初一数学第二章第一单元有理数2

合集下载

初一数学上册第一章与第二章知识点与习题

初一数学上册第一章与第二章知识点与习题

初一数学上册第一章与第二章知识点与习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章:有理数一、有理数知识点1:负数⑴ 用正负数表示相反意义的量(增加,减少;零上,零下;向前,向后。

)⑵定义:在正数前面加“—”(读负)的数,(-5,-2.8,3 (4)-) ⑶a -不一定是负数,关键看a 是正数、负数还是0例题:例1:设向东行驶为正,则向东行驶30m 记做 ,向西行驶20m 记做 ,原地不动记做 ,—5m 表示向 行驶5m ,+16m 表示向 行驶16m.。

例2:收入—2000元,表示 。

知识点2有理数:整数和分数统称为有理数。

⑴ 定义:例题:1、76%,5,260,2001,0,120.1,100020,- ,31 -⋅--••,负数有 个,正数有 个,整数有 个,正分数有 个,非负整数有 个。

知识点3.数轴数轴的三要素:原点,正方向,单位长度,三者缺一不可1、写出数轴上A,B,C,D,E 各点表示的数,并用“>”号连接起来。

2、写出大于—4而不大于2的所有的整数,并在数轴上表示出来。

知识点4:相反数例题: a>0 -a <0a=0 -a=0a <0 -a>01、(1)0.1与a 互为相反数,那么a= 。

(2)a-1的相反数是 。

(3)若-x 的相反数是-7.5,则x= 。

(4)如果m 的相反数是最大的负整数,n 的相反数是-2,那么m+n= 。

知识点5:绝对值1、几何意义:在数轴上表示数a 的点离开原点的距离,叫做数a 的绝对值。

a a>02︱a ︱= 0 a=0-a a <0例题:1、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是 .2、在数轴上表示a 、 b 、 c 三个数的点的位置如图所示,化简式子:|a - b |+|a - c |-| c - b |.c 0 a b知识点6:倒数 (1) 定义:乘积为1的两个数互为倒数,0没有倒数。

初一数学1,2单元知识总结

初一数学1,2单元知识总结

初一数学1,2单元知识总结《初一数学1,2单元知识总结》整体感受:回想起来学习初一数学这头两个单元,就像在走迷宫,开始有些迷茫,但是慢慢摸索着也就找到路了。

这两个单元的知识说多不多,说少不少,需要用心去整理才能理清头绪。

具体收获:第一单元有有理数的相关知识。

有理数的分类就像把人分成不同的小组一样搞得明明白白的。

整数和分数就各自成组,整数又分正整数、零和负整数,分数也有正分数和负分数。

知道了有理数的定义,对后面计算很有用,就好比建房子有了合适的砖头。

有理数的加减法规则是很重要的收获,特别是符号的确定。

原来老是犯迷糊,正数加上正数很简单,就是数值相加,正数加上负数就不一样了,得用大的数值减去小的数值,符号取绝对值大的那个数的符号。

像5 + (-3),就是5比3大,所以结果是2,符号取正。

减法也是转化为加法,就像做事情换一种方法来做。

乘法和除法也是一样,同号得正,异号得负。

第二单元整式的加减,第一次接触那么多字母,感觉很新奇。

单项式、多项式。

单项式就像一个简单的小积木,它有系数和次数。

我记忆最深刻的就是单独一个数或者一个字母也是单项式。

多项式就像是几个小积木搭成的一个小模型,它里面有各项,每一项都可能是单项式。

整式的加减其实就是合并同类项,同类项就像长得差不多的小积木,除了系数不一样,字母和字母的指数都是一样的。

要把它们加起来或者减起来,只要对系数进行运算就好了。

就像3x + 2x=(3 + 2)x = 5x。

重要发现:等等,还有个重要的点。

在有理数计算中,绝对值的概念很关键。

正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。

这个在很多题型中都会用到,像比较负数的大小,两个负数比较,绝对值大的反而小。

例如- 3和- 5,∣-3∣= 3,∣-5∣= 5,所以- 3大于- 5。

在整式计算中,我发现如果对同类项的判断不准确会出现很大的错误,所以一定要仔细。

反思:有时候我会粗心大意,在有理数计算中符号就弄错。

七年级数学上册第2章有理数2.1有理数2.1.1正数和负数教学设计(新版)华东师大版

七年级数学上册第2章有理数2.1有理数2.1.1正数和负数教学设计(新版)华东师大版

1.1正数和负数一、教学目标(一)知识与技能:1.会判断一个数是正数还是负数2.能用正、负数表示生活中具有相反意义的量(二)过程与方法:经历从现实生活中的实例引入负数的过程,体会引入负数的必要性与合理性(三)情感态度价值观:感知到数学知识来源于生活并为生活服务。

二、学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识。

2.学生学法:研究实际问题→认识负数→负数在实际中的应用。

三、重点、难点、疑点及解决办法1.重点:会判断正数、负数,运用正负数表示具有相反意义的量。

2.难点:负数的引入。

3.疑点:负数概念的建立。

四、课时安排2课时五、教具学具准备投影仪(电脑)、自制活动胶片、中国地图。

六、教学设计思路教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈。

七、教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分。

提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问。

【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求。

(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)用复合胶片翻四次在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)学生活动:看图回答10℃,5℃,零下5℃,零下10℃。

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数1.2.4 第二课时 有理数的大小比较一、教学目标(一)学习目标1.理解并掌握有理数大小的比较的方法;2.会比较有理数的大小,并能正确地使用“>”或“<”号连接; 3.通过对有理数大小比较方法的推理,培养学生的数学推理能力.(二)学习重点运用绝对值的知识比较两个负数的大小;(三)学习难点有理数大小比较的推理.二、教学设计(一)课前设计 1.预习任务(1)在数轴上,右边的数总比左边的数大; (2)正数大于0,负数小于0,正数大于负数; (3)两个负数比较,绝对值大的反而小. 2.预习自测(1)有理数a 在数轴上对应的点如图所示,则a ,a -,-1的大小关系是 ( )A .1-<<-a aB .a a <-<-1C .a a -<-<1D .1-<-<a a【知识点】有理数的大小比较 【数学思想】数形结合【解题过程】解:由数轴可知:a a -<-<1【思路点拨】根据数轴上的点,左边的数总比右边的数小即可求解. 【答案】Ca(2)下列四个数中,最大的数是( ) A .-6 B .-2 C .0 D .21- 【知识点】有理数的大小比较【解题过程】解: 题意可得:02126<-<-<-【思路点拨】根据两个负数比较绝对值大的反而小和0大于负数即可求解. 【答案】 C(3)在5,23,-1,+0.001这四个数中,小于0的数是 ( ) A .5 B .23C .-1D .+0.001【知识点】有理数的大小比较 【解题过程】解:在5,23,-1,+0.001这四个数中,小于0的数是 -1. 【思路点拨】根据0大于负数,正数大于0,正数大于负数即可求解. 【答案】C(4)下列四组有理数的大小比较正确的是( )A .3121->- B .11+->--C .3121< D .3121->-【知识点】有理数的大小比较 【解题过程】解: 因为623131,632121==-==-且6263> 所以3121-<-,故A 错误; 因为11,11-=+--=--,所以11+-=--,故B 错误;又C 错误;故应选D . 【思路点拨】根据有理数大小比较的法则即可求解. 【答案】D .(二)课堂设计1.知识回顾(1)绝对值的定义是什么? (2)绝对值的法则是什么? (3)数轴的三要素是什么?2.问题探究探究一有理数大小的比较法则活动①某一天我国5个城市的最低气温如图所示:(1)比较这5个城市,哪个城市的最低气温最低?是多少?哪个城市的最低气温最高?是多少?(2)你能将这5个城市的最低气温按从低到高的顺序排列吗?(3)请你将这5个数字分别在数轴上表示出来?学生举手抢答.总结:(1)数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数总小于右边的数.师问:对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?学生举手抢答.总结:有理数大小比较的法则:一般地,(1)正数大于0,0大于负数,正数大于负数;(2)两个负数比较,绝对值大的反而小.【设计意图】学生通过生活中的实际问题的大小比较,自然的引出有理数大小的比较方法,体验数学来源于生活的本质,通过小组合作和师生互动,激发学生学习热情的同时,锻炼学生的小组合作能力,分析归纳的能力等.探究二会比较有理数的大小,并能正确地使用“>”或“<”号连接★活动①:会比较有理数的大小,并能正确地使用“>”或“<”号连接例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0【知识点】有理数的大小比较【数学思想】数形结合.【解题过程】解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.5 4【思路点拨】画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.【答案】-3.5<-112<0<12<4<+5.练习:把如图的直线补充成一条数轴,并表示下列各数:0,-(+4),312,-(-2),|-3|,+(-5),并用“<”号连接.【知识点】有理数的大小比较. 【数学思想】数形结合.【解题过程】解:∵-5<-4<0<2<3<312,∴+(-5)<-(+4)<0<-(-2)<|-3|<312,在数轴上表示:【思路点拨】先判断各数的大小,然后确定数轴的三要素即可在数轴上表示各数的位置. 【答案】+(-5)<-(+4)<0<-(-2)<|-3|<312【设计意图】通过练习,理解用数轴比较大小的方法,体会数形结合给解题带来的方便。

初一数学有理数教案第二章整章

初一数学有理数教案第二章整章

第2章有理数一、教学目标:1.使学生体会具有相反意义的量,并能用有理数表示。

2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义。

3.会求有理数的相反数和绝对值(绝对值符号内不含字母)。

4.会比较有理数的大小。

5.了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。

6.会用计算器进行有理数的简单运算。

7.理解有理数的运算律,并能用运算律简化运算。

8.能运用有理数的运算解决简单的问题。

9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断。

二、教材的特点:1.本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。

教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。

2.与传统的教材相比,本章教材注意降低了对运算的要求,尤其是删去了繁难的运算。

本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。

同时引进了计算器来完成一些有理数的运算。

教学中要注意正确地把握。

3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

4.本章的导图是天气预报图,是引入负数的实际情景。

应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。

三、课时安排:本章的教学时间大约需要23课时,建议分配如下:§2.1正数和负数---------------2课时§2.2数轴-------------------------2课时§2.3相反数------------------------1课时§2.4绝对值----------------------1课时§2.5有理数的大小比较----------1课时§2.6有理数的加法--------------2课时§2.7有理数的减法----------------1课时§2.8 有理数的加减法混合运算--------2课时§2.9 有理数的乘法----------------2课时§2.10有理数的除法----------------1课时§2.11有理数的乘方----------------1课时§2.12科学记数法------------------1课时§2.13有理数的混合运算---------2课时§2.14近似数和有效数字----------1课时§2.15用计算器进行数的简单运算-----1课时复习-----------------------------------2课时四、教学建议①整体把握基本概念和运算法则的引入;②整体把握基本运算能力的培养;③处理好笔算与使用计算器的尺度,避免繁、难的笔算。

初一上册数学第一章和第二章测试题

初一上册数学第一章和第二章测试题

初一上册数学第一章和第二章测试题以下是初一上册数学第一章和第二章的测试题:第一章《有理数》测试题一、填空题(每题3分,共30分)1.如果盈利20元记作+20元,那么亏损15元记作______元。

2.数轴上表示-3的点在原点的______侧,距离原点______个单位长度。

3.绝对值等于5的数是______。

4.比较大小:-2______-3(填“>”或“<”)。

5.某天的最高气温为6℃,最低气温为-2℃,则这天的温差是______℃。

6.一个数的倒数是它本身,这个数是______。

7.化简:-(-3)=______。

8.在有理数中,最小的正整数是______,最大的负整数是______。

9.若|a| = 3,|b| = 5,且a、b异号,则a - b =______。

10.观察下列数:-2,4,-8,16,-32,…,按照规律,第6个数是______。

二、选择题(每题3分,共30分)1.下列各数中,是负数的是()A. 0B. 2023C. -(-3)D. -22.下列说法正确的是()A.有理数分为正数和负数B.一个数的绝对值一定是正数C.0是最小的有理数D.最大的负整数是-13.在数轴上,与表示-1的点距离为3的点表示的数是()A. 2B. -4C. 2或-4D. 4或-24.若|x| = -x,则x一定是()A. 正数B. 负数C. 非正数D. 非负数5.下列运算结果为正数的是()A. -2 + 3B. -2 - 3C. -2×3D. (-2)÷36.一个数加上-12等于-5,则这个数是()A. 17B. 7C. -17D. -77.计算(-2)×3的结果是()A. 6B. -6C. 5D. -58.下列各对数中,互为相反数的是()A.-(+3)与+(-3)B. -(-4)与| -4|B.-2.5与-(+2.5) D. -(-2)与+(+2)9.已知a、b互为相反数,c、d互为倒数,m的绝对值是2,则(a + b)/m + cd + m的值为()A. 3B. -1C. 3或-1D. ±3或±110.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25 ±0.1)kg、(25 ±0.2)kg、(25 ±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A. 0.8kgB. 0.6kgC. 0.5kgD. 0.4kg三、解答题(共40分)1.(8分)把下列各数填入相应的集合中:-2.5,3,0,-1/2,-0.6,+5,1/3,-3.14,π正数集合:{ …}负数集合:{ …}整数集合:{ …}分数集合:{ …}2.(8分)计算:(1)12 -(-18)+(-7)- 15(2)(-2)×(-3)÷(-4)3.(8分)在数轴上表示下列各数,并比较它们的大小,用“<”连接起来。

初一数学@有理数的概念

初一数学@有理数的概念

第一章 有理数一、全章知识结构二、回顾正数、负数的意义及表示方法1、大于0的数叫做正数;正数的表示方法:a>0,2、在正数前面加上“-”号,表示比0小的数叫做负数;负数的表示方法:a<03、0即不是正数也不是负数。

正数,负数表示具有相反意义的量。

三、有理数的分类1、定义:整数和分数统称为有理数有限小数和无限循环小数都是有理数而无限不循环小数却不是有理数 2、有理数的分类:(1)按定义分类: (2)按性质符号分类:3、数轴:规定了原点,正方向和单位长度的直线叫做数轴。

数轴的作用:(1)用数轴上的点表示有理数; (2)在数轴上比较有理数的大小;(3)可用数轴揭示一个数的绝对值和互为相反数的几何意义;(4)在数轴上可求任意两点间的距离:两点间的距离=|x -y|=|y -x|四、有理数中具有特殊意义的数:相反数、倒数、绝对值、非负数 1、相反数:只有符号不同的两个数互为相反数。

(1)几何意义:在数轴上表示一对相反数的两个点与原点的距离相等。

(2)代数意义:只有符号不同的两个数。

(3)互为相反数的特性:a+b=0,0的相反数是0。

(4)会求一个数的相反数:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数a 的相反数为 a-b 的相反数为 2、倒数:(1)乘积是1的两个数互为倒数 (2)互为倒数的特性: ab=1, (3)0没有倒数(4)互为负倒数: 乘积是-1的两个数互为负倒数; ab=-1 3、非负数:(1)就是大于或等于0的数:a 0(2)数轴上,在原点的右边包括原点的点表示的数 (3)任何数的平方数都是非负数(4)非正数:就是小于或等于0的数:a 0(5)数轴上,在原点的左边包括原点的点表示的数 4、绝对值:(1)几何意义:一个数的绝对值就是它到原点的距离。

(2)代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。

人教版初中七年级数学第一单元有理数《1.2.2_数轴》教学设计

人教版初中七年级数学第一单元有理数《1.2.2_数轴》教学设计

人教版初中七年级数学第一单元有理数《1.2.2数轴》教学设计一、教学内容分析数轴是一个重要的概念,后续的平面直角坐标系也是以它为基础的.这是学生第一次学习数形结合的思想.数轴实际就是有理数的形的表示载体,或者说是有理数的另一种表示形式.如果要对有理数有一个深刻的理解,除了从符号的形式理解外,还要从形的角度理解有理数.如何利用数形结合理解有理数是本课时教学的关键问题.学生在本节课上已经完成了第一课时布置的任务:绘制一条路上的几个建筑物的位置关系图,并用文字语言描述建筑物的位置关系.以右图为例,如果想要准确地描述建筑物的位置关系,如体育馆在校史馆的西边25 m处,那么就要说清楚参考标准,以及建筑物相对参考标准的方向及距离,才能准确地表示出建筑物相对的位置关系,这三点缺少一个都无法准确地表示建筑物的位置关系.例如,如果缺少参考标准,那么体育馆可能在校史馆的西边25 m处,也可能在荣光楼的西边25 m处,这个位置是无法确定的;如果缺少方向,那么体育馆有可能在校史馆的西边25 m处,也有可能在校史馆的东边25 m处,位置无法确定;如果缺少距离,那么体育馆可能在校史馆的西边25 m处或是50 m处等等,位置也是无法确定下来的.因此,想要描述物体的位置关系,参考基准、方向和距离是缺一不可的.为了更加简洁地表示出位置关系,我们借用了数轴这一数学工具,用数学语言表示物体的位置关系.参考基准即为数轴上的原点,方向即为数轴上的正方向,距离体现为数轴上的单位长度.例如,如果以校史馆为原点,向东为正方向,单位长度为25 m,如下图,那么体育馆可以表示为-50 m处,用一个数字就简化了表示物体位置关系的方式,同样是一个数,在数轴上就具有了几何的意义:符号表示的是方向,符号后面的数表示的是距离原点的距离,这是我们后面课时要学习的内容.教材中给出的数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…,从原点向左,用类似的方法依次表示-1,-2,-3,…,如下图:根据研究概念的四个维度,我们从特征、由来、与已有知识的联系与区别、应用这几个角度对数轴进行总结:(1)特征:根据定义,数轴首先是一条直线,并且具备三个要素:原点、正方向和单位长度.这几个条件缺一不可,否则无法描述物体的位置关系.但是在选择原点、正方向和单位长度时取法是不唯一的,选择不同的取法,对应的数轴就会不同,表示物体位置的数也就会不同.(2)由来:用数简明地表示物体的位置关系.(3)与已有知识的联系与区别:数轴,拆开来就是数和轴.数轴与数有关,与直线也有关,这条直线具有原点、正方向和单位长度.给定一个数,可以在数轴上找到该数对应的点;给定数轴上的一个点,也可以读出该点对应的数.数的变化在数轴上体现为点动,反之,数轴上的点动体现为点所对应的数的变化.第二课时中有理数的分类,借助数轴能够更直观地分辨出正数、负数和0.要注意的是,有理数与数轴上点的关系:所有的有理数都可以用数轴表示,但不能说数轴上的点仅仅表示有理数.(4)应用:表示位置关系二、学情分析学生通过自主学习初步掌握了数轴及如何利用数轴表示位置关系等内容,并且完成了主干路上几个建筑物的位置关系图,能够描述出这些建筑物的位置关系. 但是为什么用数轴表示物体的位置关系?为什么数轴要有原点、正方向和单位长度?这三个要素是否是必备的?这些问题学生还理解不到位.学生由于第一次接触数形结合的思想,对于数在数轴上的几何意义还不能完全理解.因此,要结合学生完成的实际任务对上述问题进行分析.此外,数轴三要素的取法并不是唯一的,当选取的三要素发生变化时,同一个点所表示的数就会发生变化.下题是北京市2018年中考数学第8题,当平面直角坐标系的原点及单位长度发生变化时对应同一个点坐标的变化,学生作答情况并不好.平面直角坐标系是以数轴为基础进行学习的,因此学生要牢牢掌握数轴的基本知识,特别是落实清楚三要素变化对点所对应的数变化的影响(2018·北京)右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④三、教学目标1.明确数轴三要素的作用,会画数轴.2.能读出数轴上的点所表示的有理数.3.能将有理数对应的点表示在数轴上.4.学会运用数形结合的思想解决问题●重点体会数轴三要素的作用,能够依据三要素的变化确定数轴上数的变化●难点理解有理数在数轴上的几何意义,学会运用数形结合思想解决问题四、评价设计学习评价量表五、教学活动设计置关系? 2.根据前两个活动的讨论结果,学生了解到数轴的三个要素是缺一不可的,原点、正方向、单位长度对于描述位置关系都有重要作用.3.在数轴上,我们用一个点表示物体所在的位置,那么该点所对应的数就能够体现出物体的位置.例如,根据上图所示,以校史馆为原点,向东为正方向,25 m为单位长度建立数轴,则体育馆在-50 m所对应的点的位置.-50 m中负号体现的是方向,与正方向相反,为向西;50表示体育馆到原点,即到校史馆的距离为50 m.4.总结:有理数在数轴上的几何意义:一个有理数对应为数轴上的一个点,体现了这个点的位置,符号表示点相对原点的方向,符号后面的数字体现为该点到原点的距离. 个环节对物体位置关系的描述,类比到数轴中来,让学生体会数轴三要素的作用,以及三要素选取不同,对应的点所表示的数不同等知识点.1.根据下图所示的文字语言,选取不同的原点画数轴,并把建筑物用点表示在数轴上.(1)以校史馆为原点(2)以荣光楼为原点六、板书设计七、达标检测与作业1.(A)画一条数轴,将有理数235,332--,,分别表示在数轴上,并依次记作点A,B,C,D.2.(A)把数轴上各点表示的数写出来.3.(B)数轴上点 M表示2,点N表示-3.5,点A表示-1,在点 M和点N中距离点A 较远的点是.4.(B)已知数轴上有A,B两点,A,B之间的距离为3,点A与原点O的距离为3,那么点B表示的数为.5.(B)如果将5个城市的国际标准时间(单位:时)在数轴上表示(如下图所示),那么北京时间2016年8月8日20时应是()A.伦敦时间2016年8月8日11时B.巴黎时间2016年8月8日13时C.纽约时间2016年8月8日5时D.首尔时间2016年8月8日19时6.(B)下图是北京地铁1号线一些站点的分布示意图.在图中,以东为正方向建立数轴.有如下四个结论:①当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-3.5时,表示公主坟的点所表示的数为6;②当表示五棵松的点所表示的数为0,表示玉泉路的点所表示的数为-7时,表示公主坟的点所表示的数为12;③当表示五棵松的点所表示的数为1,表示玉泉路的点所表示的数为-2.5时表示公主坟的点所表示的数为7;④当表示五棵松的点所表示的数为2,表示玉泉路的点所表示的数为-5时,表示公主坟的点所表示的数为14上述结论中正确的是()A.①②③B.②③④C.①④D.①②③④7.(B)小华骑车从家出发,先向东骑行2km到A村,继续向东骑行3km到达B村,接着又向西骑行9km到达C村,最后回到家.试回答下列问题:(1)画一条数轴,以家为原点,以向东方向为正方向,表示出家以及A,B,C 三个村庄的位置;(2)C村离A村有多远?(3)小华一共行驶了多少千米?8.(C)已知有理数-4,2,3543,在数轴上对应的点分别为A,B,C,D将点A向右移动5个单位长度,再向左移动2个单位长度后表示的数为;若点E向右移1个单位长度后恰好落在点C处,则点E表示的数为;B,E两点之间的距离为;若点F与点C关于原点对称,则点F表示的数为;若点G到点D的距离为3,则点G表示的数为.9.(C)如下图所示,一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时则它的左端在数轴上所对应的数为5,用1个单位长度表示1cm,由此可得到木棒长为.(2)受题(1)的启发,请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了?八、教学反思本课时旨在通过实际任务让学生认识数轴在表示物体位置关系时的简洁,让学生理解为什么要引入数轴,以及三要素的重要作用.数形结合思想是本节课重点渗透的思想,通过用数轴上的点表示物体,用点所对应的数表示点的位置,将有理数和数轴上的点对应起来,从而有理数就有了几何意义,其符号和符号后面的数字分别对应的是相对原点的方向和距离.在教学中,由于三要素选取不同,学生绘制的数轴各不相同.学生提前自主学习时对规范性没有要求,因此一开始画出的数轴并不标准,所以在课堂上教师需要规范这一标准.学生通过一系列的练习后可以进一步感知有理数在数轴上的几何意义.在运用数形结合思想解决问题时,有些学生还不能在本节课一下子吸收掌握,因此教师要逐渐渗透数轴还有一个非常大的作用就是让数变得有“序”,可以利用这点比较多个数的大小,这是之后学习的内容.但是在教学中,学生还较难发现这点,需要教师引导指出本节课在实施过程中虽然留给学生思考时间,但是学生交流讨论的时间还是不够,例如,三要素的选取这部分可以让学生通过完成实际任务自己发现这一结论,也可以引导学生自己提出变换原点、正方向、单位长度去表示位置关系这一问题.。

初一数学第二章知识点总结

初一数学第二章知识点总结

初一数学第二章知识点总结一、有理数的基本概念1. 有理数的定义:有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b 是整数,且b≠0。

2. 有理数的分类:- 正有理数:大于0的有理数。

- 负有理数:小于0的有理数。

- 零:既不是正数也不是负数的有理数。

3. 有理数的性质:- 封闭性:加法、减法、乘法和除法(除数不为零)在有理数集内封闭。

- 加法和乘法的交换律、结合律。

- 减法和除法的逆元存在性。

二、有理数的运算1. 加法运算:- 同号相加:取相同的符号,绝对值相加。

- 异号相加:取绝对值较大的数的符号,绝对值相减。

- 任何数与零相加等于原数。

2. 减法运算:- 减去一个数等于加上这个数的相反数。

3. 乘法运算:- 同号得正,异号得负,绝对值相乘。

- 任何数与零相乘等于零。

4. 除法运算:- 除以一个不等于零的数等于乘以这个数的倒数。

- 零除以任何非零数等于零。

5. 混合运算:- 先乘除后加减。

- 同级运算从左到右进行。

三、绝对值与有理数比较1. 绝对值:- 绝对值表示一个数距离零的距离,用符号“| |”表示。

- 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。

2. 有理数的比较:- 正数大于零,负数小于零。

- 两个负数比较大小,绝对值大的反而小。

四、有理数的简化1. 简化的概念:- 简化是有理数分数形式的最简表示,即分子和分母没有公因数。

2. 简化的方法:- 找出分子和分母的最大公因数,然后分子分母都除以这个数。

五、分数的加减乘除1. 分数的加法:- 需要找到公共分母,然后按照同分母分数的加法规则进行计算。

2. 分数的减法:- 同样需要找到公共分母,然后按照同分母分数的减法规则进行计算。

3. 分数的乘法:- 分子乘分子,分母乘分母。

4. 分数的除法:- 分子乘分母的倒数。

六、小数与有理数的互化1. 小数转化为有理数:- 根据小数点后的位数,将小数乘以10的相应次方,转化为分数形式。

人教版初中七年级数学第一单元有理数1.2.2_数轴教案

人教版初中七年级数学第一单元有理数1.2.2_数轴教案

人教版初中七年级数学第一单元有理数1.2 有理数(第2课时)教学目标1.掌握数轴的概念,理解数轴上的点和有理数的关系.2.会正确地画出数轴,利用数轴上的点表示有理数.3.领会类比、数形结合的重要思想方法.教学重点难点重点:能将已知数在数轴上表示出来,说出数轴上已知点所表示的数;用数轴比较有理数的大小.难点:数轴的画法;用数轴比较负分数的大小.课前准备多媒体课件、温度计教学过程导入新课导入一:在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站牌西3 m和4.8 m处分别有一棵槐树和一根电线杆,你能画图表示这一情况吗?导入二:1.图1中是我们经常见到的温度计,你们会读出显示的温度吗?6 / 66 / 6图12.根据已有的生活经验,请找出一支温度计在外观上具有哪些不可缺少的特征?3.我们看到温度计上有好多数:正整数、负整数、零,而这些数都是有理数.那大家想想能不能把所有的有理数都放在温度计上呢?答案:1.5 ℃ 0 ℃ -10 ℃2.一条竖线,有刻度.刻度是按照大小顺序排列的.3.能.探究新知活动1学生分组讨论以下问题,并画图表示.(1)马路可以用什么几何图形代表?(2)汽车站牌起什么作用?(3)你是怎么确定问题中各物体的位置的?答案:(1)用直线代表马路.(2)汽车站牌作为基准点.(3)根据各个物体与站牌的方向和距离关系确定在直线上的位置,如图2所示.6 / 6图2师生活动教师用多媒体出示问题.学生带着问题阅读教材第7页的内容,思考讨论问题并回答.教师总结.活动2各小组拿出温度计,观察温度计的结构,想一想它与上面所画的直线有什么共同点?答案:温度计也是用一条直线上的点表示正数、负数和零.师生活动学生观察温度计,思考并回答问题.活动3阅读教材第8页,思考如下问题:1.数轴的概念是什么?2.(1)画数轴的步骤是什么?(2)原点起到什么作用?(3)你是怎样理解选取适当的长度为单位长度的?答案:1.略.2.(1)画数轴的步骤:①画直线取原点;②规定正方向;③选取单位长度,取点.(2)原点是正数、负数的分界,它是数轴的基准点.(3)单位长度大小的选取要根据实际需要灵活选取.要表示的数绝对值较大时,单位长度就可以取小一些;要表示的数绝对值较小时,单位长度就可以取大一些. 师生活动教师总结:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a 个单位长度.新知应用例1 画出数轴,并用数轴上的点表示下列各数:2,-1.5,0,3.5,-4.解:如图3所示.图3师生活动教师展示问题图片,学生分组讨论并回答问题.教师总结:数轴上的点表示的数,右边的数总比左边的数大.设计意图使学生明确数轴上的点表示数的意义,会画数轴,并用数轴上的点表示有理数. 例2 比较下列各组数的大小,并用“<”把它们连接起来.(1)3,-5,0;(2)-1.5,0,-4,1.2.解:(1)-5<0<3;(2)-4<-1.5<0<1.2.6 / 66 / 6师生活动教师展示问题图片,学生分组讨论并回答问题.教师:大家还有别的比较方法吗?给学生思考的空间,为后面讲解两个负数比较大小奠定基础.课堂练习(见导学案“当堂达标”)参考答案1.2 ±52.73.A4.C5.B6.左 3 左 4 左7.58.如图4所示.图4-3.5<-1.59.解:(1)如图5所示.图5(2)4.(3)2或6.6 / 610.(1)-1,0,1 (2)-2,-1,0,1,2 (3)7 -3,-2,-1,0,1,2,3 (4)401(5)2n +1课堂小结1.画数轴的步骤是什么?2.数轴的三要素是什么?3.怎样利用数轴比较有理数的大小?布置作业教材第9页练习第2,3题板书设计教学反思数轴是数形转化,数形结合的重要媒介.教学中先让学生观察、思考和自己动手操作.经历和体验数轴的形成过程,加深对数轴概念的理解,体现了从感性认识到理性认识,到抽象概括的认识规律.应用了从特殊到一般,以及数形结合的数学思想方法.。

初一上学期数学的第一二章知识点

初一上学期数学的第一二章知识点

初一上学期数学的第一、二章知识点初中数学知识点整理:第一章有理数一、有理数的分类(1)按正负分,分为正有理数、零、负有理数;(2)按整数和分数分,分为整数和分数;二、有关概念(1)相反数:代数意义和几何意义相结合,(2)绝对值:(3)倒数(4)数轴三、有理数大小的比较主要分为利用数轴比较和利用绝对值比较四、有理数的运算(1)运算法则①加法法则②减法法则③乘法法则④除法法则⑤乘方法则(2)运算律① 交换律:a、加法交换律 a+b=b+ab、乘法交换律a×b=b×a② 结合律:a、加法结合律 a+b+c=(a+b)+cb、乘法结合律a×c+b×c=(a+b)×c ③分配律:(a+b)×c=a×c+b×c五、科学记数法的概念六、近似数的概念示例:例1 某食品包装袋上标有“净含量386克 4克”,则这包食品的合格净含量范围是克——390克。

根据正数、负数的意义可知,这包食品的合格净含量范围是(386-4)克——(386+4)克,即382克——390克。

382例2 (1)如果a与-2互为相反数,那么a等于A、-2B、2C、-D、根据相反数的特点,即“绝对值相等,符号相反”,可知-2的相反数为2.故正确答案为B。

(2)-5的绝对值是A、5B、-5C、D、-有绝对值的概念可知,表示-5的点到原点的距离为5,故-5的绝对值为5。

(3)- 的倒数是A、 B、 C、- D、-根据倒数的定义知- 的倒数为1÷(- )=-例3 比较大小:- 与-这是两个负数比较大小,应先比较它们的绝对值的大小。

= = , = = 。

例4 计算:有理数加减乘除混合运算顺序:先乘除,后加减,有括号应先算括号里的。

例5 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将665 575 306用科学记数法表示(精确到百万位)约为A、66.6×10B、0.666×10C、6.66×10D、6.66×10665 575 306=6.655 753 06×10 ≈6.66×10 故选CC例6用四舍五入法,按括号里的要求对下列各数取近似值。

数学人教版(2024)版七年级初一上册 2.1.2 有理数的减法 教学课件02

数学人教版(2024)版七年级初一上册 2.1.2 有理数的减法 教学课件02

探究:
计算9 − 8,9 + (−8);15 − 7,15 + (−7).从中又能有什么发现吗?
9 − 8 = 1,9 + (−8) = 1,所以9 − 8 = 9 + (−8).
15 − 7 = 8,15 + (−7) = 8,所以15 − 7 = 15 + (−7).
有理数减法法则:
减去一个数,等于加这个数的相反数.
温差=最高气温−最低气温
可以列式为 3 − (−3) =
这节课我们一起来探究一下吧!
探索一:有理数的减法法则
北京冬季某一天的气温为 −3~3℃ .这一天北京的温差是多少?
5
4
3
2
1
0
−1
−2
−3
−4
−5
−6
−7
减法是加法的逆运
相反数 算.
你发现了什么?
3
6

3 − (−3) =6
3
( 6 ) + (−3)=3
例1:计算:
(1)(−3) − (−5);
(2) 0 − 7 ;
(4)7.2 − (−4.8);
(5)(−3 ) − 5
解:(4) 7.2 − (−4.8)
= 7.2 + 4.8
=12
1
2
(3)2 − 5;
1
4
减去−4.8 ,等于加上−4.8的相反数4.8
例1:计算:
(1)(−3) − (−5);
− = + (− )
有理
数的
减法
1.先把减号变为加号;
有理数减法
的运算步骤
2.再把减数变为它的相反数;

初一数学二单元知识点总结

初一数学二单元知识点总结

初一数学二单元知识点总结初一数学二单元知识点整理第一章有理数1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减:①正+正②大-小③小-大=-(大-小) ④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用ax10n 表示一个数。

(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。

【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。

实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。

七年级数学上册 第2章 有理数2.1 有理数(有理数)课件

七年级数学上册 第2章 有理数2.1 有理数(有理数)课件
他应记作__。
A:20元 B:-20元 C:-20 D:100元
进一步来看,一周来他的账本(zhànɡ Nhomakorabeaběn)上的数据为
周一 周二 周三 周四 周五 周六 周日 120元 -20元 80元 0元 -10元 150元 100元
如此看来他这一周是赚了还是赔了?有多少?
第十页,共十五页。
课堂 小结 (kètáng)
第四页,共十五页。
3、某厂计划每天生产(shēngchǎn)零件800个,第 一天生产零件850个,第二天生产零件800个, 第三天生产零件750个,你能用正、负数表 示该厂每天的超产量吗?
解:第一天超产(chāochǎn)零件是50个. 第二天超产零件是0个. 第三天超产零件是-50个
关键:以800个零件为正、负数(fùshù)的标准(分界限)
(3)正分数( 2.7,─47); (4)有理数(
全都)。 是 (quándōu)
第七页,共十五页。
1、找规律 ((guīl1ǜ)): 1,-2,3,-4,5,-6,7,-8 ,………
其中(qízhōng)第199个数1为99_____ ,第2002个数-2_0__0_2_ ,
规律是_奇__数__为_+__;_偶__数_为__-; (2)1,2,-3,4,5,-6,7,8 ,-9 ………
正分数: 如 1/2 、1/3、5.2
分数
负分数:如 -1/5、-3.5、-5/6
整数与分数(fēnshù)统称为有理数
第三页,共十五页。
随堂练习(liànxí)
2、下表是某日上海发行的部分债券行情表,试说明 各债券当天(dàngtiān)涨跌情况。
名称 99国债 99国债 99国债 01通化 01三峡 (1) (2) (3) 债券 债券

七年级数学上册第二章有理数知识点

七年级数学上册第二章有理数知识点

第一章有理数复习题(1)什么是有理数?注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;有理数的分类:负分数负整数负有理数零正分数正整数正有理数有理数整数和分数统称为有理数。

负分数正分数分数负整数零正整数整数有理数数集问题:主要是自然数集合。

(0和正整数)(2)数轴数轴是规定了原点、正方向、单位长度的一条直线. 在数轴上的数,右边的数总比左边的数大。

比较法则:正数大于零,负数小于零,正数大于负数。

3.相反数:(1)只有符号不同的两个数称互为相反数,我们也可以说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的两个数和为0a+b=0a、b互为相反数.(4)互为相反数的商为-1。

(5)互为相反数的两个数绝对值相等4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点到原点的距离;(2)绝对值可表示为:)0a (a )0a (0)0a (a a 或(3)0a 1a a0a 1aa (4)|a|是非负数,即|a|≥0;即任何有理数的绝对值是一个非负数。

5.有理数比较大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数. 等于本身的数汇总:相反数等于本身的数:0 倒数等于本身的数:1,-1绝对值等于本身的数:正数和0(非负数)平方等于本身的数:0,1 立方等于本身的数:0,1,-1.7.有理数加法法则:(1)同号两数相加,取相同的正负号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数和为零;(4)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个因式都不为零,积的符号由负因式的个数决定.负因数的个数为奇数个时积为负,负因数的个数为偶数个时积为正。

七年级数学上册第2章有理数2.1.2有理数课件

七年级数学上册第2章有理数2.1.2有理数课件

自我诊断 2.-a 是负数,这种说法正确吗? 解:不正Байду номын сангаас.
1.下列各数中,不是有理数的是( C ) A.3.1415926 C. π 22 B.- 7 D.-6.307
· ·
2.对于有理数 a,下列说法中,正确的是( D ) A.a 表示正有理数 B.-a 表示负有理数 C.a 和-a 中,必有一个负有理数 D.以上答案都不对
12.把下列各数分别填在相应的集合中: 1 1 - ,1 ,3.14,0,-20,-2,10,-3.6. 3 2 整数集合:{ 0,-20,-2,10… }; 负分数集合:{ -1,-3.6… }; 3 1 非负数集合:{ 1 ,3.14,0,10… }; 2 1 1 有理数集合:{ - ,1 ,3.14,0,-20,-2,10,-3.6… }; 3 2 非负整数集合:{ 0,10… };
3 负有理数:-7、-5.3、- 、-10%. 2
1 7.在 ,-2,0,-3.4 这四个数中,属于负分数的是( D ) 4 1 A. 4 C.0 B.-2 D.-3.4
8.下列说法中,正确的有( B ) ①一个有理数,不是正数,就是负数;②一个有理数,不是整数,就是分数; 1 ③0 是最小的有理数;④0、 、2004、1.25 是非负数. 4 A.①④ C.③④ B.②④ D.②③
3.下列说法不正确的是( C ) A.有理数可分为正整数、正分数、0、负整数、负分数 B.一个有理数不是分数就是整数 C.一个有理数不是正数就是负数 D.若一个数是整数,则这个数一定是有理数
7 - 1.5 、- 7 2 4.在数 2、0、π、-1.5、- 、-1 中,负分数有 2
数有 2、0、π ;整数有
9.下列说法正确的是( C ) A.有理数是指整数、分数、正有理数、0、负有理数这五类数 B.一个有理数不是正数就是分数 C.一个有理数不是整数就是分数 D.以上说法都不对 10.有理数中,最小的自然数是 0 ,最小的正整数是 1 . 个;分数有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档