2018年四川省成都七中高考数学一诊试卷与解析word(文科)

合集下载

2018届四川省成都市第七中学高三上学期一诊模拟数学(文)试题 Word版 含答案

2018届四川省成都市第七中学高三上学期一诊模拟数学(文)试题 Word版 含答案

2018届四川省成都市第七中学高三上学期一诊模拟数学(文)试题一、单选题1.已知集合2{|},{|320},A x x a B x x x =<=-+<若,A B B ⋂=则实数a 的取值范围是()A. 1a <B. 1a ≤C. 2a >D. 2a ≥ 【答案】D【解析】集合{}{}{}2|,|320|12A x x aBx xx x x =<=-+<=<<, ,A B B B A ⋂=∴⊆ ,则2a ≥,故选D.2.复数2iz i+=(i 为虚数单位)的虚部为() A. 2- B. i C. 2i - D. 1【答案】A 【解析】复数()i 2i 2i 12i i i i-++==--⋅的虚部为2-,故选A. 3.“直线m 与平面α内无数条直线平行”是“直线m //平面α”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件 【答案】C【解析】由“直线l 与平面α内无数条直线都平行”不能推出“直线l 与平面α平行”,因为直线l 可能在平面α内,故充分性不成立,由“直线l 与平面α平行”,利用直线和平面平行的定义可得“直线l 与平面α内无数条直线都平行”,故必要性成立,故“直线l 与平面α内无数条直线都平行“是”直线l 与“平面α平行”的必要非充分条件,故选C.4.设实数,x y 满足约束条件4{2 ,10x y x y x +≤-≤-≥则目标函数1yz x =+的取值范围是() A. ][13,0,22⎛⎤-∞-⋃ ⎥⎝⎦ B. 13,42⎡⎤⎢⎥⎣⎦ C. 11,24⎡⎤-⎢⎥⎣⎦ D. 13-,22⎡⎤⎢⎥⎣⎦【答案】D【解析】由约束条件4{2 10x y x y x +≤-≤-≥作出可行域如图,联立1{2x x y =-=,得()1,1A -,联立1{ 4x x y =+=,得()1,3B ,由()011y y z x x -==+--,而13,,22PA PB k k =-=∴目标函数1y z x =+的取值范围是13,22⎡⎤-⎢⎥⎣⎦,故选D. 【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移、旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 5.《周易》历来被人们视为儒家经典之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数表示如下:以此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A. 18B. 17C. 16D. 15 【答案】B【解析】由题意类推,可知六十四卦中的“屯”卦符号 “”表示二进制数的010001,转化为十进制数的计算为01234512020202120217⨯+⨯+⨯+⨯+⨯+⨯=,故选B.6.已知2tan ,tan .34m m παα⎛⎫=+= ⎪⎝⎭则m =() A. -6或1 B. -1或6 C. 6 D. 1【答案】A【解析】由题意, 2tan +1tan ,tan tan =,3441tan m m ππααααα⎛⎫⎛⎫=+=+ ⎪ ⎪-⎝⎭⎝⎭,,123,613mm mm +∴=∴=--或1,故选A. 7.如图所示的程序框图,若输入8,3,m n ==则输出的S 值为()A. 56B. 336C. 360D. 1440 【答案】B【解析】执行程序框图,可得8,3m n ==8,1k s ==不满足于条件1k m n <-+,8s =, 7k =,不满足于条件1k m n <-+, 56s =, 6k =,不满足于条件1k m n <-+,336s =, 5k =,满足条件1k m n <-+,退出循环,输出S 值为336故选B8.已知等差数列{}n a 的前n 项和为,n S 912216,4,2a a a =+=则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为() A.1112 B. 1011 C. 910 D. 89【答案】B【解析】设等差数列{}n a 的公差为d ,912216,42a a a =+= , ()11118116{24a d a d a d +=++∴+= 解得12a d ==()21222n n n S n n n -=+⨯=+()111111n S n n n n ∴==-++ 1210111111111101122310111111S S S ⎛⎫⎛⎫⎛⎫∴+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选B点睛:设等差数列{}n a 的公差为d ,由已知条件912216,42a a a =+=及等差数列通项公式得到()11118116{24a d a d a d +=+++=,解得1a 和d 的值,可得n S ,再利用裂项求和的方法即可得出答案。

四川省成都市2018届高三第一次诊断性检测数学(文)答案

四川省成都市2018届高三第一次诊断性检测数学(文)答案

������������������3 分 ������������������5 分 ������������������6 分
( ) ) , 由( 可知平面 A 2 1 B C ⊥ 平面 P A C. ∴B O ⊥ 平面 P A C.
∵ 平面 A B C ∩ 平面 P A CB C, 1 ∴ VB-POQ = S△PQO ������B O 3
1 1. A
1 2. B
第 Ⅱ 卷( 非选择题 , 共9 0 分) ( 二、 填空题 : 每小题 5 分 , 共2 0 分)
( ) 解: 设数列 { 1 7. 1 a n } 的公差为d . 解得 d =2, a1 =1.
( 三. 解答题 : 共7 0 分)
3+ 3 . 1 3.2 ; 1 4. 1 2; 1 5. 6; 1 6. 4
������������������8 分

∵ VP-OBQ =VB-POQ ,
1 1 1 × S△PAO ×4= ×3×4=4. 3 2 3
������������������1 1分 ������������������1 2分
a 2 2 ( )∵ 解: 2 0. 1 c = 3, =2, a2 = b +c , b
∴ a =2, b =1.
∴ 四面体 P -O B Q 的体积为 4.
( ) 易知当直线l 的斜率为 0 时 , 不合题意 . 2 联立
∴ 椭圆的标准方程为
x2 2 +y =1. 4
������������������5 分 ������������������6 分
, 当直线l 的斜率不为 0 时 , 设直线l 的方程为x =m M( x1 , N( x2 , . y +1, y1) y2)

2018年四川省成都七中高考高三数学一诊试卷及解析高三文科数学

2018年四川省成都七中高考高三数学一诊试卷及解析高三文科数学

2018年四川省成都七中高考数学一诊文科数学试题及解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1B.iC.﹣2iD.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A. B. C. D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18B.17C.16D.156.(5分)已知.则m=()A.﹣6或1B.﹣1或6C.6D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56B.336C.360D.14408.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A. B. C. D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A. B.﹣ C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A. B.8π C. D.4π11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2B.ln2C.2﹣3D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1B.C.2D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a =.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n为数列{a n}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊文科数学试题及解析参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1B.a<1C.a≥2D.a>2【试题解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1B.iC.﹣2iD.﹣2【试题解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【试题解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A. B. C. D.【试题解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18B.17C.16D.15【试题解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1B.﹣1或6C.6D.1【试题解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56B.336C.360D.1440【试题解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A. B. C. D.【试题解答】解:由及等差数列通项公式得a1+5d=12,又a2=4=a1+d,∴a1=2=d,∴S n==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A. B.﹣ C.﹣1 D.1【试题解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A. B.8π C. D.4π【试题解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2B.ln2C.2﹣3D.e2﹣3【试题解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1B.C.2D.【试题解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=2.【试题解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n为数列{a n}的前n项和,则S7的值为﹣14.【试题解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【试题解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【试题解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【试题解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【试题解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,由AM∥BC,得M到BC的距离为,∴S==2,△BCM∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【试题解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【试题解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【试题解答】解:(1)当k=2时,f(x)=2e x﹣x2,则f'(x)=2e x﹣2x,令h(x)=2e x﹣2x,h'(x)=2e x﹣2,由于x∈(0,+∞)故h'(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f'(x)=2e x﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【试题解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【试题解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.。

2018年四川省成都市高考数学一诊试卷(文科)

2018年四川省成都市高考数学一诊试卷(文科)

2018年四川省成都市高考数学一诊试卷(文科)一、选择题:本大题共12小题,每小题5分,60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集U=R,集合A={x|x≤﹣2},B={x|x≥﹣1},则∁U(A∪B)=()A.(﹣2,﹣1)B.[﹣2,﹣1]C.(﹣∞,﹣2]∪[﹣1,+∞)D.(﹣2,1)2.(5分)已知平面向量=(1,1),=(t+1,1).若⊥,则实数t的值为()A.﹣2B.0C.2D.﹣13.(5分)空气质量指数AQI是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区12月1日至12月24日连续24天的空气质量指数AQI,根据得到的数据绘制出如图所示的折线图.则下列说法错误的是()A.该地区在12月2日空气质量最好B.该地区在12月24日空气质量最差C.该地区从12月7日到12月12日AQI持续增大D.该地区的空气质量指数AQI与这段日期成负相关4.(5分)在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.(5分)“更相减损术”是我国古代数学名著《九章算术》中的算法案例,其对应的程序框图如图所示.若输入的x,y,k的值分别为4,6,1,则输出的k的值为()A.2B.3C.4D.56.(5分)若关于x的不等式x2+2ax+1≥0在[0,+∞)上恒成立,则实数a的取值范围为()A.(0,+∞)B.[﹣1,+∞)C.[﹣1,1]D.[0,+∞)7.(5分)已知tanα=,α∈(0,π),则cos(α+)的值为()A.B.C.D.8.(5分)如图,已知双曲线E:﹣=1(a>0,b>0),长方形ABCD的顶点A,B 分别为双曲线E的左,右焦点.且点C,D在双曲线E上,若AB=6,BC=,则双曲线E的离心率为()A.B.C.D.9.(5分)已知三棱锥P﹣ABC中,P A⊥底面ABC,∠BAC=60°,P A=2,,若该三棱锥的顶点都在同一个球面上,则该球的表面积为()A.B.C.8πD.12π10.(5分)已知定义在R上的奇函数f(x)的图象关于直线x=1对称,且当x∈[0,1]时,f(x)=log2(x+1),则下列不等式正确的是()A.f(log27)<f(﹣5)<f(6)B.f(log27)<f(6)<f(﹣5))C.f(﹣5)<f(log27)<f(6)D.f(﹣5)<f(6)<f(log27)11.(5分)设函数f(x)=sin(2x+).若x1x2<0,且f(x1)+f(x2)=0,则|x2﹣x1|的取值范围为()A.(,+∞)B.(,+∞)C.(,+∞)D.(,+∞)12.(5分)若关于x的方程有三个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.718为自然对数的底数,则的值为()A.e B.1﹣m C.1+m D.1二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知复数z=(i为虚数单位),则|z|=.14.(5分)若实数x,y满足线性约束条件,则x+2y的最大值为.15.(5分)如图,在直角梯形ABDE中,已知∠ABD=∠EDB=90°,C是BD上一点,AB=3﹣,∠ACB=15°,∠ECD=60°,∠EAC=45°,则线段DE的长度为.16.(5分)已知正方形ABCD的边长为2,对角线AC,BD相交于点O,动点P满足||=1,若=m+n,其中m,n∈R .则的最大值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.(12分)已知等差数列{a n}的前n项和为S n,a2=3,S4=16,n∈N*.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.18.(12分)某部门为了解一企业在生产过程中的用水量情况,对每天的用水量作了记录,得到了大量该企业的日用水量的统计数据.从这些统计数据中随机抽取12天的用水量的数据作为样本,得到的统计结果如表:[70,80)[80,90)[90,100]日用水量(单位:吨)频数36m频率n0.5p(1)求m,n,p的值;(2)已知样本中日用水量在[80,90)内的这六个数据分别为83,85,86,87,88,89.从这六个数据中随机抽取两个,求抽取的两个数据中至少有一个大于86的概率.19.(12分)如图,在四面体P ABC中,P A=PC=AB=BC=5,AC=6,PB=4,线段AC,AP的中点分别为O,Q.(1)求证:平面P AC⊥平面ABC;(2)求四面体P﹣OBQ的体积.20.(12分)已知椭圆的右焦点为,长半轴长与短半轴长的比值为2.(1)求椭圆C的方程;(2)设经过点A(1,0)的直线l与椭圆C相交于不同的两点M,N.若点B(0,1)在以线段MN为直径的圆上,求直线l的方程.21.(12分)已知函数f(x)=(x﹣1)e x﹣mx2+2,其中m∈R,e=2.71828…为自然对数的底数.(1)当m=1时,求函数f(x)的单调区间;(2)当常数m∈(2,+∞)时,函数f(x)在[0,+∞)上有两个零点x1,x2(x1<x2),证明:x2﹣x1>ln.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分。

四川省成都市第七中学2018年高三上学期一诊模拟数学文试卷含解析

四川省成都市第七中学2018年高三上学期一诊模拟数学文试卷含解析

四川省成都市第七中学2018届高三上学期一诊模拟试卷数学文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合若则实数的取值范围是()A. B. C. D.【答案】D【解析】集合,,则,故选D.2. 复数(为虚数单位)的虚部为()A. B. C. D.【答案】A【解析】复数的虚部为,故选A.3. “直线与平面内无数条直线平行”是“直线//平面”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】C【解析】由“直线与平面内无数条直线都平行”不能推出“直线与平面平行”,因为直线可能在平面内,故充分性不成立,由“直线与平面平行”,利用直线和平面平行的定义可得“直线与平面内无数条直线都平行”,故必要性成立,故“直线与平面内无数条直线都平行“是”直线与“平面平行”的必要非充分条件,故选C.4. 设实数满足约束条件则目标函数的取值范围是()A. B. C. D.【答案】D【解析】由约束条件作出可行域如图,联立,得,联立,得,由,而目标函数的取值范围是,故选D.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移、旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 《周易》历来被人们视为儒家经典之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤000 0震001 1坎010 2兑011 3以此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A. 18B. 17C. 16D. 15【答案】B【解析】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数的,转化为十进制数的计算为,故选B.6. 已知则()A. -6或1B. -1或6C. 6D. 1【答案】A【解析】由题意,,或,故选A.7. 如图所示的程序框图,若输入则输出的值为()A. 56B. 336C. 360D. 1440【答案】B【解析】执行程序框图,可得不满足于条件,,,不满足于条件,,,不满足于条件,,,满足条件,退出循环,输出值为故选8. 已知等差数列的前项和为则数列的前10项和为()A. B. C. D.【答案】B【解析】设等差数列的公差为,解得故选点睛:设等差数列的公差为,由已知条件及等差数列通项公式得到,解得和的值,可得,再利用裂项求和的方法即可得出答案。

【数学】四川省成都市第七中学2018届高三上学期一诊模拟数学文试卷含解析

【数学】四川省成都市第七中学2018届高三上学期一诊模拟数学文试卷含解析

四川省成都市第七中学2018届高三上学期一诊模拟试卷数学文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合若则实数的取值范围是()A. B. C. D.【答案】D【解析】集合,,则,故选D.2. 复数(为虚数单位)的虚部为()A. B. C. D.【答案】A【解析】复数的虚部为,故选A.3. “直线与平面内无数条直线平行”是“直线//平面”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】C【解析】由“直线与平面内无数条直线都平行”不能推出“直线与平面平行”,因为直线可能在平面内,故充分性不成立,由“直线与平面平行”,利用直线和平面平行的定义可得“直线与平面内无数条直线都平行”,故必要性成立,故“直线与平面内无数条直线都平行“是”直线与“平面平行”的必要非充分条件,故选C.4. 设实数满足约束条件则目标函数的取值范围是()A. B. C. D.【答案】D【解析】由约束条件作出可行域如图,联立,得,联立,得,由,而目标函数的取值范围是,故选D.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移、旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 《周易》历来被人们视为儒家经典之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数表示如下:以此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A. 18B. 17C. 16D. 15【答案】B【解析】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数的,转化为十进制数的计算为,故选B.6. 已知则()A. -6或1B. -1或6C. 6D. 1【答案】A【解析】由题意,,或,故选A.7. 如图所示的程序框图,若输入则输出的值为()A. 56B. 336C. 360D. 1440【答案】B【解析】执行程序框图,可得不满足于条件,,,不满足于条件,,,不满足于条件,,,满足条件,退出循环,输出值为故选8. 已知等差数列的前项和为则数列的前10项和为()A. B. C. D.【答案】B【解析】设等差数列的公差为,解得故选点睛:设等差数列的公差为,由已知条件及等差数列通项公式得到,解得和的值,可得,再利用裂项求和的方法即可得出答案。

四川省成都七中2018届高三上学期入学考试数学文试题【word】

四川省成都七中2018届高三上学期入学考试数学文试题【word】

四川省成都七中2018届高三上学期数学入学考试题(文科)、选择题:本大题共 12个小题,每小题5分,共60分.1•已知集合A x | x 3n 2 , B 6,8,10,12,14 ,则集合Al B () A . 8,10 B . 8,12 8,14 D . 8,10,14 ・32复数 一2i 1 (i 为虚数单位)的虚部是 () 1 . A . -i 5 C . 3•如下程序框图的功能是:给出以下十个数: 5,9,80,43, 95,73,28,17,60,36,把大于 60的/掐沿忙/> 0?数找出来,则框图中的①②应分别填入的是() A . x 60?, i x 60?, X 60?, i i 160?, i i 14.圆C 的圆心在 y 轴正半轴上, 2且与X 轴相切,被双曲线X2y 31的渐近线截得的弦长为 「3,则圆C 的方程为()C. X 25.已知直线m,n 和平面 ,使m 成立的一个充分条件是()A . m n, n / /B . m / / n, n C.m n,n6.某几何体的三视图如图所示, 该几何体的体积为12 C. 3 7将函数f x sin 2x 的图象向左平移 个单位长度后,所得函数 3 g X 的图象关于原点对称, 则函数 0, 的最大值为() 2 汇,则其正视图中X 的值为()3C. 2 8.某个家庭有 2个孩子,其中有一个孩子为女孩, 则另一个孩子也为女孩的概率为() 1C.—4 9.在 ABC 中, BC 5,G,O 分别为 ABC 的重心和外心,且 uur OG uuu BC 5,贝V ABC 的形状是() A .锐角三角形 B .钝角三角形 C.直角三角形 D .上述三种情况都有可能 10.已知点F 「F 2为双曲线2 2 x y 2 21a 0,b 0的左右焦点,P 为右支上一点,记点 P 到右准线的距离为d ,若a b| PF i |,| PF ? |,d 依次成等差数列,则双曲线离心率的取值范围为() A . 1,2 ,3 11, .3 C. 2 .3, D .3,2 311.对正整数n2,有抛物线y2 2n 1 x ,过P 2n ,0任作直线I 交抛物线于A n ,B,n 两点,设数列a n 中,a 14,uuuu uuuu且 a OAn且a n n°B n (其中n1 1,n N ) ,则数列 a n 的前n 项和T n()A . 4nB . 4nC. 2n n 1 D . 2n n1取值范围是 ___________15.喜欢甜品不喜欢甜品 合计 南方学生 60 20 80 北方学生 10 10 20 合计7030100P K 2k 。

四川省成都七中2018届高三上学期入学考试数学文试题 含答案 精品

四川省成都七中2018届高三上学期入学考试数学文试题 含答案 精品

成都七中2018届高三上学期数学入学考试题(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}|32,6,8,10,12,14A x x n B ==+=,则集合AB =()A .{}8,10B .{}8,12C . {}8,14D .{}8,10,142.复数321i i -(i 为虚数单位)的虚部是()A .15iB .15 C . 15i - D .15- 3.如下程序框图的功能是:给出以下十个数:5,9,80,43,95,73,28,17,60,36,把大于60的数找出来,则框图中的①②应分别填入的是()A .60?1,x i i >=+B . 60?1,x i i <=+C . 60?1,x i i >=-D .60?1,x i i <=-4.圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线2213y x -=的渐近线截得的弦长C 的方程为()A .()2211x y +-= B . (223x y +-=C. 221x y ⎛+-= ⎝⎭D .()2224x y +-= 5.已知直线,m n 和平面,αβ,使m α⊥成立的一个充分条件是()A . ,//m n n α⊥B .//,m n n α⊥ C. ,m n n α⊥⊂ D .//,m ββα⊥6.某几何体的三视图如图所示,该几何体的体积为12π+,则其正视图中x 的值为()A . 5B . 4 C. 3 D .2 7.将函数()()sin 2||2f x x π⎛⎫=+<⎪⎝⎭ϕϕ的图象向左平移3π个单位长度后,所得函数()g x 的图象关于原点对称,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦的最大值为()A .0B .12.1 8.某个家庭有2个孩子,其中有一个孩子为女孩,则另一个孩子也为女孩的概率为() A .13 B .23 C. 14 D .129.在ABC ∆中,5,,BC G O =分别为ABC ∆的重心和外心,且5OG BC ⋅=,则ABC ∆的形状是()A .锐角三角形B .钝角三角形 C.直角三角形 D .上述三种情况都有可能10.已知点12,F F 为双曲线()222210,0x y a b a b-=>>的左右焦点,P 为右支上一点,记点P到右准线的距离为d ,若12||,||,PF PF d 依次成等差数列,则双曲线离心率的取值范围为()A.(1,2+ B.(C. )2⎡++∞⎣D.+11.对正整数n ,有抛物线()2221y n x =-,过()2,0P n 任作直线l 交抛物线于,n n A B 两点,设数列{}n a 中,14a =-,且1n nn OA OB a n ⋅=-(其中1,n n N >∈),则数列{}n a 的前n 项和n T =()A .4nB .4n - C. ()21n n + D .()21n n -+12.若以曲线()y f x =上任意一点()11,M x y 为切点作切线1l ,曲线上总存在异于M 的点()22,N x y ,以点N 为切点作切线2l ,且12//l l ,则称曲线()y f x =具有“可平行性”,现有下列命题:①函数()22ln y x x =-+的图象具有“可平行性”; ②定义在()(),00,-∞+∞的奇函数()y f x =的图象都具有“可平行性”; ③三次函数()32f x x x ax b =-++具有“可平行性”,且对应的两切点()11,M x y ,()22,N x y 的横坐标满足1223x x +=; ④要使得分段函数()()()110x x m x x f x e x ⎧+<⎪=⎨⎪-<⎩的图象具有“可平行性”,当且仅当1m =. 其中的真命题个数有()A . 1B . 2 C. 3 D .4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知0,,a x y >满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a = .14.如图,在正方形ABCD 中,已知2,AB M =为BC 的中点,若N 为正方形内(含边界)任意一点,则AM AN ⋅的取值范围是 .15.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异” .(填有或没有) 附:()()()()()22n ad bc K a b c d a c b d -=++++16.设等差数列{}n a 的前n 项和为n S ,且2n n n c S na a -=+(c 是常数,*n N ∈),26a =,又122n n n a b +-=,数列{}n b 的前n 项和为n T ,若22n T m >-对*n N ∈恒成立,则正整数m 的最大值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .18. 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为1502m 时的销售价格.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii nii tty y b tt==--=-∑∑,a y bt =-19. 在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,2,1,AC AD CD DE AB G =====为AD 中点,F 是CE 的中点.(1)证明://BF 平面ACD (2)求点G 到平面BCE 的距离.20. 已知定点()1,0F ,定直线:4l x =,动点P 到点F 的距离与到直线l 的距离之比等于12. (1)求动点P 的轨迹E 的方程;(2)设轨迹E 与x 轴负半轴交于点A ,过点F 作不与x 轴重合的直线交轨迹E 于两点,C B ,直线,AB AC 分别交直线l 于点,N M .试问:在x 轴上是否存在定点Q ,使得0QM QN ⋅=?若存在,求出定点Q 的坐标;若不存在,请说明理由.21. 设函数()sin ln sin g x x x θθ=--在[)1,+∞单调递增,其中()0,θπ∈. (1)求θ的值; (2)若()()221x f x g x x -=+,当[]1,2x ∈时,试比较()f x 与()1'2f x +的大小关系(其中()'f x 是()f x 的导函数),请写出详细的推理过程; (3)当0x ≥时,()11x e x kg x --≥+恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t =⎧⎨=⎩αα(t 为参数),l 与C 交于,B A两点,||AB =,求l 的斜率.23.选修4-5:不等式选讲已知不等式2|x 3||x 4|2a -+-<, (Ⅰ)若1a =,求不等式的解集;若已知不等式的解集不是空集,求a 的取值范围.试卷答案一、选择题1-5: CBAAB 6-10: CDABA 11、12:DB二、填空题13.1214. []0,6 15. 有 16. 2 三、解答题17. 解:(1)因为()2sin 8sin2B A C +=,21cos sin ,22B B AC B π-=+=-,所以sin 44cos B B =-,又因为22sin cos 1B B +=,解得15cos 17B =或cos 1B =(舍),故15cos 17B =. (2)15cos 17B =,故8sin 17B =,1sin 2S ac B =,得172ac =,所以()222219a c a c ac +=+-=,由余弦定理:2b ==.18.答案:(1)数据对应的散点图如图所示:(2)5111095i i x x ===∑,()2511570xx i i l x x==-=∑,23.2y =,()()51308xy i ii l x xy y ==--=∑设所求回归直线方程为y bx a =+,则3080.19621570xy xxl b l ==≈,30823.2109 1.81661570a y bx =-=-⨯≈,故所求回归直线方程为0.1962 1.8166y x =+.(3)据(2),当2150x m =时,销售价格的估计值为:0.1962150 1.816631.2466y =⨯+=(万元)19. 解:解法一(空间向量法)以D 点为原点建立如图所示生物空间直角坐标系,使得x 轴和z 轴的正半轴分别经过点A 和点E ,则各点的坐标为()()()()0,0,0,2,0,1,0,0,2,D B E C ,(1)点F 应是线段CE 的中点,下面证明:设F 应是线段CE 的中点,则点F的坐标为12⎛⎫ ⎪ ⎪⎝⎭,∴32BF ⎛⎫=- ⎪ ⎪⎝⎭,又∵()0,0,2DE =为平面ACD 的一个法向量,且0BF DE ⋅=,∴//BF 平面ACD .(2)420. (1)设点(),P x y12=,化简整理,得22143x y +=,即为动点P 的轨迹E 的方程.(2)根据题意可设直线BC 的方程为1x my =+,代入22143x y +=,整理得()2234690my my ++-=,设()()()112201,,1,,,0B my y C my y Q x ++,则122634m y y m +=-+,122934y y m =-+.又易知()2,0A -,所以直线AB 的方程为:()1123y y x my =++,直线AC 的方程为:()2223y y x my =++,从而得1164,3y M my ⎛⎫ ⎪+⎝⎭,2264,3y N my ⎛⎫ ⎪+⎝⎭,所以()()()21201236433y y QM QN x my my ⋅=-+++()()21202121236439y y x m y y m y y =-++++()22022293634496393434m x m m m m m ⎛⎫- ⎪+⎝⎭=-+⎛⎫⎛⎫-+-+ ⎪ ⎪++⎝⎭⎝⎭()2049x =--.所以当()2049x -=,即01x =或07x =时,0QM QN ⋅=,故在x 轴上存在定点()1,0Q 或()7,0,使得0QM QN ⋅=.21. 解:(1)∵()g x 在[)1,+∞单调递增,∴()1'sin 0g x xθ=-≥在[)1,+∞上恒成立,即[)()1sin 1,x x θ≥∈+∞恒成立.∵当1x ≥时,11x≤, ∴sin 1θ≥,又()0,θπ∈,∴0sin 1θ<≤,∴sin 1θ=,∴2πθ=.(2)由(1)可知()ln 1g x x x =--,∴()()221x f x g x x -=+221ln 1x x x x =-+--,∴()23122'1f x x x x =--+,∴()()23312'ln 2f x f x x x x x x-=-++--,令()()23312ln ,2h x x x H x x x x =-=+--,∴()()241326'10,'x x h x H x x x--+=-≥=,∴()h x 在[]1,2上单调递增,∴()()11h x h ≥=,令()2326x x x φ=--+,则()x φ在[]1,2单调递减,∵()()11,210φφ==-,∴()01,2x ∃∈,使得()H x 在()01,x 单调递增,在()0x ,2单调递减,∵()()110,22H H ==-,∴()()122H x H ≥=-,∴()()()()()()min min 1'2f x f x h x H x h x H x -=+≥+=,又两个函数的最小值不同时取得:()()1'2f x f x ->,即:()()1'2f x f x >+.(3)∵()11x e x kg x --≥+恒成立,即:()()ln 1110x e k x k x ++-+-≥恒成立,令()()()ln 111x F x e k x k x =++-+-,则()()'11x kF x e k x =+-++,由(1)得:()()1g x g ≥即()ln 101x x x --≥≥,∴()()1ln 10x x x +≥+≥,即:()()ln 10x x x ≥+≥,∴1x e x ≥+,∴()()()'111kF x x k x ≥++-++,当1k =时,∵0x ≥,∴()()()'111kF xx k x ≥++-++11201x x ≥++-≥+,∴()F x 单调递增,∴()()00F x F ≥=,符合题意;当()0,1k ∈时,()()111ky x k x =++-++在[)0,+∞上单调递增,()()()()'111101kF x x k k k x ≥++-+≥+-+=+,∴()F x 单调递增,∴()()00F x F ≥=,符合题意;当0k ≤时,()'F x 在[)0,+∞上是增函数,∴()()()'111kF x x k x ≥++-++()()'0110F k k ≥=+-+=,∴()F x 单调递增,∴()()00F x F ≥=,符合题意;当1k >时,()()2''1x kF x e x ≥-+,∴()''F x 在[)0,+∞上单调递增,又()''010F k =-<,且()''00,x F →+∞>,∴()''F x 在()0,+∞存在唯一零点0t ,∴()'F x 在()00,t 单调递减,在()0,t +∞单调递增,∴当()00,t x ∈时,()()''00F x F <=,∴()F x 在()00,t 单调递减,∴()()''00F x F <=,不合题意,综上:1k ≤.22. 解:(Ⅰ)由()22625x y ++=得2212110x y x +++=,∵222,cos x y x =+=ρρθ,∴212cos 110++=ρρθ,故C 的极坐标方程为212cos 110++=ρρθ.(Ⅱ)由cos sin x t y t =⎧⎨=⎩αα(t 为参数)得tan y ax =,即tan 0ax y -=,圆心()-6,0C ,半径5r =,圆心C 到直线l的距离2d ===,即=,解得tan =αl的斜率为. 23. 答案:(Ⅰ)2|x 3||x 4|2-+-<,①若4x ≥,则3102,4x x -<<,∴舍去.②若34x <<,则22x -<,∴34x <<.③若3x ≤,则81032,33x x -<∴<≤.综上,不等式的解集为8|43x x ⎧⎫<<⎨⎬⎩⎭. (Ⅱ)设()2|x 3||x 4|f x =-+-,则()()310,42,34,1103,3x x f x x x f x x x -≥⎧⎪=-<<∴≥⎨⎪-≤⎩,121,2a a >>.。

成都七中18届高三文科数学上学期半期考试试卷

成都七中18届高三文科数学上学期半期考试试卷

A.18
B.20
C.22
D.24
4. 如图,设 A、B 两点在河的两岸,一测量者在 A 的同侧河岸选定一
点 C,测出 AC 的距离为 50 米,∠ACB=45°,∠CAB=105°,则 A、B
两点的距离为
A. 50 2 米 B. 50 3 米 C. 25 2 米 D. 25 2 米 2
5. 若等比数列 an的前 5 项的乘积为 1, a6 8 ,则数列an的公比为
(θ 为参数).
(1) 设 P 为线段 MN 的中点,求直线 OP 的平面直角坐标方程; (2) 判断直线 l 与圆 C 的位置关系
23. (本题满分 10 分)选修 4-5:不等式选讲 已知函数 f (x)=m-|x-1|,m∈R,且 f (x+2)+ f (x-2)≥0 的解集为[-2,4]. (1) 求 m 的值; (2) 若 a,b,c 为正实数,且1a+21b+31c=m,求证:a+2b+3c≥3.
成都七中 2017—2018 学年度上期高 2018 届半期考试
数学试卷(文科)
考试时间:120 分钟 满分:150 分
第 I 卷(选择题,共 60 分)
一. 选择题(本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一 项是符合题目要求的)
1. 已知集合 A x | x 2, B x | x x2 ,则 A B
A.
1 2
cm3
B.
2 3
cm3
C.
5 6
cm3
D.
7 8
cm3
9. 把函数 y sin2(x π ) cos2(x π ) 的图像向左平移 ( >0)个单位就得到了一个奇函数的

成都七中2018届高三文科数学迎考试题卷1参考答案

成都七中2018届高三文科数学迎考试题卷1参考答案

2018届高三数学迎考试题卷(1)文答案一、BDCBD BBDAA CB二、13、 002 14、162(,)33-- 15、11988- 16三、17、(1)因为点()1,n n a S +,在直线220x y +-=上,所以1220n n a S ++-=, 当1n >时, 1220n n a S -+-=,两式相减得11220n n n n a a S S +--+-=,即1220n n n a a a +-+=,当1n =时,所以{}n a 是首项11a =,公比的等比数列,数列{}n a 的通项公式为214n n --+++ 314n n --+++ 3144334n n --+++⨯13434n n -+>⨯18、(1)由题设AB =1,AC =2,BC ,可得222AB BC AC +=,所以AB BC ⊥,由PA ⊥平面ABC ,BC 、AB ⊂平面ABC ,所以PA BC ⊥,PA AB ⊥,所以PB =又由于PA∩AB = A ,故BC ⊥平面PAB,PB ⊂平面PAB,所以BC PB ⊥,所以ACB ∆, PAC ∆, PAB ∆, PCB ∆均为直角三角形,且PCB ∆的面积最大,122PCB S ∆==.( 2)证明:在平面ABC 内,过点B 作BN ⊥ AC ,垂足为N .在平面PAC 内,过点N 作MN ∥ PA 交PC 于点M ,连接BM . 由PA ⊥平面ABC 知PA ⊥ AC ,所以MN ⊥ AC .由于BN ∩MN = N ,故AC ⊥平面MBN .又BM ⊂平面MBN ,所以AC ⊥ BM .因为ABN ∆与ACB ∆相似, 12AB AB AN AC ⋅==, 从而NC = AC - AN = . 由MN ∥ PA ,得= = .19、由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10. (Ⅰ)()170=5627482971010x ⨯+⨯+⨯+⨯+==甲(环), ()1702467282921071010x =⨯+++⨯+⨯+⨯+==乙(环) ()()2221(5767210S =⨯-+-⨯+甲 ()()()2227748797-⨯+-⨯- ) ()1=42024 1.210⨯++++= ()()2221(274710S =⨯-+-+乙()()()22267772872-+-⨯+-⨯ ()()22972107)+-⨯+- ()125910289 5.410=⨯++++++= 根据以上的分析与计算填表如下:(Ⅱ)①∵平均数相同, 22S S <甲乙,∴甲成绩比乙稳定.②∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.③甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.20.(1)设所求椭圆方程为,由题意知2223c a b =-=,① 设直线与椭圆的两个交点为()()1122,,,A x y B x y ,弦AB 的中点为E ,由,两式相减得:,两边同除以2212x x -,得,即.因为椭圆被直线1y x =-截得的弦的中点E 的横坐标为,所以E ,所以, 1AB k =,所以,即224a b =,②由①②可得224,1a b ==,所以所求椭圆的方程为.(2)设()()1122,,,P x y Q x y , PQ 的中点为()00,N x y , 联立,消y 可得: ()222148440k x kmx m +++-=,此时()2216410k m ∆=+->,即2241k m +>① 又,,PQ 为对角线的菱形的一顶点为()1,0M -,由题意可知MN PQ ⊥,即整理可得: 2314km k =+②由①②可得,, 设O 到直线l 的距离为d ,则,当的面积取最大值1,此时k =∴直线方程为.21、(1)函数()f x 的定义域为()0,+∞,()21'1a a f x x x+=+- ()()21x a x x --= 1)当01a <<时,由()'0f x >得, 0x a <<或1x >,由()'0f x <得1a x <<, 故函数()f x 的单调递增区间为()0,a 和()1,+∞,单调减区间为(),1a2)当时1a =, ()'0f x ≥, ()f x 的单调增区间为()0,+∞(2)先考虑“至少有一个()00,x ∈+∞,使()00f x x >成立”的否定“()0,x ∀∈+∞, ()f x x ≤恒成立”。

四川省成都七中2017-2018学年高三上学期入学数学试卷(文科) Word版含解析

四川省成都七中2017-2018学年高三上学期入学数学试卷(文科) Word版含解析

2017-2018学年四川省成都七中高三(上)入学数学试卷(文科)一.选择题.(本大题共12小题,每题5分,共60分,每小题的四个选项中仅有一项符合题目要求)1.复数=()A.﹣1+i B.1﹣i C.﹣1﹣i D.1+i2.sin210°的值为()A.B.﹣C.D.﹣3.数列{a n}满足a n=,a1=,则a3=()+1A.1 B.2 C.﹣1 D.4.已知集合A={x||x|<1},B={x|2x>1},则A∩B=()A.(﹣1,0)B.(﹣1,1)C.(0,)D.(0,1)5.从区间[0,]内随机取一个实数x,则sinx<的概率为()A.B.C.D.6.已知p:函数f(x)=|x+a|在(﹣∞,﹣1)上是单调函数;q:函数g(x)=log a(x+1)(a>0且a≠1)在(﹣1,+∞)上是增函数,则¬p成立是q成立的()A.充分不必要B.必要不充分C.充要条件 D.既不充分也不必要7.按右图所示的程序框图运算,若输入x=200,则输出k 的值是()A.3 B.4 C.5 D.68.已知不等式组所表示的平面区域为D,若直线y=kx﹣3与平面区域D有公共点,则k的取值范围是()A.[﹣3,3] B.(﹣∞,]∪[,+∞)C.(﹣∞,﹣3]∪[3,+∞)D.[]9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.10.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()A.B.C. D.11.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.12.若0<<a<b,当a﹣取最小值时,a+b=()A.4 B.5 C.6 D.7二.填空题.(本大题共4小题,每题5分,共20分)13.设函数f(x)=x4+ax,若曲线y=f(x)在x=1处的切线斜率为1,那么a=______.14.已知△ABC中,A、B、C的对边分别为a、b、c,且a2=b2+c2+bc,则A=______.15.设α、β、γ为彼此不重合的三个平面,l为直线,给出下列命题:①若α∥β,α⊥γ,则β⊥γ,②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ③若直线l与平面α内的无数条直线垂直则直线l与平面α垂直,④若α内存在不共线的三点到β的距离相等.则平面α平行于平面β上面命题中,真命题的序号为______.(写出所有真命题的序号)16.已知函数f(x)为偶函数,又在区间[0,2]上有f(x)=,若F(x)=f(x)﹣a在区间[﹣2,2]恰好有4个零点,则a的取值范围是______.三.解答题.(解答应写出文字说明,证明过程或演算步骤)17.为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们5(2)若从上表的第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.18.已知=(2cosx,sinx),=(cosx,sinx﹣cosx),设函数f(x)=•.(1)求f(x)图象的对称轴方程;(2)求f(x)在[,π]上的值域.19.如图,五面体A﹣BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角A﹣BC﹣C1为直二面角.(Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由;(Ⅱ)当AB1∥平面BDC1时,求二面角C﹣BC1﹣D余弦值.20.已知函数f(x)=lnx﹣ax2+(a﹣2)x.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求函数y=f(x)在[a2,a]上的最大值.21.如图,O为坐标原点,A和B分别是椭圆C1: +=1(a>b>0)和C2: +=1(m>n>0)上的动点,满足•=0,且椭圆C2的离心率为.当动点A在x轴上=的投影恰为C的右焦点F时,有S△AOF(1)求椭圆C的标准方程;(2)若C1与C2共焦点,且C1的长轴与C2的短轴等长,求||2的取值范围.选修4-4:坐标系与参数方程22.已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=2cos(θ+).(1)求圆心C的直角坐标;(2)由直线l上的点向圆C引切线,求切线长的最小值.(选修4-5;不等式选讲)23.设a,b,c 均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.2017-2018学年四川省成都七中高三(上)入学数学试卷(文科)参考答案与试题解析一.选择题.(本大题共12小题,每题5分,共60分,每小题的四个选项中仅有一项符合题目要求)1.复数=()A.﹣1+i B.1﹣i C.﹣1﹣i D.1+i【考点】复数代数形式的乘除运算.【分析】据所给的复数的表示形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理出最简形式,化简复数为a+bi(a、b∈R)形式.【解答】解:复数=故选C2.sin210°的值为()A.B.﹣C.D.﹣【考点】运用诱导公式化简求值.【分析】所求式子中的角度变形后,利用诱导公式化简即可求出值.【解答】解:sin210°=sin=﹣sin30°=﹣.故选B=,a1=,则a3=()3.数列{a n}满足a n+1A.1 B.2 C.﹣1 D.【考点】数列递推式.=,a1=,分别取n=1,2即可得出.【分析】利用a n+1=,a1=,【解答】解:∵a n+1∴a2===2,∴a3===﹣1,故选:C.4.已知集合A={x||x|<1},B={x|2x>1},则A∩B=()A.(﹣1,0)B.(﹣1,1)C.(0,)D.(0,1)【考点】交集及其运算.【分析】利用绝对值不等式性质求出集合A,利用指数函数的性质求出集合B,再由交集定义能求出A∩B.【解答】解:∵集合A={x||x|<1}={x|﹣1<x<1},B={x|2x>1}={x|x>0},∴A∩B={x|0<x<1}=(0,1).故选:D.5.从区间[0,]内随机取一个实数x,则sinx<的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,本题属于几何概型的运用,已知区间的长度为,满足sinx<的x∈[0,],求出区间长度,由几何概型公式解答.【解答】解:在区间[0,]上,当x∈[0,]时,sinx,由几何概型知,符合条件的概率为.故选:B.6.已知p:函数f(x)=|x+a|在(﹣∞,﹣1)上是单调函数;q:函数g(x)=log a(x+1)(a>0且a≠1)在(﹣1,+∞)上是增函数,则¬p成立是q成立的()A.充分不必要B.必要不充分C.充要条件 D.既不充分也不必要【考点】必要条件、充分条件与充要条件的判断.【分析】分别求出p,q成立时的a的范围,从而得到¬p成立时a>1是q的充要条件.【解答】解:由p成立,则a≤1,由q成立,则a>1,所以¬p成立时a>1是q的充要条件.故选C.7.按右图所示的程序框图运算,若输入x=200,则输出k 的值是()A.3 B.4 C.5 D.6【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x,k的值,当x=3215,k=4时满足条件x≥2018,退出循环,输出x的值为3215,k的值为4.【解答】解:模拟执行程序框图,可得x=200,k=0x=401,k=1不满足条件x≥2018,x=803,k=2不满足条件x≥2018,x=1607,k=3不满足条件x≥2018,x=3215,k=4满足条件x≥2018,退出循环,输出x的值为3215,k的值为4,故选:B.8.已知不等式组所表示的平面区域为D,若直线y=kx﹣3与平面区域D有公共点,则k的取值范围是()A.[﹣3,3] B.(﹣∞,]∪[,+∞)C.(﹣∞,﹣3]∪[3,+∞)D.[]【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:作出不等式组对应的平面区域,y=kx﹣3过定点D(0,﹣3),则k AD=,k BD==﹣3,要使直线y=kx﹣3与平面区域M有公共点,由图象可知k≥3或k≤﹣3,故选:C9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】该几何体可视为正方体截去两个三棱锥,可得其体积.【解答】解:该几何体可视为正方体截去两个三棱锥,如图所示,所以其体积为.故选D.10.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()A.B.C. D.【考点】数量积表示两个向量的夹角.【分析】利用向量模的平方等于向量的平方得到两个向量的关系,利用向量的数量积公式求出两向量的夹角.【解答】解:依题意,∵|+|=|﹣|=2||∴=∴⊥,=3,∴cos<,>==﹣,所以向量与的夹角是,故选C11.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.12.若0<<a<b,当a﹣取最小值时,a+b=()A.4 B.5 C.6 D.7【考点】基本不等式在最值问题中的应用;函数的最值及其几何意义.【分析】由题意可得b﹣a>0,2a﹣b>0,从而化简a﹣=(2a﹣b)+(b﹣a)+,再利用基本不等式化简即可.【解答】解:∵0<<a<b,∴b﹣a>0,2a﹣b>0;∴a﹣=(2a﹣b)+(b﹣a)+≥2+=++≥3;(当且仅当2a﹣b=b﹣a=1时,等号同时成立);解得,a=2,b=3;故a+b=5;故选B.二.填空题.(本大题共4小题,每题5分,共20分)13.设函数f(x)=x4+ax,若曲线y=f(x)在x=1处的切线斜率为1,那么a=﹣3.【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求得切线的斜率,解方程可得a=﹣3.【解答】解:函数f(x)=x4+ax的导数为f′(x)=4x3+a,即有在x=1处的切线斜率为4+a=1,解得a=﹣3.故答案为:﹣3.14.已知△ABC中,A、B、C的对边分别为a、b、c,且a2=b2+c2+bc,则A=.【考点】余弦定理.【分析】由a2﹣bc=b2+c2,结合余弦定理:b2+c2﹣a2=2bccosA,求出cosA,即可求得A.【解答】解:由a2=b2+c2+bc,得:b2+c2﹣a2=﹣bc,由余弦定理得:b2+c2﹣a2=2bccosA,∴cosA=﹣,又A为三角形ABC的内角,∴A=.故答案为:.15.设α、β、γ为彼此不重合的三个平面,l为直线,给出下列命题:①若α∥β,α⊥γ,则β⊥γ,②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ③若直线l与平面α内的无数条直线垂直则直线l与平面α垂直,④若α内存在不共线的三点到β的距离相等.则平面α平行于平面β上面命题中,真命题的序号为①②.(写出所有真命题的序号)【考点】平面与平面之间的位置关系;空间中直线与平面之间的位置关系.【分析】逐一分析各个选项,利用线面、面面之间的关系,应用有关定理推论,举反例等手段,排除错误选项,得到真命题.【解答】解:因为如2个平行平面中有一个和第三个平面垂直,则另一个也和第三个平面垂直,故①正确.若2个平面都和第三个平面垂直,则他们的交线也和第三个平面垂直,故②正确.直线l与平面α内的无数条直线垂直,也不能保证直线l与平面α内的2条相交直线垂直,故③不正确.α内存在不共线的三点到β的距离相等,这3个点可能在2个相交平面的交线的两侧,故④不正确.综上,正确答案为①②.16.已知函数f(x)为偶函数,又在区间[0,2]上有f(x)=,若F(x)=f(x)﹣a在区间[﹣2,2]恰好有4个零点,则a的取值范围是(4,5).【考点】函数奇偶性的性质.【分析】作出函数y=f(x)在[﹣2,2]的图象,根据图象,可得a的取值范围【解答】解:作出函数y=f(x)在[﹣2,2]的图象,根据图象,F(x)=f(x)﹣a在区间[﹣2,2]恰好有4个零点,则a的取值范围是(4,5).故答案为:(4,5).三.解答题.(解答应写出文字说明,证明过程或演算步骤)17.为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们5(2)若从上表的第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布表.【分析】(1)候车时间少于10分钟的人数所占的比例,用60乘以比例,即得所求.(2)从这6人中选2人作进一步的问卷调查,用列举法列出上述所有可能情况共有15种,用列举法求得抽到的两人恰好自不同组的情况共计8种,由此求得抽到的两人恰好自不同组的概率.【解答】解:(1)由频率分布表可知:这15名乘客中候车时间少于10分钟的人数为8,所以,这60名乘客中候车时间少于10分钟的人数大约等于60×=32人.…(2)设第三组的乘客为a,b,c,d,第四组的乘客为1,2;“抽到的两个人恰好来自不同的组”为事件A.…所得基本事件共有15种,即:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12…其中事件A包含基本事件a1,a2,b1,b2,c1,c2,d1,d2,共8种,…由古典概型可得P(A)=…18.已知=(2cosx,sinx),=(cosx,sinx﹣cosx),设函数f(x)=•.(1)求f(x)图象的对称轴方程;(2)求f(x)在[,π]上的值域.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;正弦函数的图象.【分析】本题考了平面向量与三角函数的结合运算,由平面向量数量积运算求出函数f(x),将函数进行化简,结合三角函数的图象和性质即可求函数f(x)图象的对称方程;根据x∈[,π],求f(x)的最大值和最小值,即可得f(x)的值域.【解答】解:(1)已知=(2cosx,sinx),=(cosx,sinx﹣cosx),则函数f(x)=•=2cos2x+==cos(2x++(1)由:(k∈Z)解得:x=(k∈Z)所以:函数f(x)的对称轴方程为:x=(k∈Z).(2)由(1)得:f(x)=所以:当x时,解得:当时,有=.当时,有.∴f(x)的最大值和最小值故x∈[,π],f(x)的f(x)的值域是19.如图,五面体A﹣BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角A﹣BC﹣C1为直二面角.(Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由;(Ⅱ)当AB1∥平面BDC1时,求二面角C﹣BC1﹣D余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)由题意连接B1C交BC1于O,连接DO由于四边形BCC1B1是矩形且O为B1C 中点又D为AC中点,从而DO∥AB1,在由线线平行,利用线面平行的判定定理即可;(II)由题意建立空间直角坐标系,先求出点B,A,C,D及点C1的坐标,利用先求平面的法向量,在由法向量的夹角与平面的夹角的关系求出二面角的余弦值的大小.【解答】解:(Ⅰ)当D为AC中点时,有AB1∥平面BDC1,证明:连接B1C交BC1于O,连接DO∵四边形BCC1B1是矩形∴O为B1C中点又D为AC中点,从而DO∥AB1,∵AB1⊄平面BDC1,DO⊂平面BDC1∴AB1∥平面BDC1(Ⅱ)建立空间直角坐标系B﹣xyz如图所示,则B(0,0,0),A(,1,0),C(0,2,0),D(,,0),C1(0,2,2),所以=(,,0),=(0,2,2).设=(x,y,z)为平面BDC1的法向量,则有,即令Z=1,可得平面BDC1的一个法向量为=(3,﹣,1),而平面BCC1的一个法向量为=(1,0,0),所以cos<,>===,故二面角C﹣BC1﹣D的余弦值为.20.已知函数f(x)=lnx﹣ax2+(a﹣2)x.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求函数y=f(x)在[a2,a]上的最大值.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【分析】(I)先求函数的定义域,然后求出导函数,根据f(x)在x=1处取得极值,则f'(1)=0,求出a的值,然后验证即可;(II)先求出a的范围,然后利用导数研究函数的单调性,当时,f(x)在[a2,a]单调递增,则f max(x)=f(a),当时,f(x)在单调递增,在单调递减,f max(x)=f(),当,即时,f(x)在[a2,a]单调递减,则f max(x)=f(a2),从而求出所求.【解答】解:(Ⅰ)∵f(x)=lnx﹣ax2+(a﹣2)x,∴函数的定义域为(0,+∞).…∴.…∵f(x)在x=1处取得极值,即f'(1)=﹣(2﹣1)(a+1)=0,∴a=﹣1.…当a=﹣1时,在内f'(x)<0,在(1,+∞)内f'(x)>0,∴x=1是函数y=f(x)的极小值点.∴a=﹣1.…(Ⅱ)∵a2<a,∴0<a<1.…∵x∈(0,+∞),∴ax+1>0,∴f(x)在上单调递增;在上单调递减,…①当时,f(x)在[a2,a]单调递增,∴f max(x)=f(a)=lna﹣a3+a2﹣2a;…②当,即时,f(x)在单调递增,在单调递减,∴;…③当,即时,f(x)在[a2,a]单调递减,∴f max(x)=f(a2)=2lna﹣a5+a3﹣2a2.…综上所述,当时,函数y=f(x)在[a2,a]上的最大值是lna﹣a3+a2﹣2a;当时,函数y=f(x)在[a2,a]上的最大值是;当1>时,函数y=f(x)在[a2,a]上的最大值是2lna﹣a5+a3﹣2a2.…21.如图,O为坐标原点,A和B分别是椭圆C1: +=1(a>b>0)和C2: +=1(m>n>0)上的动点,满足•=0,且椭圆C2的离心率为.当动点A在x轴上=的投影恰为C的右焦点F时,有S△AOF(1)求椭圆C的标准方程;(2)若C1与C2共焦点,且C1的长轴与C2的短轴等长,求||2的取值范围.【考点】椭圆的简单性质.【分析】(1)由题意,结合隐含条件可得关于a,b,c的方程组,求解方程组得到a,b,c 的值,则椭圆C1方程可求;(2)由C1与C2共焦点,且C1的长轴与C2的短轴等长求得椭圆C2方程,当OA所在直线斜率存在且不为0时,写出OA、OB所在直线方程,分别与两椭圆联立,求出|OA|2、|OB|2,得到|AB|2,整理后利用基本不等式求得||2的取值范围,当线段OA的斜率不存在和斜率k=0时,|AB|2=4,由此求得答案.【解答】解:(1)设椭圆C1的半焦距为c,由题意可知,,又椭圆C1的离心率=,且a2=b2+c2,联立以上三式可得:,∴椭圆C1的标准方程为;(2)由C1的长轴与C2的短轴等长,知n=a=,又C1与C2共焦点,可知,∴椭圆C2的标准方程为.当线段OA的斜率存在且不为0时,设OA:y=kx,联立,解得,∴.由•=0,得OB:y=﹣,联立,解得,∴|OB|2=,∴|AB|2=|OA|2+|OB|2==.又(当时取等号),∴.当线段OA的斜率不存在和斜率k=0时,|AB|2=4,综上,.选修4-4:坐标系与参数方程22.已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=2cos(θ+).(1)求圆心C的直角坐标;(2)由直线l上的点向圆C引切线,求切线长的最小值.【考点】参数方程化成普通方程.【分析】(1)由圆C的极坐标方程ρ=2cos(θ+),展开化为ρ2=,把代入配方即可得出;(2)利用勾股定理可得直线l上的点向圆C引切线长=,化简整理利用二次函数的单调性即可得出.【解答】解:(1)由圆C的极坐标方程ρ=2cos(θ+),化为,展开为ρ2=,化为x2+y2=.平方为=1,∴圆心为.(2)由直线l上的点向圆C引切线长==≥2,∴由直线l上的点向圆C引切线长的最小值为2.(选修4-5;不等式选讲)23.设a,b,c 均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.【考点】不等式的证明.【分析】(1)a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,由累加法,再由三个数的完全平方公式,即可得证;(2)+b≥2a, +c≥2b, +a≥2c,运用累加法和条件a+b+c=1,即可得证.【解答】证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a, +c≥2b, +a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.2016年9月28日。

成都七中2018届高三文科数学迎考试题卷1

成都七中2018届高三文科数学迎考试题卷1

2018届高三数学迎考试题卷(1)文第Ⅰ卷(选择题 共60分)一、 选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的 序号填涂在答题卡上)1.集合(){|ln 1}A x y x ==-,集合{|12}B x x =-<<,则()R C A B ⋂=( ) A. ()1,1- B. (]1,1- C. ()1,2- D. ()1,22.已知复数2(1满足为虚数单位),=-zz i i z_z z 的共轭复数则复数在复平面内对应的点在( ) A. 第一象限 B. 第二象限 C .第三象限 D.第四象限 3.若cos2sin 4απα=⎛⎫- ⎪⎝⎭ ,则cos sin αα+ 的值为( )A. B. 14- C. 14D. 4.《中华好诗词》是由河北电视台创办的令广大观众喜闻乐见的节目,旨在弘扬中国古代诗词文化,观众可以选择从A,B,C 和河北卫视这四家视听媒体的播放平台中观看,若甲乙两人各自随机选择一家播放平台观看此节目,则甲乙二人中恰有一人选择在河北卫视观看的概率是( ) A.21 B. 83 C.41 D.163 5.已知椭圆2241mx y +=的离心率为2,则实数m 等于( ) A.2 B. 2或83C.2或6D.2或8 6. 如图是某个几何体的三视图,则这个几何体的表面积是( )7.南宋数学家秦九韶在《数书九章》中提出的秦九韶算法至今仍是多项式求值比较先进的算法,已知()201720162018201721=+++f x x x x ,下列程序框图设计的是求()0f x 的值,在M 处应填的执行语句是( ) A. n=i B. n=2018-i C. n=i+1 D. n=2017-i8.已知则下列选项中错误的是,033<<bc a c ( ) A.a b > B.bc ac > C.0>-c b a D.0ln >ba9.已知等差数列{}n a 的前n S n 项和为,“02234是方程,10101009=+⋅-x x a a 的两根”是“10092018=S ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.已知双曲线,,的左右焦点分别为212222)0,0(1F F b a by a x >>=-直线2F l 经过点且与该双曲线的右支交于A,B 两点,若值范围是则该双曲线离心率的取的周长为,71a ABF ∆( )A.(1,27] B.(7,211) C.[7,27] D.[)211,2711. 已知当⎪⎪⎭⎫⎝⎛-∈2,2,ππβα时,,tan tan cos cos βαβα-<-则以下判断正确的是( )A. βα<B. βα>C. 22βα>D.22βα< 12. 若存在一个实数t ,使得F(t)=t 成立,则称t 为函数F(x)的一个不动点,设函数()(1=+-x g x e x a (∈a R ,e 为自然对数的底数),定义在R 上的连续函数f(x)满足,且当0≤x 时,()'<f x x .若存在()()0112⎧⎫∈+≥-+⎨⎬⎩⎭x x f x f x x ,且0x 为函数)(x g 的一个不动点,则实数a 的取值范围为( )A.⎪⎪⎭⎫ ⎝⎛∞-2,eB.⎪⎪⎭⎫⎢⎢⎣⎡+∞,2eC. ⎥⎥⎦⎤ ⎝⎛e e ,2D. ⎪⎪⎭⎫⎝⎛+∞,2e第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分)13. 用系统抽样法(按等距离的规则)从160部智能手机中抽取容量为20的样本,现将这160部智能手机随机地从001~160编号,按编号顺序平均分成20组:001~008号,009~016号,017~024号,…,153~160号,若第9组与第10组抽出的号码之和为140,则第1组中用抽签的方法确定的号码是_______. 14.已知()(),2,3,2a b λλλ==,如果a 与b 的夹角为直角,则 a b += .15.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-+≥--,0463,02,013y x y x y x 则11+-+=x y x z 的最大值与最小值的乘积为________.16.在锐角ABC ∆中,角AB C 、、的对边分别为a b c 、、,已知a =()223tan b c A +-=,)22cos 1cos 2A BC +=,则ABC ∆的面积等于________.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

成都七中2018届高考模拟数学试题一

成都七中2018届高考模拟数学试题一

成都七中高 2018 届高考模拟数学试题一理科数学第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题 , 每题 5 分 , 共 60 分. 在每题给出的四个选项中,只有一 项是吻合题目要求的 .1. 已知会集 A { x x 2 4x}, B { x 3x 4 0},则A B ( )A . ( ,0)B .[0, 4) C . (4,4]D . ( ,0)3 32. 已知 i 为虚数单位, a R ,若 i 2 为纯虚数,则 a ( )A . 1 1 a iB .C . 2D .-22 23. 某公司新研发了两种不相同型号的平板电脑,公司统计了花销者对这两种型号平板电脑的评分情况,以下 图,则以下说法不正确的选项是()A .甲、乙型号平板电脑的综合得分相同B .乙型号平板电脑的拍照功能比较好C .在性能方面,乙型号平板电脑做得比较好D .花销者比较喜欢乙型号平板电脑的屏幕4. 已知 sin( 7 ) 3 ,则 cos(2 2 ) =( )6 3 3A . 2B . 1 C. 2 D . 13 3 3 35. (3 x 23 x)11 张开式中任取一项,则所取项是有理项的概率为( )A . 1B . 1 C. 2 D . 112 6 11 11e x1)6. 函数f (x)的图像大体为(x(e x1)A.B.C.D.7.已知平面向量 a 与 b 的夹角为2,若 a( 3, 1) , a2b 213 ,则 b ()3A. 3B.4C.3D. 28.设0x,则“cos x x2”是“cosx x”的()2A.充分而不用要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不用要条件已知 a 1xdx ,函数 f ( x)Asin( x) A0,0,9.2的部分图像以下列图,则函数02f x a 图像的一个对称中心是()4A.,112B.,2 C.7,11212D.3,2 4x2y 21 a 0, 023F ,点 A 是双曲线 C 的一条渐近线上10. 双曲线C :2b2的离心率 e,右焦点为a3位于第一象限内的点,AOF OAF,AOF 的面积为3 3 ,则双曲线 C 的方程为()A. x2y21B. x2y 21 C.x2y21D. x2y 21 361218693311. 设函数f (x)x2x ln x 2 ,若存在区间 [ a,b] 1 ,,使 f (x) 在 [a,b] 上的值域为2[ k (a2), k(b2)] ,则k的取值范围是()A.1, 9 2ln 24B.1, 9 2ln 2 C.1, 9 2ln 2D.1, 9 2 ln 2 4101012. 如图,在矩形ABCD 中,AB4, BC 6, 四边形AEFG为边长为2的正方形,现将矩形ABCD沿过点 F 的动直线l翻折,使翻折后的点 C 在平面 AEFG 上的射影 C1落在直线AB上,若点 C 在折痕 l 上射影为 C2,则C1C2的最小值为()CC 2A.6 5 13B.521C.2D.23第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)y x13. 已知变量x, y 满足x y 2 ,则z2x y的最大值为.2x y614. 执行下面的程序框图,输出的结果为.15.已知圆 C : x2y 24x 4 y m 0与 y 轴相切,抛物线 E : y 2 2 px ( p0) 过点C,其焦点为 F ,则直线 CF 被抛物线所截得的弦长等于.16.在 ABC 中,点D在边AB上,CD BC, AC 5 3,CD5, BD 2 AD ,则 AD 的长为.三、解答题(本大题共 6 小题,共 70 分. 解答应写出文字说明、证明过程或演算步骤. )17.已知 { a n } 是递加数列,前n 项和为 S n,a11,且10S n( 2a n1)( a n2), n N *.( 1)求数列{ a n}的通项a n;( 2)可否存在m, n, k N *,使得 2(am a ) a 建立?若存在,写出一组吻合条件的m, n, k的值;若不n k存在,请说明原由;18.如图,等腰直角PAD 为梯形 ABCD 所在的平面垂直,且PA PD,PA PA, AD // BC , AD 2BC 2CD4,ADC 120 ,E 为 AD 中点.( 1)证明:BD平面PEC;( 2)求二面角 C PB D 的余弦值.19. 甲、乙两品牌计划入驻某大型商场,该商场赞同两个品牌先进场试销 10 天 . 量品牌供应的返利方案以下:甲品牌无固定返利,卖出90 件以内(含 90 件)的产品,每件产品返利 5 元,超出 90 件的部分每件返利 7元;乙品牌每天固定返利a 元,且每卖出一件产品再返利3 元. 经统计, 两家品牌的试销情况的茎叶图以下:( 1)现从乙品牌试销的10 天中抽取三天,求这三天的销售量中最少有一天低于 90 的概率 .( 2)若将频率视作概率, 商场拟在甲、 乙两品牌中选择一个长远销售, 若是仅从日平均返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明原由.20. 已知圆 O : x 2y 24,F ( 1,0), F (1,0) ,点 D 圆 O 上一动点, 2OD OF 2 OE ,点C 在直线 EF 上,1 2 1且 CD EF 2 0 ,记点 C 的轨迹为曲线 W .( 1)求曲线 W 的方程;( 2)已知 N (4,0) ,过点 N 作直线 l 与曲线 W 交于 A, B 不相同两点,线段 AB 的中垂线为 l ,线段 AB 的中点为 Q 点,记 l 与 y 轴的交点为 M ,求 MQ 的取值范围 .21. 已知函数 f ( x)(3 x)exa( x 0, a R) .x( 1)当 a3f (x) 的单调性;时,判断函数4( 2)当 f ( x) 有两个极值点时,若f (x) 的极大值小于整数 m ,求 m 的最小值 .请考生在 22、 23 两题中任选一题作答,若是多做,则按所做的第一题记分.22. 选修 4-4 :坐标系与参数方程x t sin 5已知曲线 C 的参数方程为6,在极坐标系中曲线 D 的极坐标方程为2 2 sin .cos 2y1 2t cos23( 1)求曲线 C 的一般方程与曲线 D 的直角坐标方程;( 2)若曲线 C 与曲线 D 交于 A, B 两点,求 AB .23. 选修 4-5 :不等式选讲已知函数 f ( x)x 2 .( 1)解不等式 f ( x) f (2x4) 2;( 2)若f ( x) f ( x3) m22m 对x R 恒建立,求实数m 的取值范围.成都七中高 2018 届高考模拟数学试题一理科数学参照答案一、选择题1-5: CBDBB6-10:AAACC11、 12: CA二、填空题;;15.25 ; .8三、解答题17. ( 1) 10a 1(2a 1 1)( a 1 2) ,得 2a 125a 1 2 0 ,解得 a 1 2 ,或 a 11 .2由于a 11,因此a12 .由于 10S n (2a n 1)(a n2) ,因此 10S n25a n 2 .2a n故10a n 110S n 1 10S n2a n 12 5a n 1 2 2a n 2 5a n 2 ,整理,得 2(a n 12a n 2 ) 5(a n 1a n ) 0 ,即 (a n 1 a n )[ 2(a n 1a n ) 5]0.由于 { a n } 是递加数列,且a 1 2 ,故 ( aa ) 0 ,因此 an 1a n51 .nn25为公差的等差数列 .则数列 { a n } 是以 2为首项,2因此 a n25( n 1)1(5n 1) .22( 2)满足条件的正整数m, n,k不存在,证明以下:假设存在 m, n, k N *2(a m a n ) a k,,使得则5m 1 5n 11(5k1) .2 3整理,得 2m2n k,①5显然,左边为整数,因此①式不行立.故满足条件的正整数m,n, k 不存在 .18. 【剖析】( 1)在等腰直角 PAD 中, PAPD ,又 E 为 AD 中点,因此 PE AD ,又平面 PAD平面 ABCD ,平面 PAD平面ABCD=AD,因此 PE平面ABCD,故PE BD.如图,连接BE ,在梯形ABCD中,AD // BC,且ED BC ,因此四边形BCDE 为平行四边形,又 BC CD 2 ,因此四边形BCDE 为菱形,因此 EC BD.又PE EC E,因此 BD平面PEC.( 2)如图,过点E作EF//DB,交 AB于F ,由于 BD EC ,因此 EF BC .1PE平面ABCD,故以点E为坐标原点,分别以EF , EC, EP所在的直线为x 轴,y轴,z轴由()知建立空间直角坐标系E xyz .在 Rt PAD 中,ED EA 2 ,又 PA PD, PA PD ,因此EP2.在梯形 ABCD中,ADC 120 ,ED DC2,故EC 2 3.EB DC 2,BEF60 .因此 P(0,0,2), C(0,23,0), B( 2cos60 ,2 sin 60 ), 即 B(1, 3,0), D ( 1, 3,0) .故 PB (1, 3, 2), PC (0,2 3, 2), DB(2,0,0) .设平面 PBC 的法向量为 n(x1, y1 , z1 ) ,n PB x13y12z10由,得23y12z10.n PC令 z1 3 ,则 y1 1, x1 3 .因此 n( 3,1,3) 为平面PBC 的一个法向量.设平面 PBD 的法向量为m( x2 , y2 , z2 ) .由mPB,得x2 3 y2 2 z20 . m DB 2 x20令 z2 3 ,则x20, y2 2 .因此 m( 0,2, 3) 为平面 PBD 的一个法向量.因此 cos m, n m n1233 5 .m n2233 1 37由图可知,二面角C PB D 为锐二面角,故其余弦值等于 5 .719. 解( 1)方法一:记“乙品牌这三天的销售量中最少有一天低于90”为事件A,由题意知抽取的10 天中,销售量不低于90 的有 7 天,销售量低于90的有 3天.则P(A)C72C31C71C32C70C3317C10324方法二:记“这三天的销售量最少有一天低于90”为事件 A ,则 A 为:“这三天的销售量都不低于90”,则P(A)C30C737,C10324因此 P(A) 1P( A)717 124 24( 2)①设甲品牌的日销售量为t ,由茎叶图可知t 可取86,87,89,90,92,93.当 t =86时,X865=430;当 t =87时,X 当 t =89时,X 当 t =90时,X 87 5=435;895=445;905=450;当 t =92 时, X 90 5+2 7=464; 当 t =93 时, X90 5+3 7=471.∴ X 的所有可能取值为: 430,435,445,450 ,464,471.∴ X 的分别列为X430 435 445 450 464 471P1 11 1 1 15 55510 10∴EX430 1 4351 445 1 450 1 464 1 471 1 445.5 (元)55 55 10 10②依题意,乙品牌的日平均销售量为:1 1 12 190.786 89 91 929310 5 5510∴乙品牌的日平均返利额为: a 90.7 3 a 272.1(元) .当 a 272.1 445.5 ,即 a 173.4 (元)时,介绍该商场选择乙品牌长远销售;当 a 272.1 445.5 ,即 a 173.4 (元)时,该商场任意选择甲、乙品牌即可;当 a272.1 445.5,即 a173.4 (元)时,介绍该商场选择甲品牌长远销售.综上,当 a173.4 元时,介绍该商场选择乙品牌长远销售;当 a 173.4 元时,该商场任意选择甲、乙品牌即可;当 a 173.4 元时,介绍该商场选择甲品牌长远销售.20. 解:( 1)x 2y 2 1 .43( 2)由题意可知直线l 的斜率存在,设 l : yk (x 4), A( x 1, y 1 ), B(x 2 , y 2 ), Q(x 0 , y 0 ) .y k(x 4)联立直线与椭圆x 2 y 2 ,消去 y 得 (4k 23) x 2 32k 2 x 64k 212 0.431x 1x 232k 264k 2 12 4k 2, x 1 x 24k 2 3,3又( 32k 2 )24( 4k 2 3)(64 k 212) 0 ,解得1 k1 ,22x 0x 1 x 216k 23 , y 0k( x 04)12k24k 24k 23,因此 Q16k 2 , 12k4k 2 3 4k 2 3因此 l : yy 01(x x 0 ) ,即 y12k 1 x 16k 2 .k4k 2 3k 4k 2 3化简得: y1 x4k ,k4k 2 3令 x0 ,得 m4k ,即 M 0, 4k,4k 23 4k 2316k 2 2 16k 2 2k 4k 2MQMQ3 3162 2,4k 24k 24k 2 3令 t4k 2 3 ,则 t [ 3,4) ,t3 2 t 3t22442t 31因此 MQ16216 [ 3 11] ,t 216t 2t2t因此 MQ [0,5) .21. ( 1)由题 f ( x)[ ex(3x)e x ]x (3 x)exa ( x23x 3)exa( x 0) .x 2x 2方法 1:由于x 2 3x33 0, e x1 0, ( x2 3x 3) e x3 ,344又 a,因此 ( x 2 3x 3)e x a 0 ,从而 f ( x) 0 ,4于是 f (x) 为 (0,) 上的减函数 .方法 2:令 h( x) ( x 23x 3)e x a ,则 h ( x) ( x 2 x)e x ,当 0x 1时, h (x)0 , h( x) 为增函数;当 x 1 时, h ( x)0 , h( x) 为减函数 .故 h( x) 在 x 1 时获取极大值,也即为最大值 .则 h( x)maxh(1)e a . 由于 a3h(1)e a0 ,,因此 h(x) max4于是 f (x) 为 (0, ) 上的减函数 .( 2)令 h xx 23 x 3) e x a ,则h ( x) ( x 2 x)e x,( ) (当 0 x 1时, h (x)0 , h( x) 为增函数;当 x 1 时, h ( x) 0 , h( x) 为减函数 .当 x 趋近于时, h( x) 趋近于.由于 f (x) 有两个极值点,因此 f ( x) 0 有两个不等实根,即 () (x 23x 3) e xa0 有两不等实根x 1 ,x 2 ( x 1x 2 ) . h xh( 0) 0, 3 ae .则解得h(1) 0,0 , h( 3)33(1, 3) .可知 x 1(0,1) ,由于 h(1)ea 3e 2a3e 2 3 0,则 x 22 4 4223x 2 2 3)e x 2而 f (x 2 )( x 2a 0 ,即 e x 22a(#)x 2x 23x 2 3因此f ( x)极大值f ( x 2 )(3 x 2 )e x 2a,于是 f (x 2 )ax 22a ,(* )x 223x 2x 23令 tx 2 2x 2 t2( 1 t1) ,则( * )可变为 g (t )2可得11 2,而3 ae ,则有 g(t)t2t1 13ttt下面再说明对于任意3ae, x 2 (1, 3) , f ( x 2 ) 2 .2又由( #)得 a e x 2(23 x 2 3) ,把它代入( * )得 f ( x 2 )x 2t a1 t2ta ,1 t11ta 1 a 3 ,1 11tt(2 x 2 )e x 2 ,因此当 x 2(1, 3) , f ( x 2 ) (1 x 2 ) e x 2 0 恒建立,2故 f (x 2 )( 2 x 2 )ex 2为 (1, 3 ) 的减函数,因此f (x 2 )f ( 3) 1 e 232 .222因此满足题意的整数 m 的最小值为 3.22. 解:( 1)曲线 C 的参数方程为x 1t ,消去参数 t ,得 y 1 2x , 2y 1 t故曲线 C 的一般方程为 2x y 1 0 .由于22 sin 2(1 sin ) 2,即sin2 .cos21 sin21 sin因此曲线 D 的直角坐标方程为x 2y 2 y2 ,即 x 24y 4 .( 2)由y12x4(12x) 4 ,即x28x80 . x2 4 y,消去 y ,可得x24因此 x1x28 , x1 x28 ,因此 AB122824(8)430.23. 解:( 1)由题知不等式 f (x) f ( 2x4) 2 即x22x22,等价于x1或1x2或x2,x 2 2x 2 2x 2 2x 2 2x 2 2x 2 2解得 x 2 或2x 2 或x2,3∴原不等式的解集为(, 2)(2,).3( 2)由题知f ( x) f ( x3)x2x1x 2x 1 3 ,∴ f (x) f ( x3)的最小值为3,∴ m22m3,解得3m 1 ,∴实数 m 的取值范围为[ 3,1] .。

2017年12月14日四川省成都市成都七中高2018届高2015级高三一诊模拟考试文科数学试题参考答案

2017年12月14日四川省成都市成都七中高2018届高2015级高三一诊模拟考试文科数学试题参考答案

成都七中高2018届一诊模拟考试数学参考答案二、填空题13. 2; 14. 14-; 15. 83; 16.121k e ≥- 17.解:(1)()2cos cos cos 0C a C c Ab ++=,由正弦定理可得()2cos sin cos sin cos sin 0C A C CA B ++= …………2分()2cos sin sin 0C A C B ∴++=,即2cos sin sin 0C B B ∴+=又0180B <<,sin 0B ∴≠,1cos 2C ∴=-,即120C =. …………6分(2)由余弦定理可得(2222222cos12024a a a a =+-⨯=++, …………9分又0a >,2a =,1sin 2ABCS ab C ∴==ABC ∴.………12分 18.19. 解:(1) 速度在 70km /h 以上的概率约为()50.0400.0600.0500.0200.85⨯+++=. (6)(2)40辆小型轿车车速在 [)60,65范围内有2辆,在[)65,70范围内有4辆.用,A B 表示[)60,65范围内2辆小型轿车,用,,,a b c d 表示车速在[)65,70范围内有4辆小型轿车,则所有基本事件为,,,,,,,,AB Aa Ab Ac Ad Ba Bb Bc Bd ,,,,,,ab ac ad bc bd cd ,至少有一辆小型轿车车速在范围[)60,65内事件有,,,,,,,,AB Aa Ab Ac Ad Ba Bb Bc Bd ,所以所求概率93155p ==. ………12分 20.(2)由方程组221143x ty x y =+⎧⎪⎨+=⎪⎩,得()22(34)690t y ty ++-=*设112,2(,),()A x y B x y ,则12122269,03434t y y y y t t +=-⋅=-<++ 所以12234y y t -=+ 因为直线:1l x ty =+过点(1,0)F ,所以ABE ∆的面积1222112223434ABES EF y y t t ∆=⋅-=⨯⨯=++234t =+令223t =-不成立,不存在直线l 满足题意.……12分21.解 (1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)为增函数, 所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)恒成立, 从而f (x )=2e x -x 2在(0,+∞)为增函数, 故f (x )=2e x -x 2>f (0)=2. …5分(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x e x 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x e x ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0; 当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0; 当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0. 要使k =2x e x 有两个根,只需0<k <φ(1)=2e,如图所示,故实数k 的取值范围是(0,2e).又由上可知函数f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2, 由f ′(x 1)=k e x 1-2x 1=0,得k =2x 1e x 1.∴f (x 1)=k e x 1-x 21=2x 1e x 1e x 1-x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),故0<-(x 1-1)2+1<1,所以0<f (x 1)<1. ……12分22.解:(1)曲线C:2cos x y αα=⎧⎪⎨=⎪⎩可化为22143y x +=,其轨迹为椭圆,焦点为()11,0F -和()21,0F . ………2分经过(A 和()21,0F的直线方程为1x +=,0y +=, …4分 ∴cos sin θρθ+=……5分(2)由(1)知,直线AF 2的斜率为l ⊥AF 2,所以l, 倾斜角为30°,所以l的参数方程为112x y t ⎧=-+⎪⎨⎪=⎩(t 为参数), ……6分代入椭圆C的方程中,得213360t --=. ……8分 因为M ,N 在点F 1的两侧,所以1112||||13MF NF t t -=+=……10分 23. 解:(1)当时,()()()521()311521x x f x x x x +<-⎧⎪=-≤≤⎨⎪->⎩, ………3分由得不等式的解集为3322x x ⎧⎫-<<⎨⎬⎩⎭. ………5分 (2)由二次函数,该函数在取得最小值2,因为()()()21()21121m x x f x m x m x x +<-⎧⎪=--≤≤⎨⎪->⎩,在处取得最大值, ……8分所以要使二次函数与函数的图象恒有公共点, 只需,即. ………10分5m =()2f x >2223(1)2y x x x =++=++1x =-1x =-2m -223y x x =++()y f x =22m -≥4m ≥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年四川省成都七中高考数学一诊试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>22.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣23.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.156.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.17.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.14408.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.110.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣312.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a=.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.2018年四川省成都七中高考数学一诊试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<a},B={x|x2﹣3x+2<0},若A∩B=B,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>2【解答】解:由题意,集合A={x|x<a},B={x|x2﹣3x+2<0}={x|1<x<2},∵A∩B=B,∴B⊆A,则:a≥2.∴实数a的取值范围[2,+∞).故选C.2.(5分)复数z=(i为虚数单位)的虚部为()A.1 B.i C.﹣2i D.﹣2【解答】解:∵复数z===1﹣2i,故此复数的虚部为﹣2,故选D.3.(5分)“直线m与平面α内无数条直线平行”是“直线m∥平面α”的()A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件【解答】解:由“直线m∥平面α”,可得“直线m与平面α内无数条直线平行”,反之不成立.∴“直线m与平面α内无数条直线平行”是“直线m∥平面α”的必要不充分条件.故选:C.4.(5分)设实数x,y满足约束条件,则目标函数的取值范围是()A.B.C.D.【解答】解:由约束条件作出可行域如图,联立,得A(1,﹣1),联立,得B(1,3).由=,而.∴目标函数的取值范围是[,].故选:D.5.(5分)《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当作数字“1”,把阴爻“”当作数字“0”,则八卦所代表的数表示如下:依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【解答】解:由题意类推,可知六十四卦中的“屯”卦符合“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17.故选:B.6.(5分)已知.则m=()A.﹣6或1 B.﹣1或6 C.6 D.1【解答】解:∵已知===,求得m=﹣6,或m=1,故选:A.7.(5分)如图所示的程序框图,若输入m=8,n=3,则输出的S值为()A.56 B.336 C.360 D.1440【解答】解:执行程序框图,可得m=8,n=3,k=8,s=1不满足条件k<m﹣n+1,s=8,k=7,不满足条件k<m﹣n+1,s=56,k=6,不满足条件k<m﹣n+1,s=336,k=5,满足条件k<m﹣n+1,退出循环,输出s的值为336.故选:B.8.(5分)已知等差数列{a n}的前n项和为S n,且,a2=4,则数列的前10项和为()A.B.C.D.【解答】解:由及等差数列通项公式得a 1+5d=12,又a2=4=a1+d,∴a1=2=d,∴S n==n2+n,∴,∴=.故选:B.9.(5分)定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.B.﹣ C.﹣1 D.1【解答】解:∵y=f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(﹣x+1)=f(x+1)=﹣f(x﹣1),f(x+2)=﹣f(x),可得f(x+4)=﹣f(x+2)=f(x).则f(x)的周期是4,∴f()=f(4×4﹣)=f(﹣)=﹣f()=﹣[]=﹣1,故选C.10.(5分)在四面体S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,平面SAC⊥平面BAC,则该四面体外接球的表面积为()A.B.8πC.D.4π【解答】解:取AC中点D,连接SD,BD,∵AB=BC=,∴BD⊥AC,∵SA=SC=2,∴SD⊥AC,AC⊥平面SDB.∴∠SDB为二面角S﹣AC﹣B的平面角,在△ABC中,AB⊥BC,AB=BC=,∴AC=2.∵平面SAC⊥平面BAC,∴∠SDB=90°,取等边△SAC的中心E,则E为该四面体外接球的球心,球半径R=SE==,∴该四面体外接球的表面积S=4πR2=4=.故选:A.11.(5分)已知函数f(x)=ln+,g(x)=e x﹣2,若g(m)=f(n)成立,则n﹣m的最小值为()A.1﹣ln2 B.ln2 C.2﹣3 D.e2﹣3【解答】解:不妨设g(m)=f(n)=t,∴e m﹣2=ln+=t,(t>0)∴m﹣2=lnt,m=2+lnt,n=2•e故n﹣m=2•e﹣2﹣lnt,(t>0)令h(t)=2•e﹣2﹣lnt,(t>0),h′(t)=2•e﹣,易知h′(t)在(0,+∞)上是增函数,且h′()=0,当t>时,h′(t)>0,当0<t<时,h′(t)<0,即当t=时,h(t)取得极小值同时也是最小值,此时h()=2•e﹣2﹣ln=2﹣2+ln2=ln2,即n﹣m的最小值为ln2;故选:B12.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)抛物线y2=ax(a>0)上的点到焦点F的距离为2,则a= 2.【解答】解:抛物线的标准方程:y2=ax,焦点坐标为(,0),准线方程为x=﹣,由抛物线的焦半径公式|PF|=x0+=+=2,解得:a=2,故答案为:2.14.(5分)已知递减等差数列{a n}中,a3=﹣1,a4为a1,﹣a6等比中项,若S n 为数列{a n}的前n项和,则S7的值为﹣14.【解答】解:设递减等差数列{a n}的公差d<0,a3=﹣1,a4为a1,﹣a6等比中项,∴a1+2d=﹣1,=﹣a6×a1,即=﹣(a1+5d)×a1,联立解得:a1=1,d=﹣1.则S7=7﹣=﹣14.故答案为:﹣14.15.(5分)Rt△ABC中,P是斜边BC上一点,且满足:,点M,N在过点P的直线上,若则λ+2μ的最小值为.【解答】解:=+==+=+=,∵三点M,P,N三点共线,∴.∴λ+2μ=(λ+2μ)()=.故答案为:16.(5分)设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是.【解答】解:对任意x1,x2∈(0,+∞),不等式≤恒成立,则等价为≤恒成立,f(x)==x+≥2=2,当且仅当x=,即x=1时取等号,即f(x)的最小值是2,由g(x)=,则g′(x)==,由g′(x)>0得0<x<1,此时函数g(x)为增函数,由g′(x)<0得x>1,此时函数g(x)为减函数,即当x=1时,g(x)取得极大值同时也是最大值g(1)=,则的最大值为=,则由≥,得2ek≥k+1,即k(2e﹣1)≥1,则,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC中,角A,B,C的对边分别为a,b,c,2cosC(acosC+ccosA)+b=0.(1)求角C的大小;(2)若b=2,,求△ABC的面积.【解答】解:(1)△ABC中,∵2cosC(acosC+ccosA)+b=0,由正弦定理可得2cosC(sinAcosC+sinCcosA)+sinB=0,∴2cosCsin(A+C)+sinB=0,即2cosCsinB+sinB=0,又0°<B<180°,∴sinB≠0,∴,即C=120°.(2)由余弦定理可得,又a>0,a=2,∴,∴△ABC的面积为.18.(12分)如图,四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明直线MN∥平面PAB;(II)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)∵四棱锥P﹣ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.∴AM=,取BP的中点T,连结AT,TN,∴由N为PC的中点知TN∥BC,TN=BC=2,又AD∥BC,∴TN AM,∴四边形AMNT是平行四边形,∴MN∥AT,又AT⊂平面PAB,MN⊄平面PAB,∴MNⅡ平面PAB.解:(Ⅱ)∵PA⊥平面ABCD,N为PC的中点,∴N到平面ABCD的距离为=2,取BC的中点E,连结AE,由AB=AC=3,得AE⊥BC,AE==,==2,由AM∥BC,得M到BC的距离为,∴S△BCM∴四面体N﹣BCM的体积:==.19.(12分)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km/h),现将其分成六组为[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(Ⅰ)某小型轿车途经该路段,其速度在70km/h以上的概率是多少?(Ⅱ)若对车速在[60,65),[65,70)两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[60,65)内的概率.【解答】解:(Ⅰ)根据频率分布直方图,计算速度在70km/h以上的频率为1﹣(0.010+0.020)×5=0.85,估计速度在70km/h以上的概率是0.85;(Ⅱ)这40辆车中,车速在[60,70)的共有5×(0.01+0.02)×40=6辆,其中在[65,70)的有5×0.02×40=4辆,记为A,B,C,D,在[60,65)的有5×0.01×40=2辆,记为a,b;从车速在[60,70)的这6辆汽车中任意抽取2辆,可能结果是AB、AC、AD、Aa、Ab、BC、BD、Ba、Bb、CD、Ca、Cb、Da、Db、ab有15种不同的结果,其中抽出的2辆车车速至少有一辆在[60,65)内的结果是Aa、Ab、Ba、Bb、Ca、Cb、Da、Db、ab有9种;故所求的概率为P==.20.(12分)已知A(x0,0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足.(1)求出动点P的轨迹对应曲线C的标准方程;(2)直线l:x=ty+1与曲线C交于A、B两点,E(﹣1,0),试问:当t变化时,是否存在一直线l,使△ABE得面积为?若存在,求出直线l的方程;若不存在,说明理由.【解答】解:(1)根据题意,因为.即,所以,所以,又因为|AB|=1所以即即所以椭圆的标准方程为(2)由方程组得(3t2+4)y2+6ty﹣9=0(*)设A(x1,y1),B(x2,y2),则所以因为直线x=ty+1过点F(1,0)所以△ABE的面积令则不成立,不存在直线l满足题意.21.(12分)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数)(1)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(2)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明:0<f(x1)<1.【解答】解:(1)当k=2时,f(x)=2e x﹣x2,则f'(x)=2e x﹣2x,令h(x)=2e x﹣2x,h'(x)=2e x﹣2,由于x∈(0,+∞)故h'(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f'(x)=2e x﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(2)函数f(x)有两个极值点x1,x2,则x1,x2是f'(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ'(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ'(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ'(x)<0,函数φ(x)单调递增且φ(x)>0;要使方程有两个根,只需,如图所示故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由得,∴由于x1∈(0,1),故,所以0<f(x1)<1.选修4-4:坐标系与参数方程22.(10分)已知圆锥曲线C:(α为参数)和定点A(0,),F1、F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的直角坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求||MF1|﹣|NF1||的值.【解答】解:(1)由圆锥曲线C:(α为参数)化为,可得F2(1,0),∴直线AF2的直角坐标方程为:,化为y=.(2)设M(x1,y1),N(x2,y2).∵直线AF2的斜率为,∴直线l的斜率为.∴直线l的方程为:,代入椭圆的方程可得:=12,化为=0,t1+t2=,∴||MF1|﹣|NF1||=|t1+t2|=.选修4-5:不等式选讲23.已知函数f(x)=m﹣|x﹣1|﹣|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若函数y=x2+2x+3与y=f(x)的图象恒有公共点,求实数m的取值范围.【解答】解:(1)当m=5时,,由f(x)>2的不等式的解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1处取得最小值2,因为,在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,即m≥4.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

相关文档
最新文档