理由。

G F ED C A B D C FE D C AB G F ED C A B ┐11、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重合), 以CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。

学案04:全等三角形专题训练

学案04:全等三角形专题训练

第一章《全等三角形》专题训练学案班级 姓名 学号一、填空题(每小题3分,共27分)1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)2.如图1,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =______.3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______. 4.如图2,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.5.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.6.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______. 7.如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:______.9.如图6,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.A D E CB 图1A D E CB 图2 A D OC B 图3 AD O C B图4 A DCB图5 A D C B 图6 E A D C B 图7E F二、选择题(每小题3分,共24分)1.如图7,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( )A .PE PF =B .AE AF =C .△APE ≌△APFD .AP PE PF =+ 2.下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个 4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) A .形状相同 B .周长相等 C .面积相等 D .全等5.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 8.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6AD C B图8E FD A C B图9 A D E CB 图10 FG A E C 图11 B A ′E ′ D三、解答题 (本大题共69分)1.(本题8分)(2009年黄石市)如图,C F 、在BE 上,A D AC DF BF EC ∠=∠=,∥,.求证:AB DE =.2.(本题10分)如图,在△ABC 中,∠BAC=90°,AB=AC ,AE 是过A 的一条直线,且B ,C 在AE 的两侧,D 在A ,E 之间,BD ⊥AE 于D ,CE ⊥AE 于E ,请找出BD ,DE ,CE 的关系并证明3.(本题10分)如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在BA 和CA 上取BE CG =; ②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?4.(本题10分)如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB为海岸线,一轮船从码头开出,计划沿∠AOB的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.ABC FEDAD E C B图13F G5.(本题9分) (2014•龙岩)如图16,E 、F 分别是等边三角形ABC 的边AB ,AC 上的点,且BE=AF ,CE 、BF 交于点P . (1)求证:CE=BF ;(2)求∠BPC 的度数.6.(本题10分) 如图17,ABC △中,AB AC ,过点A 作GE BC ∥,角平分线BD 、CF 相交于点H ,它们的延长线分别交GE 于点E 、G ,试在图中找出3对全等三角形,并对其中一对全等三角形给出证明.7.(本题12分)(2014•泸州)已知,如图18,四边形ABCD 中,∠ABC=∠BCD=900,AB=BC ,AE ⊥BF ,垂足为G , 求证:AE=BF .图16图17图18。

全等三角形专题训练

全等三角形专题训练

全等三角形专题训练题1基础练习1.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去2.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )A. ∠M=∠NB. AB=CDC. AM=CND. AM ∥CN3.如图,AB =DB ,BC =BE ,欲证△ABE ≌△DBC ,则需补充的条件是( )A .∠A =∠DB .∠E =∠C C .∠A =∠CD .∠1=∠24.如图4所示,AB 、CD 相交于O ,且AO =OB ,观察图形,有AOC BOD ∠∠,只需补充条件 ,则有△AOC ≌△图4 图55.如图5,在直角三角形ABC 中,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB , P 、Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP = 时,才能使△ABC 和△APQ 全等.6.已知,如图,M 、N 在AB 上,AC=MP ,AM=BN ,BC=PN 。

求证:AC ∥MPPCABNNMABDD7.已知,如图,AB⊥AC,AB=AC,AD⊥AE,AD=AE。

求证:BE=CD。

8.已知,如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE。

求证:AF=CE。

9.如图(10)∠BAC=∠DAE,∠ABD=∠ACE,BD=CE。

求证:AB=AC。

10.如图,已知∠A=∠D=90°,AC=BD.求证:OB=OC.E(图10)DC BAA DB CO12 FEACDBB 11.如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF=EG ,(2)BF ∥DG 。

拓展探索12.如图,AB=AC,AD=AE, ∠BAC=∠DAE=α ,BD 、CE 相交于P.求证:∠1=α13.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C ∠=∠⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明. 已知:求证: 证明: GFE(图6)DCBAB C D E全等三角形专题训练题2基础练习1.下列说法正确的是A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等2.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同一条直线上,如图,可以得到EDC ABC ≅ ,所以ED =AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 的理由是( ) A .SAS B .ASA C .SSS D .HL3.如图2,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____4.如图3,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.图2 图35.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 cm ,则△DE F 中的EF 边等于______.6.如图,A DA D '',分别是锐角三角形ABC 和锐角三角形ABC '''中,BC B C ''边上的高,且C A AC ''=AB A B AD A D ''''==,. 求证:ABC A B C '''△≌△CEABCD'A 'B'D'C7. 如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC 上任一点。

全等三角形专题训练一

全等三角形专题训练一

全等三角形专题训练一1.下列不能推得△ABC和△A′B′C′全等的条件是()A. AB=A′B′,∠A=∠A′,∠C=∠C′B. AB= A′B′,AC=A′C′,BC=B′C′C. AB=A′B′,AC=A′C′,∠B=∠B′D. AB=A′B′,∠A=∠A′,∠B=∠B′2.如图,在Rt△ABC中,AB=AC,D,E是斜边上BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①BF⊥BC;②△AED≌△AEF;③BE+DC=DE;④BE2+DC2=DE2其中正确的个数是()A.1 B.2 C.3 D.43.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为().A.50° B.60° C.55° D.65°4.如图,已知点P是线段AB上一点,∠ABC=∠ABD,在下面判断中错误的是().A.若添加条件,AC=AD,则△APC≌△APDB.若添加条件,BC=BD,则△APC≌△APDC.若添加条件,∠ACB=∠ADB,则△APC≌△APDD.若添加条件,∠CAB=∠DAB,则△APC≌△APD5.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A、1个B、2个C、3个D、4个6.在△ABC和△DEF中,已知AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件是()A、∠A=∠D B、∠C=∠F C、∠B=∠E D、∠C=∠D7.不能判断两个三个角形全等的条件是…A. 两角及一边对应相等B. 两边及夹角对应相等C. 三条边对应相等D. 三个角对应相等8.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠ E的度数为A. 30° B.50° C.60° D.100°9.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD 等于( )A.75° B.57° C.55° D.77°10.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20° B.30° C.35° D.40°11.能使两个直角三角形全等的条件是()A.斜边相等 B.两直角边对应相等C.两锐角对应相等 D.一锐角对应相等12.根据下列条件,能判定△ABC≌△MNP的是()A.AB=MN,BC=NP,∠A=∠MB.∠A=∠M,∠C=∠P,AC=NPC.AB=MN,BC=NP,∠B=∠ND.∠B=∠N,∠A=∠M,AC=NP13.如图,若BC=EC,∠BCE=∠ACD,则添加不能使△ABC≌△DBC的条件是()A.AB=DE B.∠B=∠E C.AC=DC D.∠A=∠D14.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°15.(2015秋•苍溪县期末)工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB 的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL16.(2015秋•灌云县校级月考)下列说法错误的是()A.有两角和其中一角的对边对应相等的两个三角形全等B.全等三角形对应的角平分线相等C.斜边和一个锐角分别相等的两个直角三角形全等D.在△ABC和△A′B′C′中,若AB=BC=CA,A′B′=B′C′=C′A′,则△ABC≌△A′B′C′17.(2010•海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B. C. D.18.如图,AC是△ABC和△ADC的公共边,下列条件中不能判定△ABC≌△ADC的是()A.AB=AD,∠2=∠1B.AB=AD,∠3=∠4C.∠2=∠1,∠3=∠4D.∠2=∠1,∠B=∠D19.(2014•雁塔区校级模拟)如图,由∠1=∠2,BC=DC、AC=EC,最后推出△ABC≌△EDC 的根据是()A.SAS B.ASA C.AAS D.SSS20.(2015秋•鄂州校级月考)已知△ABC与△DEF的三边对应相等,三个角也对应相等,则能判定△ABC与△DEF全等的方法有()种.A.13 B.12 C.11 D.1021.如图,在Rt△ABC中,∠ACB=90°,E是AB上一点,且BE=BC,过E作DE⊥AB交AC于点D,如果AC=5 cm,则AD+DE= ()A. 3 cmB. 4 cmC. 5 cmD. 6 cm22.如图,AB∥DE,CD=BF,若要证明△ABC≌△EDF,还需补充的条件是()A. AC=EFB. AB=EDC. ∠B=∠ED. 不用补充23.如图所示,△ABC≌△BAD,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 6cmB. 4cmC. 7cmD. 不能确定24.如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB 的平分线是同一条射线. 其中正确的个数有()A. 1个B. 2个C. 3个D. 4个25.如图,已知A,D,C,F在同一直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需添加一个条件是( )A. ∠BCA=∠FB. ∠B=∠EC. BC∥EFD. ∠A=∠EDF26.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B. 5C. 4D. 327.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于().A.1cm B.2cm C.3cm D.4cm28.如图,把△ABC沿AD折叠,使点C落在AB上点E处,那么折痕AD是△ABC的()A.角平分线 B.中线 C.高线 D.角平分线29.如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出()个.A.2 B.4 C.6 D.830.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.231.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC32.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个33.AD是△ABC的高,下列能使△ABD≌ACD的条件是()A.BD=AC B.∠B=45°C.∠BAC=90°D.AB=AC34.下列命题是真命题的是()A.如果a2=b2,则a=bB.两边一角对应相等的两个三角形全等C.的算术平方根是9D.x=2,y=1是方程2x﹣y=3的解35.下列说法错误的是()A.全等三角形的对应边相等B.全等三角形的角相等C.全等三角形的周长相等D.全等三角形的面积相等36.下列叙述正确的语句是()A.等腰三角形两腰上的高相等B.等腰三角形的高、中线、角平分线互相重合C.顶角相等的两个等腰三角形全等D.两腰相等的两个等腰三角形全等37.(2015秋•西昌市期末)如图,AC与BD交于O点,∠1=∠2,下列不能使△ABO≌△DCO的条件是()A.∠A=∠D B.AC=BD C.AB=DC D.∠ABC=∠DCB38.(2015春•南京校级期末)下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和② B.②和③ C.①和③ D.①②③39.(2015秋•淮安期末)在△ABC和△DEF中,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组40.(2013•西宁)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等41.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. AC=BDD. ∠ACB=∠DBC42.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE 的是()A. ∠B=∠CB. AD=AEC. ∠BDC=∠CEBD. BD=CE43.如图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=30°,则∠EAC=()A. 27°B. 54°C. 30°D. 55°44.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有()个.A. 1B. 2C. 3D. 445.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A. 2;SASB. 4;ASAC. 2;AASD. 4; SAS46.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB47.到三角形的三边距离相等的点是()A. 三角形三条高的交点B. 三角形三条内角平分线的交点C. 三角形三条中线的交点D. 无法确定48.如图,在□ABCD中,对角线AC、BD相交于点O,过点O与AD上的一点E作直线OE,交BA的延长线于点F.若AD=4,DC=3,AF=2,则AE的长是()A. B. C. D.49.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是()A. SASB. ASAC. AASD. SSS50.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4. 直线4cm上有一点C在点P右侧,PC=4cm,过点C作射线CD⊥,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ=________cm.51.如图,已知∠ABC=∠ABD,则下列条件中,不能..判定△ABC≌△ABD的是()A. AC=ADB. BC=BDC. ∠C=∠DD. ∠CAB=∠DAB52.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=40°,则∠P的度数为()A. 100°B. 110°C. 80°D. 90°53.如图所示,∠1=∠2,BC=EF,欲证△ABC≌△DEF,则须补充一个条件是()A. AB=DEB. ∠ACE=∠DFBC. BF=ECD. ∠ABC=∠DEF54.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为()A. 2B. 3C. 2或3D. 1或555.如图,BD是∠ABC平分线,DE AB于E,AB=36cm,BC=24cm,S△ABC=120cm2,DE长是()A. 4cmB. 4.8cmC. 5cmD. 无法确定56.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②全等三角形的中线相等;③如果直角三角形的两边长分别为3、4,那么斜边长为5;④两条直角边对应相等的两个直角三角形全等.其中正确的说法有()A. 1个 B. 2个 C. 3个 D. 4个57.如图7,小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A. 第4块B. 第3块C. 第2块D. 第1块58.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E 且AB=6 cm,则△DEB的周长为()A. 40 cmB. 6 cmC. 8 cmD. 10 cm59.如图,AB∥CD,且AB=CD,则△ABE≌△CDE的根据是()A. 只能用ASAB. 只能用SASC. 只能用AASD. 用ASA或AAS60.使两个直角三角形全等的条件是()A. 一个锐角对应相等B. 两个锐角对应相等C. 一条边对应相等D. 斜边及一条直角边对应相等61.∠AOB是平角,从点O引射线OC,使∠AOC:∠BOC=1:5,OD是∠BOC的角平分线,则∠C的度数是()A. 50B. 65C. 70D. 7562.用直尺和圆规作一个角等于已知角.如图,能得出∠A′O′B′=∠AOB的依据是()A. SASB. SSSC. AASD. ASA63.不能判断两个三角形全等的条件是().A.两角及一边对应相等 B.两边及夹角对应相等C.三条边对应相等 D.三个角对应相等64.下列说法正确的是().A.所有正方形都是全等图形B.面积相等的两个三角形是全等图形C.所有半径相等的圆都是全等图形D.所有长方形都是全等图形65.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是().A.①②③ B.①③④ C.①②④ D.①②③④66.如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为().A.6 B.4 C.23 D.567.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB、下列确定P 点的方法正确的是() 21*cnjy*comA.P为∠A、∠B两角平分线的交点B.P为AC、AB两边上的高的交点C.P为∠A的角平分线与AB的垂直平分线的交点D.P为AC、AB两边的垂直平分线的交点68.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是()A.SSS B.ASA C.SSA D.HL69.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=4,则△BCE的面积等于()A、32B、16C、8D、470.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图. 若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为( )A. 110°B. 125°C. 130°D. 155°71.如图,正方形ABCD中,点E,F分别在AD,DC上,且△BEF为等边三角形,下列结论:①DE=DF;②∠AEB=75°;③BE=2DE;④AE+FC=EF.其中正确的结论个数有()A. 1个B. 2个C. 3个D. 4个72.如图,在△ABC中,∠BAC=60°,BC=18,D是AB上一点,AC=BD,E是CD的中点.则AE的长是( ).A. 12B. 9C. 9√3D. 以上都不对73.如果△ABC≌△DEF,且△ABC的周长是90cm,AB=30cm,DF=20cm,那么BC的长等于____cm.74.如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠DAC=______°.75.如图,以A、B两点为其中两个顶点作位置不同的等边三角形,最多可以作出_____个.76.判定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成______;______;______;______;______.77.如图,已知AC=BD,∠A=∠D,请你添一个直接条件,,使△AFC≌△DEB.78.如图,在△ABC中,∠ACB=90°,∠A=50°.将△ACD沿CD翻折,点A恰好落在BC边上的A′处,则∠A′DB=.79.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=32,∠A=68,AB=13cm,则∠F= 度,DE= cm。

全等三角形的判定与性质专题训练

全等三角形的判定与性质专题训练

全等三角形判定与性质专题训练一、全等三角形实际应用问题1如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB 这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()A. SASB. ASAC. SSS D .AAS2.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ3、如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A、SSSB、SASC、ASAD、HL4、如图:工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,得到∠AOB 的平分线OP,做法中用到三角形全等的判定方法是()A、SSSB、SASC、ASAD、HL5、如图,有两个长度相等的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面的夹角∠ABC+∠DFE= 度6、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是:( )A、带①去,B、带②去C 、带③去D 、①②③都带去二、证两次全等相关问题1:如图:已知AB=AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F为垂足,求证: CF =DF2:如图已知AD ∥BC ,AB ∥CD BF=DE ,求证:AE=CF ,3:如图AB ⊥AC,AD ⊥AE AB=AD,BC=DE,求证AM=AN三、探索两线段的关系问题1.如图,在△ABC 中,∠ACB=90°,AC=BC ,延长AB至点D ,连接CD ,以CD 为直角边作等腰直角三角形CDE ,其中∠DCE=90°,连接BE 交CD 于点F ,试探索线段BE 与AD 的关系,并证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学周末作业(满分50分)
班级: 姓名: 学号: 分数:
一.选择题(共5小题,每题3分,共15分)
1.如图,△ACB ≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
2.如图,△ABC≌△DEF,BE=4,AE=1,则DE
的长是( )
3 . 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使
△ABC≌△DEF,还需要添加一个条件是( )
第(1)图 第(2)图 第(3)图
4.下列命题中,是真命题的是( )
5.下列选项中,可以用来证明命题“若a 2>1,则a >1”是假命题的
反例是( )
二.填空题(共3小题,每题3分,共9分)
1.已知关于x 的分式方程=1有增根,则a= _________ . 2.命题“全等三角形的面积相等” 的逆命题为
它的逆命题是 _________ 命题.(填入“真”或“假”)
3.已知三条不同的直线a 、b 、c 在同一平面内,如果b⊥a,c⊥a,
那么 .
三.解答题(共3小题,共26分)
1.先化简,再求值 :(
2224)44122x
x x x x x x x -÷+----+ 其中x=1 (8分)
2. 如图,E 、F 是四边形ABCD 的对角线BD 上的两点,AD=BC,AE=CF ,
BE=DF .求证:(1)△ADE≌△CBF.(2)AD ∥C B (8分)
3近几年高速公路建设有较大的发展,有力地促进了经济建设.欲修建的某高速
公路要招标.现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,费用为120万元;若甲单独做20天后剩下的工程由乙做,还需40天才能完成,这样所需费用110万元,问:(1)甲、乙两队单独完成此项工程,各需多少天?
(2)甲、乙两队单独完成此项工程,各需多少万元? (10分)。

相关文档
最新文档