数字锁相环设计
全数字锁相环设计研究
一、引言数字锁相环(DPLL)是一种相位反馈控制系统。
DPLL通常有三个组成模块:数字鉴相器(DPD)、数字环路滤波器(DLF)、数控振荡器(DCO)。
本文采用超前-滞后型数字锁相环(LL-DPLL)的设计方案,在LL-DPLL中,DLF用双向计数逻辑和比较逻辑实现,DCO采用加扣脉冲式数控振荡器。
这样设计出来的DPLL 具有结构简洁明快,参数调节方便,工作稳定可靠的优点。
二、数字锁相环的分类1.过零型数字锁相环路这种数字锁相环路采用过零采样数字鉴相器,即本地估算信号在输入信号的过零点上采样后进行A/D变换,得到数字相位误差信号输出。
2.触发器型数字锁相环路这类全数字锁相环路使用的数字鉴相器是触发器型数字鉴相器。
其特点是利用输入信号和本地估算信号的正向过零点对触发器进行触发,在触发器的置“ 0”和置“ 1” 的时间间隔内,得到相位误差信号。
置“ 0”和置“ 1”的时间间隔宽度就表征了输入信号和本地估算信号之间的相位误差大小。
3.超前-滞后型数字锁相环路这种数字锁相环路采用的鉴相器是超前-滞后型数字鉴相器。
超前-滞后型数字鉴相器在每一个周期内得到输入信号的相位比本地估算信号相位超前或滞后的信息。
因此,这种鉴相器的相位误差输出只有超前或滞后两种状态。
然后将误差相位的超前或滞后信息送到序列滤波器,产生对DCO的“ 加” 或“ 扣” 脉冲控制指令去改变DCO的时钟周期,使本地估算信号的相位输入信号相位靠拢。
4.奈奎斯特速率采样型数字锁相环路在这种数字锁相环路中,对输入信号的采样按照奈奎斯特速率进行。
也就是说,对输入信号进行A/D变换的采样频率必须按照奈奎斯特速率进行,以使输入信号能够依据奈奎斯特取样定理再现。
A/D变换后的输入信号与本地估算信号进行数字相乘,得到需要的相位误差数字信号,以完成鉴相功能。
三、系统设计本设计是基于直接数字频率合成器(Direct Digital Synthesizer)原理的信号发生器,用硬件描述语言Verilog来编程,用Altera公司的开发平台QUARTUSⅡ6.0来仿真,最后下载到StratixⅡ系列的EP2S60器件中进行验证。
基于FPGA的全数字锁相环设计与实现
基于FPGA的全数字锁相环设计与实现一、前言全数字锁相环(Digital Phase-Locked Loop,简称DPLL)是一种数字电路设计技术,可实现同步数字信号的调制和解调。
基于FPGA的全数字锁相环设计与实现,是一个极为重要的课题。
它可以有效地提高数字电路的性能,使得数字系统具有更优越的特性,并可广泛应用于数字电路的设计、数字信号的处理等领域。
二、DPLL 的体系结构DPLL是由相频检测器、滤波器、数字控制振荡器和时钟输出等多个部分组成的。
其中,相频检测器、滤波器和数字控制振荡器通常被集成到FPGA的内部,而时钟输出则需要通过FPGA的普通I/O口与市场上常见的外部输出设备相结合。
三、数字锁相环的工作原理数字锁相环的工作原理基于一个反馈循环系统,其中参考振荡器的频率与输入信号会被比较,然后通过差错检测网络来确定缺陷。
如果这些信号频率不匹配,则通过调整数字控制振荡器的频率来达到匹配。
然后,系统会根据输出信号和参考信号的相位差异来调整数字控制振荡器的频率,并通过PLL的反馈路径传输至输入端,进而得到和参考信号相同频率的输出信号。
四、数字锁相环的应用数字锁相环在通信领域有着广泛的应用,如数据码隆、数字调制、同步检测等;在数字领域,数字锁相环主要应用于数字信号处理、频谱分析、信噪比提高等方面;在电子仪器领域,数字锁相环可以被应用于测量领域、噪声分析、频率合成等方面。
五、基于FPGA的数字锁相环的设计数字锁相环的设计是一项非常复杂的工作,其中需要解决的问题主要有相频检测、低通滤波、数字控制振荡器的设计和时钟输出等方面。
在基于FPGA的数字锁相环设计过程中,可以采用很多不同的方法和技术来解决这些问题。
在数字锁相环的设计中,相频检测器是极其关键的部分,其主要功能是检测输入信号与数字控制振荡器的频率是否匹配。
其中,相频检测器常用的方式有两种:一是通过比较输入信号和数字控制振荡器的频率来实现;二是通过测量输入信号和数字控制振荡器的相位差来实现。
智能全数字锁相环的设计.
智能全数字锁相环的【论文集】设计当锁相环中的鉴相器与数控振荡器选定后,锁相环的性能很大程度依赖于数字环路滤波器的参数设置。
2 K计数器的参数设置74297中的环路滤波器采用了K计数器。
其功能就是对相位误差序列计数即滤波,并输出相应的进位脉冲或是借位脉冲,来调整I/D数控振荡器输出信号的相位(或频率),从而实现相位控制和锁定。
K计数器中K值的选取需要由四根控制线来进行控制,模值是2的N次幂。
在锁相环路同步的状态下,鉴相器既没有超前脉冲也没有滞后脉冲输出,所以K 计数器通常是没有输出的;这就大大减少了由噪声引起的对锁相环路的误控作用。
也就是说,K计数器作为滤波器,有效地滤除了噪声对环路的干扰作用。
显然,设计中适当选取K值是很重要的。
K值取得大,对抑止噪声有利(因为K 值大,计数器对少量的噪声干扰不可能计满,所以不会有进位或借位脉冲输出),但这样捕捉带变小,而且加大了环路进入锁定状态的时间。
反之,K值取得小,可以加速环路的入锁,但K计数器会频繁地产生进位或借位脉冲,从而导致了相位抖动,相应地对噪声的抑制能力也随之降低。
为了平衡锁定时间与相位抖动之间的矛盾,理想的情况是当数字锁相环处于失步状态时,降低K计数器的设置,反之加大其设置。
实现的前提是检测锁相环的工作状态。
3 工作状态检测电路图2为锁相环状态检测电路,由触发器与单稳态振荡器构成,fin为输入的参考时钟,fout为锁相环振荡器输出的时钟移相900。
fout对fin的抽样送入单稳态振荡器。
在锁定状态如图3,fout与fin具有稳定的相位关系, fout对fin抽样应全部为0或1,这样不会激发振荡器振荡,从而lock将输出低电平;而失锁状态时如图4,fout与fin出现相位之间的滑动,抽样时就不会出现长时间的0或1,单稳态振荡器振荡,使lock输出高电平。
锁相环的锁定状态保持时间的认定,可以通过设置振荡器的性能。
在FPGA设计中,要采用片外元件来进行单稳定时,是很麻烦的,而且也不利于集成和代码移植。
第7章数字锁相环
第7章 数字锁相环
《锁相技术》
图7-11 数字环路滤波器一般形式
第7章 数字锁相环
3. 数字压控振荡器(DCO)数字压控振荡器的基本组 成如图7-13所示。它由频率稳定的信号钟、计数器与 比较器组成,其输出是一取样脉冲序列,脉冲周期受数字 环路滤波器送来的校正电压控制。前一个取样时刻的 校正电压将改变下一个取样时刻的脉冲时间的位置。 DCO在环路中又被称为本地受控时钟或本地参考时钟 信号。
第7章 数字锁相环
《锁相技术》
图7-2 触发器型鉴相器
第7章 数字锁相环
(2) 奈奎斯特速率抽样鉴相器。该型鉴相器组成如 图7-3所示。模数变换器(A/D)的抽样率按带通信号的取 样定理选择,以使取样后信号含有充分的输入信号相 位信息。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-3 奈奎斯特速率抽样鉴相器
图7-15 超前—滞后数字锁相环基本组成 《锁相技术》
第7章 数字锁相环
一、电路组成与说明 电路实例是数字通信中常用的一种简单的超前—滞 后位同步环路,未用序列滤波器,电路组成如图7-16所示。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-16 位同步数字环组成电路
第7章 数字锁相环
二、环路位同步原理 图7-18为图7-16方案内各点的波形图,这里为分析 简便,以均匀变换的数字脉冲序列作为输入信号,它与随 机的数字脉冲序列作用下环路取得位同步的原理是一 样的。
《锁相技术》
第7章 数字锁相环
《锁相技术》
图7-7 简单二元鉴相器
第7章 数字锁相环
图 7-8 上 的 中 相 积 分 — 抽 样 — 清 除 电 路 是 用 来 判 断 DCO输出与码元转换边沿之间相位关系的。例如,中相 积分区间跨在从正到负的两个码元之间,而积分结果为 正,说明DCO时钟超前;积分结果为负,说明DCO时钟滞 后;积分结果为零,相位准确对准。
全数字锁相环的VHDL设计【开题报告】
开题报告专业:电子信息工程全数字锁相环的VHDL设计一、综述本课题国内外研究动态,说明选题的依据和意义锁相技术是一种实现相位自动控制的方法,是专门研究相位的技术。
利用锁相技术得到的锁相环PLL是一个闭环的相位自动控制系统,它的输出信号能够自动跟踪输入信号的相位变化,也可以将之称为一个相位自动跟踪系统,它能够自动跟踪两个信号的相位差,并且靠反馈控制达到自动调节输出信号相位的目的。
锁相环的研究一直是学术界的一个研究重点,由于条件所限,国内对于锁相环的研究主要停留在理论方面,高性能锁相环的产品基本基本依赖进口。
而在国外,锁相环技术则在不断发展,从最初采用分离器件到采用集成电路,从采用双极工艺到使用CMOS 工艺,从需要挂电阻和电容到锁相环完全集成在一块芯片上,并且作为嵌入式IP核应用在大的数字系统中。
随着ASIC芯片电源电压下降,使得电源电压与核心薄氧化器件的阈值电压相比裕量有限从而使模拟电路设计,尤其是低噪声低电压锁相环的设计变得非常困难。
因而,当前锁相环的设计关键集中在高速、低电压、低噪声方面。
目前国外的锁相环产品大多采用3.3V电源电压的CMOS工艺,工作频率可从100MHz一直达到2.4GHz,输出噪声(周期到周期)在几十皮秒左右。
VHDL语言的英文全写是:VHSIC(Very High Speed Integrated Circuit)Hardware Description Language.翻译成中文就是超高速集成电路硬件描述语言。
因此它的应用主要是应用在数字电路的设计中。
其是一种行为描述语言, 其编程结构类似于计算机中的C 语言, 在描述复杂逻辑设计时, 非常简洁,具有很强的逻辑描述和仿真能力,是未来硬件设计语言的主流。
基于VHDL 语言的数字锁相环设计,不仅简化了硬件的开发和制作过程,而且使硬件体积大大减小,并提高了系统的可靠性。
该方法可以在不修改硬件电路的基础上,通过修改设计软件、更改移相范围就可满足不同用户的需要。
基于FPGA的宽频带数字锁相环的设计与实现
数控振荡器根据误差信号调整本 地信号的频率和相位,实现信号 的同步。
02 基于FPGA的数字锁相环 设计
FPGA简介
01
02
03
可编程逻辑门阵列
高度集成
灵活性
FPGA是一种可编程逻辑门阵列, 通过编程实现各种数字逻辑功能。
FPGA内部包含大量逻辑门和触 发器,可以实现复杂的数字电路 设计。
FPGA可以通过重新编程实现不 同的数字电路设计,具有很高的 灵活性。
数字锁相环的FPGA实现方案
数字鉴相器
采用FPGA实现数字鉴相器,用于比较输入信号 和参考信号的相位差。
环路滤波器
采用FPGA实现环路滤波器,用于滤除鉴相器输 出信号中的高频分量。
数控振荡器
采用FPGA实现数控振荡器,用于产生参考信号。
FPGA设计流程
仿真验证
使用仿真工具对设计进行仿真 验证,确保逻辑电路的正确性。
03 MATLAB/Simulink:用于系统建模、仿真和分 析。
数字锁相环的FPGA实现过程
1. 系统建模
使用MATLAB/Simulink建立数字锁相 环的数学模型,并进行仿真验证。
3. 代码生成
将算法转换为硬件描述语言 (VHDL/Verilog),并使用FPGA开
发工具进行综合和实现。
2. 算法设计
布局布线
将配置文件映射到FPGA的逻 辑门资源上,进行布局布线。
设计输入
使用硬件描述语言(如VHDL 或Verilog)编写数字锁相环的 逻辑电路。
综合优化
将逻辑电路转换为FPGA上的 配置文件,并进行优化处理。
下载配置
将配置文件下载到FPGA中, 进行实际测试和验证。
03 宽频带数字锁相环的关键 技术
数字锁相环设计
引言锁相的概念是在19世纪30年代提出的,而且很快在电子学和通信领域中获得广泛应用。
尽管基本锁相环的从开始出现几乎保持原样,但是使用不同的技术制作及满足不同的应用要求,锁相环的实现对于特定的设计还是蛮大的挑战。
锁相环在通信、雷达、测量和自动化控制等领域应用极为广泛,已经成为各种电子设备中必不可少的基本部件。
随着电子技术向数字化方向发展,需要采用数字方式实现信号的锁相处理。
锁相环技术在众多领域得到了广泛的应用。
如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。
传统的锁相环由模拟电路实现,而全数字锁相环(DPLL)与传统的模拟电路实现的锁相环相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D及D/A转换。
随着通讯技术、集成电路技术的飞速发展和系统芯片(SoC)的深入研究,全数字锁相环必然会在其中得到更为广泛的应用。
因此,对全数字锁相环的研究和应用得到了越来越多的关注。
传统的数字锁相环系统是希望通过采用具有低通特性的环路滤波器,获得稳定的振荡控制数据。
对于高阶全数字锁相环,其数字滤波器常常采用基于DSP的运算电路。
这种结构的锁相环,当环路带宽很窄时,环路滤波器的实现将需要很大的电路量,这给专用集成电路的应用和片上系统SOC(system on chip )的设计带来一定困难。
另一种类型的全数字锁相环是采用脉冲序列低通滤波计数电路作为环路滤波器,如随机徘徊序列滤波器、先N后M序列滤波器等。
这些电路通过对鉴相模块产生的相位误差脉冲进行计数运算,获得可控振荡器模块的振荡控制参数。
由于脉冲序列低通滤波计数方法是一个比较复杂的非线性处理过程,难以进行线性近似,因此,无法采用系统传递函数的分析方法确定锁相环的设计参数。
不能实现对高阶数字锁相环性能指标的解藕控制和分析,无法满足较高的应用需求。
由于数字电子技术的迅速发展,尤其是数字计算和信号处理技术在多媒体、自动化、仪器仪表、通讯等领域的广泛应用,用数字电路处理模拟信号的情况日益普遍。
11.数字锁相环
实验十一 数字锁相环
Байду номын сангаас
3.实验中可能遇到的问题
(1)数字锁相环的概念 (2)数字锁相环电路的调试步骤和方法
4.难点
数字锁相环的性能分析
7
8
实验十一 数字锁相环
实验十一 数字锁相环 (3)若Xi的频率和Xl的固有频率之比为n:m (n,m为正整数),数字锁相环能否正 常工作?此时系统的正常工作频率范围 和相位跟踪误差与n和m的关系如何?
5.思考题
(1)数字锁相环输出信号Xl的工作频率的 提高会受到哪些因素的影响? (2)实验电路中,用一级D触发器组成鉴 相器,两个输入端口的信号能否互换? 如要互换,电路要做哪些修改?
9
10
2
实验十一 数字锁相环
实验十一 数字锁相环
⒈实验目的
(1)了解数字锁相环的组成及工作原理。 (2)掌握一种典型数字锁相环的实现方法。 (3)分析与测量数字锁相环的频率锁定范围 及相位跟踪误差。
2.实验内容
(1)试验原理 (a)基本的锁相系统是一个反馈系统, 它是由相位比较器(鉴相器)、低通滤 波器(环路滤波器)和电压控制振荡器 组成。 (b)数字锁相环
1
2
实验十一 数字锁相环
实验十一 数字锁相环 (2)将分频比设为256,信号发生器输 出 为0~5V的方波,频率为4.434MHz/256 = 17320Hz。监测数字锁相环的参考信号Xi 和输出信号Xl。微调Xi频率,观察Xl和 Xi是否锁相。测量该数字锁相环正常工 作频率范围fH和fL,并与理论值相比较。
2
6 5 4 3
11 12 13 14
11 12 13 14
QD QC QB QA
2 U2A
全数字锁相环设计 (1)
二、原理
1、锁相法
位同步锁相法的基本原理与载波同步的类似, 在接收端利用鉴相器比较接受 码元和本地产生的位同步信号的相位,若两者相位不一致(超前或滞后) ,鉴相 器就产生误差信号去调整位同步信号的相位直到获得准确的位同步信号为止。 前 面介绍的滤波法中的窄带滤波器可以是简单的单调谐回路或晶体滤波器, 也可以 是锁相环路。 我们把采用锁相法来提取位同步信号的方法称为锁相法。通常分两类:一类 是环路中误差信号去连续的调整位同步信号的相位,这一类属于模拟锁相法; 另 有一类锁相环位同步法是采用高稳定度的振荡器(信号钟) ,从鉴相器所获得的 与同步误差成比例的误差信号不是直接用于调整振荡器, 而是通过一个控制器在 信号钟输出的脉冲序列中附加或扣除一个或几个脉冲, 这样同样可以调整加到减 相器上的位同步脉冲序列的相位,达到同步的目的。这种电路可以完全用数字电
ΔT=|T1-T2|=
F F 1 1 F 2 1 2 F1 F2 F2 F1 F0
式中,F0 为收发两端固有码元重复频率的几何平均值, 且有
T0
1 F0
由式(11.3 - 8)可得
F F0|T1-T2|= F0
再由式(11.3 - 9) ,上式可写为
T1 T2 T0
F F0
第 2页 共 26页
全数字锁相环设计
除(或添加)脉冲。 分频器:一个计数器,每当控制器输出 n 个脉冲时,它就输出一个脉冲。 控 制器与分频器的共同作用的结果就调整了加至比相器的位同步信号的相位。 这种 相位前、后移的调整量取决于信号钟的周期,每次的时间阶跃量为 T0,相应的 相位最小调整量为Δ=2πT0/T=2π/n。 相位比较器: 接收脉冲序列与位同步信号进行相位比较, 以判别位同步信号 究竟是超前还是滞后,若超前就输出超前脉冲,若滞后就输出滞后脉冲。 位同步数字环的工作过程简述如下: 由高稳定晶体振荡器产生的信号, 经 整形后得到周期为 T0 和相位差 T0/2 的两个脉冲序列, 如图 11 - 17(a)、(b)所示。 脉冲序列(a)通过常开门、或门并经 n 次分频后,输出本地位同步信号,如图 11 17(c)。 为了与发端时钟同步, 分频器输出与接收到的码元序列同时加到相位比较 器进行比相。如果两者完全同步, 此时相位比较器没有误差信号,本地位同步 信号作为同步时钟。如果本地位同步信号相位超前于接收码元序列时,相位比较 器输出一个超前脉冲加到常开门(扣除门)的禁止端将其关闭, 扣除一个(a)路 脉冲(图 11 - 17(d)),使分频器输出脉冲的相位滞后 1/n 周期(360°/n) ,如图 11 - 17(e)所示。如果本地同步脉冲相位滞后于接收码元脉冲时,比相器输出一个滞 后脉冲去打开“常闭门(附加门) ” ,使脉冲序列(b)中的一个脉冲能通过此门及 或门。正因为两脉冲序列(a)和(b)相差半个周期, 所以脉冲序列(b)中的一个脉冲 能插到“常开门”输出脉冲序列(a)中(图 11 - 17(f)),使分频器输入端附加了一个 脉冲,于是分频器的输出相位就提前 1/n 周期, 如图 11 -17(g)所示。经过若干 次调整后, 使分频器输出的脉冲序列与接收码元序列达到同步的目的,即实现了 位同步。 根据接收码元基准相位的获得方法和相位比较器的结构不同, 位同步数字锁 相环又分微分整流型数字锁相环和同相正交积分型数字锁相环两种。 这两种环 路的区别仅仅是基准相位的获得方法和鉴相器的结构不同, 其他部分工作原理相 同。下面我们重点介绍鉴相器的具体构成及工作情况。
数字锁相环设计
Digital Phase Locked LoopDesign and LayoutDali Wang Fan Yang12/21/2001Contents1. Intoduction11.1Project Overview11.2Objective Of The Project21.3Table Listing Of Specifications21.3.1 The Design Specifications31.3.2The Test Specification31.4Table Of Macros41.5Table Of PinOuts51.6 Known Limitations Of Current Design52. Circuit Design 52.1 Components Description 52.1.1Phase And Frequency Detector 52.1.2Loop Filter 62.1.3 Voltage Controlled Oscillator62.2Discussion Of Tradeoffs72.3Description Of Schematics 72.3.1 Phase And Frequency Detector Schematics 72.3.2 Loop Filter Schematics 82.3.3 Voltage Controlled Oscillator Schematics 83. Circuit Performance93.1 Schematics Simulation Results 93.1.1Results For Some Important Components (Other Than Macros)93.1.2Results For Large Macros 113.1.3Entire Circuit 193.2 Discussion Of Results 234. Physical Design 254.1Description Of Components 254.2Layout Considerations 254.3Description Of Physical Layout 254.3.1Phase And Frequency Detector 254.3.2Loop Filter 26本页已使用福昕阅读器进行编辑。
数字锁相环设计
引言锁相的概念是在19世纪30年代提出的,而且很快在电子学和通信领域中获得广泛应用。
尽管基本锁相环的从开始出现几乎保持原样,但是使用不同的技术制作及满足不同的应用要求,锁相环的实现对于特定的设计还是蛮大的挑战。
锁相环在通信、雷达、测量和自动化控制等领域应用极为广泛,已经成为各种电子设备中必不可少的基本部件。
随着电子技术向数字化方向发展,需要采用数字方式实现信号的锁相处理。
锁相环技术在众多领域得到了广泛的应用。
如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。
传统的锁相环由模拟电路实现,而全数字锁相环(DPLL)与传统的模拟电路实现的锁相环相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D及D/A转换。
随着通讯技术、集成电路技术的飞速发展和系统芯片(SoC)的深入研究,全数字锁相环必然会在其中得到更为广泛的应用。
因此,对全数字锁相环的研究和应用得到了越来越多的关注。
传统的数字锁相环系统是希望通过采用具有低通特性的环路滤波器,获得稳定的振荡控制数据。
对于高阶全数字锁相环,其数字滤波器常常采用基于DSP 的运算电路。
这种结构的锁相环,当环路带宽很窄时,环路滤波器的实现将需要很大的电路量,这给专用集成电路的应用和片上系统SOC(system on chip)的设计带来一定困难。
另一种类型的全数字锁相环是采用脉冲序列低通滤波计数电路作为环路滤波器,如随机徘徊序列滤波器、先N后M序列滤波器等。
这些电路通过对鉴相模块产生的相位误差脉冲进行计数运算,获得可控振荡器模块的振荡控制参数。
由于脉冲序列低通滤波计数方法是一个比较复杂的非线性处理过程,难以进行线性近似,因此,无法采用系统传递函数的分析方法确定锁相环的设计参数。
不能实现对高阶数字锁相环性能指标的解藕控制和分析,无法满足较高的应用需求。
由于数字电子技术的迅速发展,尤其是数字计算和信号处理技术在多媒体、自动化、仪器仪表、通讯等领域的广泛应用,用数字电路处理模拟信号的情况日益普遍。
锁相环电路设计与应用
锁相环电路设计与应用锁相环(Phase-Locked Loop,PLL)是一种常见的电路设计和应用,广泛应用于通信、计算机、音频、视频、测量等领域。
本文将介绍PLL的基本原理、电路设计以及应用。
一、PLL的基本原理PLL是一种反馈控制系统,通过比较两个输入信号的相位差,并根据差异信号来调整时钟信号的相位和频率,使得输出信号与输入信号同步,以稳定输出信号的相位和频率。
PLL通常由以下几个主要组成部分构成:1. 相频比较器(Phase/Frequency Detector,PFD):将输入信号与反馈信号进行比较,产生差异信号。
2. 电压控制振荡器(Voltage-Controlled Oscillator,VCO):根据差异信号调整输出信号的频率和相位。
3. 低通滤波器(Low-Pass Filter,LPF):用于滤除VCO输出信号中的高频噪声。
4. 分频器(Divider):将VCO输出信号进行频率分频。
PLL的工作原理如下:1.将输入信号与反馈信号经过PFD进行比较,得到差异信号。
差异信号表示输入信号与反馈信号之间的相位差和频率差。
2.差异信号经过低通滤波器进行滤波,得到一个DC信号,用于表示相位差和频率差。
3.DC信号经过增益放大后,作为控制信号输入到VCO中。
VCO输出的信号经过分频器进行频率分频,再与输入信号进行比较,形成反馈信号。
4.反馈信号经过低通滤波器进行滤波,形成新的输入信号,进一步调整VCO输出的相位和频率,使得输出信号与输入信号同步。
二、PLL的电路设计PLL的电路设计需要考虑以下几个方面:1.选择合适的PFD:根据输入信号的特点选择合适的PFD,常见的有异或门和锁相比较器等。
2.设计合适的滤波器:根据设计要求,设计合适的低通滤波器,用于滤除VCO输出信号中的高频噪声。
3.选择合适的VCO:根据设计要求选择合适的VCO,考虑信号频率范围、线性度、功耗等因素。
4.确定适当的分频比:根据设计要求确定适当的分频比,实现对输出信号频率的控制。
基于FPGA的全数字锁相环的设计与实现
基于FPGA的全数字锁相环的设计与实现一、本文概述本论文聚焦于基于现场可编程门阵列(FieldProgrammable Gate Array, FPGA)技术设计与实现全数字锁相环(AllDigital PhaseLocked Loop, ADPLL)的研究工作。
全数字锁相环作为一种关键的信号处理模块,广泛应用于通信系统、雷达系统、高速数据采集、频率合成等领域,其性能直接影响到整个系统的稳定性和精度。
随着FPGA技术的发展,ADPLL在灵活性、集成度、可编程性及实时调整等方面展现出显著优势,成为现代电子系统中实现高精度频率合成与同步控制的理想选择。
本文旨在深入探讨基于FPGA平台构建全数字锁相环的理论基础、设计方案及关键技术,并通过实际工程实践验证其性能。
研究内容主要涵盖以下几个方面:理论背景与技术综述:对全数字锁相环的基本原理、组成结构以及工作模式进行全面阐述,对比分析其与传统模拟锁相环和混合信号锁相环的优缺点。
在此基础上,详细介绍FPGA技术的特点及其在ADPLL设计中的应用价值,为后续设计工作奠定理论基础。
系统架构与模块设计:详细阐述所设计的基于FPGA的全数字锁相环的整体架构,包括鉴相器(Phase Detector)、数字环路滤波器(Digital Loop Filter)、数控振荡器(Digitally Controlled Oscillator, DCO)等核心组件的设计思路与实现细节。
针对FPGA资源特性,优化各模块算法及硬件实现,确保其在有限逻辑资源下达到高性能指标。
关键算法与技术实现:探讨用于提升ADPLL性能的关键技术,如低噪声鉴相算法、快速锁定策略、频率牵引与抖动抑制技术等,并展示如何将其有效融入FPGA实现中。
同时,阐述如何利用FPGA的可编程特性实现实时参数调整与在线监控,增强系统的动态适应能力和故障诊断能力。
仿真验证与实验结果:通过高级硬件描述语言(HDL)对设计进行建模,并利用FPGA开发环境进行功能仿真与时序分析,验证设计的正确性和稳定性。
RFC中数字锁相环的设计
Ke r s R doFeu nyC nrl r F ) C mpe rga y wo d : a i rq ec o t l ( C ; o lxPo rmmal L gcD vcsC L ; i eet l h s hf oe R be o i e i ( P D) D f r i aeS i e naP t
原理 ,列出了详细的设计过程并例举数据以及仿真结果。 关键词:射 频控制器 ( F ;复杂可编程逻辑器件 ( P D) R C) C L ;差分相移键控 ( P K) DS
中图分类 号 :T 6 . N957 文献 标识码 :A
De in o g tl h s ・ c e - o i e sg f Dii a eLo k d- p F l r aP - Lo Yn
Absr c :A e meh dta o t s L t ns ed sg f ii l h s- c e - o l ri C rsn e .n tat n w t o t w u eCP D of iht e ino dgt a el k d l pf t RF i p ee td I h h o i h ap o o i e n s
中的 锁 相 环 功 能 ,并 以具 体 的数 据 来进 一 步 说 明 CL P D技 术 的优势 。
信号处理 电路等都大多通过数字 电路来实现,数字 锁相 环便 是其 中之 一 。 目前 ,复杂 可编 程逻 辑器 件
( P D) 的规模 已变 得越 来越 大 ,其 单片 逻 辑 门 CL 的数 量 已达数 十万 甚至 上百 万 门 ,使用 C L P D来 设 计和 改造 电子产 品具有 编程 方便 、易修 改 、性 能稳
全数字锁相环路的设计的资料和源程序
数字锁相环(DPLL)(Digital Phase-Locked Loop)1.目的:了解锁相环的基本工作原理初步掌握DPLL的构成和设计方法2.内容:设计一DPLL,它能实现相位锁定。
PLL原理鉴相器放大低通滤波器锁相环的一般原理图VCO-Voltage-controlled OscillatorVc – Control VoltagePLL的目的是:从输入码流(其相位是θi ,速率Fi)中提取时钟信号(其相位是θo ,频率Fo),使Fo等于Fi的平均值并且Fo和Fi具有固定的相位关系。
其中,鉴相器求Fi和Fo的相位差Δθ=θi – θo。
Δθ经放大及滤波后产生‘平均相位差’信号Vc,由它控制‘压控震荡器’VCO,以改变VCO的输出频率和相位θo。
它应这样连接:Vc的作用使Δθ减小。
并最终使Δθ→0,即使Fo和Fi具有‘固定的相位关系’。
PLL广泛用于数字系统的位同步(bit synchronization),载频恢复(Carrier Restoration),调频波(FM)解调,相干接收等。
数字锁相环(DPLL)的实现鉴相器:用一D-FF实现,且用Fo作D输入, Fi作CK信号,其输出Q的含义是:‘1’-表示θo ‘超前于’θi,即,Fo > Fi‘0’-表示θo ‘落后于’θi,即,Fo < Fi低通滤波器:由一‘可逆计数器’实现,即只在连续‘超前’(或‘滞后’)并达到一定数目时,才调整Fo的相位一次。
这可消除偶然的相位‘抖动’引起的误调整。
可以证明,这样可大大提高PLL输出频率的稳定度。
VCO:用一可变模数计数器实现。
在实验中,它的一个输入是fosc = n*Fo的外部时钟信号,且在不调整时,对它作÷N分频,得到Fo;另一输入信号是‘超前调整’信号,它有效,说明Fo应向低调整,使该计数器的模数=N+k;还有一信号是‘滞后调整’,它使该计数器的模数=(N-k),使θo向前调整。
基于matlab的全数字锁相环的设计与实现
基于matlab的全数字锁相环的设计与实现
全数字锁相环在微型机控制系统中被广泛应用,它能够通过控制脉冲重复率来控制检测信号的角度位置。
本文介绍如何使用Matlab来设计,以及在实际系统中实现一个全数字锁相环。
界面及模型的设计
首先,我们使用Matlab建立一个简单的GUI界面,以实现设定各项参数,以及便于观察系统数据的功能。
该界面包括可控变量,输入和输出变量以及控制参数三个部分,根据系统具体要求调整不同变量的值,以获得最佳性能。
然后,根据硬件设备的特性和系统要求,我们在Matlab中建立一个可表达系统真实行为的模型,并调整参数,将GUI界面设置的参数映射到模型上,以得到期望的结果和性能。
其中,模型的构成包括:比较电路、相位比较器、滤波电路、激励采样电路、控制逻辑等。
硬件和固件的实现
接着,根据模型获得的参数,我们使用C语言在DSP或MCU上编写实时系统固件,以便实现基于模型的控制算法,实时调整检测信号的角度位置。
此外,基于硬件资源的限制,在设计过程中,可以根据实际需求和模型分析结果,采用软件/硬件混合的方法设计相应的功能,以降低系统硬件资源的占用。
仿真与验证
最后,我们使用Matlab作为仿真平台,对所设计的模型进行仿真分析,验证模型的正确性,确保模型的准确性与实时性。
实验结果表明,基于Matlab的全数字锁相环设计方法以及在实际系统中实现,基本上是可行的。
不仅可以满足系统检测信号角度位置的控制要求,还可以很好地保证系统性能和可靠性。
数字锁相环ISP
数字锁相环ISP设计passmatlab§3.1 数字锁相环原理模拟锁相环路(APLL)已在模拟和数字通信已经无线电电子学领域获得极为广泛的应用。
随着大规模、超高速数字集成电路的发展以及计算机的普及运用,为研究和制作全数字锁相环路(ADPLL)提供了极为有利的条件。
数字锁相环是在模拟锁相环的基础上发展起来的。
开始,只是把模拟环路的部分数字化,后来才出现了全数字锁相环路。
所谓全数字化,就是环路部件数字化,采用数字鉴相器(DPD)、数字环路滤波器(DLF)、数控振荡器(DCO)构成的锁相环。
目前,全数字锁相环路的研究日趋成熟,并已制成全数字化锁相环路FSK信号解调器、PSK信号解调器、位时钟提取器及同步载波提取器等。
全数字化锁相环的共同特点是:1. 电路完全数字化,使用逻辑门电路和触发器电路。
系统中只有“导通”和“截止”两种工作状态,受外界和电源的干扰的可能性大大减小,电路容易集成,易于制成全集成化的单片全数字锁相环路。
因而系统的可靠性大大提高。
2. 全数字锁相环路还缓和或消除了模拟锁相环路中电压控制振荡器(VCO)的非线性以及环路中使用运算放大器和晶体管后而出现的饱和及运算放大器和鉴相器的零漂等对环路性能的影响。
3. 数字锁相环路的环路部件甚至整个环路都可以直接用微处理机来模拟实现。
4. 全数字锁相环路中,因模拟量转变为数字量所引入的量化误差和离散控制造成的误差,只要系统设计得当,均可以被忽略。
图 3.1 DPLL的基本结构数字锁相环的实现方法是多种多样的,数字锁相环按照数字鉴相器的形式可以分成四类,它们分别是:一.过零型数字锁相环路这种数字锁相环路采用过零采样数字鉴相器,即本地估算信号在输入信号的过零点上采样后进行A/D变换,得到数字相位误差信号输出。
二.触发器型数字锁相环路这类全数字锁相环路使用的数字鉴相器是触发器型数字鉴相器。
其特点是利用输入信号和本地估算信号的正向过零点对触发器进行触发,在触发器的置“0”和置“1”的时间间隔内,得到相位误差信号。
应用于SoC的全数字锁相环设计的开题报告
应用于SoC的全数字锁相环设计的开题报告1. 研究背景随着数字信号处理技术的不断发展,SoC(System on Chip)中集成的数字电路越来越复杂,其内部的时钟分频系统也变得异常重要。
在数字电路系统中,时钟信号的稳定性和精度直接影响数字系统的性能和稳定性。
因此,全数字锁相环(Digital Phase Locked Loop,DPLL)在SoC 中得到了广泛应用。
全数字锁相环是一种数字电路,能够使输入信号与VCO(Voltage-Controlled Oscillator)的频率同步,可以在高达数GHz的速度下实现精确的相位调整。
全数字锁相环没有模拟环路滤波器,具有抗干扰能力强、可调性和调试性好等优点。
因此,在数字电路系统中,全数字锁相环已成为最为常见的时钟同步方案之一。
2. 研究内容本文将深入探讨如何设计一种高性能的全数字锁相环电路,并将其应用于SoC中。
本文的研究内容如下:(1)锁相环的基本原理:介绍锁相环的基本工作原理,包括锁定范围、捕获范围、稳定性等指标的定义与计算。
(2)基本模块设计:详细介绍数字锁相环中的基本模块——相位检测器、数字控制器和VCO,并对每个模块的实现方式进行分析和设计。
(3)噪声分析及抑制:对锁相环中的噪声进行分析和抑制,例如抖动噪声、相位噪声等。
(4)时钟分频及输出:实现数字锁相环的时钟分频功能,并通过分频器输出相应的时钟信号。
(5)仿真分析:利用Cadence仿真工具对所设计的电路进行仿真分析,对电路的性能进行评估。
3. 研究意义本文设计的全数字锁相环电路具有以下特点:(1)采用数字电路实现,具有抗干扰能力强、可调性和调试性好等优点;(2)具有高速、高精度、低杂波等特性,能够满足SoC中对时钟同步的高要求;(3)在电路设计过程中,对噪声进行分析和抑制,提高了电路的稳定性和精度。
本文采用的研究方法为理论研究与实验仿真相结合,能够提高锁相环电路设计的可靠性和优化性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要现代通信系统中,同步问题是决定系统性能和应用的根本问题。
锁相环路作为同步技术的核心部件,已在模拟和数字通信及无线电电子学等各个领域中得到了极为广泛的应用,特别是在数字通信的调制解调和位同步中常常要用到各种各样的锁相环。
本文分析了全数字锁相环(NR—DPLL) 基本组成和工作原理,利用MATLAB对锁相环的进行设计,了解其各个部分功能具体结构,利用MATLAB工具箱对锁相环的进行仿真,改变锁相环参数最后进行了参数分析。
同时重点针对DDS做详细了解,对其做出仿真并进行分析关键词:奈奎斯特型全数字锁相环;模块设计;仿真;参数分析AbstractModern communication systems, the synchronization problem is to determine system performance and application of the fundamental problems. PLL synchronization technology as the core components in analog and digital communication and radio electronics and other fields has been very widely used, especially in the digital communications modem and bit synchronization often use a variety of all kinds of PLL.This paper analyzes the all-digital phase-locked loop (NR-DPLL) basic composition and working principle of the PLL using MATLAB to design, understand the function of each part of the specific structure of the PLL using MATLAB simulation toolbox change the PLL parameters Finally, a parametric analysis. At the same time focusing on a detailed understanding of DDS, making simulation and analysis of itsKeywords: Nyquist-type all-digital phase locked loop, module design, Simulation, Parameter目录摘要 (I)Abstract....................................................... I I 目录......................................................... I II 第一章绪论.. (4)1.1 选题的背景与意义 (4)1.2 数字锁相环的分类 (4)1.3 论文的主要研究工作 (5)第二章锁相环基本原理 (6)2.1 鉴相器(PD) (7)2.2 环路滤波器(LPF) (8)2.3 压控振荡器(VCO) (8)第三章数字锁相环的经典结构设计 (9)3.1 奈奎斯特采样鉴相器 (9)3.2 数字环路滤波器 (9)3.3 数字控制振荡器(NCO) (10)3.4 NR-DPLL的动态方程与相位模型 (15)3.5 NR-DPLL的性能分析 (16)第四章奈奎斯特数字锁相环(NR-DPLL)的仿真 (18)4.1 仿真原理与过程 (18)4.2 仿真结论 (24)第五章论文以后的研究工作 (26)5.1 异或鉴相器 (26)5.2 一阶环路滤波器 (27)5.3 压控振荡器 (27)第六章结束语 (28)参考文献 (29)谢辞 (30)附录一 MATLAB简介 (31)附录二 H(ejw)的幅频响应 (32)附录三误差电压ud(k)和控制电压uc(k) (33)第一章绪论1.1 选题的背景与意义锁相环路已在模拟和数字通信及无线电子电子学的各个领域中得到了几位广泛的应用。
随着大规模,超高速数字4集成电路的发展以及计算机的普遍应用,在传统的模拟锁相环路(APLL)应用领域中,一大部分已被数字锁相环路(DPLL)所取代。
全数字锁相环ADPLL(All Digital Phase-Locked Loop),顾名思义,其环路中的所有部件都是用数字电路来实现的,到20世纪70年代开始出现的数字锁相环,在现代科技的很多领域都有锁相环的应用。
数字锁相技术在数字通信的调制解调、位同步、频率合成中常常要用到各种各样的锁相环,本文主要讨论的奈奎斯特全数字锁相环模块设计与仿真,对于加深对数字锁相环的理解,以及对其他种类数字锁相环的理解应用都有知道很好的指导作用。
1.2 数字锁相环的分类所谓全数字锁相环,就是全数字化的锁相环路,即各个环路各个部件全部数字化,采用数字鉴相器,数字环路滤波器,数字压控振荡器构成的锁相环路。
按照数字鉴相器的的形式把数字锁相环分成四类,分别是:一.过零型数字锁相环路这种数字锁相环路采用过零采样数字鉴相器,即本地估算信号在输入信号的过零点上采样进行A/D变换,得到数字相位误差信号输出二.触发器型数字锁相环路这类全数字锁相环路使用的数字鉴相器是触发器型数字鉴相器。
其特点是利用输入信号和本地估算信号的正向或者负向过零点对触发器进行触发,在触发器的置0或者置1的时间间隔内得到相位误差信号。
置0或置1的时间间隔宽度就表征了输入信号和本地估算信号的指尖的相位误差大小。
三.导前-滞后型数字锁相环路这种数字锁相环路采用的鉴相器是导前-滞后型数字鉴相器,导前-滞后型数字鉴相器在每一个周期内得到输入信号的相位比本地估算信号相位超前或滞后的信息,因此,这种鉴相器的相位误差输出只有道歉和滞后两种状态。
四.奈奎斯特速率采样型数字锁相环路在这种数字锁相环路中,对输入信号的采样按奈奎斯特速率进行。
对于输入信号进行A/D变换的采样速率必须按奈奎斯特速率进行,以使输入信号能够按奈奎斯特取样定理再现。
A/D变换后的输入信号与本地估算信号进行数字相乘,得到需要的相位误差信号,以完成鉴相功能。
只有这一类为均匀采样DPLL,前三中均不是。
1.3 论文的主要研究工作(1)本次研究主要是奈奎斯特数字锁相环,前面讨论的三种数字鉴相器,即过零型数字锁相环路、触发器型数字锁相环路、导前-滞后型数字锁相环路,它们都是以本地估算信号为基准相位对输入信号进行比较,得到相位误差信息。
这种采样方式通常称为非均匀采样。
而奈奎斯特速率采样数字鉴相器的采样方式不同,它是以某一固定的频率基准作为输入信号的采样脉冲。
这时,采样频率必须足够高,以使采样后的采样后的输入信号能够依据奈奎斯特采样定理再现输入信号。
(2)阐述奈奎斯特数字锁相环的典型结构与相位模型,并分析一阶和二阶的跟踪性能。
(3)对DDS利用Simulink进行仿真,并对其性能进行分析第二章锁相环基本原理先了解锁相环的基本概念,所谓锁相,就是相位同步的自动控制。
完成两个信号间相位同步的自动控制系统的环路叫做锁相环,也称PLL(Phase Locked Loop)。
最典型的锁相环由鉴相器(Phase Detector)、环路滤波器(Loop Filter)、压控振荡器(Voltage Controlled Oscillator)三部分组成,如图所示:图2.1 锁相环典型结构当压控振荡器的频率f v由于某种原因而发生变化时,必然引起相位的变化,该相位变化在鉴相器中与参考晶体的稳定相位(对应于频率f r)相比较,使鉴相器输出一个与相位误差信号成比例的误差电压V d(t),经过低通滤波器,取出其中缓慢变动数值,将压控振荡器的输出频率拉回到稳定的值上来,从而实现了相位负反馈控制。
当θ1(t)与θ2(t)相等时,两矢量以相同的角速度旋转,相对位置固定,即夹角维持不变,通常数值又较小,这就是环路的锁定状态。
从输入信号加到锁相环路的输入端开始,一直到环路达到锁定的全过程,称为捕获过程。
设系统最初进入同步状态(2nπ±εθe,ε∆ω)的时间为t0,那么从t=t0的起始状态到达进入同步状态的全部过程就称为锁相环路的捕获过程。
捕获过程。
称为捕获时间。
显然,捕获时间几的大小不但与环路的参所需的时间T p=ta−t o数有关,而且与起始状态有关。
对一定的环路来说,是否能通过捕获进入同步取决于起始频差θe(t1)=∆ωo。
若∆ωo超过某一范围,环路就不能捕获了。
这个范围的大小是锁相环路的一个重要性能指标,称为环路的捕获带∆ωp。
捕获状态终了,环路的状态稳定在|θe(t)|≤ε∆ω|θe(t)−2nπ|≪εθe这就是同步状态的定义。
只要在整个变化过程中一直满足以上两式,那么仍称环路处于同步状态。
由上可知,在输入固定频率信号的条件之下,环路进入同步状态后,输出信号与输入信号之间频差等于零,相差等于常数,即θe(t)=0, θe(t)=常数这种状态就称为锁定状态。
实际应用中有各种形式的环路,但它们都是由图1这个基本环路演变而来的。
下面逐个介绍基本部件在环路中的作用。
2.1 鉴相器(PD)鉴相器是一个相位比较装置,用来检测输入信号相位与反馈信号相位之间的相位差。
输出的误差信号是相差的函数,即鉴相特性可以是多种多样的,有正弦形特性、三角形特性、锯齿形特性等等。
常用的正弦鉴相器可用模拟相乘器与低通滤波器的串接作为模型。
如图2.2所示。
图2.2 正弦鉴相器模型设乘法器的相乘系数为Km,单位为v−1,则k m u i(t)u o(t)=k m U i sin[ωo t+θ1(t)]U O(t)sin[ωo t+θ2(t)]=1 2k m U i U o sin[2ωo t+θ1(t)+θ2(t)]+12k m U i U o sin[θ1(t)+θ2(t)]在经过低通滤波器(LPF)虑除2ωo。
成分后,得到误差电压U d=12k m U i U o sin[θ1(t)−θ2(t)]令U d=12k m U i U o为鉴相器输出的最大电压。
则正弦鉴相器特性为u d(t)=U d sinθe(t)上述鉴相器的功能可分解为两个作用,首先是相位相减,即取得两个输入信号之间的相位差;其次是将相位差转换为误差电压输出,所以它是相位转换为电压的装置。
随着半导体技术的不断发展,近十年出现的数字锁相环(DPLL)的鉴频鉴相器核心是由鉴相器和电荷泵(CP)构成的。