高等数学等价无穷小替换_极限的计算

合集下载

等价无穷小代换在求极限过程中的应用

等价无穷小代换在求极限过程中的应用
维普资讯
3 6
高 等 数 学 研 究
S TU DI ES N I CO LLEGE AT HEM A TI M CS
V o1 .5。 o.3 N Se p., 2 002
等 价 无 穷 小 代 换 在 求 极 限 过 程 中 的 应 用
价 。
推 论 设 a , , y是 自变 量 同 一变 化 过 程 中 的 无 穷 小 量 , a 且 ~a , ~ , 则
() 1 当 与 不 等 价 时 , l 则 i m :l i m .
( ) a与 等 价 时 , 式 极 限未 必 成 立 。 2当 上
i m Sl
(。 )。 cs
解 c1 12i )( 去 ( ) 以 o —( 去 s ) 去 s = s ,n ~ , n i 所 原式 一 l( 2去)一i( )]一一 i1 ・ ! 1 { m— 。 m 一 。 j .


例 5 求
解 c ~一 + ~一 { 暑,以 。 等 寿, 暑+ ・ 所 s 一


利 用 定 理 2 于 是 ,

收 稿 E期 : O 1 O — 1 。 l 2 O 一 6 2
维普资讯
第 5卷 第 3期
李 秀 敏 、 灵 色 : 价 无 穷 小 在 求 极 限 过 程 中 的 应 用 王 等
3 7
原 式 =
一 1 。
— O+
( )i ( 一 ) 一 2l m 1
— O一
( l ( + l x) 1 3) i 1 n 一 一 m x
一 1
( ) i ( + ) 一 0 4 lm 1
一 O 一
( )1 A

高等数学等价无穷小替换_极限的计算

高等数学等价无穷小替换_极限的计算

⾼等数学等价⽆穷⼩替换_极限的计算讲义⽆穷⼩极限的简单计算【教学⽬的】1、理解⽆穷⼩与⽆穷⼤的概念;2、掌握⽆穷⼩的性质与⽐较会⽤等价⽆穷⼩求极限;3、不同类型的未定式的不同解法。

【教学内容】1、⽆穷⼩与⽆穷⼤;2、⽆穷⼩的⽐较;3、⼏个常⽤的等价⽆穷⼩等价⽆穷⼩替换;4、求极限的⽅法。

【重点难点】重点就是掌握⽆穷⼩的性质与⽐较⽤等价⽆穷⼩求极限。

难点就是未定式的极限的求法。

【教学设计】⾸先介绍⽆穷⼩与⽆穷⼤的概念与性质(30分钟),在理解⽆穷⼩与⽆穷⼤的概念与性质的基础上,让学⽣重点掌握⽤等价⽆穷⼩求极限的⽅法(20分钟)。

最后归纳总结求极限的常⽤⽅法与技巧(25分钟),课堂练习(15分钟)。

【授课内容】⼀、⽆穷⼩与⽆穷⼤1、定义前⾯我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近⽅式。

下⾯我们⽤→x *表⽰上述七种的某⼀种趋近⽅式,即*{}-+→→→-∞→+∞→∞→∞→∈00x x x x x x x x x n定义:当在给定的→x *下,()f x 以零为极限,则称()f x 就是→x *下的⽆穷⼩,即()0lim =→x f x *。

例如, ,0sin lim 0=→x x Θ .0sin 时的⽆穷⼩是当函数→∴x x,01lim=∞→x x Θ .1时的⽆穷⼩是当函数∞→∴x x,0)1(lim =-∞→nn n Θ .})1({时的⽆穷⼩是当数列∞→-∴n n n【注意】不能把⽆穷⼩与很⼩的数混淆;零就是可以作为⽆穷⼩的唯⼀的数,任何⾮零常量都不就是⽆穷⼩。

定义: 当在给定的→x *下,()x f ⽆限增⼤,则称()x f 就是→x *下的⽆穷⼤,即()∞=→x f x *lim 。

显然,∞→n 时,Λ、、、32n n n 都就是⽆穷⼤量, 【注意】不能把⽆穷⼤与很⼤的数混淆;⽆穷⼤就是极限不存在的情形之⼀。

函数极限的几种求解方法

函数极限的几种求解方法

函数极限的几种求解方法腾飞上海电机学院文理学院,上海 201306摘要:函数极限是高等数学中一个重要内容,而对于函数极限的求法也有很多种。

本文主要归纳了几种常用求函数极限的方法:利用定义,四则运算法则,左右极限,等价无穷小替换,洛必达法则。

关键词:函数极限;等价无穷小替换;洛必达法则 Severalmethods of solving the functionlimit Teng Fei (School ofArts and Sciences, Shanghai Dianji University, Shanghai 201306, China)极限是研究函数的基本工具,也是贯穿高等数学始终的重要内容。

掌握求函数极限的方法是学好高等数学的关键。

然而求函数极限的方法很多,又非常的灵活,这都给初学者带来了很大的困惑,同时也影响后续课程的学习。

因此,本文将总结一些函数极限的求解方法。

1.利用定义求函数极限例1 证明证明,要证,当时,有。

只要证。

,取,使得当时,有。

2.利用四则运算法则求函数极限例2解当时,分子,分母的极限均为零,而且它们不可以分解因式,但可以分子有理化。

=注: 这种方法主要应用于一些简单函数的和,乘积,商的极限,通常情况下,要使用这些法则,往往要根据具体情况先对函数的某些恒等变形或化简。

1.利用左右极限求函数极限例3 设,求。

解,由。

1.利用等价无穷小替换求函数极限例4 计算解,当时,,,。

注在利用等价无穷小做替换时,只能在乘积形式中代换,和差形式要转化成乘积形式。

1.利用洛必达法则求函数极限例5 求解注利用洛必达法则求函数极限,每次分别求导后都要判断此式是否满足洛必达法则的条件,满足才能继续,不满足则不能应用洛必达法则。

以上几种方法是求函数极限的几种常用方法。

此外,还有很多其它求函数极限的方法,如,夹逼准则,单调有界原理,泰勒展式等方法。

很多复杂问题需要几种方法联合使用。

总之,求函数极限的方法很多,也很灵活。

高等数学A(1)复习资料精选全文

高等数学A(1)复习资料精选全文

可编辑修改精选全文完整版高数A (1)复习资料一、极限计算:常用方法包括等价无穷小替换,洛必达法则,两个重要极限。

解题思路:首先判断是否为未定式,否则化成未定式类型(特别注意幂指函数情形利用对数函数性质转化;加减法类型一般通分;如果无穷多项相加则要先求和,如果不能直接求和可能需要利用夹逼准则放缩后后再求和;),对于未定式类型先考虑利用等价无穷小替换后再利用洛必达法则。

注意:函数中如果出现幂指函数类型也可以考虑直接利用第二个重要极限处理,注意处理技巧。

如果出现变上限函数类型,注意变上限函数的导数如何计算,特别是上限为x 的函数,也就是积分上限函数为复合函数时求导要利用链式法则;如果积分上限函数被积函数不是积分变量的一元函数,则将其他变量提出到积分号外面,或者利用换元法化到积分限上。

常用等价无穷小:2~cos 1~arctan ,~arcsin ,~tan ,~sin 2x x x x x x x x x x -,,x x x e x x x αα~1)1(,~1,~)1ln(-+-+(0→x )练习题:1. 设822lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,则___________=a ; 2. ____________________arctan lim 21=⎪⎭⎫ ⎝⎛∞→x x x x ;3.=+→xx x sin 2)31(lim .4. 0tan sin lim sin x x x x x→-- 5. 0ln sin 5lim ln sin 2x x x →+ 6. 2013sin coslim(1cos )ln(1)x x x x x x →+++ 7. 2220(1)limxtx x t e dtx-→+∞+⎰2220(1)1[lim]2xt xx t e dt xe →+∞+==⎰二、无穷小比较:高阶,同阶,等价的定义处理思路:转化为求极限问题,特别是同阶无穷小;注意如果分式极限存在,分母为无穷小量,则分子也一定为无穷小量。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。

通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。

求函数极限的方法有很多种,以下是几种常见的方法。

对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。

例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。

当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。

例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。

洛必达法则是求未定式极限的重要方法。

如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。

例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。

对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。

通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。

例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。

夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。

如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。

例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。

高数求极限的方法小结

高数求极限的方法小结
例40求 .
解令 ,则原式 ,
所以在 时, 与 等价,因此,原式 .
[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]
高等数学中求极限的方法小结
2.求极限的常用方法
2.1利用等价无穷小求极限
#这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3]
例36 ,求 .
解 .
例37若函数 有连续二阶导数且 , , ,
则 .
A:不存在B:0 C:-1D:-2
解 .
所以,答案为D.
例38若 ,求 .

.
2.16利用连续性求极限[1]
例39设 在 处有连续的一阶导数,且 ,求 .
解原式
.
2.17数列极限转为函数极限求解
数列极限中是 趋近,而不是 趋近.面对数列极限时,先要转化成求 趋近情况下的极限,当然 趋近是 趋近的一种情况而已,是必要条件.(还有数列极限的 当然是趋于正无穷的).[1]
(1)定积分中值定理:如果函数 在积分区间 上连续,则在 上至少有一个点,使下列公式成立: ;
(2)设函数 在区间 上连续,取 ,如果极限 存在,则称此极限为函数 在无穷区间 上的反常积分,记作 ,即 ;
设 在区间 上连续且 ,求以曲线 为曲线,底为 的曲边梯形的面积 ,把这个面积 表示为定积分: 的步骤是:
首先,用任意一组的点把区间 分成长度为 的 个小区间,相应地把曲线梯形分成 个窄曲边梯形,第 个窄曲边梯形的面积设为 ,于是有 ;
其次,计算 的近似值 ;

高等数学等价交换分式

高等数学等价交换分式

高等数学等价交换分式
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件
1、被代换的量,在取极限的时候极限值为0;
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。

等价无穷小也是同阶无穷小。

从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。

常用等价无穷小公式是什么
常用等价无穷小公式=1-cosx。

等价无穷小是无穷小之间的一种关系,指的是在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。

无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

当x趋近于0时:
e^x-1~x;
ln(x+1)~x;
1-cosx~(x^2)/2;
(1+bx)^a-1~abx。

高数求极限的方法小结

高数求极限的方法小结

高数求极限的方法小结高等数学中求极限的方法小结2.求极限的常用方法2.1 利用等价无穷小求极限#这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小.(2)有界函数与无穷小的乘积是无穷小.(3)非零无穷小与无穷大互为倒数.(4)等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷小代替).[3]设αα'~、~ββ'且lim lim ββαα'=;则:β与α是等价无穷小的充分必要条件为:0()βαα=+.常用等价无穷小:当变量0x →时,21sin ~,tan ~,arcsin ~,arctan ~,1~,ln(1)~,1cos ~,2x x x x x x x x x e x x x x x -+-~,(1)1~x x xαα+-.例1 求01cos lim arctan x xx x→-. 解210,1cos ~,arctan ~2x x x x x →-时,故,原式220112lim 2x xx →==例2 求123(1)1lim cos 1x x x →+--. 解 12223110,(1)1~,1cos ~32x x x x x →+--时,因此:原式202123lim 132x xx→==-.例3 求x →.解 0,x →时11~,tan ~3x x x ,故:原式=0113lim 3x xx →=.例4 求()21lim 2ln(1)xx ex x →-+.解 0,1~,ln(1)~xx e x x x→-+时,故:原式2201lim 22x x x →==.例5 试确定常数a 与n ,使得当0x →时,nax 与33ln(1)x x -+为等价无穷小.解330ln(1)lim 1n x x x ax→-+= 而左边225311003331lim limn n x x x x x x nax nax --→→-+--=,故 15n -=即6n = 0331lim 11662x a a a →--∴=∴=∴=-. 2.2 利用洛必达法则求极限#利用这一法则的前提是:函数的导数要存在;为0比0型或者∞∞型等未定式类型. 洛必达法则分为3种情况:(1)0比0,无穷比无穷的时候直接用.(2)0乘以无穷,无穷减去无穷(无穷大与无穷小成倒数关系时)通常无穷大都写成无穷小的倒数形式,通项之后,就能变成(1)中形式了.(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数,幂函数)形式的方法主要是取指数的方法,这样就能把幂函数指数位置的函数移下来了,就是写成0与无穷的形式了.洛必达法则中还有一个定理:当x a →时,函数()f x 及()F x 都趋于0;在点a 的某去心邻域内,()f x ﹑()F x 的导数都存在且()F x 的导数不等于0;()lim ()x af x Fx →''存在,那么()()lim lim ()()x a x a f x f x F x F x →→'=' .[1]求极限有很多种方法如洛必达法则,夹逼定理求极限的秘诀是:强行代入,先定型后定法. [3]例6 求22201cos lim()sin x x x x→-.分析 秘诀强行代入,先定型后定法.22224431100(00)(00)0000000000-+--+-===(此为强行代入以定型).()00-可能是比()00+高阶的无穷小,倘若不这样,或422(00)(00)0000000+--+= 或43(00)(00)0000000+-+-=. 解2222222240001cos sin cos (sin cos )(sin cos )lim()lim lim sin sin x x x x x x x x x x x x x x x x x x →→→--+-==3300sin cos sin cos sin cos limlim 2lim x x x x x x x x x x x xx x x →→→-+-==,由洛必达法则的22222001cos sin 4sin 42,2lim lim 333x x x x x x x →→-+==有:上式=.例7 求201lim x x e x x→--.解22000(1)1lim lim 1lim 1()21x x x x x x e e e x x x x x→→→'--==-∴=-'--- .例8 求332132lim 1x x x x x x →-+--+.解 原式22113363lim lim 321622x x x x x x x →→-===---.(二次使用洛必达法则).例9 求02lim sin x x x e e x x x-→---.解 原式0002lim lim lim 21cos sin cos x x x x x xx x x e e e e e e x x x ---→→→----====-.例10 求22143lim 21x x x x x →-+-+.解 原式1112422lim lim lim02211x x x x x x x x x →→→---===∴---原式=∞.例11 求0tan lim sin arcsin x x xx x x→-. 解 原式222222220000111(1cos)tan 1cos 1cos 2lim lim lim lim33cos 3cos 3x x x x x x x x x xxx x x x x x →→→→-+--=====.例12 求0cot lim ln x xx+→. 解 原式22200sin cos 1lim lim sin 2sin cos x x x x x x x x ++→→---===-∞.例13 求22201cos lim()sin x x x x →-.解 原式22222400sin cos (sin cos )(sin cos )lim lim sin x x x x x x x x x x x xx x →→--+==223320000sin cos sin cos sin cos 1cos sin 4lim lim 2lim 2lim 33x x x x x x x x x x x x x x x x x x x →→→→-+--+====“0⨯∞”型:例14 求lim (arctan )2x x x π→+∞-.解 原式2221arctan 112limlim lim 11111x x x x x xx xπ→+∞→+∞→+∞-+====+.“∞-∞”型:例15 求 ()2lim sec tan x x x π→-.解1sin 1sin sec tan cos cos cos x xx x x x x--=-=,故原式221sin cos lim lim 0cos sin x x x xx xππ→→--===-. “00”型: 例16 求0lim xx x +→.解 原式ln 0lim ln ln 00lim lim 1x xxx e x x xx x eee+→++→→====.“1∞”型:例17 求lim 1xx e x →∞⎛⎫+ ⎪⎝⎭.解 原式lim 1x e eex e e x→∞⎛⎫=+= ⎪⎝⎭.“0∞”型:例18 求tan 01lim ()xx x+→. 解 原式tan ln tan 01lim ln()tan ln 00lim lim x xxx e x xxx x ee e-+→++-→→===,而tan ~00lim (tan ln )lim (ln )0x xx x x x x x ++→→-−−−→-=,因此:原式=1.2.3 泰勒公式(含有e 的x 次方的时候,尤其是含有正、余弦的加减的时候要特别注意)泰勒中值定理定理:如果函数()f x 在含有n 的某个开区间(,)a b 内具有直到(1)n +阶的导数,则对任一(,)x a b -∈,有()f x =0()f x +0()f x '(x -0x )+0()2!f x ''(x -0x )2+……+()0()!n f x n (x -0x )n+nR (x )其中()()()(1)10()1!n n n f R x x x n ξ++=-+,这里ξ是x 与0x 之间的某个值.[1]例19 利用带有佩亚诺型余项的麦克劳林公式,求极限3sin cos lim sin x x x xx→-. 解 由于公式的分母33sin~(0)x x x →,我们只需将分子中的3333sin 0(),cos 0()3!2!x x x x x x x x x =-+=-+代入计算,于是3333331sin cos 0()0()0()3!2!3x x x x x x x x x x x -=-+-++=+,对上式做运算时,把两个3x 高阶的无穷小的代数和还是记作30()x .例20323322314334lim lim 3211211x x x x x x x x x x x x →∞→∞++++==++++++,2222111lim lim 121(1)1x x n n n n n→∞→∞++==--+,()121(2)313limlim (2)332233nn nn n n x x ++→∞→∞⎛⎫-+ ⎪-+⎝⎭==-+⎛⎫--+ ⎪⎝⎭.2.4 无穷小与有界函数的处理方法面对复杂函数,尤其是正、余弦的复杂函数与其它函数相乘的时候,一定要注意这个方法.[3]例21 求 sin lim x x xx→∞+. 解 原式sin 1lim(1)lim(1sin )1x x x x x x→∞→∞=+=+=. 2.5 夹逼定理主要介绍的是如何用之求数列极限,这个主要是看见极限中的通项是方式和的形式,对之放缩或扩大.[1]例22 求2sin sin sin lim ...1112n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭.解 111sinsin sin 11nn n i i i i i i n n nn n on iπππ===≤≤+++∑∑∑,1011sin 12lim lim sin n n n n i i i i n n x dx n o n nππππ→∞→∞====⋅=+∑∑⎰,1011sin 112lim lim 1sin 11nn n n i i i i n x dx n n n nππππ→∞→∞==⎫⎛=⋅=⋅⋅= ⎪++⎝⎭∑∑⎰,根据夹逼定理 1sin2lim 1nx i i n n iππ→∞==+∑.2.6 等比等差数列公式(δ的绝对值要小于1) [1]例23 设1||<δ,证等比数列1,δ,2δ1n δ-,…的极限为0.证 任取01δ<<,为使n xa ε-<,而nn xa δ-=,使nδε<,即ln ln ln ,ln n n εδεδ<>,当ln ln N εδ⎡⎤=⎢⎥⎣⎦,当n N >时,即ln ln 11ln ln n N εεδδ⎡⎤≥+=+>⎢⎥⎣⎦,ln ln nn δεδε<⇒<即nxa ε-<,由定义知()lim 10nδδ<=()()22......lim ...11n n n δδδδδδδδδ→∞++=++=<-.因此,很显然有:()0.99...lim 0.99 (1)n n→∞==.2.7 各项以拆分相加[3]将待求的和式子的各项拆分相加来消除中间的大多数,主要应用于数列极限,可以使用待定系数来拆分简化函数.例24 求()111lim 1...2*33*41n nn →∞⎛⎫++++ ⎪ ⎪+⎝⎭.解 原式111111lim 1 (23341)n n n →∞⎛⎫=+-+-++- ⎪+⎝⎭11lim 121n n →∞⎛⎫=+- ⎪+⎝⎭31lim 21n n →∞⎛⎫=- ⎪+⎝⎭=32. 2.8 求左右极限的方式例25 求函数⎪⎩⎪⎨⎧>+=<-=0,10,00,1)(x x x x x x f ,求0x →时,()f x 的极限.解 ()()00lim lim 11x x f x x --→→=-=-,()()00lim lim 11x x f x x ++→→=+=,因为()()00lim lim x x f x f x ++→→≠,所以,当0→x 时,)(x f 的极限不存在.例26 ()0lim 0x x x xαα→>.解 0)(lim )(lim 00=-=---→→ααx x x x x x ,0lim lim 00==++→→ααx xxx x x ,因为0lim )(lim 00==-+-→→xx x x x x x x αα,所以,原式=0.2.9 应用两个重要极限1sin lim 0=→xxx ,1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭例27 求xe x x 1lim 0-→.解 记()ln 1x t =+ 1xe t-=,则 原式=1001lim lim 111ln 1t t ttt t →→==+⎛⎫+ ⎪⎝⎭()1lim 1x x x e →∞⎛⎫+= ⎪⎝⎭因为.例28 求1lim 11nn n →∞⎛⎫+ ⎪+⎝⎭.解 原式=()111lim 11n n n +-→∞⎛⎫+ ⎪+⎝⎭=e .例29 求1lim 1-1nn n →∞⎛⎫+ ⎪⎝⎭.解 原式=()111lim 1-1n n n -+→∞⎛⎫+ ⎪⎝⎭=e .2.10 根据增长速度)(ln ∞→<<x e x x xn λ例30 求()lim 0nx x x n eλλ→∞>为正整数,.解 原式=1lim n x x nx eλ-→∞=()221!lim lim 0n xn x x x n n x n e e λλλλ-→∞→∞-==.例31 求()ln lim 0nx xn x→∞>. 解01lim lim ln lim 11===∞→-∞→∞→n x n x x n x nxnx x x .同函数趋近于无穷的速度是不一样的,x 的x次方快于!x (x 的阶乘)快于指数函数,快于幂函数,快于对数函数.所以增长速度: )(ln ∞→<<x e xx xnλ.故以后上述结论可直接在极限计算中运用.2.11 换元法例321lim (1)x x x→-∞+.解 令x t =-, 则原式=1lim 1tt t -→+∞⎛⎫- ⎪⎝⎭1lim tt t t -→+∞-⎛⎫= ⎪⎝⎭111lim 1111t t t t -→+∞⎛⎫⎛⎫=+⋅+ ⎪ ⎪--⎝⎭⎝⎭=e2.12 利用极限的运算法则[1]利用如下的极限运算法则来求极限: (1) 如果()()lim ,lim ,f x A g x B == 那么B A x g x f x g x f ±=±=±)(lim )(lim )]()(lim[()()()()lim lim lim f x g x f x g x A B⋅=⋅=⋅⎡⎤⎣⎦若又有0≠B ,则BAx g x f x g x f ==)(lim )(lim )()(lim (2)如果)(lim x f 存在,而c 为常数,则)(lim )](lim[x f c x cf =(3)如果)(lim x f 存在,而n 为正整数,则nnx f x f )]([lim )](lim[=(4)如果)()(x x ϕδ≥,而b x a x ==)(lim ,)(lim ϕδ,则b a ≥ (5)设有数列{}nx 和{}ny ,如果()lim ;nnn x y A B →∞+=+那么,()lim ;nn n xy A B →∞+=+lim n n n x y A B→∞=⋅当()01,2,...nyn ≠=且0b ≠时,lim n n nxA yB→∞=2.13 求数列极限的时候可以将其转化为定积分[1]例33 已知()f x =,在区间[]0,1上求()01lim ni ii f x λξ→=∆∑(其中将[]0,1分为n 个小区间[]1,i i x x -,1i i i x x ξ-≤≤,λ为i x ∆中的最大值).解 由已知得: ()()11lim niii f x f x dxλξ→=∆=∑⎰dx=⎰4π= .(注释:由已知可以清楚的知道,该极限的求解可以转化为定积分,求函数()f x 在区间[]0,1上的面积).在有的极限的计算中,需要利用到如下的一些结论、概念和方法:(1)定积分中值定理:如果函数()f x 在积分区间[],a b 上连续,则在[],a b 上至少有一个点,使下列公式成立:()()()b af x dx x b a ϕ=-⎰()a b ϕ≤≤;(2)设函数()f x 在区间[],a +∞上连续,取t a >,如果极限 ()lim tat f x dx →+∞⎰存在,则称此极限为函数()f x 在无穷区间[],a +∞上的反常积分,记作⎰∞+0)(dxx f ,即⎰⎰+∞→∞+=tat adxx f dx x f )(lim )(;设()f x 在区间[],a b 上连续且()0f x ≥,求以曲线()y f x =为曲线,底为[],a b 的曲边梯形的面积A ,把这个面积A表示为定积分:()b =aA f x dx ⎰ 的步骤是:首先,用任意一组的点把区间[],a b 分成长度为(1,2,...)ix i n ∆=的n 个小区间,相应地把曲线梯形分成n 个窄曲边梯形,第i 个窄曲边梯形的面积设为iA ∆,于是有1nii A A ==∆∑;其次,计算iA ∆的近似值 ()()1i i i i i i A f x xx ϕϕ-∆≈∆≤≤;然后,求和,得A 的近似值 ()1niii A f x ϕ=≈∆∑;最后,求极限,得⎰∑=∆==→baini idxx f x f A )()(lim 1ϕλ.例34 设函数()f x 连续,且()00f ≠,求极限()()()[]20lim .xx x x t f t dt x f x t dt→--⎰⎰.解 ()()()0lim xx x x t f t dtx f x t dt→--⎰⎰ =()()()0lim ,xxxx xf t dt tf t dtx f u du→-⎰⎰⎰()()()()()0+limx x x f t dt xf x xf x f u du xf x →-+⎰⎰由洛必达得:,()()(),,,f x t dx u x t f u du -=-⎰x其中令得()()()()0lim0x x xf xf xf x ϕφϕ→+再由积分中值定理得:在到之间 ()()()()()()001lim002x f f f f x f f ϕϕ→===++.例35 计算反常积分: 21dxx +∞-∞+⎰.解 21dx x +∞-∞+⎰=[]arctan x +∞-∞=-lim arctan lim arctan x x x x →+∞→∞-=()22πππ--=.2.14 利用函数有界原理证明极限的存在性,利用数列的逆推求极限(1)单调有界数列必有极限;(2)单调递增且有上界的数列必有极限,单调递减且有下界的数列必有极限.[3]例36 数列{}nx :2…….极限存在吗?解 由已知可得{}nx 单调递增且有界,由单调有界原理,知lim nn x →∞存在.又nx=,lim nn n x→∞=记lim =t,nn x t →∞=则即可证2nx<,得到 2=t .2.15 直接使用求导的定义求极限当题目中告诉你0)0(=F 时,)(x F 的导数等于0的时候,就是暗示你一定要用导数定义:(1)设函数()y f x =在点0x 的某个领域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x ∆+仍在该领域内)时,相应的函数取得增量()()0y f x x f x ∆=∆+-;如果y ∆与x ∆之比0x ∆→时的极限存在,则称函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x处的导数,记作()0f x ',即()()()00000limlimx x f x x f x yf x x x∆→∆→∆+-∆'==∆∆;(2)在某点处可导的充分必要条件是左右导数都存在且相等.例36 ()()()()1f x x x e x π=---,求()'f π.解 ()'fπ ()()()()()()=limlim 11x x f x f x x e x x e x ππππ→→-=--=---.例37 若函数()f x 有连续二阶导数且()0=0f ,()'0=1f ,()''0=-2f ,则 ()()2lim x f x x x→-=. A:不存在 B :0 C :-1 D :-2解()20lim x f x x x →-=()()()'''00101lim lim 220x x f x f x f x x →→--=-()''1012f ==-.所以,答案为D.例38 若()(1)(2).....(2010)f x x x x x =++++,求(0)f '.解 0()(0)(0)lim x f x f f x→-'= 0(1)(2).....(2010)lim x x x x x x →++++=lim (1)(2).....(2010)x x x x x →=++++2010!=. 2.16 利用连续性求极限[1]例39 设()f x 在1x =处有连续的一阶导数,且(1)2f '=,求1lim x ddx+→+.解 原式1lim x f +→'=-11lim 2x f +→'=-11lim 2x f +→'=-11(lim 2x f +→'=-1(1)2f '=-1=-.2.17 数列极限转为函数极限求解数列极限中是n 趋近,而不是x 趋近.面对数列极限时,先要转化成求x 趋近情况下的极限,当然n 趋近是x 趋近的一种情况而已,是必要条件.(还有数列极限的n 当然是趋于正无穷的).[1]例40 求21lim (1sin )n n n n→∞-.解 令1t n=,则原式232001sin sin 1cos lim(1)lim lim3t t t t t t t t t t t →→→--=-==,所以在0t →时,1cos t -与212t 等价,因此,原式20212lim 13t tt→=16=.。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。

本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。

一、直接代入法直接代入法是求极限的最基本方法之一。

当函数在某一点连续时,可以直接将该点代入函数中来求极限。

例题1:求函数f(x) = x^2在x=2处的极限。

解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。

因此,f(x)在x=2处的极限为4。

二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。

它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。

例题2:求极限lim(x→∞) [(x+1)/x]。

解:我们可以用夹逼法来求解这个极限。

首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。

因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。

根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。

三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。

该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。

例题3:求极限lim(x→0) (sinx/x)。

解:我们可以利用极限的四则运算法则来求解这个极限。

首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。

根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。

高等数学等价无穷小替换

高等数学等价无穷小替换
【注意】不能把无穷大与很大的数混淆;无穷大就是极限不存在的情形之一。无穷小与无穷大就是相对的,在不同的极限形式下,同一个函数可能就是无穷小也可能就是无穷大,如
, ,
所以 当 时为无穷小,当 时为无穷大。
2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果 为无穷大,
则 为无穷小;反之,如果 为无穷小,且 ,则 为无穷大。
小结:无穷大量、无穷小量的概念就是反映变量的变化趋势,因此任何常量都不就是无穷大量,任何非零常量都不就是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。
3、无穷小与函数极限的关系:
定理1 其中 就是自变量在同一变化过程 (或 )中的无穷小、
证:(必要性)设 令 则有
(充分性)设 其中 就是当 时的无穷小,则
推论3有限个无穷小的乘积也就是无穷小、
二、无穷小的比较
例如, 观察各极限:
不可比、
极限不同,反映了趋向于零的“快过程中的两个无穷小,且
例1
证:
例2

2.常用等价无穷小:
(1) ~ ; (2) ~ ; (3) ~ ;
(4) ~ ; (5) ~ ; (6) ~
无穷小 极限的简单计算
【教学目的】
1、理解无穷小与无穷大的概念;
2、掌握无穷小的性质与比较会用等价无穷小求极限;
3、不同类型的未定式的不同解法。
【教学内容】
1、无穷小与无穷大;
2、无穷小的比较;
3、几个常用的等价无穷小等价无穷小替换;
4、求极限的方法。
【重点难点】
重点就是掌握无穷小的性质与比较用等价无穷小求极限。
(7) ~ (8) ~ (9) ~
用等价无穷小可给出函数的近似表达式:

高等数学等价替换公式泰勒公式

高等数学等价替换公式泰勒公式

应用高等数学等价替换公式1、无穷小量:设0)x (g lim )x (f lim 0x x x x ==→→*1)若0)x (g )x (f limx x =→,f (x )是g (x )的 高阶 无穷小*2)若∞=→)x (g )x (f limx x ,f (x )是g (x )的 低阶 无穷小*3)若c )x (g )x (f limx x =→,f (x )是g (x )的 同阶 无穷小*4)若1)x (g )x (f limx x =→,f (x )是g (x )的 等价 无穷小*5)若0)x (g )x (f limkx x 0=→,f (x )是g (x )的 k 阶 无穷小 2、等价替换:若x →x 0,f (x )~ f 1(x ),g (x )~ g 1(x ) 则=→)x (g )x (f limx x )x (g )x (f lim 11x x 0→6、常用等价形式:当f (x )→0时*1)sinf (x )~ f (x ) *2)arc sinf (x )~ f (x ) *3)tanf (x )~ f (x ) *4)arc tanf (x )~ f (x ) *5)In (1+f (x ))~ f (x ) *6)ef (x )-1~ f (x )*7)1-cosf (x )~ 2)x (f 2*8)(1+f (x ))α-1~ αf (x )二、函数的连续: 1、间断点:*1)第一类间断点:f -(x 0)、f +(x 0)均 存在的 间断点 ⑴跳跃间断点: f -(x 0)≠f +(x 0) ⑵可去间断点: f -(x 0)=f +(x 0) *2)第二类间断点:f -(x 0)、f +(x 0)至少有一个 不存在的 间断点 ⑴无穷间断点: f -(x 0)、f +(x 0)中至少有一个为 ∞ ⑵振荡间断点: f -(x 0)、f +(x 0)中至少有一个 振荡不存在 三、导数:1、定义:)x (f '= x△)x (f -)x △x (f lim 000x △+→2、导数的常见形式: *1) 00x x 0x -x )x (f -)x (f lim)x (f 0→='*2) h )x (f -)h x (f lim)x (f 000h +='→*3) h)h x (f -)x (f lim)x (f 000h -='→3、切线方程:若曲线y=f (x )在点P (x 0,f (x 0)), 则 y-y 0=)x (f 0'(x-x 0) 注:*1)如果)x (f 0'=∞,则 x=x 0 *2)如果)x (f 0'=0,则 y=y 0 4、法线方程:若直线过点P (x 0,f (x 0)), 则 y-y 0=)x (f 10'-(x-x 0)5、基本公式:*1)=')C ( 0 *2)1-a a ax )x (=' *3)Ina a )a (x x ='*4)x x e )e (=' *5)xIna 1)x log (a ='*6)x 1 )Inx (='*7)cosx )sinx (=' *8)sinx - )cosx (=' *9)x sec )tanx (2=' *10)x csc - )cotx (2=' *11)tanx secx )secx (⋅=' *12)cotx cscx - )cscx (⋅=' *13)2x -11 )sinx arc (=' *14)2x -11-)cosx arc (='*15)2x 11)tanx arc (+=' *16)2x11- )cotx arc (+=' 6、四则运算:νμ和都有导数*1)νμνμ'±'='± )( *2)μμ'='c )c ( *3)νμνμνμ'+'='⋅ )( *4))0( )(2≠'-'='νννμνμνμ推论:*1)μμ'='c )c (*2)w w w w '+'+'='μννμνμμν )( *3)s w s w ws ws ws '+'+'+'='μνμννμνμμν )( 7、反函数求导法则:设y=f (x )与x=ϕ(y )(ϕ'(y )≠0)则)y (1)x (f ϕ'=' 或xy '= y x 1' 8、n 次导的常见公式:*1))n ()sinx (= )2nx (sin π+*2))2nx (cos )cosx ()n (π+=*3)()()n [In 1x ]+= n1-n )x 1(!)1-n ()1-(+ 9、参数方程求导:设函数)t (y ),t (x ),且b t a ()t (y )t (x ψϕψϕ==≤≤⎩⎨⎧==都可导,其中x=)t (ϕ'≠0,则函数的导数)t ()t ( dtdx dt dydx dy ϕψ''== 10、复合函数求导:若y=f (u ),u=ϕ(x ),且f (u )及ϕ(x )都可导,则复合函数y=f[ϕ(x )]的导数)x ()x (f dxdyϕ'⋅'= 11、隐函数求导:*1)方程F (x ,y )=0两边求导,解出y 或dx dy'*2)公式法:由F (x ,y )=0,则yx F F dx dy''-=*3)利用微分形式的不变性,方程两边求微分,然后解出dxdy注:y 是x 的函数 12、对数求导:将函数关系式两边取自然对数(成为隐函数形式),化简,然后两边两边求导,最后两边乘以y (x )注:适用于多个因式的乘、除、乘幂构成或幂指函数(y=u (x )v (x )) 13、高阶导数:*1)二阶导数:x △)x (f -)x △x (f lim)x (f 0x △'+'=''→ *2)三阶导数:x △)x (f -)x △x (f lim)x (f 0x △''+''='''→*4)n 阶导数:x△)x (f -)x △x (f lim)x (f)1-n ()1-n (0x △)1-n (+=→ 14、中值定理:*1)拉格朗日定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可导,则在(a ,b )内至少存在一点ξ,使得a-b )a (f -)b (f)(f ='ξ推论1:如果函数f (x )在区间(a ,b )内任意一点的导数)x (f '都等于零,你们函数f (x )在(a ,b )内是一个常数推论2:如果函数f (x )与g (x )在区间(a ,b )内每一点的导数)x (f '与)x (g '都相等,则这两个函数在区间(a ,b )内至多相差一个常数,即:f (x )= g (x )+C ,x ∈(a ,b )*2)罗尔定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可导,且f (a )=f (b ),则在(a ,b )内至少存在一点ξ,使得=')(f ξ 0 *3)柯西定理:若函数f (x )在闭区间[a ,b]上连续,在开区间(a ,b )内可导,且0)x (g ≠',则在(a ,b )内至少存在一点ξ,使得)a (g -)b (g )a (f -)b (f = )(g )(f ξξ''15、洛必达法则:*1)0型:设函数f (x )、g (x )满足: ⑴==→→)x (g lim )x (f lim 0x x x x 0⑵在点x 0的某去心邻域内)x (g )与x (f '' 都存在 ,且≠')x (g 0⑶)x (g )x (f lim 0x x ''→ 存在或为无穷 有:)x (g )x (f limx x →= )x (g )x (f lim0x x ''→*2)∞∞型: 设函数f (x )、g (x )满足: ⑴∞==→→ )x (g lim )x (f lim 0x x x x⑵在点x 0=的某去心邻域内)x (g )与x (f '' 都存在 ,且≠')x (g 0 ⑶)x (g )x (f limx x ''→ 存在或为无穷 有:)x (g )x (f limx x →= )x (g )x (f lim0x x ''→*3)其他未定型:⑴0·∞型:f (x )·g(x )转化成)x (f 1)x (g 或 )x (g 1)x (f ,一般将In 、arc 留在分子上⑵∞-∞型:通过通分、分子有理化、倒数代换或代数、三角恒等变形化为0型或∞∞型 ⑶0、0、1∞∞∞型:f (x )g (x )= e g (x )Inf (x ) = )x (g 1)x (Inf e16、函数单调性判定:设函数y=f (x )在开区间(a ,b )内可导*1)如果函数y=f (x )在(a ,b )内,0)x (f >',则函数y=f (x )在(a ,b )内单调递 增 ;*2)如果函数y=f (x )在(a ,b )内,0)x (f <',则函数y=f (x )在(a ,b )内单调递 减 ; 17、函数的极值:*1)如果函数y=f (x )在点x 0及其左右近旁有定义,且对于x 0近旁的任何一点x (x ≠x 0)的函数值f (x )均有:⑴f (x )<f (x 0),则f (x 0)称为函数y=f (x )的 极大值 ,点x 0称为函数y=f (x )的 极大值点⑵f (x )>f (x 0),则f (x 0)称为函数y=f (x )的 极小值 ,点x 0称为函数y=f (x )的 极小值点 *2)驻点:=')x (f 0 0 的点 *3)极值第一充分条件:设点x 0是f (x )可能的极值点(0)x (f 0='或)x (f 0'不存在)⑴当0 )x (f )时,x ,-x (x 00>'∈δ;0 )x (f )时,x ,x (x 00<'+∈δ,则x 0为极大值点⑵当0 )x (f )时,x ,-x (x 00<'∈δ;0 )x (f )时,x ,x (x 00>'+∈δ,则x 0为极小值点⑶当⋃∈)x ,-x (x 00δ)x ,x (00δ+,)x (f ' 同号 ,则x 0不是极值点 *4)极值的第二充分条件:设y=f (x )在点x 0处有一、二阶导数,且)x (f 0'= 0⑴如果)x (f 0'' > 0,则函数y=f (x )在点x 0处取得最小值f (x 0) ⑵如果)x (f 0'' < 0,则函数y=f (x )在点x 0处取得最大值f (x 0) 18、曲线凹凸性:*1)若对于x ∈(a ,b )时,0)x (f >'',则曲线在(a ,b )上为 凹 ,用符号“ ⋂ ” 表示*2)若对于x ∈(a ,b )时,0)x (f <'',则曲线在(a ,b )上为 凸 ,用符号“ ⋃ ” 表示 6、曲线拐点:设f (x )在x 0的某个邻域内二阶可导,且='')x (f 0 0 ,若x 0两侧)x (f 0'' 改变 符号,则 (x 0,f (x 0)) 为曲线的拐点 19、曲线的渐近线:*1)水平渐近线:如果函数y=f (x )的定义域是无穷区间,且b )x (f lim x =∞→,则y= b*2)垂直渐近线:如果函数y=f (x )在x=x 0处间断,且∞=→)x (f lim 0x x ,则x=x 0*3)斜渐近线:如果函数y=f (x )定义在无穷区间,且a x)x (f limx =∞→,b ax]-)x ([f lim x =∞→,则y= ax+b20、经济学与导数:*1)利润:L (Q )= R (Q )-C(Q) *2)边际利润:)Q (C -)Q (R Q)(L ''=' *3)函数弹性:)x (f )x (f xEx Ey '=*4)需求弹性(供给函数):)p (Q )Q(p p)p (0000'=η 注:⑴当|η| < 1时,为低弹性,此时需求变动幅度 小于 价格变动幅度。

高等数学求极限的14种方法

高等数学求极限的14种方法

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。

常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((3)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件。

是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。

只能在乘除..时候使用。

例题略。

2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。

首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。

其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。

另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。

洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用 (2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

大学高等数学等价无穷小

大学高等数学等价无穷小

那个问题很多人都弄不明白,很多自以为明白的人也不负责任地说一句“乘除能够,加减不行”,包括很多高校教师。

其实这种讲法是不对的!关键是要明白其中的道理,而不是记住结论。

1•做乘除法的时候必然能够替换,那个大伙儿都明白。

若是f(x)〜u(x), g(x)〜v(x),那么lim f(x)/g(x) = lim u(x)/v(x)o关键要记住道理lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x)苴中两项的极限是1,因此就顺利替换掉了。

2.加减法的时候也能够替换!可是注意保留余项。

f(x)〜u(x)不能推岀f(x)+g(x)〜u(x)+g(x),那个是很多人说不能替换的缘故,可是若是你如此看:f(x)〜u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意那个地址是等号,因此必然是成立的!问题就出在u(x)+g(x)可能因为相消变成髙阶的无穷小量,现在余项o(f(x))成为主导,因此不能忽略掉。

当u(x)+g(x)的阶没有提高时,o(f(x))仍然是能够忽略的。

比如你的例子,ln(1+x)+x是能够替换的,因为ln(1 +x)+x=[x+o(x)]+x=2x+o(x),因此ln(1+x)+x和2x是等价无穷小量。

可是若是碰着ln(1+x)-x,那么ln(1 +x)+x=[x+o(x)]-x=o(x),现在发生了相消,余项o(x)成了主导项。

现在那个式子仍然是成立的!只只是用它来作为分子或分母的极限问题可能取得不定型而无法直接求出来罢了。

碰着这种情形也不是说就不能替换,若是你换一个高阶近似:ln(1 +x)=x-x A2/2+o(x A2)那么ln(1 +x)-x=-x A2/2+o(x A2)那个和前而ln(1+x)-x=o(x)是相容的,可是是更成心义的结果,现在余项0(x^2)能够忽略。

高等数学求极限的常用方法

高等数学求极限的常用方法

高等数学求极限的14种方法一、极限的定义1、极限的保号性很重要:设A x f x x =→)(lim 0,(i)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2、极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限与0x x →的极限。

要特别注意判定极限就是否存在在:(i)数列{}的充要条件收敛于a n x 就是它的所有子数列均收敛于a 。

常用的就是其推论,即“一个数列收敛于a 的充要条件就是其奇子列与偶子列都收敛于a ”(ii)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准则(v)两边夹挤准则(夹逼定理/夹逼原理)(vi)柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件就是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1、等价无穷小代换。

只能在乘除..时候使用。

例题略。

2、洛必达(L ’hospital)法则(大题目有时候会有暗示要您使用这个方法)它的使用有严格的使用前提。

首先必须就是X 趋近,而不就是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然就是趋近于正无穷的,不可能就是负无穷。

其次,必须就是函数的导数要存在,假如告诉f(x)、g(x),没告诉就是否可导,不可直接用洛必达法则。

另外,必须就是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。

洛必达法则分为3种情况:(i)“00”“∞∞”时候直接用 (ii)“∞•0”“∞-∞”,应为无穷大与无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

关于等价无穷小的代换法求极限探讨

关于等价无穷小的代换法求极限探讨

利用等价无穷小的代换求极限是一种非常重要的方法,如果运用得当,能起到化繁为简,化难为易的作用。

但在很多高等数学的教材中只给出了等价无穷小在商极限运算中的运用。

虽然教学中强调对于积和商可以用等价去穷小的代换计算极限,对于和差运算该方法失效。

由于对于积运算没有相应的性质定理,因此对学生而言到底什么时候可以用什么时候不能用还是比较含糊的。

基于此,对等价无穷小的代换法在和差积商中的运算进行探讨,明确等价无穷小代换求极限的方法的适用范围是很有必要的。

1 无穷小的和、差、积、商运算中等价无穷小的代换法(i)无穷小的商之等价无穷小代换法定理1 设 ,,,是自变量在同一变化过程中的无穷小量, ~~ ,,且 lim存在,则极限 lim 存在且[1]lim lim。

定理表明在求两个无穷小之比的极限时,可以用对应的等价无穷小对分子或分母进行整体代换。

如果用来代替的无穷小选得适当的话,可以使计算简化。

例112213321002(1)12limlim 1cos 3x x x x x x(ii)无穷小为乘积因子的等价无穷小代换法定理2 设 ,, ,是自变量在同一变化过程中的无穷小量,~ ,~ ,则 .~. 。

证明:因为.lim lim .lim 1.。

定理3 设 ,是自变量在同一变化过程中的无穷小量,~ ,()f x 为自变量在这一变化过程中的另一函数,且lim ()f x 存在,则极限 lim ()f x 存在且 lim ()lim ()f x f x 。

证明:因为lim ()lim ().limlim ()f x f x f x定理说明对于无穷小与函数的乘积的极限可以用相应的无穷小的等价代换求极限。

例23322111limsin lim .51515x x x x x x x x x x定理4 设 , ,,是自变量在同一变化过程中的无穷小量, ~~ ,,()f x 为自变量在这一变化过程中的另一函数,且()lim f x存在,则极限 ()lim f x 也存在且 ()()limlim f x f x证明:()()lim=lim .lim limf x f x()limf x以上定理表明对于无穷小为乘积因子的极限也可以用等价无穷小代换求极限。

用等价无穷小代换求幂指函数的极限

用等价无穷小代换求幂指函数的极限

Science &Technology Vision 科技视界1问题提出在大学高等数学中,对于幂指函数求极限的问题,共有两处提到,包括重要极限和洛必达法则。

但是,关于等价无穷小代换求幂指函数极限的问题大多都没有特别讲解。

一般得,只针对于分式型的函数如何用等价无穷小代换求极限做了讲解。

在教学过程中,有学生在一开始的学习中就遇到较为复杂的幂指函数求极限的问题,就不知道如何计算了。

课本中有一道极限求解题目,具体如下:lim x →0(1+tan x 1+sin x)1x这是一个典型的1∞型的幂指函数求极限问题。

大多数学生在这里第一反应就是用重要极限来求解,但此题用重要极限不太容易看出来。

如果了解等价无穷小的相关定理,那么这道题就迎刃而解了。

鉴于此种情况,本文在前人研究的基础上,总结了幂指函数的求极限的方法,着重提出了等价无穷小求解幂指函数极限的看法。

2幂指函数求极限的其他方法幂指函数的极限类型很多,有确定型和不定式之分。

对于确定型的幂指函数可以直接底数与指数求极限。

而对于不定式型的幂指函数,通常采用重要极限和洛必达法则两种方法。

2.1重要极限对1∞型的幂指函数极限问题,考虑利用重要极限lim x →∞(1+1x )x =e及其变形公式lim x →0(1+x )1x=e 求极限。

例1求极限lim x →0(cos x )csc 2x .解:lim x →0(cos x )csc 2x =lim x →0[1+(cos x -1)]1sin 2x=lim x →0[1+(cos x -1)]1cos x -1·cos x -1sin x=elim-12x x=e-122.2洛必达法则另外,对00型,∞0型,1∞型幂指函数的极限,可以通过将幂指函数化为对数恒等式y=e ln y 的形式,转换为00型或∞∞型不定式,然后再利用洛必达法则进行求解。

例2求极限lim x →∞(1+a x)x .解:lim x →∞(1+a x )x =lim x →∞ex ln(1+a x)=elimln(1+a x )1x因为lim x →∞(1+a x)=0,lim x →∞1x =0由洛必达法则,得:lim x →∞(1+a x)x=e lim[ln(1+a x )]′(1x)′=elim axx+a=ea3用等价无穷小代换求幂指函数的极限幂指函数00型,∞0型,1∞型这三种类型不定式的求极限问题,除了运用前两种方法外,还可以使用等价无穷小的代换。

大学高等数学等价无穷小

大学高等数学等价无穷小

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。

其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。

1.做乘除法的时候一定可以替换,这个大家都知道。

如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。

关键要记住道理lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x)其中两项的极限是1,所以就顺利替换掉了。

2.加减法的时候也可以替换!但是注意保留余项。

f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看:f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的!问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。

当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。

比如你的例子,ln(1+x)+x是可以替换的,因为ln(1+x)+x=[x+o(x)]+x=2x+o(x),所以ln(1+x)+x和2x是等价无穷小量。

但是如果碰到ln(1+x)-x,那么ln(1+x)+x=[x+o(x)]-x=o(x),此时发生了相消,余项o(x)成为了主导项。

此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。

碰到这种情况也不是说就不能替换,如果你换一个高阶近似:ln(1+x)=x-x^2/2+o(x^2)那么ln(1+x)-x=-x^2/2+o(x^2)这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。

也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲义无穷小 极限的简单计算【教学目的】1、理解无穷小与无穷大的概念;2、掌握无穷小的性质与比较 会用等价无穷小求极限;3、不同类型的未定式的不同解法。

【教学内容】1、无穷小与无穷大;2、无穷小的比较;3、几个常用的等价无穷小 等价无穷小替换;4、求极限的方法。

【重点难点】重点是掌握无穷小的性质与比较 用等价无穷小求极限。

难点是未定式的极限的求法。

【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。

最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。

【授课内容】一、无穷小与无穷大1.定义前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。

下面我们用→x *表示上述七种的某一种趋近方式,即*{}-+→→→-∞→+∞→∞→∞→∈00x x x x x x x x x n定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x *。

例如, ,0sin lim 0=→x x .0sin 时的无穷小是当函数→∴x x,01lim=∞→x x .1时的无穷小是当函数∞→∴x x,0)1(lim =-∞→nn n .})1({时的无穷小是当数列∞→-∴n n n【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。

定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x *lim 。

显然,∞→n 时, 、、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。

无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如0lim =-∞→x x e , +∞=+∞→x x e lim ,所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。

2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则()x f 1为无穷大。

小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。

3.无穷小与函数极限的关系: 定理 1 0lim ()()(),x x xf x A f x A x α®=?+其中)(x α是自变量在同一变化过程0x x →(或∞→x )中的无穷小.证:(必要性)设0lim (),x x f x A ®=令()(),x f x A α=-则有0lim ()0,x x x α®=).()(x A x f α+=∴(充分性)设()(),f x A x α=+其中()x α是当0x x ®时的无穷小,则lim ()lim(())xx xx f x A x α=+ )(lim 0x A x x α→+= .A =【意义】(1)将一般极限问题转化为特殊极限问题(无穷小);(2)0()(),().f x x f x A x α»给出了函数在附近的近似表达式误差为 3.无穷小的运算性质定理2 在同一过程中,有限个无穷小的代数和仍是无穷小. 【注意】无穷多个无穷小的代数和未必是无穷小.是无穷小,时例如nn 1,,∞→ .11不是无穷小之和为个但n n 定理3 有界函数与无穷小的乘积是无穷小.如:01)1(lim =-∞→n n n ,01sin lim 0=→xx x ,0sin 1lim =∞→x x x 推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小.推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.二、无穷小的比较例如,2210,,,sin ,sinx x x x x x®当时都是无穷小,观察各极限: xx x 3lim 20→,0=;32要快得多比x x xxx sin lim0→,1=;sin 大致相同与x x2201sinlimx x x x →x x 1sin lim 0→=.不存在不可比. 极限不同, 反映了趋向于零的“快慢”程度不同. 1.定义: 设,αβ是自变量在同一变化过程中的两个无穷小,且0.α¹(1)lim0,,();o ββαβαα==如果就说是比高阶的无穷小记作 ;),0(lim )2(是同阶的无穷小与就说如果αβαβ≠=C Clim 1,~;ββααβα=特殊地如果则称与是等价的无穷小,记作(3)lim (0,0),.k C C k k ββαα=?如果就说是的阶的无穷小例1 .tan 4,0:3的四阶无穷小为时当证明x x x x →证:430tan 4lim xxx x →30)tan (lim 4x x x →=,4=.tan 4,03的四阶无穷小为时故当x x x x → 例2 .sin tan ,0的阶数关于求时当x x x x -→ 解30sin tan limx x x x -→ )cos 1tan (lim 20x xx x x -⋅=→,21=.sin tan 的三阶无穷小为x x x -∴2.常用等价无穷小:,0时当→x(1)x sin ~x ; (2)x arcsin ~x ; (3)x tan ~x ; (4)x arctan ~x ; (5))1ln(x +~x ; (6)1-x e ~x(7)x cos 1-~22x (8)1)1(-+μx ~x μ (9)1x a -~ln a x *用等价无穷小可给出函数的近似表达式:,1lim =αβ ,0lim =-∴αβα),(αβαo =-即).(αβαo +=于是有例如),(sin x o x x +=).(211cos 22x o x x +-=3.等价无穷小替换 定理:.lim lim ,lim ~,~αβαβαβββαα''=''''则存在且设 证:αβlim)lim(αααβββ'⋅''⋅'=αααβββ'⋅''⋅'=lim lim lim .lim αβ''=例3 (1).cos 12tan lim 20x x x -→求; (2)1cos 1lim 20--→x e x x 解: (1).2~2tan ,21~cos 1,02x x x x x -→时当 故原极限202(2)lim 12x x x ®== 8(2)原极限=2lim220x x x -→=21-例4 .2sin sin tan lim3xxx x -→求 错解: .~sin ,~tan ,0x x x x x 时当→30)2(limx xx x -=→原式=0正解: ,0时当→x ,2~2sin x x )cos 1(tan sin tan x x x x -=-,21~3x 故原极限33012lim (2)x xx ®=.161=【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。

例5 .3sin 1cos 5tan lim0xx x x +-→求 解: ),(5tan x o x x += ),(33sin x o x x +=).(21cos 122x o x x +=-原式22015()()2lim 3()x x o x x o x x o x ®+++=+xx o x x o x x x o x )(3)(21)(5lim20++++=→.35= 三、极限的简单计算1. 代入法:直接将0x x →的0x 代入所求极限的函数中去,若()0x f 存在,即为其极限,例如924231232lim3451=++++-→x x x x x x ;若()0x f 不存在,我们也能知道属于哪种未定式,便于我们选择不同的方法。

例如,39lim 23--→x x x 就代不进去了,但我们看出了这是一个型未定式,我们可以用以下的方法来求解。

2. 分解因式,消去零因子法例如,()63lim 39lim323=+=--→→x x x x x 。

3. 分子(分母)有理化法 例如,()()()()()()355125125123535lim51235lim222222++++-+++++-+=-+-+→→x x x x x x x x x x424lim 22--=→x x x()()()2222l i m2--+=→x x x x 2=又如,()011lim1lim22=++=-++∞→+∞→xx x xx x4. 化无穷大为无穷小法例如,2222173373lim lim 142422x x x x x x x x xx +-+-==-+-+,实际上就是分子分母同时除以2x 这个无穷大量。

由此不难得出⎪⎪⎩⎪⎪⎨⎧<∞>==++++++--∞→mn m n m n ba b x b x b a x a x a n n n m m m x ,,,0lim 00110110又如,12111lim21lim=++=+++∞→+∞→xxx x x x ,(分子分母同除x )。

再如,1153152lim 5352lim -=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→n nn n n nn n ,(分子分母同除n 5)。

5. 利用无穷小量性质、等价无穷小量替换求极限例如,()0131arctan lim 2=+++∞→x x x x x ,(无穷小量乘以有界量)。

又如,.3214lim 21-+-→x x x x 求 解:)32(lim 21-+→x x x ,0=商的法则不能用)14(lim 1-→x x 又,03≠=1432lim 21--+∴→x x x x .030==由无穷小与无穷大的关系,得.3214lim21∞=-+-→x x x x再如,等价无穷小量替换求极限的例子见本节例3—例5。

6. 利用两个重要极限求极限(例题参见§1.4例3—例5)7. 分段函数、复合函数求极限例如,).(lim ,0,10,1)(02x f x x x x x f x →⎩⎨⎧≥+<-=求设解: 两个单侧极限为是函数的分段点,0=x)1(lim )(lim 0x x f x x -=--→→,1=)1(lim )(lim 200+=++→→x x f x x ,1= 左右极限存在且相等, .1)(lim 0=→x f x 故【启发与讨论】 思考题1:110,sin x yx x?当时是无界变量吗?是无穷大吗?解:),3,2,1,0(221)1(0 =+=k k x ππ取,22)(0ππ+=k x y .)(,0M x y k >充分大时当无界,),3,2,1,0(21)2(0 ==k k x π取,,δ<k x k 充分大时当 ππk k x y k 2sin 2)(=但 .0M <=不是无穷大. 结论:无穷大是一种特殊的无界变量,但是无界变量未必是无穷大.思考题2:若0)(>x f ,且A x f x =+∞→)(lim ,问:能否保证有0>A 的结论?试举例说明.解:不能保证. 例xx f 1)(=,0>∀x 01)(>=xx f =+∞→)(lim x f x.01lim==+∞→A xx 思考题3:任何两个无穷小量都可以比较吗?解:不能.例如当+∞→x 时,1)(x x f =xxx g sin )(=都是无穷小量但=+∞→)()(lim x f x g x x x sin lim +∞→不存在且不为无穷大,故当+∞→x 时)(x f 和)(x g 不能比较.【课堂练习】求下列函数的极限(1)xxe x x cos lim 0-→;解:原极限=1cos 1lim 1lim cos lim000=-+-=-→→→x xx e x x e x x x x x (2)求)1ln()cos 1(1cossin 3lim20x x x x x x +++→ 【分析】 “0”型,拆项。

相关文档
最新文档