新人教版初中数学8年级上册15.1.2分式的基本性质第2课时
15.1.2分式的基本性质(2)
式时,应先将 各分母分解因 式,再找出最 简公分母。
课堂练习
y x 1 , 2, 1.三个分式 的最简公分母是( 2 x 3 y 4 xy
)
A. 4 xy
B. 3 y
2
C. 12xy
2
2 2 12 x y D.
1 x , 2.分式 2 的最简公分母是_________. x x 2( x 1)
3.分母中所有字母的最高次幂。
例.通分:
3 ab (1) 2 与 2 2a b ab c
2 a 2 b 2
c
最简 公分母
例.通分:
解:最简公分母是 2a 2b 2c
3 ab (1) 2 与 2 2a b ab c
3 3bc 3 bc 2 2 2 2 2a b 2a b bc 2a b c 2 a b (a b) 2a 2a 2ab 2 2 2 2 ab c ab c 2a 2a b c
(1)将各个分式的分母分解因式;(2)取 各分母系数的最小公倍数(3)凡是出现的 所有字母或因式都要取;(4)相同字母 (或含字母的式子)的幂取指数最大的; (5)将上述所得系数的最小公倍数与各字 母(或因式)的最高次幂全都乘起来,就
得到了最简公分母
通过本课时的学习,需要我们掌握 1.分式的基本性质. 2.通分和约分是根据分式的基本性质的“等值”变形.
3
x x x6 x 7x 49 x
2
2 2
2
4 x 3 先进行分解因式,再约分
问题情景
1.分数的通分:
7 1 (1) 与 12 8
什么叫做分数的通分?
问题情景
1. 通分:
7 1 (1) 与 12 8
最新人教版八年级数学上册《15.1.2 分式的基本性质》优质教学课件
x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)
,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2
,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
(2)所乘(或除以)的必须是同一个整式;
(3)所乘(或除以)的整式应该不等于零.
探究新知
素养考点 1
分式的基本性质的应用
例 下列等式成立吗?右边是怎样从左边得到的?
解: (1)成立.
(2) 成立.
因为
因为
所以
所以
巩固练习
下列变形是否正确?如果正确,说出是如何变形的?如
果不正确,说明理由.
x
1
(1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C
,
(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
,
B. 3a 2b3 与 3a 2b 2c 通分后为 2 3
3a b c 3a 2 b 3 c
1
C. m +n 与
1
m–n
的最简公分母为m2-n2
15.1.2分式的基本性质(2)(约分)
(3) 、(4) 、
(5) 。(6)
(4)当X时分式 是正数。
5、自主探究:p130的“思考”。
归纳:分式的约分定义:
最大公因式:所有相同因式的最次幂的积
最简分式:
小组
互学展示竞学
小组合作学习,展示交流,有困难的先小组内互助
1、例1、(p131的“例3”整理)
通过上面的约分,你能说出分式进行约分的关键是确定分子和分母___________
2、约分后,分子和分母没有_______,称为最简分式。化简分式时,通常要使结果成为_____分式或_____得形式。
精讲导学
教师指导
学生补充
1.约分:
(1) 、(2)、
2.请将下面的代数式尽可能地化测评学
先独立完成,确实有困难的可以请教组长或老师
2、例2、约分:
(1) 、(2) 、
想一想:分式约分的方法:
1、(1)当分子和分母的都是单项式时,先找出分子和分母的最大公因式(即系数的__________与相同字母的最___次幂的积),然后将分子和分母的最大公因式约去。
(2)、当分式的分子和分母是多项式时,应先把多项式_______,
然后约去分子与分母的________。
小结:本节课你的收获是什么?有什么疑问?
1.下列各式中与分式 的值相等的是().
(A) (B) (C) (D)
2.如果分式 的值为零,那么x应为().
(A)1(B)-1(C)±1(D)0
3.下列各式的变形:① ;② ;③ ;④ .其中正确的是().(A)①②③④(B)①②③(C)②③(D)④
4、约分:
用式子表示________________。
2、分解因式:(1)x2—y2=______(2)x2+xy=_____(3)9a2+6ab+b2=_____(4)-x2+6x-9 =_________
人教版八年级上册15.1.2分式的基本性质(教案)
在今天的课堂中,我们探讨了分式的基本性质,我发现学生们对这些性质的理解程度参差不齐。有的学生能够迅速掌握并运用到实际问题中,但也有一些学生在符号变换和乘方运算上遇到了困难。这让我意识到,在教学中需要更加细致和耐心。
我注意到,当解释分式的符号变换时,一些学生显得有些迷惑。在课后,我反思是否可以通过更多的实际例题来帮助学生理解这一概念。也许,通过比较正负数的乘除规则与分式的符号变换规则,能够让学生更好地把握这一点。
在教学过程中,教师应针对上述重点和难点内容,通过举例、练习和讲解,帮助学生深入理解分式的基本性质,并能够灵活运用到实际问题中。通过针对性的教学活动,确保学生能够克服难点,掌握核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要简化分数或解决分数运算的问题?”比如,在烹饪时按照比例配料,或者在购物时计算折扣。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式性质的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式性质在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“分式性质还能用在哪些地方?”
课后,我还会继续跟进学生的学习情况,通过作业和课后辅导,了解他们是否真正掌握了分式的基本性质。对于那些仍然感到困惑的学生,我计划提供额外的辅导和练习,确保他们能够跟上课程的进度。
人教版八年级数学上册15.1.2分式的基本性质课件(新版)新人教版
灿若寒星
例题讲解与练习
例1、 通分
(1)a12b
1 , ab2
公分母如何确定呢?
最简公分母
1、各分母系数的最小公倍数。 2、各分母所含有的因式。 3、各分母所含相同因式的最高次幂。 4、所得的系数与各字母(或因式)的最 高次幂的积(其中系数灿若都寒星取正数)
: 通分
灿若寒星
(1)求分式
1 2x3 y2
z
,
1 4x2 y3
,
1 6xy 4
的公分母。
分析:对于三个分式的分母中的系数2, 4,6,取其最小公倍数12;对于三个分 式的分母的字母,字母x为底的幂的因式, 取其最高次幂x3,字母y为底的幂的因式, 取其最高次幂y4,再取字母z。所以三个 分式的公分母为12x3y4z。
1 4x
你对他们俩的解法有何看法?说说看!
•一般约分要彻底, 使分子、分母没有公因式. •彻底约分后的分式叫灿若寒最星 简分式.
1、把下面的分数通分: 1 , 3 , 5 246
2、什么叫分数的通分? 答:把几个异分母的分数化成同分母的分数,
而不改变分数的值,叫做分数的通分。
3、和分数通分类似,把几个异分母的分 式化成与原来的分式相等的同分母的分式 叫做分式的通分。
x(x y)(x (x y)2
y)
x2 x
xy y
灿若寒星
规律总结
约分的基本步骤:(1)若分子﹑分母都是单项式, 则约简系数,并约去相同字母的最低次幂;
(2)若分子﹑分母含有多项式,则先将多项式分解 因式,然后约去分子﹑分母中所有的公因式.
注意:约分过程中,有时还需运用分式的符号法则使 最后结果形式简捷;约分的依据是分式的基本性质
2023八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质教案(新版)新人教版
- 分式的分子与分母同时乘以或除以同一个数,分式的值也不变。
3. 分式的运算
- 加减法:XXX
- 乘除法:XXX
4. 分式的应用
- 实际问题:XXX
- 解题步骤:XXX
5. 总结
- 分式的概念和性质
- 分式的运算方法
- 分式的应用实例
2. 调整教学方法:采用多种教学方法,如案例教学、小组讨论、实验法等,提高学生的学习兴趣和参与度。
3. 多元化评价:采用多元化评价方式,如过程性评价、学生互评、自我评价等,全面了解学生的学习情况,促进学生的全面发展。
八、板书设计
1. 分式的概念
- 分子:XXX
- 分母:XXX
- 分式:XXX
2. 分式的基本性质
强调分式的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对分式知识的掌握情况。
鼓励学生相互讨论、互相帮助,共同解决分式问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
学生预习:
发放预习材料,引导学生提前了解分式的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习分式内容做好准备。
教师备课:
深入研究教材,明确分式教学目标和分式重难点。
准备教学用具和多媒体资源,确保分式教学过程的顺利进行。
设计课堂互动环节,提高学生学习分式的积极性。
(二)课堂导入(预计用时:3分钟)
(五)拓展延伸(预计用时:3分钟)
人教版八年级数学上册 15.1.2 分式的基本性质课件 (新版)新人教版
15ab2c
5abc 3b
3b
x2 9 x2 6x 9
(x 3)( x 3) (x 3)2
x3 x3
例题讲解
(1)
3 2a2b
与
ab ab2c
(2) 2x 与 3x x5 x5
解:(1)最简公分母是2a2b2c.
3 2a2b
3 bc 2a2b bc
( a
)
2b
b(2a b) a2 b
2ab b2 a2b
x2 xy x2
(x
y
)
(x2 xy) x x2 x
x x
y
x x2 2x
( ) x2
xx (x2 2x) x
1 x2
观察与思考
联想分数的通分和约分,由例2你能想出 如何对分式进行通分和约分吗?
2c bd
与
3ac 4b2
(2)
2xy (x y)2
与
x2
x
y2
8bc 3acd 4b2d 4b2d
2x2 y 2xy2 (x y)2(x y)
x2 xy (x y)2(x y)
本课小结
1. 分式的基本性质 2. 如何对分式进行约分、通分
通分:利用分式的基本性质,使分子和分母同乘适
当的整式,不改变分式的值,把 a b 和 2a b
ab
a2
化成相同分母的分式 .
x2 xy
约分:利用分式的基本性质,约去 x2 分母的公因式x,不改变分式的值,使
x2
的分子和 xy 化成
x y
x2
人教版初中数学八年级上册15.1.2分式的基本性质(教案)
此外,实践活动的设计也是我今天需要反思的一个方面。虽然我试图通过实验操作来加深学生对分式性质的理解,但可能由于实验的设计和引导不够到位,导致部分学生对实验背后的数学原理还是有些模糊。我需要思考如何改进实验环节,使得每个学生都能从中获得更直观、深刻的体验。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的基本概念、重要性质和应用。通过实践活动和小组讨论,我们加深了对分式基本性质的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际操作展示分式简化在化学实验中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
(2)分式的分子、分母同乘(除)同一个数,分式的值不变。
(3)分式的分子、分母同乘(除)同一个多项式,分式的值不变。
3.分式的基本性质在实际问题中的应用:通过例题讲解,让学生掌握如何运用分式的基本性质简化计算、解决实际问题。
`151.2 分式的基本性质(第2课时)(人教版八年级上册)
4.(盐城·中考)化简:x2 9 =
.
x3
【解析】 x2 9 (x 3)(x 3) x 3
x3
x3
答案:x+3
5.(中山·中考)化简:x2 -2xy+y2 -1 =__________. x-y-1
【解析】原式 = (x-y)2 -1 = (x-y+1)(x-y-1)
1
(A) 与
3x
a 6x2 通分后为
2x 6x 2
a , 6x2
(B)
1 3a 2 b3
与
1 3a 2 b 2c
通分后为
c
b
3a2b3c , 3a2b3c
(C) 1 与 1 的最简公分母为m2-n2 m+n m-n
(D) 1 与 1
的最简公分母为ab(x-y)(y-x)
a(x-y) b(y-x)
【解析】选D.∵(x-y)=-(y-x),∴ 1 与 1 的最
15.1.2 分式的基本性质
(第2课时)
1、理解约分的概念和理论根据,会用分式的基本性质将 分式约分 .
2、理解通分的概念和理论根据,会用分式的基本性质将 分式通分 .
分数的约分与通分 1、约分: 约去分子与分母的最大公约数,化为最简分数. 2、通分: 先找分子与分母的最简公分母,再分子与分母同乘最简 公分母,计算即可.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案
§15.1.2 分式的基本性质(2)——分式的约分和通分一、内容分析本节教学内容是人教版八年级上册《15.1.2分式的基本性质》第二课时,即分式的约分和通分。
本节是在学生有小学学习的分数的约分通分、初一学习了因式分解及上节课学习了分式的基本性质的知识基础上,进一步学习分式基本性质的应用。
学生通过类比分数的约分和通分来总结出分式的约分与通分的法则,从中体会数学的类比思想。
同时分式的约分和通分,是进行分式的加减乘除四则运算所必须掌握的分式变形,为后边分式的计算学习做铺垫,在本章中也有着非常重要的地位和作用。
二、教材分析(一)教学目标知识与技能:理解分式约分和通分的基本概念,认识到约分和通分其实是分式基本性质的应用和巩固,并会用分式的基本性质将分式进行正确的约分和通分。
过程与方法:应用分式的基本性质将分式变形,通过复习分数的约分、通分类比分式的约分、通分,从中渗透数学的类比思想方法,并在探究过程中掌握分式约分通分的关键。
情感态度与价值观:通过思考、探究等活动获得学习数学的成功体验,树立学习数学的信心,培养独立思考、合作交流的能力。
(二)教学重难点教学重点:分式的约分和通分教学难点:分式的约分和通分三、学情分析学生已经学过分数的约分和通分,已具备一定的知识基础,因而对于分式的约分和通分理解要相对容易一点。
但学生基础不是很好,无法灵活运用所学知识,在约分过程中先找分子和分母的公因式和在通分过程中先确定最简公分母这两个关键点不能很好地把握,尤其是当分子分母是多项式时要先进行因式分解,这样的变形过程对于学生来说更困难。
四、教学法分析本着以学生为主,教师为辅,充分发挥学生的主体地位,让学生积极主动地参与探索,互动交流学习,体现以“自主、探究、合作”为特征的教与学方式。
五、教学过程设计(一)温故知新分式的基本性质:_________________________________________________________ 用数学符号怎么表示:_________________________________________________________ 师生活动:学生回忆并举手发言,师展示答案。
人教版初中数学八年级上册精品教学课件 第15章 分式 15.1.2 分式的基本性质
分式相等的同分母的分式,叫做分式的
8.最简公分母
为通分,要先确定各分式的公分母,一般取各分母的所有因式的
最高次幂的积作公分母,它叫做 最简公分母 .
快乐预习感知
1.分式的约分
【例 1】 约分:(1)
16(-3)2 (-+)
(2)
(3)
12(3-)2 (-)
42 -3
-3 -42 -42
15.1.2 分式的基本性质
快乐预习感知
1.分式的基本性质
分式的分子与分母乘(或除以)同一个 不等于0 的整式,分式的
值 不变 .
2
( a )
2.填空:(1) =
(a≠0);
(2)
=
2
(x≠0).
x2+xy )
3.分式的约分
根据分式的 基本性质 ,把一个分式的分子与分母的 公因式
约去,叫做分式的约分.
12(3-)2 (-)
-16(-3)2 (-) 4
=
=- .
12(-3)2 (-) 3
(3)
=
42 -3
-3 -42 -42
(2 -42 )
(2 +4+42 )
=
=
-(3 -42 )
-(3 +42 +42 )
(+2)(-2)
-2
= +2.
(+2)2
快乐预习感知
快乐预习感知
2.分式的通分
3
-
2
3
与
;(2)
与
.
22
+5
-5
2
【例 2】 通分:(1)
人教版八年级数学上册15.1.2《分式的基本性质》教学设计
人教版八年级数学上册15.1.2《分式的基本性质》教学设计一. 教材分析人教版八年级数学上册15.1.2《分式的基本性质》是分式部分的重要内容,主要让学生了解分式的基本性质,包括分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变;分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式;分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
这些性质为后续分式的运算提供了重要的理论基础。
二. 学情分析八年级的学生已经学习了有理数的运算,对运算规律有一定的了解,但分式作为新的运算对象,其性质和运算规律与有理数有很大差异,需要学生在已有的知识基础上进行适当的延伸和拓展。
同时,学生可能对分式的实际应用场景还不够清晰,需要在教学过程中加以引导。
三. 教学目标1.理解分式的基本性质,并能灵活运用。
2.掌握分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变的规律。
3.掌握分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式的规律。
4.能运用分式的基本性质解决实际问题。
四. 教学重难点1.重点:分式的基本性质。
2.难点:分式的实际应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题引导学生思考,通过案例让学生理解分式的基本性质,通过小组合作让学生互相讨论、交流,提高解决问题的能力。
六. 教学准备1.PPT课件。
2.相关案例和练习题。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)利用PPT课件,展示分式的实际应用场景,如分数的简化、化学方程式的计算等,引出分式的基本性质。
2.呈现(10分钟)通过PPT课件,展示分式的基本性质,包括:a.分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
b.分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式。
同时,结合案例进行讲解,让学生理解并掌握这些性质。
八年级上册数学人教版课时练《15.1.2 分式的基本性质》02(含答案解析)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版数学八年级上册《15.1.2分式的基本性质》课时练一、单选题1.下列各式从左到右的变形中,不正确的是()A.3322m m=--B.55n nm m-=-C.3377m mn n-=--D.3344m mn n=--2.下列各式从左到右的变形正确的是()A.2223230.220.33a a a a a a a a--=--B.11 x xx y x y+--=--C.116321623a aaa--=+ +D.22b aa b a b-=-+3.若a b¹,则下列分式化简中,正确的是()A.22a ab b+=+B.22a ab b-=-C.33a ab b=D.22a ab b=4.分式11x--可变形为()A.11x--B.11x+C.11x-+D.11x-5.若将a bab+(a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值()A.扩大为原来的3倍B.缩小为原来的1 9C.不变D.缩小为原来的1 36.如果把分式3xx y-中的x,y都扩大2倍,那么分式的值()A .不变B .扩大2倍C .缩小到原来的二分之一D .扩大4倍7.如果把分式2yx y+中的x 和y 都扩大为原来的2倍,那么分式的值()A .不变B .缩小为原来的12C .扩大为原来的2倍D .扩大为原来的4倍8.下列分式中,最简分式是()A .211x x +-B .2211x x -+C .2222x xy y x xy-+-D .21628x x -+9.下列命题中的真命题是()A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式D .命题“对顶角相等”的逆命题是真命题10.下列分式中,最简分式是()A .1510xB .243ab a C .133x x --D .121x x ++二、填空题11.如果23x y =,那么4y x x y-=+_____.12.约分:22222a aba b ab +=+___________.13.化简分式:abcbc=__________.14.约分:2231216x xx +-=________.15.分式2y x,23x y ,14xy 的最简公分母是_______.16.分式213a b 与21a b 的最简公分母是_____.17.分式3232a b c 与246a ba b c-的最简公分母是_____.三、解答题18.通分:(1)x ab 与y bc;(2)2c bd 与234acb;(3)(2)x a x +与(2)yb x +;(4)22()xyx y +与22xx y -.19.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1)1213x y x y +-;(2)220.010.21.30.24x x -+.20.化简.(1)2520ab a b(2)224816x xx x --+21.若x 为整数,且2484x x +-的值也为整数,则所有符合条件的x 的值之和.22.已知:多项式A=b³-2ab.(1)请将A 进行因式分解;(2)若A=0且a≠0,b≠0,求222a 1b 1ab-+-()的值23.观察下列不等式:①211212<´;②211323<´;③211434<´;…根据上述规律,解决下列问题:(1)完成第5个不等式:;(2)写出你猜想的第n 个不等式:(用含n 的不等式表示)(3)利用上面的猜想,比较21(1)n n ++和1n的大小.24.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+--=1+21x -.(1)请写出分式的基本性质;(2)下列分式中,属于真分式的是;A .21x x -B .11x x -+C .﹣321x -D .2211x x +-(3)将假分式231m m ++,化成整式和真分式的形式.参考答案1.C 2.C3.C4.D5.D6.A7.A8.B9.A10.D11.212.1b 13.a14.34x x -15.12xy 2.16.3a 2b 17.6a 3b 4c 18.解:(1)xab 与y bcxab 与y bc的最简公分母是abc ,\x cx ab abc =,=y aybcabc.(2)2c bd 与234acb2c bd 与234acb 的最简公分母是24b d ,\2284c bc bd b d =,223344ac acd b b d=.(3)(2)x a x +与(2)yb x + (2)x a x +与(2)yb x +的最简公分母是(2)ab x +,\(2)(2)x bx a x ab x =++,(2)(2)y ayb x ab x =++.(4)22()xy x y +与22x x y -22()xyx y +与22x x y-的最简公分母是2()()x y x y +-,\2222222()22()()()()()xy xy x y x y xy x y x y x y x y x y --==++-+-,22222()()()()()x x x y x xyx y x y x y x y x y ++==-+-+-.19.解:(1)1362=1263x yx y x y x y ++--;(2)22220.010.220=1.30.2413024x x x x --++20.解:(1)251=204ab a b a(2)2224(4)=816(4)4x x x x xx x x x --=-+--21.解:2484(2)4.4(2)(2)2x x x x x x ++==-+--x 为整数,42x -为整数,21,22,24,x x x \-=±-=±-=±x \的值为:2,0,1,3,4,6.- 原分式有意义,则240,x -¹2, 2.x x \¹¹-x \的值为:0,1,3,4,6.则所有符合条件的x 的值之和为14.22.(1)b(b 2-2a);(2)12【解析】(1)A =b ³-2ab =b (b 2-2a );(2)A =0则b (b 2-2a )=0,∴b =0或b 2-2a =0,∵b ≠0,∴b 2-2a =0,即b 2=2a ,22211a b ab -+-()=222211a a b ab -++-=2·2a a a =12.23.解:(1)①211212<´;②211323<´;③211434<´;…则第5个不等式为:216<156´,故答案为:216<156´;(2)第n 个不等式为:21(1)n +<()11n n +,故答案为:21(1)n +<()11n n +;(3)∵21(1)n n ++<1(1)n n n ++=1n,∴21(1)n n ++<1n.24.(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m +【解答】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +,∴故答案为:m ﹣1+41m +.。
八年级数学上册教案-15.1.2 分式的基本性质2-人教版
数学
年级/册
八年级
教材版本
人教版
课题名称
15.1.2 分式的基本性质(一)
教学目标
利用分式的基本性质进行约分
重难点分析
重点分析
知识点本身内容复杂,涉及新概念多;要约分先找出分子和分母的公因式.分子或分母若是多项式,能分解则必须先进行因式分解,再找出分子和分母的公因式进行约分。
难点分析
学生抽象思维较弱,涉及知识面多:分子或分母若是多项式,能分解则必须先进行因式分解,因式分解本身就是难点,多数学生学得不怎么好。
教学方法
1.通过视频导入引入分数的基本性质
2.通过分数的基本性质类比分式的基本性质
教学环节
教学过程
导入
一、创境导入:
孙悟空与猪八戒分西瓜的视频导入
思考: 孙悟空为什么偷偷地笑?
通过小学学过分数解决问题,我们联想到分数的基本性质:
分数的分子与分母同时乘以(或除以) 一个不等于0的数,分数的值不变.
二、类比新知:
分式的约分:
例2
课堂练习
(难点巩固)
4、精华训练
例3:约分
分析 要约分先找出分子和分母的公因式.分子或分母若是多项式,能分解则必须先进行因式分解,再找出分子和分母的公因式进行约分.
解:(1)公因式是5abc .
(1)公因式是(x+3).
小结:
找公因式的方法:
(1)找出系数的最大公约数.
(2)找出分子、分母相同因式的最低次幂.
想一想:
联想分数的约分,你能想出如何对分式进行约分吗?
与分数约分类似,关键是要找出分式的分子与分母的最简公分母.
★约分的概念:
根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.
新人教版初中数学八年级上册精品教案15.1.2 分式的基本性质2
15.1.2 分式的基本性质一、教学目标1.使学生理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形.2.通过分式的恒等变形提高学生的运算能力.3.渗透类比转化的数学思想方法.二、教学重点和难点1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.2.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.三、教学方法分组讨论.四、教学手段幻灯片.五、教学过程(一)复习提问1.分式的定义?2.分数的基本性质?有什么用途?(二)新课1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:2.加深对分式基本性质的理解:例1 下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c≠0?解:∵c≠0,学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)解:∵x≠0,学生口答.解:∵z≠0,例2 填空:把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据. 练习1:化简下列分式(约分)(1) (2) (3)教师给出定义:把分式分子、分母的公因式约去,这种变形叫分式的约分.问:分式约分的依据是什么?分式的基本性质在化简分式 时,小颖和小明的做法出现了分歧:小颖: 小明:你对他们俩的解法有何看法?说说看!教师指出:一般约分要彻底, 使分子、分母没有公因式.彻底约分后的分式叫最简分式.练习2(通分):把各分式化成相同分母的分式叫做分式的通分.(1) 与 (2) 与 解:(1)最简公分母是 ()()b a 25b a 152+-+-22x 20x 5y x 20xy 5=b23a 25x x 2-c 2b a 22(2)最简公分母是(x-5)(x+5)(三)课堂小结1.分式的基本性质.2.性质中的m 可代表任何非零整式.3.注意挖掘题目中的隐含条件. 4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.c 2ab 22a 2c a a 2)b a (ca ba b a a b b 22222-=∙∙-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1.2分式的基本性质(2)——(约分)
学教目标:1、进一步理解分式的基本性质,并能用其进行分式的约分。
2、了解最简分式的意义,并能把分式化成最简分式。
3、通过思考、探讨等活动,发展学生实践能力和合作意识。
学教重点:分式的约分。
学教难点:利用分式的基本性质把分式化成最简分式。
学教过程:
一、温故知新:
1、分式的基本性质是: 用式子表示 。
2、分解因式:(1)x 2—y 2 、(2)x 2+xy 、(3)9a 2+6ab+b 2 、(4)x 2+x-6 。
自主探究:p 130的“思考”。
归纳:分式的约分定义:
最大公因式:所有相同因式的最 次幂的积
最简分式:
二、学教互动:
1、例1、p 131的“例3”
通过上面的约分,你能说出分式进行约分的关键是什么?
2、例2、约分:
(1)6
6522-++-m m m m 、 (2)21415222-+--m m m m 、(3)99622-++x x x 。
三、拓展延伸:
约分:
(1)66522-++-m m m m 、(2)21415222-+--m m m m 、(3)2
22
22y xy x y x ++-
四、反馈检测:
约分:
(1)d b a bc a 10235621-、 (2)2
24202525y xy x y x +--、
(3)16816
22
++-a a a 、
(4)7017501522+++-m m m m 、
(5)m m m m -+-222
3 。
五、小结与反思:。