江苏省镇江市2018届高三数学第一次模拟考试
江苏省镇江市2017-2018学年高三第一次模拟考试数学试卷 Word版含解析
2017-2018学年江苏省镇江市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程.1.若全集为U=R,A={x|x2﹣x>0},则∁U A=.2.i为虚数单位,计算=.3.箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,则摸到的2球颜色不同的概率为.4.已知实数x,y满足,则z=2x+y的最小值是.5.阅读如图所示的程序框,若输入的n是30,则输出的变量S的值是.6.已知向量=(﹣2,1),=(1,0),则|2+|=.7.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1﹣log2x,则不等式f(x)<0的解集是.8.设b,c表示两条直线,α,β表示两个平面,现给出下列:①若b⊂α,c∥α,则b∥c;②若b⊂α,b∥c,则c∥α;③若c∥α,α⊥β,则c⊥β;④若c∥α,c⊥β,则α⊥β.其中正确的是.(写出所有正确的序号)9.以抛物线y2=4x的焦点为焦点,以直线y=±x为渐近线的双曲线标准方程为.10.一个圆锥的侧面积等于底面面积的2倍,若圆锥底面半径为cm,则圆锥的体积是cm3.11.函数y=asin(ax+θ)(a>0,θ≠0)图象上的一个最高点和其相邻最低点的距离的最小值为.12.S n是等差数列{a n}的前n项和,若,则=.13.函数,若方程f(x)=kx﹣k有两个不相等的实数根,则实数k的取值范围为.14.已知sin36°=cos54°,可求得cos2016°的值为.二、解题题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.如图:四棱锥P﹣ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点.(1)求证:AM∥平面PBC;(2)求证:CD⊥PA.16.在△ABC中,角A,B,C所对应的边分别是a,b,c,向量=(a﹣c,b+c),=(b ﹣c,a),且∥.(1)求B;(2)若b=,cos(A+)=,求a.17.如图,某工业园区是半径为10km的圆形区域,距离园区中心O点5km处有一中转站P,现准备在园区内修建一条笔直公路AB经过中转站,公路AB把园区分成两个区域.(1)设中心O对公路AB的视角为α,求α的最小值,并求较小区域面积的最小值;(2)为方便交通,准备过中转站P在园区内再修建一条与AB垂直的笔直公路CD,求两条公路长度和的最小值.18.已知在平面直角坐标系xOy中,椭圆+=1(a>b>0)的离心率为,左顶点为A(﹣3,0),圆心在原点的圆O与椭圆的内接三角形△AEF的三条边都相切.(1)求椭圆方程;(2)求圆O方程;(3)B为椭圆的上顶点,过B作圆O的两条切线,分别交椭圆于M,N两点,试判断并证明直线MN与圆O的位置关系.19.已知数列{a n}的各项都为自然数,前n项和为S n,且存在整数λ,使得对任意正整数n 都有S n=(1+λ)a n﹣λ恒成立.(1)求λ值,使得数列{a n}为等差数列,并求数列{a n}的通项公式;(2)若数列{a n}为等比数列,此时存在正整数k,当1≤k<j时,有a i=2016,求k.20.已知函数f(x)=[ax2﹣(2a+1)x+2a+1]e x.(1)求函数f(x)的单调区间;(2)设x>0,2a∈[3,m+1],f(x)≥b2a﹣1恒成立,求正数b的范围.[选修4-1:几何证明选讲]21.在直径是AB的半圆上有两点M,N,设AN与BM的交点是P.求证:AP•AN+BP•BM=AB2.[选修4-2:矩阵与变换]22.求矩阵的特征值及对应的特征向量.[选修4-4:坐标系与参数方程]23.已知直线l的极坐标方程为,曲线C的参数方程为,设P点是曲线C上的任意一点,求P到直线l的距离的最大值.[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:x+≥y+3.25.如图,在棱长为3的正方体ABCD﹣A1B1C1D1中,A1E=CF=1.(1)求两条异面直线AC1与D1E所成角的余弦值;(2)求直线AC1与平面BED1F所成角的正弦值.26.证明:对一切正整数n,5n+2•3n﹣1+1能被8整除.2016年江苏省镇江市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程. 1.若全集为U=R ,A={x|x 2﹣x >0},则∁U A= [0,1] . 【考点】补集及其运算.【分析】求解一元一次不等式化简集合A ,然后直接利用补集运算求解. 【解答】解:由集合A={x|x 2﹣x >0}=(﹣∞,0)∪(1,+∞), 又U=R ,所以∁U A=[0,1]., 故答案为:[0,1].2.i 为虚数单位,计算=﹣i .【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故答案为:﹣i .3.箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,则摸到的2球颜色不同的概率为.【考点】列举法计算基本事件数及事件发生的概率. 【分析】先求出基本事件总数和摸到的2球颜色不同包含的基本事件个数,由此能求出摸到的2球颜色不同的概率.【解答】解:箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,基本事件总数n==10,摸到的2球颜色不同包含的基本事件个数m==6,∴摸到的2球颜色不同的概率p=.故答案为:.4.已知实数x ,y 满足,则z=2x+y 的最小值是 1 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z 的几何意义,即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线的截距最小,此时z最小,由,解得,即C(1,﹣1),此时z=1×2﹣1=1,故答案为:1.5.阅读如图所示的程序框,若输入的n是30,则输出的变量S的值是240.【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的S,n的值,当n=0时,满足条件n<2,退出循环,输出S的值,利用等差数列的求和公式即可计算得解.【解答】解:执行程序框图,有n=30S=0不满足条件n<2,S=30,n=28不满足条件n<2,S=30+28,n=26不满足条件n<2,S=30+28+26,n=24…不满足条件n<2,S=30+28+26+…+4,n=2不满足条件n<2,S=30+28+26+…+4+2,n=0满足条件n<2,退出循环,输出S=30+28+26+…+4+2==240.故答案为:240.6.已知向量=(﹣2,1),=(1,0),则|2+|=.【考点】平面向量数量积的运算.【分析】可进行向量坐标的加法和数乘运算求出向量的坐标,从而便可得出的值.【解答】解:;∴.故答案为:.7.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1﹣log2x,则不等式f(x)<0的解集是(﹣2,0)∪(2,+∞).【考点】函数奇偶性的性质.【分析】求出当x>0时,f(x)>0和f(x)<0的解集,利用奇函数的对称性得出当x<0时,f(x)<0的解集,从而得出f(x)<0的解集.【解答】解:当x>0,令f(x)<0,即1﹣log2x<0,解得x>2.令f(x)>0即1﹣log2x>0,解得0<x<2.∵f(x)是奇函数,∴当x<0时,f(x)<0的解为﹣2<x<0.故答案为:(﹣2,0)∪(2,+∞).8.设b,c表示两条直线,α,β表示两个平面,现给出下列:①若b⊂α,c∥α,则b∥c;②若b⊂α,b∥c,则c∥α;③若c∥α,α⊥β,则c⊥β;④若c∥α,c⊥β,则α⊥β.其中正确的是④.(写出所有正确的序号)【考点】平面的基本性质及推论.【分析】由题设条件,对四个选项逐一判断即可,①选项用线线平行的条件进行判断;②选项用线面平行的条件判断;③选项用线面垂直的条件进行判断;④选项用面面垂直的条件进行判断,【解答】解:①选项不正确,因为线面平行,面中的线与此线的关系是平行或者异面;②选项不正确,因为与面中一线平行的直线与此面的关系可能是在面内或者与面平行;③选项不正确,因为两面垂直,与其中一面平行的直线与另一面的关系可能是平行,在面内也可能垂直;④选项正确,因为线与面平行,线垂直于另一面,可证得两面垂直.其中正确的是④. 故答案为:④.9.以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线标准方程为=1 .【考点】抛物线的简单性质. 【分析】设以直线y=±x 为渐近线的双曲线的方程,再由双曲线经过抛物线y 2=4x 焦点F (1,0),能求出双曲线方程.【解答】解:设以直线y=±x 为渐近线的双曲线的方程为x 2﹣y 2=λ(λ≠0), ∵双曲线经过抛物线y 2=4x 焦点F (1,0), ∴λ+λ=1,∴λ=∴双曲线方程为: =1.故答案为: =1.10.一个圆锥的侧面积等于底面面积的2倍,若圆锥底面半径为cm ,则圆锥的体积是 3πcm 3.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据面积比计算圆锥的母线长,得出圆锥的高,代入体积公式计算出圆锥的体积. 【解答】解:设圆锥的底面半径为r ,母线长为l , 则S 侧面积=πrl=,S 底面积=πr 2=3π.∴=2×3π,解得l=2.∴圆锥的高h==3.∴圆锥的体积V===3π.故答案为:3π.11.函数y=asin (ax+θ)(a >0,θ≠0)图象上的一个最高点和其相邻最低点的距离的最小值为 2 .【考点】正弦函数的图象.【分析】根据题意画出图形,结合图形利用勾股定理即可求出图象上的一个最高点和其相邻最低点的距离的最小值.【解答】解:如图所示,函数y=asin(ax+θ)(a>0,θ≠0)图象上的一个最高点M和其相邻最低点N的距离的最小值为:|MN|==≥=2,当且仅当4a2=,即a=时取“=”.故答案为:2.12.S n是等差数列{a n}的前n项和,若,则=.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及前n项和公式推导出a1=d,由此能求出的值.【解答】解:∵S n是等差数列{a n}的前n项和,,∴===,∴3a1=2a1+d,∴a1=d,∴===.故答案为:.13.函数,若方程f(x)=kx﹣k有两个不相等的实数根,则实数k的取值范围为.【考点】根的存在性及根的个数判断.【分析】作出f(x)的图象,利用数形结合建立条件关系进行求解即可.【解答】解:作出函数f(x)的图象如图:y=kx﹣k=k(x﹣1),过定点A(1,0),当x=﹣时,f(﹣)=,即B(﹣,),当直线经过点B(﹣,)时,f(x)与y=kx﹣k有两个不相同的交点,此时=k(﹣﹣1)=﹣k,即k=﹣,当x>0时,由f(x)=kx﹣k得x2﹣x=kx﹣k,即x2﹣(1+k)x+k=0,若此时f(x)=kx﹣k有两个不相等的实数根,则,即k>1,综上k>1或k=﹣,故答案为:14.已知sin36°=cos54°,可求得cos2016°的值为﹣..【考点】运用诱导公式化简求值.【分析】利用诱导公式即可化简求值.【解答】解:∵sin36°=cos54°⇒2sin18°cos18°=cos(18°+18°+18°)⇒2sin18°cos18°=cos(18°+18°)cos18°﹣sin(18°+18°)sin18°⇒2sin18°cos18°=(2cos218°﹣1)cos18°﹣2sin218°cos18°⇒2sin18°cos18°=2cos318°﹣cos18°﹣2sin218°cos18°⇒2sin18°=2cos218°﹣1﹣2sin218°⇒4sin218°+2sin18°﹣1=0⇒sin18°==,∴cos2016°=cos=﹣cos36°=2sin218°﹣1=﹣.故答案为:﹣.二、解题题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.如图:四棱锥P﹣ABCD中,PD=PC,底面ABCD是直角梯形AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点.(1)求证:AM∥平面PBC;(2)求证:CD⊥PA.【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【分析】(1)推导出四边形ABCM是平行四边形,从而AM∥BC,由此能证明AM∥平面PBC.(2)由PD=PC,点M是CD的中点,得PM⊥CD,由AB⊥BC,AB∥CD,AM∥BC,得CD⊥AM,从而CD⊥平面PAM,由此能证明CD⊥PA.【解答】证明:(1)∵底面ABCD是直角梯形,AB⊥BC,AB∥CD,CD=2AB,点M是CD的中点,∴AB CM,∴四边形ABCM是平行四边形,∴AM∥BC,∵AM⊄平面PBC,BC⊂平面PBC,∴AM∥平面PBC.(2)∵PD=PC,点M是CD的中点,∴PM⊥CD,∵底面ABCD是直角梯形,AB⊥BC,AB∥CD,AM∥BC,∴CD⊥AM,∵PM∩AM=M,∴CD⊥平面PAM,∵PA⊂平面PAM,∴CD⊥PA.16.在△ABC中,角A,B,C所对应的边分别是a,b,c,向量=(a﹣c,b+c),=(b ﹣c,a),且∥.(1)求B;(2)若b=,cos(A+)=,求a.【考点】平面向量共线(平行)的坐标表示;正弦定理.【分析】(1)根据向量的平行和余弦定理即可求出B;(2)根据同角的三角函数的关系以及两角和差的正弦公式和正弦定理即可求出.【解答】解:(1)因为∥,所以a2+c2﹣b2=ac,因为cosB===,因为B∈(0,π)所以B=.(2)因为A+∈(,),cos(A+)=,所以sin(A+)=,所以sinA=sin[(A+)﹣]=,在△ABC中,由正弦定理可得:=,解得a=1.17.如图,某工业园区是半径为10km的圆形区域,距离园区中心O点5km处有一中转站P,现准备在园区内修建一条笔直公路AB经过中转站,公路AB把园区分成两个区域.(1)设中心O对公路AB的视角为α,求α的最小值,并求较小区域面积的最小值;(2)为方便交通,准备过中转站P在园区内再修建一条与AB垂直的笔直公路CD,求两条公路长度和的最小值.【考点】解三角形.【分析】(1)连结OA,OB,利用余弦定理求出AB,根据圆的性质求出AB的最值,列出不等式求出α的范围;使用作差法求出弓形的面积;(2)过O分别作AB,CD的垂线段OE,OF,设AB=x,根据勾股定理和垂径定理求出CD,AB+CD是关于x的函数,利用导数求出该函数的最小值.【解答】解:(1)连结OA,OB,则∠AOB=α,OA=OB=10,在△AOB中,由余弦定理得AB==.∵OP=5,∴当OP⊥AB时,AB取得最小值2=10,当AB过圆心O时,AB 取得最大值20,∴10≤≤20,解得﹣1≤cosα≤﹣.∴≤α≤π.∴α的最小值为.﹣S△AOB=﹣=50α﹣50sinα.∴S′较小区域面积S(α)=S扇形OAB(α)=50﹣50cosα>0,∴S(α)在[,π]上是增函数,∴S min(α)=S()=﹣25(km2).(2)过O分别作AB,CD的垂线段OE,OF,则四边形OEPF是矩形,AE=,DF=,设AB=x,则OE==,∴OF=PE==,∴DF==,∴CD=2DF=2=.∴AB+CD=x+.∴(AB+CD)2=700+2x=700+2.令f(x)=700x2﹣x4,则f′(x)=1400x﹣4x3,令f′(x)=0得x=0(舍)或x=或x=﹣(舍).当10≤x<时,f′(x)>0,当<x≤20时,f′(x)<0.∴f(x)在[10,]上是增函数,在[,20]上是减函数.∵f(10)=120000,f(20)=120000,∴f(x)的最小值为120000.∴(AB+CD)2的最小值是700+2=700+400=(10+20)2,∴AB+CD的最小值是10+20(km).18.已知在平面直角坐标系xOy中,椭圆+=1(a>b>0)的离心率为,左顶点为A(﹣3,0),圆心在原点的圆O与椭圆的内接三角形△AEF的三条边都相切.(1)求椭圆方程;(2)求圆O方程;(3)B为椭圆的上顶点,过B作圆O的两条切线,分别交椭圆于M,N两点,试判断并证明直线MN与圆O的位置关系.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和a,b,c的关系,解方程即可得到椭圆的方程;(2)设圆O的方程为x2+y2=r2,由圆O与椭圆的内接三角形△AEF的三条边都相切,可设直线EF:x=r,代入椭圆方程,求得E的坐标,再由直线AE和圆相切的条件:d=r,解方程即可得到圆O的方程;(3)设切线的方程为y=kx+,由直线和圆相切的条件:d=r,求得k,代入椭圆方程,解方程可得M的坐标,N的坐标,求得直线MN的方程,求得O到直线MN的距离,即可判断MN和圆O的为位置关系.【解答】解:(1)由题意可得a=3,e==,解得c=,可得b==,即有椭圆的方程为+=1;(2)设圆O的方程为x2+y2=r2,由圆O与椭圆的内接三角形△AEF的三条边都相切,可设直线EF:x=r,代入椭圆方程,解得E(r,),可得直线AE:y=(x+3),由相切的条件,可得d==r,化为(r﹣1)(r+3)2=0,解得r=1,即有圆O:x2+y2=1;(3)B(0,),设切线的方程为y=kx+,由直线和圆相切的条件可得=1,解得k=±,由y=x+,代入椭圆方程+=1,解得x=﹣,y=﹣1.可设M(﹣,﹣1);同理可得N((,﹣1),即有直线MN:y=﹣1.显然圆心O到直线MN的距离为1,则直线MN和圆O相切.19.已知数列{a n}的各项都为自然数,前n项和为S n,且存在整数λ,使得对任意正整数n 都有S n=(1+λ)a n﹣λ恒成立.(1)求λ值,使得数列{a n}为等差数列,并求数列{a n}的通项公式;(2)若数列{a n}为等比数列,此时存在正整数k,当1≤k<j时,有a i=2016,求k.【考点】等差数列的通项公式;等比数列的通项公式.【分析】(1)当λ≠0时,推导出a1=1,,从而{a n}不可能是等差数列;当λ=0时,推导出数列{a n}为等差数列,数列{a n}的通项公式为a n=0.(2)由题意得a1=1,,S n=,由此利用极限性质能求出结果.【解答】解:(1)①当λ≠0时,a1=S1=(1+λ)a1﹣λ,解得a1=1,a n=S n﹣S n﹣1=(1+λ)(a n﹣a n﹣1),解得,∵1+≠1,∴λ≠0时,{a n }不可能是等差数列.②当λ=0时,a n =S n ﹣S n ﹣1=a n =a n ﹣a n ﹣1,n ≥2, 解得a n ﹣1=0,∴λ=0时,数列{a n }为等差数列,数列{a n }的通项公式为a n =0. 综上:λ=0使得数列{a n }为等差数列,数列{a n }的通项公式为a n =0. (2)由题意得a n ≠0,则λ≠0,∴a 1=1,,S n =﹣λ[1﹣(1+)n ]=,∵当j →+∞时,1≤k <j 时,有a i =2016,∴=为定值,∴=0,∴﹣1<1+<1,解得λ<﹣,=﹣λ,则S k =λ[(1+)k ﹣1]=﹣λ﹣2016,解得k=.20.已知函数f (x )=[ax 2﹣(2a+1)x+2a+1]e x . (1)求函数f (x )的单调区间;(2)设x >0,2a ∈[3,m+1],f (x )≥b 2a ﹣1恒成立,求正数b 的范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(1)求导,对a 分类讨论,利用导数即可得出其单调性;(2)由题意,将原式转化成2a ﹣1≥b 2a ﹣1恒成立,换元将2a ﹣1=t ∈[2,m ],构造辅助函数=g (t ),求导,根据导数求得函数的单调区间,由函数g (2)=g (4),对m 分类讨论,根据对数函数的运算现在求得b 的取值范围. 【解答】解:(1)f ′(x )=(ax 2﹣x )e x =x (ax ﹣1)e x .当a=0,则f ′(x )=﹣xe x ,令f ′(x )>0,则x <0,令f ′(x )<0,则x >0;若a <0,由f ′(x )>0,解得:<x <0,f ′(x )<0,解得:x >0或x <,若a >0,由f ′(x )>0,解得:0<x <,f ′(x )<0,解得:x >或x <0, 综上可得:当a=0时,函数f (x )的增区间为(﹣∞,0),减区间为(0,+∞);当a <0时,函数f (x )的增区间为(,0),减区间为(0,+∞),(﹣∞,);当a>0时,函数f(x)的增区间为(,+∞),(﹣∞,0),减区间为(0,);(2)f(x)≥b2a﹣1恒成立,f()≥b2a﹣1恒成立,∴≥b2a﹣1,即2a﹣1≥b2a﹣1恒成立,由2a∈[3,m+1],令2a﹣1=t∈[2,m],则t≥b t,所以lnb≤=g(t),由g′(t)=,g(t)在(0,e)上递增,(e,+∞)上递减,且g(2)=g(4),当2<m<4时,g(t)min=g(2)=,从而lnb≤,解得:0<b<;当m>4时,g(t)min=g(m)=,从而lnb≤,解得:0<b<,故:当2<m<4时,0<b<;当m>4时,0<b<.[选修4-1:几何证明选讲]21.在直径是AB的半圆上有两点M,N,设AN与BM的交点是P.求证:AP•AN+BP•BM=AB2.【考点】与圆有关的比例线段.【分析】作PE⊥AB于E,先证明P,E,B,N四点共圆,P,E,A,M四点共圆,得到两对乘积式,后相加即可得到结论.【解答】证明:作PE⊥AB于E∵AB为直径,∴∠ANB=∠AMB=90°∴P,E,B,N四点共圆,P,E,A,M四点共圆.AE•AB=AP•AN(1)BE•AB=BP•BM(2)(1)+(2)得AB(AE+BE)=AP•AN+BP•BM即AP•AN+BP•BM=AB2[选修4-2:矩阵与变换]22.求矩阵的特征值及对应的特征向量.【考点】特征值与特征向量的计算.【分析】先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.【解答】解:特征多项式f(λ)═=(λ﹣3)2﹣1=λ2﹣6λ+8由f(λ)=0,解得λ1=2,λ2=4将λ1=2代入特征方程组,得⇒x+y=0,可取为属于特征值λ1=2的一个特征向量同理,当λ2=4时,由⇒x﹣y=0,所以可取为属于特征值λ2=4的一个特征向量.综上所述,矩阵有两个特征值λ1=2,λ2=4;属于λ1=2的一个特征向量为,属于λ1=4的一个特征向量为.[选修4-4:坐标系与参数方程]23.已知直线l的极坐标方程为,曲线C的参数方程为,设P点是曲线C上的任意一点,求P到直线l的距离的最大值.【考点】直线和圆的方程的应用;简单曲线的极坐标方程;圆的参数方程.【分析】首先把直线和圆的极坐标方程利用两角差的正弦函数的公式代入x=ρcosθ,y=ρsinθ和化简为平面直角坐标系中的直线方程,利用三角函数的基本关系及化简得到圆的一般式方程,然后利用点到直线的距离公式求出圆心到直线的距离,然后即可求出曲线上P到直线l的距离的最大值.【解答】解:∴由得x2+y2=4∴圆心到直线l的距离所以,P到直线l的距离的最大值为d+r=5[选修4-5:不等式选讲]24.设x,y均为正数,且x>y,求证:x+≥y+3.【考点】基本不等式;三角函数恒等式的证明.【分析】根据基本不等式的性质证明即可.【解答】证明:x﹣y+=(x﹣y)+=++,因为x>y,x﹣y>0,所以++≥3=3,当且仅当==取等号,此时x﹣y=2.25.如图,在棱长为3的正方体ABCD﹣A1B1C1D1中,A1E=CF=1.(1)求两条异面直线AC1与D1E所成角的余弦值;(2)求直线AC1与平面BED1F所成角的正弦值.【考点】用空间向量求直线与平面的夹角;异面直线及其所成的角;直线与平面所成的角;用空间向量求直线间的夹角、距离.【分析】(1)以以D为原点,建立空间直角坐标系D﹣xyz,则我们易求出已知中,各点的坐标,进而求出向量,的坐标.代入向量夹角公式,结合异面直线夹角公式,即可得到答案.(2)设出平面BED1F的一个法向量为,根据法向量与平面内任一向量垂直,数量积为0,构造方程组,求出平面BED1F的法向量为的坐标,代入线面夹角向量公式,即可求出答案.【解答】解:(1)以D为原点,建立空间直角坐标系D﹣xyz如图所示:则A(3,0,0),C1=(0,3,3),D1=(0,0,3),E(3,0,2)∴=(﹣3,3,3),=(3,0,﹣1)∴cosθ===﹣则两条异面直线AC1与D1E所成角的余弦值为(2)B(3,3,0),=(0,﹣3,2),=(3,0,﹣1)设平面BED1F的一个法向量为=(x,y,z)由得令x=1,则=(1,2,3)则直线AC1与平面BED1F所成角的正弦值为||==26.证明:对一切正整数n,5n+2•3n﹣1+1能被8整除.【考点】数学归纳法.【分析】根据题意,运用数学归纳法进行证明:(1)证明n=1时结论成立,(2)假设当n=k,(k≥2,k∈N*),结论成立,即5k+2•3k﹣1+1能被8整除,进而证明当n=k+1时,5k+1+2•3k+1可以被8整除,综合即可得证明.【解答】证明:(1)当n=1时,5n+2•3n﹣1+1=8,显然能被8整除,即n=1时,结论成立(2)假设当n=k,(k≥2,k∈N*),结论成立,则5k+2•3k﹣1+1能被8整除,设5k+2•3k﹣1+1=8m,m∈N*,当n=k+1时,5k+1+2•3k+1=5(5k+2•3k﹣1+1)﹣4•3k﹣1﹣4=5(5k+2•3k﹣1+1)﹣4•(3k﹣1+1)而当k≥2,k∈N*时3k﹣1+1显然为偶数,设为2t,t∈N*,故=5(5k+2•3k﹣1+1)﹣4•(3k﹣1+1)=40m﹣8t(m,t∈N*),也能被8整除,故当n=k+1时结论也成立;由(1)(2)可知对一切正整除n,5n+2•3n﹣1+1能被8整除.2016年7月21日。
江苏省镇江市2018届高三上学期期末数学试题
镇江市2018届高三上学期期末数学Ⅰ试题 2018.1参考公式:锥体体积公式:Sh V 31=,其中S 为底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题..卡相应位置上....... 1. 已知集合 A = {- 2,0,1,3}, B = {-1,0,1,2}, 则=B A2. 已知 x , y ∈ R , 则" a = 1" 是直线 ax + y -1 = 0 与直线 x + ay +1 = 0 平行的 条件 (从“充分不必要”“必要不充分”“充分必要”“既不充分也不必要”中选择一个)3. 函数 y = 3sin(2x + 4π) 图像两对称轴的距离为 4. 设复数 z 满足i zi543=+,则z = 5. 已知双曲线1222=-y ax 左焦点与抛物线x y 122-=的焦点重合,则双曲线的右准线方程为6. 已知正四棱锥的底面边长为 2,侧棱长为 6 ,则正四棱锥的体积为7. 设等比数列 {a n }的前 n 项和 Sn ,若 a 1 = -2, S 6 = 9S 3 , 则a 5 的值为 8. 已知锐角θ满足θθcos 6tan =,则=-+θθθθcos sin cos sin9. 已知函数 f (x ) = x 2- kx + 4 对任意的 x ∈[1,3],不等式 f (x ) ≥ 0 恒成立,则实数 k 的最大值为10. 函数x x x y tan cos -=的定义域为⎥⎦⎤⎢⎣⎡-4,4ππ,其值域为 11. 已知圆 C 与圆 x 2+ y 2+10x +10 y = 0 相切于原点,且过点 A (0,-6) ,则圆 C 的标准方程为 12. 已知点 P (1,0) ,直线 l : y = x + t 与函数 2x y =的图像相交于 A 、B 两点,当 ⋅P 最小时,直线 l 的方程为 13. 已知 a , b ∈ R , a + b = 4, 则111122+++b a 的最大值为 14. 已知k 为常数,函数⎪⎩⎪⎨⎧>≤-+=0ln 0,12)(x x x x x x f ,若关于x 的方程2)(+=kx x f 有且只有4个不同的解,则实数k 的取值集合为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在∆ABC中,角A, B, C所对的边分别为a, b, c,若b cos A+a cos B= -2c cos C .(1)求 C 的大小;2,求 c.(2)若b= 2a, 且∆ABC的面积为316.(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,D为BC中点,AB=AC, BC1⊥B1D求证:(1)A1C // 平面ADB1(2)平面A1BC1⊥ADB1(第16题图)(第17题图)17. (本小题满分14分)如图,准备在墙上钉一个支架,支架由两直杆AC与BD焊接而成,焊接点D把杆AC分成 AD, CD 两段,其中两固定点A,B间距离为1米,AB 与杆 AC 的夹角为60︒,杆AC 长为1米,若制作 AD 段的成本为 a元/米,制作CD段的成本是2a元/米,制作杆BD成本是4a元/米.设∠ADB = α,则制作整个支架的总成本记为S元.(1)求S关于α的函数表达式,并求出α的取值范围;(2)问AD段多长时,S最小?18.(本小题满分16分)如图,在平面直角坐标系 xOy 中,已知椭圆)0(1:2222>>=+b a by a x E 的离心率为22,左焦点 F(-2,0) ,直线 l : y = t 与椭圆交于A , B 两点,M 为椭圆上异于 A , B 的点. (1)求椭圆 E 的方程;(2)若()1,6--M ,以 AB 为直径的圆 P 过 M 点,求圆 P 的标准方程; (3)设直线 MA , MB 与 y 轴分别交于 C , D ,证明: OC ⋅OD 为定值.19. (本小题满分16分)已知 b > 0, 且b ≠ 1,函数 f (x ) = e x+ b x,其中 e 为自然对数的底数: (1)如果函数 f (x ) 为偶函数,求实数 b 的值,并求此时函数的最小值;(2)对满足 b > 0, 且 b ≠ 1的任意实数 b ,证明函数 y = f (x ) 的图像经过唯一定点; (3)如果关于 x 的方程 f (x ) = 2 有且只有一个解,求实数 b 的取值范围.20. (本小题满分16分)已知数列 {a n }的前 n 项和 Sn ,对任意正整数 n ,总存在正数 p , q , r 使得r q S p a nn n n -==-,1恒成立:数列{b n }的前 n 项和n T ,且对任意正整数n ,n n nb T =2恒成立. (1)求常数 p , q , r 的值; (2)证明数列 {b n }为等差数列; (3)若21=b ,记nn n n n n n n n n a b n a b n a b n a b n a b n P 121321222242222---++++++++++=,是否存在正整数 k ,使得对任意正整数 n , P n ≤ k 恒成立,若存在,求正整数 k 的最小值,若不存在,请说明理由.镇江市2018届高三上学期期末答案。
江苏省苏北四市(徐州、连云港、宿迁、淮安)2018届高三第一次模拟考试 数学试卷(含答案)
苏北四市2018届高三一模数学试卷2.圆锥的侧面积公式:12S cl =,其中c 是圆锥底面的周长,l 是母线长. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.已知集合2{0}A x x x =-=,{1,0}B =-,则A B = ▲ .2.已知复数2iz +=(i 为虚数单位),则z 的模为 ▲ . 3.函数y 的定义域为 ▲ .4.如图是一个算法的伪代码,运行后输出b的值为 ▲ .5.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有 ▲ 人.6.在平面直角坐标系xOy 中,已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为20x y -=,则该双曲线的离心率为 ▲ .7.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为 ▲ .(第5题) (第17题) 012While 62End While Pr int a b I I a a b b a b I I b ←←← ←+ ←+ ←+ … (第4题)8.已知正四棱柱的底面边长为3cm,侧面的对角线长是,则这个正四棱柱的体积是 ▲ 3cm .9.若函数()sin()(0,0)f x A x A ωϕω=+>>的图象与直线y m =的三个相邻交点的横坐标分别是6π,3π,23π,则实数ω的值为 ▲ . 10.在平面直角坐标系xOy 中,曲线:C xy =P到直线:0l x =的距离的最小值为 ▲ .11.已知等差数列{}n a 满足13579+10a a a a a +++=,228236a a -=,则11a 的值为 ▲ . 12.在平面直角坐标系xOy 中,若圆1C :222(1)(0)x y r r +-=>上存在点P ,且点P 关于直线0x y -=的对称点Q 在圆2C :22(2)(1)1x y -+-=上,则r 的取值范围是 ▲ .13.已知函数2211()(1)1x x f x x x ⎧-+ ⎪=⎨- > ⎪⎩,≤,,,函数()()()g x f x f x =+-,则不等式()2g x ≤的解集为 ▲ .14.如图,在ABC △中,已知32120AB AC BAC = = ∠=︒,,,D 为边BC 的中点.若CE AD ⊥,垂足为E ,则EB ·EC 的值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且3cos 5A =,1tan()3B A -=.⑴求tan B 的值;⑵若13c =,求ABC △的面积.16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,90ABC ∠=,1=AB AA ,M ,N 分别是AC ,11B C 的中点.求证:⑴//MN 平面11ABB A ;⑵1AN A B ⊥.17.(本小题满分14分)B (第14题) A DC E (第16题)1A 1B NM1C CBA某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O 及其内接等腰三角形ABC 绕底边BC 上的高所在直线AO 旋转180°而成,如图2.已知圆O 的半径为10 cm ,设∠BAO=θ,π02θ<<,圆锥的侧面积为S cm 2. ⑴求S 关于θ的函数关系式;⑵为了达到最佳观赏效果,要求圆锥的侧面积S 最大.求S 取得最大值时腰AB 的长度.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的离心率为12,且过点312(,).F 为椭圆的右焦点,,A B 为椭圆上关于原点对称的两点,连接,AF BF 分别交椭圆于,C D 两点. ⑴求椭圆的标准方程;⑵若AF FC =,求BFFD的值;⑶设直线AB ,CD 的斜率分别为1k ,2k求出m 的值;若不存在,请说明理由.图1 图2(第17题)(第18题)19.(本小题满分16分)已知函数2()1()ln ()f x x ax g x x a a =++ =-∈R ,. ⑴当1a =时,求函数()()()h x f x g x =-的极值;⑵若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围. 20.(本小题满分16分)已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n …,n *∈N ,λ,μ∈R .⑴若0λ=,4μ=,12n n n b a a +=-(n *∈N ),求证:数列{}n b 是等比数列; ⑵若数列{}n a 是等比数列,求λ,μ的值; ⑶若23a =,且32λμ+=,求证:数列{}n a 是等差数列.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域.........内作答...,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修41:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E ,EF 垂直BA 的延长线于点F .求证:2AB BE BD AE AC =⋅-⋅A C D E F(第21-A 题) O .B .[选修:矩阵与变换](本小题满分10分) 已知矩阵1001⎡⎤=⎢⎥-⎣⎦A ,4123⎡⎤=⎢⎥⎣⎦B ,若矩阵=M BA ,求矩阵M 的逆矩阵1-M .C .[选修:坐标系与参数方程](本小题满分10分)以坐标原点为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线12:12x tl y t=+⎧⎨=-⎩(t 为参数)与圆2:2cos 2sin 0C ρρθρθ+-=的位置关系.D .[选修:不等式选讲](本小题满分10分)已知,,,a b c d 都是正实数,且1a b c d +++=,求证: 2222111115a b c d a b c d +++++++….【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写 出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在正三棱柱111ABC A B C -中,已知1AB =,12AA =,E ,F ,G 分别是1AA ,AC 和11AC 的中点.以{,,}FA FB FG 为正交基底,建立如图所示的空间直角坐标系F xyz -. ⑴求异面直线AC 与BE 所成角的余弦值;⑵求二面角1F BC C --的余弦值.23.(本小题满分10分)在平面直角坐标系xOy 中,已知平行于x 轴的动直线l 交抛物线2:4C y x =于点P ,点F 为C 的焦点.圆心不在y 轴上的圆M 与直线l ,PF ,x 轴都相切,设M 的轨迹为曲线E .⑴求曲线E 的方程;⑵若直线1l 与曲线E 相切于点(,)Q s t ,过Q 且垂直于1l 的直线为2l ,直线1l ,2l 分别与y 轴相交于点A ,B .当线段AB 的长度最小时,求s 的值.数学参考答案与评分标准一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.{1,0,1}- 2.1 3.(0,1] 4.13 5.750 67.598.54 9.4 1011.11 12.1] 13.[2,2]- 14.277-二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(1)在ABC △中,由3cos 5A =,得A为锐角,所以4sin 5A ==,所以sin 4tan cos 3A A A ==,………………………………………………………………2分 所以tan()tan tan tan[()]1tan()tan B A AB B A A B A A-+=-+=--⋅. ………………………………4分1433314133+==-⨯ …………………………………………………………6分 (2)在三角形ABC 中,由tan 3B =,所以sin B B ==, ………………………………………………8分由sin sin()sin cos cos sin C A B A B A B =+=+=,…………………………10分由正弦定理sin sin b c B C =,得13sin sin c B b C =,………………………12分 所以ABC △的面积114sin 151378225S bc A ==⨯⨯⨯=. …………………………14分16.(1)证明:取AB 的中点P ,连结1,.PM PB因为,M P 分别是,AB AC 的中点,所以//,PM BC 且1.2PM BC =在直三棱柱111ABC A B C -中,11//BC B C ,11BC B C =, 又因为N 是11B C 的中点,所以1//,PM B N 且1PM B N =. …………………………………………2分 所以四边形1PMNB 是平行四边形,所以1//MN PB , ………………………………………………………………4分 而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,所以//MN 平面11ABB A . ……………………………………………………6分(2)证明:因为三棱柱111ABC A B C -为直三棱柱,所以1BB ⊥面111A B C , 又因为1BB ⊂面11ABB A ,所以面11ABB A ⊥面111A B C , …………………8分 又因为90ABC ∠=,所以1111B C B A ⊥, 面11ABB A 面11111=A B C B A ,11111B C A B C ⊂平面,所以11B C ⊥面11ABB A , ………………………10分 又因为1A B ⊂面11ABB A , 所以111B C A B ⊥,即11NB A B ⊥,连结1AB ,因为在平行四边形11ABB A 中,1=AB AA , 所以11AB A B ⊥, 又因为111=NB AB B ,且1AB ,1NB ⊂面1AB N ,所以1A B ⊥面1AB N ,……………………………………………………………………12分 而AN ⊂面1AB N ,所以1A B AN ⊥.……………………………………………………………………………14分 17.(1)设AO 交BC 于点D ,过O 作OE AB ⊥,垂足为E ,在AOE ∆中,10cos AE θ=,220cos AB AE θ==, …………………………………………………………2分在ABD ∆中,sin 20cos sin BD AB θθθ=⋅=⋅,…………………………………………………………4分所以1220sin cos 20cos 2S θθθ=⋅π⋅⋅2400sin cos θθ=π,(0)2πθ<<……………………6分(2)要使侧面积最大,由(1)得:23400sin cos 400(sin sin )S πθθπθθ==-…………8分 设3(),(01)f x x x x =-<< 则2()13f x x '=-,由2()130f x x '=-=得:x =当x ∈时,()0f x '>,当x ∈时,()0f x '< 所以()f x在区间上单调递增,在区间上单调递减, 所以()f x在x =所以当sin θ=时,侧面积S 取得最大值, …………………………11分此时等腰三角形的腰长20cos AB θ===答:侧面积S 取得最大值时,等腰三角形的腰AB.…………14分(第16题)1A 1B NM1C CB AP18.(1)设椭圆方程为22221(0)x y a b a b +=>>,由题意知:22121914c a a b ⎧=⎪⎪⎨⎪+=⎪⎩……………2分解之得:2a b =⎧⎪⎨=⎪⎩,所以椭圆方程为:22143x y += ……………………………4分 (2)若AF FC =,由椭圆对称性,知3(1,)2 A ,所以3(1,)2B --,此时直线BF 方程为3430x y --=, ……………………………………………6分 由223430,1,43x y x y --=⎧⎪⎨+=⎪⎩,得276130x x --=,解得137x =(1x =-舍去),…………8分故1(1)713317BF FD --==-.…………………………………………………………………10分(3)设00,)A x y (,则00(,)B x y --, 直线AF 的方程为00(1)1y y x x =--,代入椭圆方程22143x y +=,得 2220000(156)815240x x y x x ---+=,因为0x x =是该方程的一个解,所以C 点的横坐标08552C x x x -=-,…………………12分又(,)c C C x y 在直线00(1)1y y x x =--上,所以00003(1)152C c y y y x x x -=-=--, 同理,D 点坐标为0085(52x x ++,3)52y x +, ……………………………………………14分 所以000002100000335552528585335252y y y x x k k x x x x x --+-===+--+-,即存在53m =,使得2153k k =. ………………………………………………………16分19.(1)函数()h x 的定义域为(0,)+∞当1a =时,2()()()ln 2h x f x g x x x x =-=+-+,所以1(21)(1)()21x x h x x x x -+'=+-=………………………………………………2分 所以当102x <<时,()0h x '<,当12x >时,()0h x '>,所以函数()h x 在区间1(0,)2单调递减,在区间1(,)2+∞单调递增,所以当12x =时,函数()h x 取得极小值为11+ln24,无极大值;…………………4分 (2)设函数()f x 上点11(,())x f x 与函数()g x 上点22(,())x g x 处切线相同,则121212()()()()f x g x f x g x x x -''==-所以211212121(ln )12x ax x a x a x x x ++--+==- ……………………………………6分 所以12122ax x =-,代入21211221(ln )x x x ax x a x -=++--得:222221ln 20(*)424a a x a x x -++--= ………………………………………………8分 设221()ln 2424a a F x x a x x =-++--,则23231121()222a x ax F x x x x x +-'=-++= 不妨设2000210(0)x ax x +-=>则当00x x <<时,()0F x '<,当0x x >时,()0F x '> 所以()F x 在区间0(0,)x 上单调递减,在区间0(,)x +∞上单调递增,……………10分代入20000121=2x a x x x -=-可得:2min 000001()()2ln 2F x F x x x x x ==+-+-设21()2ln 2G x x x x x =+-+-,则211()220G x x x x'=+++>对0x >恒成立, 所以()G x 在区间(0,)+∞上单调递增,又(1)=0G所以当01x <≤时()0G x ≤,即当001x <≤时0()0F x ≤, ……………12分又当2a x e+=时222421()ln 2424a a a a a F x e a e e +++=-++-- 2211()04a a e+=-≥ ……………………………………14分 因此当001x <≤时,函数()F x 必有零点;即当001x <≤时,必存在2x 使得(*)成立; 即存在12,x x 使得函数()f x 上点11(,())x f x 与函数()g x 上点22(,())x g x 处切线相同.又由12y x x =-得:2120y x'=--<所以12(0,1)y x x =-在单调递减,因此20000121=2[1+)x a x x x -=-∈-∞, 所以实数a 的取值范围是[1,)-+∞.…………………………………………………16分 20.(1)证明:若=0,4 =λμ,则当14n n S a -=(2n ≥),所以1114()n n n n n a S S a a ++-=-=-, 即1122(2)n n n n a a a a +--=-,所以12n n b b -=, ……………………………………………………………2分 又由12a =,1214a a a +=,得2136a a ==,21220a a -=≠,即0n b ≠,所以12nn b b -=, 故数列{}n b 是等比数列.……………………………………………………………4分 (2)若{}n a 是等比数列,设其公比为q (0q ≠ ),当2n =时,2212S a a =+λμ,即12212a a a a +=+λμ,得12q q +=+λμ, ① 当3n =时,3323S a a =+λμ,即123323a a a a a ++=+λμ,得2213q q q q ++=+λμ, ② 当4n =时,4434S a a =+λμ,即1234434a a a a a a +++=+λμ,得 233214+q q q q q ++=+λμ, ③②①q ,得21q =λ ,③②q ,得31q =λ , 解得1,1 q ==λ.代入①式,得0=μ.…………………………………………………………………8分此时n n S na =(2n ≥),所以12n a a ==,{}n a 是公比为1的等比数列,故10 ==,λμ. ……………………………………………………………………10分 (3)证明:若23a =,由12212a a a a +=+λμ,得562=+λμ, 又32+=λμ,解得112==,λμ.…………………………………………………12分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+,两式相减得:111122n n n n n n na a a a a ++-+=-+-即11(1)(2)20n n n n a n a a +-----= 所以21(1)20n n n na n a a ++---=相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+= 所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+=所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-, ……………………………………14分因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………………………………………………………………16分数学Ⅱ(附加题)参考答案与评分标准21.A .证明:连接AD ,因为AB 为圆的直径,所以AD BD ⊥,又EF AB ⊥,则,,,A D E F 四点共圆,所以BD BE BA BF ⋅=⋅. …………………………………………………………5分 又△ABC ∽△AEF , 所以AB AC AE AF=,即AB AF AE AC ⋅=⋅, ∴2()BE BD AE AC BA BF AB AF AB BF AF AB ⋅-⋅=⋅-⋅=⋅-=. …………10分B .因为411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, ………………………………………5分 所以131********M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. ………………………………………………………10分 C .把直线方程12:12x t l y t =+⎧⎨=-⎩化为普通方程为2x y +=. ……………………………3分 将圆:C 22cos 2sin 0ρρθρθ+-=化为普通方程为22220x x y y ++-=,即22(1)(1)2x y ++-=. ………………………………………………………………6分圆心C 到直线l的距离d == 所以直线l 与圆C 相切.…………………………………………………………………10分D .证明:因为2222[(1)(1)(1)(1)]()1111a b c d a b c d a b c d++++++++++++++2≥ 2()1a b c d =+++=, …………………………………………5分又(1)(1)(1)(1)5a b c d +++++++=, 所以2222111115a b c d a b c d +++≥++++.…………………………………………10分 22.(1)因为11,2AB AA ==,则111(0,0,0),(,0,0),(,0,0),(,0,1)222F A C B E -, 所以(1,0,0)=-AC,1(,2=BE , ………………………………………2分 记直线AC 和BE 所成角为α,则11cos |cos ,|4α-⨯=<>==AC BE , 所以直线AC 和BE………………………………………4分 (2)设平面1BFC 的法向量为111(,,)x y z =m ,因为(0,FB =,11(,0,2)2FC =-, 则1111301202FB y FC x z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩m m ,取14x =得:(4,0,1)=m ……………………………6分 设平面1BCC 的一个法向量为222(,,)x y z =n , 因为1(2CB =,1(0,0,2)CC=, 则221210220CB x y CC z ⎧⋅==⎪⎨⎪⋅==⎩n n ,取2x =1,0)=-n ………………………8分cos ,∴<m n 根据图形可知二面角1F BC C --为锐二面角,所以二面角1F BC C -- ……………………………………10分 23.(1)因为抛物线C 的方程为24y x =,所以F 的坐标为(1,0),设(,)M m n ,因为圆M 与x 轴、直线l 都相切,l 平行于x 轴, 所以圆M 的半径为n,点P 2(,2)n n ,则直线PF 的方程为2121y x n n -=-,即22(1)(1)0n x y n ---=,………………………2分n =,又,0m n ≠, 所以22211m n n --=+,即210n m -+=, 所以E 的方程为2=1y x -(0)y ≠ ………………………………………………4分(2)设2(1,)+Q t t , 1(0,)A y ,2(0,)B y , 由(1)知,点Q处的切线1l 的斜率存在,由对称性不妨设0>t ,由'=y 121AQ t y k t -==+,221BQ t y k t -==-+ 所以1122=-t y t,3223=+y t t , ……………………………………………………6分 所以33151|23|2(0)2222t AB t t t t t t t=+-+=++>.……………………………………8分 令351()222f t t t t=++,0t >, 则42222511251()6222t t f t t t t +-'=+-=,由()0f t'<得0t<<,f t'>得t>()0所以()f t在区间单调递减,在)+∞单调递增,所以当t=时,()f t取得极小值也是最小值,即AB取得最小值s t=+=.……………………………………………………………10分此时21。
届高三数学(理)第一次月考模拟试卷及答案
届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。
2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。
冲刺压轴题 专题难点突破三角函数
< ϕ < ) 的图象关于直线 x = 对称,则 ϕ 的值是上 a , b , c ,已知 tan A 满足 a cos B - b cos A = 3 (得图象过点 ⎛ π 1 ⎫, ⎪ ,则 ϕ 的最小值是江苏省 高三数学一轮复习典型题专题训练三角函数一、填空题1、(2018 江苏高考)已知函数 y = sin(2 x + ϕ)(-▲ .π π π2 2 32、(2017 江苏高考)若 tan (α﹣ π 1)= .则 tan α=4 63、(2016 江苏高考)定义在区间[0,3π]的函数 y =sin2x 的图象与 y =cos x 的图象的交点个数是 ▲4、(南京市 2018 高三 9 月学情调研)若函数 f (x )=A sin(ωx +ϕ)(A >0,ω>0,|ϕ|<π)的部分图象如图所示,则 f (-π)的值为▲ .π 5π5 、(前黄高级中学、姜堰中学等五校 2018 高三上第一次学情监测)已知 α ∈ ( ,) ,且3 6π 3cos(α - ) = ,则 sin α 的值是▲.3 56、(苏锡常镇 2018 高三 3 月教学情况调研(一))设三角形 ABC 的内角 A , B , C 的对边分别为 3c - b= tan B b,则 cos A = .7、(苏锡常镇 2018 高三 5 月调研(二模))已知函数 f ( x ) = sin(π x + ϕ)(0 < x < 2π ) 在 x = 2 时取 得最大值,则 ϕ =8、(苏锡常镇 2018 高三 5 月调研(二模))设△ ABC 的内角 A , B , C 的对边分别是 a ,b ,c 且tan A c ,则 =.5 tan B9、(苏州市 2018 高三上期初调研)将函数 y = sin (2x + ϕ )(0 < ϕ < π ) )的图象沿 x 轴向左平移 π8个单位,得到函数 y = f (x ) 的图象,若函数 y = f (x ) 的图象过原点,则 ϕ 的值是.10、 无锡市 2018 高三上期中考试)将函数 y = sin 2 x 的图象向右平移 ϕ (ϕ > 0) 个单位长度,若所⎝ 3 2 ⎭.(θ ⎡ π π ⎤ ,16、 镇江市 2018 届高三第一次模拟(期末)考试)函数 y = cos x - x tan x 的定义域为 ⎢-4 4 ⎥⎦, cos(α + β ) = - .π 111、(徐州市 2018 高三上期中考试)函数 f ( x ) = 2sin( x + ) 的周期为▲3 412、(扬州、泰州、淮安、南通、徐州、宿迁、连云港市 2018 高三第三次调研)在△ ABC 中,若 sin A :sin B :sin C = 4:5:6 ,则 cosC 的值为 ▲13、 镇江市 2018 届高三第一次模拟(期末)考试)函数 y = 3sin(2x + π4) 图像两对称轴的距离为14 、( 无 锡 市 2018 高 三 上 期 中 考 试 ) 已 知 sin 2 x + 2sin x cos x - 3cos 2 x = 0 , 则cos2 x =.15 、(镇江市 2018 届高三第一次模拟(期末)考试)已知锐角 θ 满足 tan θ= 6 cos,则s in θ + c os θs in θ - c os θ=( , ⎣其值域为二、解答题1、(2018 江苏高考)已知 α , β 为锐角, tan α = 4 355(1)求 cos2 α 的值;(2)求 tan(α - β ) 的值.2、(2018 江苏高考)某农场有一块农田,如图所示,它的边界由圆 O 的一段圆弧 MPN (P 为此圆弧的中点)和线段 MN 构成.已知圆 O 的半径为 40 米,点 P 到 MN 的距离为 50 米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求 A, B 均在线段 MN 上, C, D 均在圆弧上.设 OC 与 MN 所成的角为 θ .(1)用 θ 分别表示矩形 ABCD 和 △CDP 的面积,并确定 sin θ 的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为 4 ∶3 .求当 θ 为何值时,能使甲、乙两种蔬菜的年总产值最大.,C = . cos B = .(1)若 c =2a ,求 的值;(2)若 C -B = ,求 sin A 的值.点 O ,始边为 x 轴的正半轴,终边与单位圆 O 的交点分别为 P ,Q .已知点 P 的横坐标为 ,点 Q 的纵坐标为 .3、(2016 江苏高考)在 △ABC 中,AC =6, cos B = (1)求 AB 的长; 4 π 5 4(2)求 cos( A - π 6)的值.4、(南京市 2018 高三 9 月学情调研)在△ABC 中,内角 A ,B ,C 所对的边分别为 a ,b ,c ,4 5sin Bsin Cπ45、(南京市 2018 高三第三次(5 月)模拟)在平面直角坐标系 xOy 中,锐角 α,β 的顶点为坐标原2 773 314(1)求 cos2α 的值;(2)求 2α- β 的值.( 3 时,求 ∠OPQ 的大小;(sin A = , tan (A - B ) = ,角 C 为钝角, b = 5.6、(前黄高级中学、姜堰中学等五校 2018 高三上第一次学情监测)已知 ∆ABC 的内角 A, B, C 所对 的边分别为 a, b , c ,已知 asinB + 3b cosA = 3c .(1)求角 B 的大小;(2)若 ∆ABC 的面积为 7 3 4, b = 43, a > c ,求 a, c .7、 苏锡常镇 2018 高三 3 月教学情况调研(一))如图,某景区内有一半圆形花圃,其直径 AB 为 6 ,O 是圆心,且 O C ⊥ AB .在 OC 上有一座观赏亭 Q ,其中 ∠AQC =π赏亭 P ,记 ∠POB = θ (0 < θ <2 ) .2π 3.计划在 BC 上再建一座观(1)当 θ =π(2)当 ∠OPQ 越大,游客在观赏亭 P 处的观赏效果越佳,求游客在观赏亭 P 处的观赏效果最佳时,角 θ 的正弦值.8、 苏锡常镇 2018 高三 5 月调研(二模) 在ABC 中,内角 A , B ,C 的对边分别是 a ,b ,c ,设△ ABC 的面积为 S ,且 4S =3( a 2 + c 2 - b 2 ) .(1)求 ∠B 的大小;(2)设向量 m = (sin 2 A,3cos A) , n = (3, -2cos A) ,求 m ⋅ n 的取值范围.9、(无锡市 2018 高三上期中考试) 在三角形 ABC 中,角 A,B,C 的对边分别为 a,b,c ,若 3 1 53(1)求 sin B 的值; (2)求边 c 的长.10、(无锡市 2018 高三上期中考试)在一块杂草地上有一条小路 AB,现在小路的一边围出一个三角形(如图)区域,在三角形 ABC 内种植花卉.已知 AB 长为 1 千米,设角 C = θ , AC 边长为 BC 边长的 a (a > 1)倍,三角形 ABC 的面积为 S (千米 2).(1)试用 θ 和 a 表示 S ;(2)若恰好当θ=60时,S取得最大值,求a的值.11、(徐州市2018高三上期中考试)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a+2c=2b cosA.(1)求角B的大小;(2)若b=23,a+c=4,求△ABC的面积.12、(扬州、泰州、淮安、南通、徐州、宿迁、连云港市2018高三第三次调研)如图是函数πf(x)=A sin(ωx+ϕ)(A>0,ω>0,ϕ≤)在一个周期内的图象.已知2点P(-6,0),Q(-2,-3)是图象上的最低点,R是图象上的最高点.(1)求函数f(x)的解析式;(2)记∠RPO=α,∠Q PO=β(α,β均为锐角),求tan(2α+β)的值.13、(镇江市2018届高三第一次模拟(期末)考试)在∆ABC中,角A,B,C所对的边分别为a, b,c,若b cos A+a cos B=-2c cos C.(1)求C的大小;(2)若b=2a,且∆ABC的面积为23,求c.14、(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)在∆ABC中,角A,B,C的对边分别为a,b,c.已知2cos A(b cos C+c cos B)=a.(1)求角A的值;(2)若cos B=35,求sin(B-C)的值.2,求函数f(x)的值域;411、612、13、14、0或15、3+228516、[2-,1]1、解:(1)因为tanα=4,tanα=,所以sinα=cosα.15、(苏州市2017届高三上学期期中调研)已知函数f(x)=2sin(x+π(1)若0≤x≤π3)⋅c os x.(2)设∆ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=32,b=2,c=3,求cos(A-B)的值.16、(盐城市2017届高三上学期期中)设函数f(x)=A s in(ωx+ϕ)(A,ω,ϕ为常数,且A>0,ω>0,0<ϕ<π)的部分图象如图所示.(1)求A,ω,ϕ的值;3π(2)设θ为锐角,且f(θ)=-3,求f(θ-)的值.56参考答案一、填空题π4+331、-2、1.43、74、-15、6106、1π3ππ7、8、49、10、3241π42π24二、解答题sinα43cosα3因为sin2α+cos2α=1,所以cos2α=9 25,又因为cos(α+β)=-5,所以sin(α+β)=1-cos2(α+β)=,,所以tan2α==-,因此,tan(α-β)=tan[2α-(α+β)]==-.,θ∈(0,).(θ(θ当θ∈(θ0,π(θ因此,cos2α=2cos2α-1=-7.25(2)因为α,β为锐角,所以α+β∈(0,π).2555因此tan(α+β)=-2.因为tanα=42tanα2431-tan2α7tan2α-tan(α+β)21+tan2αtan(α+β)112、解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为1×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).2过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ=1π46当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1).答:矩形ABCD的面积为800(4sinθcosθ+cos△θ)平方米,CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[1,1).4(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ,设f(θ)=sinθcosθ+cosθ,θ∈[θ0,π2π2).),则f′)=cos2θ-sin2θ-sinθ=-(2sin2θ+sinθ-1)=-(2sinθ-1)(sinθ+1).令f′)=0,得θ=π6,6)时,f′)>0,所以f(θ)为增函数;当 θ∈( π , )时, f ′θ )<0 ,所以 f (θ)为减函数,在△ABC 中,因为 cos B = ,所以 = . ………………………2 分( )2+c 2-b 2 因为 c =2a ,所以 = ,即 2= , 2 所以 = .……………………………4 分sin C c所以 = .……………………………6 分因为 cos B = ,B ∈(0,π),所以 sin B = 1-cos 2B = .………………………2 分π( 6 2因此,当 θ= π 6 时,f (θ)取到最大值.答:当 θ= π 6 时,能使甲、乙两种蔬菜的年总产值最大3、4、解:(1)解法 14a 2+c 2-b 2 4 5 2ac 5c 2 4 b 2 9 c 5 c 20 2c ×b 3 5c 10sin B b又由正弦定理得 = ,sin B 3 5sin C 10解法 24 35 5因为 c =2a ,由正弦定理得 sin C =2sin A ,所以 sin C =2sin(B +C )= cos C + sin C ,又因为 sin 2C +cos 2C =1,sin C >0,解得 sin C =2 5 所以 = .………………………6 分 (2)因为 cos B = ,所以 cos2B =2cos 2B -1= .…………………………8 分又 0<B <π,所以 sin B = 1-cos 2B = ,所以 sin2B =2sin B cos B =2× × = .…………………………10 分因为 C -B = ,即 C =B + ,所以 A =π-(B +C )= -2B ,所以 sin A =sin( -2B )=sin cos2B -cos sin2B………………………………12 分× -(- )×. …………………………………14 分(6 85 5即-sin C =2cos C .………………………4 分5,sin B 3 5sin C 104 75 25353 4 245 5 25π π 3π4 4 43π43π 3π4 4= 27 2 24 2 25 2 25=31 2502 75、解: 1)因为点 P 的横坐标为 7 ,P 在单位圆上,α 为锐角,2 7所以 cos α= 7 ,………………………2 分1 所以cos2α=2cos 2α-1=7.……………………………4 分3 3 3 3(2)因为点 Q 的纵坐标为 14 ,所以 sin β= 14 .………………………6 分13又因为 β 为锐角,所以 cos β=14.……………………………8 分2 7 21因为 cos α= 7 ,且 α 为锐角,所以 sin α= 7 ,4 3 因此 sin2α=2sin αcos α= 7 ,………………………10 分所以 sin(2α-β) =4 3 13 1 3 3 37 ×14-7× 14 = 2 . …………………12 分因为 α 为锐角,所以 0<2α<π.π又 cos2α>0,所以 0<2α<2,π π π 又 β 为锐角,所以-2<2α-β<2,所以 2α-β=3.…………………14 分ac=,即ac=7,(43)=(a+c)-2ac-ac,2(2-θ=由正弦定理得OQπ,所以2-θ=由正弦定理得OQ=6、【解】(1)由已知asinB+3b cosA=3sinC,结合正弦定理得sinAsinB+3sinBcosA=3sinC,所以sinAsinB+3sinBcosA=3sin(A+B)=3(sinAcosB+sinBcosA),即sinAsinB=3sinAcosB,即tanB=3,因为B∈(0,π),所以B=π3.………………7分(2)由S∆ABC =1πacsinB,B=,得2337344又b2=(a+c)2-2ac-2accosB,得2所以{ac=7a=7,又a>c,∴{.………………14分a+c=8c=17、解:1)设∠OPQ=α,由题,Rt∆OAQ中,OA=3,∠AQO=π-∠AQC=π-2ππ=,33所以OQ=3,在∆OPQ中,OP=3,∠POQ=ππ2-π3=π6,OP=,sin∠OPQ sin∠OQP即3sinα=3π5π3sinα=sin(π-α-)=sin(-α),sin(π-α-)666则3sinα=sin 5π5π13cosα-cos sinα=cosα+6622sinα,所以3sinα=cosα,3π因为α为锐角,所以cosα≠0,所以tanα=,得α=;36(2)设∠OPQ=α,在∆OPQ中,OP=3,∠POQ=ππ2-π3=π6,OP33=,即,sin∠OPQ sin∠OQP sinαπsin(π-α-(-θ))2ππ所以3sinα=sin(π-α-(-θ))=sin(-(α-θ))=cos(α-θ)=cosαcosθ+sinαsinθ,22从而(3-sinθ)sinα=cosαcosθ,其中3-sinθ≠0,cosα≠0,记 f (θ ) = cos θ 2所以 tan α =cos θ 3 - sin θ ,1 - 3 sin θ π , f '(θ ) = ,θ ∈ (0, ) ; 3 - sin θ( 3 - sin θ )2 2令 f '(θ ) = 0 , sin θ = 3 3π 3 ,存在唯一θ ∈ (0, ) 使得 sin θ = , 0 0 3 当 θ ∈ (0,θ ) 时 f '(θ ) > 0 , f (θ ) 单调增,当θ ∈ (θ , 0 0 所以当 θ = θ 时, f (θ ) 最大,即 tan ∠OPQ 最大, 0π2 ) 时 f '(θ ) < 0 , f (θ ) 单调减,又 ∠OPQ 为锐角,从而 ∠OPQ 最大,此时 sin θ = 3 3.答:观赏效果达到最佳时,θ 的正弦值为8、3 3.9、10、ac sin B=2⨯4⨯11、(1)因为a+2c=2b cosA,由正弦定理,得sinA+2sin C=2sinBcosA.···························································2分因为C=π-(A+B),所以sinA+2sin(A+B)=2sinBcosA.即sinA+2sin AcosB+2cos Asin B=2sinBcosA,所以sinA⋅(1+2cosB)=0.····························································································4分1因为sinA≠0,所以cosB=-.················································································6分2又因为0<B<π,所以B=2π3.···················································································································7分(2)由余弦定理a2+c2-2ac cos B=b2及b=23得,a2+c2+ac=12,即(a+c)2-ac=12.··································································································10分又因为a+c=4,所以ac=4,···············································································································12分所以S 113△ABC =22=3.·································································14分12、sin A sin B sin C所以 cos C =- ,(6 分) 所以 ab sin C =2 3.(8 分) 13、解析:(1) 由正弦定理 a 所以 C =2π .(7 分)b c = = , 且 b cos A +a cos B =-2c cos C 得(2 分)sin B cos A +sin A cos B =-2sin C cos C ,所以 sin (B +A)=-2sin C cos C.(3 分)因为 A ,B ,C 为三角形的内角,所以 B +A =π -C ,所以 sin C =-2sin C cos C.(4 分)因为 C ∈(0,π ),所以 sin C>0.(5 分)1 23(2) 因为△ABC 的面积为 2 3, 1 2由(1)知 C =2π ,所以 sin C = ,所以 ab =8.(9 分) 所以 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×⎝-2⎭=28,(13 分) 由 0 ≤ x ≤ 得, ≤ 2x + ≤ , - ≤ sin(2 x + ) ≤1 , .........4 分 ,即函数 f ( x ) 的值域为 [0,1 + ∴ 0 ≤ sin(2 x + ) + ≤1 + ] . .....6 分 3 3 2因为 b =2a ,所以 a =2,b =4,(11 分)⎛ 1⎫所以 c =2 7.(14 分)14、(1)由正弦定理可知, 2cos A(sin B cos C + sin C cos B) = sin A , ………………2 分即 2cos Asin A = sin A ,因为 A ∈ (0, π) ,所以 sin A ≠ 0 ,所以 2cos A = 1 ,即 cos A = 1 2, ………………………………………………4 分 又 A ∈ (0, π) ,所以 A = π 3. ……………………………………………………6 分 (2)因为 cos B = 3 4 , B ∈ (0, π) ,所以 sin B = 1 - cos 2 B = ,…………………8 分 5 5 24 7 所以 sin 2B = 2sin B cos B = , cos2 B = 1 - 2sin 2 B = - , ……………10 分 25 25 2π 2π 所以 sin(B - C) = sin[B - ( - B)] = sin(2B - ) 3 3 2π 2π = sin 2B cos - cos2 B s in 3 324 1 7 3 =- ⨯ - (- ) ⨯ 25 2 25 2………………………………12 分 = 7 3 - 24 50.…………………………………………………14 分 15、解:(1) f ( x ) = (sin x + 3 cos x)cos x = sin x cos x + 3 cos 2 x 1 3 3 π 3 = sin 2 x + cos2 x + = sin(2 x + ) + 2 2 2 3 2. .........2 分 π π π 4π 2 3 3 33 π 2 3π 3 3 3 3 2 2 2π 3 3 π (2)由 f ( A ) = sin(2 A + ) + = 得 sin(2 A + ) = 0 , 3 2 2 3π π π 4π π π 又由 0 < A < ,∴ < 2 A + < ,∴ 2 A + = π , A = . ........8 分 2 3 3 3 3 3在 ∆ABC 中,由余弦定理 a 2 = b 2 + c 2 - 2bc cos A =7 ,得 a = 7 . .......10 分 由正弦定理 a b = sin A sin B,得 sin B = b s in A 21 = a 7 , ......12 分 2 7 ∵ b < a ,∴ B < A ,∴ cos B = , 71 2 7 3 21 5 7 ∴ cos( A - B) = cos A c os B + sin Asin B = ⨯ + ⨯ = 2 7 2 7 14. ....15 分= 2 , ……………4分⎪ = π ,∴ω = 由 f = - 3 ,得 2 ⎪ ⎝ 12 ⎭ ⎝ 12 ⎭ θ ∈ (0, ) ,∴ 2θ + ∈ , ⎪ ,又 sin(2θ + ) < 0 ,所以 2θ + ∈ π , ⎪ , ∴ f (θ - ) = 3 sin 2θ = 3 sin ⎢(2θ + ) - = 3 ⎢sin(2θ + )cos - cos(2θ + )sin = 3 - ⨯ + ⨯ 10 . ……………14分 2 ⎪⎭ 5 2 5 π ⎛ π 4π ⎫ 3 ⎝ 3 3 ⎭ ⎦⎦16、解:(1)由图像,得 A = 3 , ……………2分最小正周期 T = 4 ⎛ 7π π ⎫ 2π + 3 ⎝ 12 6 ⎭ T ∴ f ( x ) = 3 sin(2 x + ϕ ) , ⎛ 7π ⎫ ⎛ 7π ⎫ ⎪ π + ϕ = - + 2k π , k ∈ Z , 2 5π π ∴ϕ = - + 2k π , k ∈ Z , 0 < ϕ < π ,∴ϕ = . ……………7分 3 3π 3 π 3 (2)由 f (θ ) = 3 sin(2θ + ) = - 3 ,得 sin(2θ + ) = - , 3 5 3 5π π π ⎛ 4π ⎫ 2 3 3 ⎝ 3 ⎭π π 4 ∴ c os(2θ + ) = - 1 - sin 2(2θ + ) = - , ……………10分 3 3 5π ⎡ π π ⎤ 6 ⎣3 3 ⎥ ⎡ π π π π ⎤ ⎣ 3 3 3 3 ⎥⎛ 3 1 4 3 ⎫ 12 - 3 3 = ⎝。
2018届江苏省镇江市高三上学期期末统考数学(文)试题
2018届江苏省镇江市高三上学期期末统考数学(文)试题镇江市2018届高三上学期期末数学Ⅰ试题参考公式:锥体体积公式:V=1/3Sh,其中S为底面积,h为高。
一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案直接填在答题卡相应位置上。
1.已知集合A={-2,0,1,3},B={-1,0,1,2},则A∩B={0,1}。
2.已知x,y∈R,则"a=1"是直线ax+y-1=0与直线x+ay+1=0平行的条件是必要不充分。
3.函数y=3sin(2x+π)图像两对称轴的距离为2.4.设复数z满足|z-3-4i|=5,则z=8+4i。
5.已知双曲线2-y^2=1左焦点与抛物线y^2=-12x的焦点重合,则双曲线的右准线方程为x=3.6.已知正四棱锥的底面边长为2,侧棱长为6,则正四棱锥的体积为8√2.7.设等比数列{an}的前n项和Sn,若a1=-2,S6=9S3,则a5的值为-16.8.已知锐角θ满足tanθ=6cosθ,则2sinθ+cosθ=√37/7.9.已知函数f(x)=x-kx+4对任意的x∈[1,3],不等式f(x)≥XXX成立,则实数k的最大值为1.10.函数y=cosx-xtanx的定义域为(-π/2,π/2),其值域为[-1,1]。
11.已知圆C与圆(x+5)^2+(y+5)^2=50相切于原点,且过点A(0,-6),则圆C的标准方程为(x-4)^2+(y+2)^2=16.12.已知点P(1,0),直线l:y=x+t与函数y=x的图像相交于A、B两点,当PA·PB最小时,直线l的方程为y=x-1.13.已知a,b∈R,a+b=4,则(a^2+1)/(b^2+1)的最大值为17/5.14.已知k为常数,函数f(x)={x+2,x≤-2;lnx,x>0},若关于x的方程f(x)=kx+2有且只有4个不同的解,则实数k的取值集合为(-∞,-1/2)。
江苏省镇江市2018届高三上学期期末统考数学答案
……9 分 ……10 分 ……11 分 ……13 分 ……14 分
【说明】本题改编自教材. 主要考查线面平行、面面垂直的判定与性质;考查逻辑推理能力、空间想象能 力、书写表达能力.
17. 解:(1)在△ ABD 中,由正弦定理得
1 BD AD , sin sin π sin( 2π ) 3 3
……1 分
所以 BD
3 3 cos 1 , AD , 2sin 2sin 2
高三数学 第 2页(共 8页)
……3 分
则 S a(
3 cos 1 3 cos 1 3 ) 2a 1 ( ) 4a ( ) 2sin 2 2sin 2 2sin
1 所以 cos C ,……6 分 2
所以 C
2 π. 3
……7 分 ……8 分
4 3 1 (2)因为△ ABC 的面积为 2 3 ,所以 ab sin C 2 3 ,所以 ab . sin C 2
高三数学 第 1页(共 8页)
由(1)知 C
3 2 ,所以 ab 8 . π ,所以 sin C 2 3
……2 分 ……3 分 ……4 分 ……5 分
sin B cos A sin A cos B 2sin C cos C ,所以 sin( B A) 2sin C cos C .
又 A , B , C 为三角形内角,所以 B A π C ,所以 sin C 2sin C cos C . 因为 C (0, π) ,所以 sin C 0 .
1 A1C . 2
……1 分 ……2 分 ……3 分 ……5 分 ……7 分 ……8 分
因为 A1C 面ADB1 , DE 面ADB1 , 所以 A1C ∥平面 ADB1 . (2)因为 AB AC , D 为 BC 中点,所以 AD BC . 又因为 ABC A1B1C1 为直三棱柱,所以 BB1 面ABC . 因为 AD 面ABC ,所以 BB1 AD . 因为 BC 面BCC1B1 , BB1 面BCC1 B1 , BC BB1 B ,所以 AD 面BCC1B1 . 又 BC1 面BCC1 B1 ,所以 AD BC1 . 因为 BC1 B1 D , AD 面ADB1 , B1 D 面ADB1 , AD B1D D ,所以 BC1 面ADB1 . 因为 BC1 面A1 BC1 ,所以平面 A1 BC1 平面 ADB1 . (注意:有一个条件不交代书写,扣 1 分,扣满为此)
江苏省镇江市2018届高三上学期期末数学试题
江苏省镇江市2018届高三上学期期末数学试题镇江市2018届高三上学期期末数学Ⅰ试题参考公式:锥体体积公式:$V=\frac{1}{3}Sh$,其中$S$为底面积,$h$为高。
一、填空题:本大题共14小题,每小题5分,共计70分。
不需要写出解答过程,请把答案直接填在答题卡相应位置上。
1.已知集合$A=\{-2,0,1,3\}$,$B=\{-1,0,1,2\}$,则$A\capB=\{0,1\}$。
2.已知$x,XXX{R}$,则"a=1"是直线$ax+y-1=0$与直线$x+ay+1=0$平行的条件是“必要不充分”。
3.函数$y=3\sin(2x+\pi)$图像两对称轴的距离为$\frac{4}{\pi}$。
4.设复数$z$满足$\frac{3+4i}{z}=5i$,则$z=-\frac{4}{5}+i\frac{3}{5}$。
5.已知双曲线$2-y^2=1$左焦点与抛物线$y^2=-12x$的焦点重合,则双曲线的右准线方程为$x=3$。
6.已知正四棱锥的底面边长为2,侧棱长为6,则正四棱锥的体积为$16\sqrt{2}$。
7.设等比数列$\{a_n\}$的前$n$项和$S_n$,若$a_1=-2$,$S_3=9S_6$,则$a_5=16$。
8.已知锐角$\theta$满足$\tan\theta=6\cos\theta$,则$\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=5$。
9.已知函数$f(x)=x-kx+4$对任意的$x\in[1,3]$,不等式$f(x)\geqslant 0$恒成立,则实数$k$的最大值为$\frac{3}{2}$。
10.函数$y=\cos x-x\tan x$的定义域为$\left(-\frac{\pi}{4},\frac{\pi}{4}\right)$,其值域为$\left[-1,\frac{\sqrt{2}}{2}\right]$。
南京、盐城2018年高三一模数学试题与答案解析
市、市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的、号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则AB = ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值围是 ▲ .时间(单位:分钟)50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 第4题图8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ . 9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =-有四个不同的零点,则实数m 的取值围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB AC ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知52c =. (1)若2C B =,求cos B 的值; (2)若AB AC CA CB ⋅=⋅,求cos()4B π+的值.17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截A第13题图 ABC A 1B 1C 1 MN第15题图取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧EF ,GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N运动到点处时,点Q的坐标为. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.第17题-图甲 F 第17题-图乙19.(本小题满分16分)设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n ,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立. 求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值; (2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.市、市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞8.34π 9.1(0,]4 10.4034 11.9[1,)412. 13.24 14.100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N . 所以四边形1A NBM是平行四边形,从而1//A M BN . ……………4分又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分(2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC,得CM ⊥侧面11ABB A . ……………8分又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M =,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC,所以11AB A C ⊥. ……………14分16.解:(1)因为52c b =,则由正弦定理,得5sin C B =. ……………2分 又2C B=,所以5sin 2B B =,即4sin cos 5B B B =. ……………4分又B是ABC ∆的角,所以sin 0B >,故5cos B =. ……………6分(2)因为AB AC CA CB ⋅=⋅, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而2223cos 25a cb B ac+-===, (12)分又0B π<<,所以4sin 5B ==. 从而34cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. (14)分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2RMT OM OT =-=. 从而2R BE MT ==,即22R BE ==. ……………2分故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=……………4分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=-.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=, 解得2x =. …………………12分答:当BE的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由N Q,得直线NQ的方程为32y x=…………………2分令0x=,得点B的坐标为(0,.所以椭圆的方程为22213x ya+=.…………………4分将点N的坐标)22(213+=,解得24a=.所以椭圆C的标准方程为22143x y+=. (8)分(2)方法一:设直线BM的斜率为(0)k k>,则直线BM的方程为y kx=在y kx=0y=,得Pxk=,而点Q是线段OP的中点,所以2Qxk=.所以直线BN的斜率2BN BQk k k===.………………10分联立22143y kxx y⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x+-=,解得234Mxk=+.用2k代k,得Nx=.………………12分又2DN NM=,所以2()N M Nxx x=-,得23M Nx x=.………………14分故23=0k>,解得k=.所以直线BM的方程为2y x =-. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为1y x =0y =,得P x =.同理,得Q x =.而点Q 是线段OP的中点,所以2P Qx x =,故=…………………10分 又2DN NM =,所以2122()x x x =-,得21203x x =>4=解得2143y y =+ …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=+⎪⎩代入到椭圆C的方程中,得2211(41927x y ++=. 又22114(1)3y x =-,所以21214(1)(431927y y -+=21120y +=, 解得1y =(舍)或1y =.又10x >,所以点M 的坐标为M .……………14分故直线BM 的方程为y x =-. …………………16分19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又d ≠,所以1λ=. ………………4分(2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-,即12n r n m --⋅对任意*n N ∈都成立,则172n n m --⋅,所以172n n m --对任意*n N ∈都成立. ………………8分令172n n n b --=,则11678222n n nn n n n nb b +-----=-=, 所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分 (3)因为数列{}n a 不是常数列,所以2T .①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意. 所以T的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当c =时,()bg x ax x=+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分 (2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩, 所以c t>对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以)2(3a +⨯=(当且仅当32a =时取等号), 又0t -<,所以t 的取值围是(,3)-∞,所以3c .故c 的最小值为3. ………………10分(3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x c x b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x xx x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t tϕ=+->,即11ln t t-<成立; 再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述,实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x xy y⎧=⎪⎨⎪=⎩, ………………5分 代入22001x y +=,得2214x y +=,即为所求的曲线方程. ………………10分(C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,ABE DF O · 第21(A)图由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=, 得直线的直角坐标方程为20x -=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1](1x x ++≥⨯+, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得26x y ⎧=⎪⎪⎨⎪=⎪⎩,所以当且仅当26x y ==时,max ()x y += 所以当x y+取最大值时x 的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系. 则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -. 所以(2,0,4)AP =-,(1,1,2)BM =--,10AP BM ⋅=,||25AP =,||6BM =.则cos ,6||||2AP BM AP BM AP BM ⋅<>===. 故直线AP 与BM . ………5分 (2)(2,1,0)AB =-,(1,1,2)BM =--.C第22题图设平面ABM 的一个法向量为(,,)n x y z =,则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB =,所以n 4OB ⋅=,||29n =,||1OB =.则4cos ,||||29n OB n OB n OB ⋅<>===.故平面ABM 与平面PAC 所成锐二面角的余弦值为………………10分 23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n 时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+.即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n nnn n n n n n n C C x C x C xC C x C x C x ------=++++++++,所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立. 综上,()21nn f n C -=成立. ………………10分方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n nn n C C C C C C -----+++.另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21nn C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x +=++++ ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++ ④.③×④,得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n nC C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n nn n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n n n n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21nn f n C -=成立. ………………10分。
2018年镇江一中高三数学模拟卷14
(第7题)2018年省镇江一中高三数学模拟卷(4.14)一、填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{}11A x x =-<<,{}102B =-,,,则A B = ▲ .2.命题“0x ∃> ,使得2210x x -+<成立”的否定为 ▲ .3.复数2i1iz =-(i 为虚数单位)的虚部是 ▲ . 4.从某校高三年级随机抽取一个班,对该班45名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如右上图.若某高校A 专业对视力要求不低于0.9,则该班学生中最多有 ▲ 人能报考A 专业.5.函数22log (32)y x x =--的单调减区间为 ▲ .6. 若在区间(1,1)-内任取实数a ,在区间(0,1)内任取实数b ,则直线0a x b y -=与圆22(1)(2)1x y -+-=相交的概率为___ ▲______.7.若函数sin()(0)y x ωϕω=+>的部分图象如图所示,则ω的值为 ▲ .8.已知一球与一个正三棱柱的三个侧面及两个底面都相切.若该球的体积为4π3,则该三棱柱的体积是 ▲ .9.已知平面α ,β,直线m ,n ,给出下列命题:① 若//m α,//,n m n β⊥,则βα⊥;② 若//αβ,//,//m n αβ,则//m n ; ③ 若,,m n m n αβ⊥⊥⊥,则αβ⊥;④ 若βα⊥,,m n αβ⊥⊥,则m n ⊥. 其中是真命题的是 ▲ .(填写所有真命题的序号).10.设等差数列{}n a 的公差为d (0≠d ),其前n 项和为n S .若22410a a =,122210S S =+, 则d 的值为 ▲ .(第16题)11.平行四边形ABCD 中,已知AB =4,AD =3,∠BAD =60°,点E ,F 分别满足 AE →=2ED →,DF →=FC →,则AF BE ⋅的值为 ▲ .12.若抛物线24=x y 的焦点到双曲线C :22221-=y x a b(00)>>a b ,的渐近线距离等于13,则双曲线C 的离心率为 ▲ .13.在平面直角坐标系xOy 中,已知直线:3450l x y -+=与圆22:100C x y x +-=交于A ,B 两点,P 为x 轴上一动点,则△ABP 周长的最小值为 ▲ .14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin sin 0A B A B λ++=, 且2a b c +=,则实数λ的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知1a =,b =π6B A -=. (1)求sin A 的值;(2)求c 的值.16.如图,在三棱锥P ABC -中,AC BC =,点D 在AB 上,点E 为AC 的中点,且BC //平面PDE .(1)求证://DE 平面PBC ; (2)若平面PCD ⊥平面ABC ,求证:平面PAB ⊥平面PCD .(第18题)17.(本小题满分16分)如图,设椭圆C :22221x y a b +=(a >b >0),离心率e =12,F 为椭圆右焦点.若椭圆上有一点P 在x 轴的上方,且PF ⊥x 轴,线段PF =32.(1)求椭圆C 的方程;(2)过椭圆右焦点F 的直线(不经过P 点)与椭圆交于A ,B 两点,当APB ∠的平分线为PF 时,求直线AB 的方程.18.(本小题满分16分)如图,圆柱体木材的横截面半径为1 dm ,从该木材中截取一段圆柱体,再加工制作成 直四棱柱1111A BC D ABCD -,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心O 在梯形ABCD 内部,AB ∥CD ,DAB ∠=60°,1AA AD =,设DAO θ∠=.(1)求梯形ABCD 的面积;(2)当sin θ取何值时,四棱柱1111A BC D ABCD -的体积最大?并求出最大值. (注:木材的长度足够长)19.(本小题满分16分)已知函数32()3(2)f x x x a x =-+-,a ∈R . (1)求函数()f x 的单调增区间;(2)若函数()f x 有三个互不相同的零点0,1t ,2t ,其中12t t <.(ⅰ)若213t t =,求a 的值;(ⅱ)若对任意的12[]x t t ∈,,都有()16f x a -≤成立,求a 的取值范围.20.已知数列{}n a 的前n 项和为n S ,把满足条件*1()n n a S n +≤∈N 的所有数列{}n a 构成的集合记为M .(1)若数列{}n a 通项公式为12n na =,求证:{}n a M ∈; (2)若数列{}n a 是等差数列,且{}n a n M +∈,求512a a -的取值范围; (3)设4nn nb a =*()n ∈N ,数列{}n a 的各项均为正数,且{}n a M ∈.问数列{}n b 中是否存在无穷多项依次成等差数列?若存在,给出一个数列{}n a 的通项;若不存在,说明理由.2018年省镇江一中高三数学模拟卷(4.14)参考答案1.{}0; 2.0x ∀> ,有22100x x -+≥成立; 3.1; 4.18; 5.(-1,1); 6.516;7.4; 8.36; 9.③④; 10.-10; 11.-6; 12.3; 13.14; 14.λ≤14.解析:由条件,sin sin sin sin A B A Bλ+=-.因为2a b c +=,所以sin sin 2sin A B C +=,所以sin sin 12sin A B C +=,所以22()sin sin sin sin 2a b A B A B c λ+++=-⨯=-=-. 而2222()2323cos 1222a b ab c c ab c C ab ab ab+---===-,所以22(1cos )3c C ab =+.由2a b c +=,得1cos 2C ≥,即π03C <≤,所以41cos 3sin C C λ=-+⋅≤15.(本小题满分14分)解:(1)在△ABC 中,因为1a =,b =π6B A -=,由正弦定理得,1sin πsin A A +…… 2分于是ππsin cos cos sin 66A A A =+,即cos A A =, …… 4分又22sin cos 1A A +=,所以sin A =. …… 6分(2)由(1)知,cos A =,则sin 22sin cos A A A ==,213cos212sin 14A A =-=, …… 10分在△ABC 中,因为πA B C ++=,πB A -=,所以5π26C A =-.则()5πsin sin 26C A =-5π5πsin cos2cos sin 266A A =-113=⨯1114=. ……12分由正弦定理得,sin sin a C c A = …… 14分16.(本小题满分14分)证明:(1)因为BC //平面PDE , BC ⊂平面ABC ,平面PDE平面ABC =DE ,所以BC ∥DE . ……3分 因为DE ⊄平面PBC ,BC ⊂平面PBC ,所以//DE 平面PBC . ……6分(2)由(1)知,BC ∥DE .在△ABC 中,因为点E 为AC 的中点,所以D 是AB 的中点. 因为AC BC =,所以AB CD ⊥, ……9分因为平面PCD ⊥平面ABC ,平面PCD平面ABC =CD ,AB ⊂平面ABC ,则AB ⊥平面PCD . ……12分 因为AB ⊂平面PAB ,所以平面PAB ⊥平面PCD . ……14分 17.解:(1)设右焦点)0,(c F ,由x PF ⊥轴,设),(t c P 代入椭圆方程,即得),(2ab c P ,所以232==a b PF , 联立2222321e 2b a c a b c a ⎧=⎪⎪⎪==⎨⎪+=⎪⎪⎩, …………………3分解得1,3,2===c b a ,所以椭圆方程为13422=+y x ,右准线l 的方程为42==ca x . ………………… 6分(2)设)1)(,(000≠x y x A ,则直线AB 的方程为)1(100--=x x y y ,即100-=x y k , 联立⎪⎪⎩⎪⎪⎨⎧=+--=134)1(12200y x x x y y , 消去y , 即得0)1(1248]4)1(3[20202022020=--+-+-x y x y x y x (※), ………………… 9分又0x 为方程(※)的一根,所以另一根为()0202024138x y x y x B -+-=,又点)1)(,(000≠x y x A 在椭圆上,所以满足134220=+y x ,代入另一根即得528500--=x x x B ,所以⎪⎪⎭⎫ ⎝⎛---523,52850000x y x x B .由(1)知,点⎪⎭⎫⎝⎛231,P则直线PA 的斜率()1232001--=x y k ,直线PB 的斜率)1(25220002-+-=x x y k ,………… 12分①当APB ∠的平分线为PF 时,PA ,PB 的斜率1k ,2k 满足021=+k k , 所以0)1(2522)1(2320000021=-+-+--=+x x y x y k k ,即1200-=x y ,所以21=k ,故直线AB 的方程为 x -2y -1=0. …………… 14分 18.(本小题满分16分)【解】(1)由条件可得,2cos AD θ=,所以梯形的高sin 603h AD θ==.又2cos(60)AB θ=-,2cos(120)CD θ=-, …… 3分 所以梯形ABCD 的面积12cos(60)2cos(120)3cos 2S θθθ⎡⎤=-+-⨯⎣⎦ …… 5分 cos(60)cos(60)3cos θθθ⎡⎤=--+⨯⎣⎦(2sin60sin )θθ=3sin 2θ=(2dm ). …… 8分 (2)设四棱柱1111A B C D ABCD -的体积为V ,因为12cos AA AD θ==, 所以123sin 22cos 6sin (1sin )2A V S A θθθθ=⋅⨯==-. …… 10分设sin t θ=,因为060θ︒<<,所以0t ⎛∈ ⎝,所以23()6(1)6()V t t t t t =-=-+,0t ⎛∈ ⎝.由2()6(31)18(V t t t t '=-+=-, …… 12分令()0V t '=,得t =,()V t 与()V t '的变化情况列表如下:由上表知,()V t 在t =时取得极大值,即为最大值,且最大值V = 15分答:当sin θ=时,四棱柱1111A B C D ABCD -3dm .… 16分19.(1)2()36(2)f x x x a '=-+-,其判别式2(6)12(2)12(+1)a a ∆=---=.①当1a -≤时,0∆≤,()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞+∞.………………………………………1分②当1a >-时,由()0f x '>,得x <或x >所以()f x 的单调增区间为(-∞,)+∞. 3分综上,当1a -≤时,()f x 的单调增区间为(,)-∞+∞;当1a >-时,()f x 的单调增区间为(-∞,)+∞.4分 (2)(ⅰ)方程()0f x =,即为323(2)0x x a x -+-=,亦即2[3(2)]0x x x a -+-=,由题意1t ,2t 是方程23(2)0x x a -+-=的两个实根, ………………5分 故123t t +=,122t t a =-,且判别式21(3)4(2)0a ∆=--->,得14a >-. 由213t t =,得134t =,294t =, ………………………………………8分 故1227216t t a =-=,所以516a =.………………………………………9分(ⅱ)因为对任意的12[]x t t ∈,,()16f x a -≤恒成立. 因为123t t +=,12t t <,所以1232t t <<, 所以120t t <<或120t t <<.①当120t t <<时,对12[]x t t ∈,,()0f x ≤, 所以016a ≤-,所以16a ≤.又1220t t a =->,所以2a <.………………………………………12分②当120t t <<时,2()36(2)f x x x a '=-+-,由(1)知,存在()f x 的极大值点11(0)x t ∈,,且1x =(方法1)由题得321111()3(2)16f x x x a x a =-+--≤,将1x =(72a +,解得11a ≤.…14分又1220t t a =-<,所以2a >.因此211a <≤.…………………………15分综上,a 的取值范围是1(2)(211]4-,,.………………………………………16分(方法2)211362a x x =-+,由题得321111()3(2)16f x x x a x a =-+--≤, 将211362a x x =-+,代入化简得31(1)8x --≥,得11x -≥,故110x -<≤,因为211362a x x =-+在1[10)x ∈-,上递减,故(211]a ∈,. 综上,a 的取值范围是1(2)(211]4-,,. ……………………………………16分20.解:(1)因为12n n a =,所以11()1121()12212n n n S -=⨯=--, …… 2分 所以111131311()1()()1102222224n n n n n a S ++-=-+=-≤⨯-=-<,所以1n n a S +≤,即{}n a M ∈. …… 4分 (2)设{}n a 的公差为d ,因为{}n a n M +∈,所以1121(1)(1)(1)n n a n a a a ++≤+++++++(*), 特别的当1n =时,2121a a ≤++,即1d ≤-, …… 6分由(*)得11(1)(1)122n n n n a nd n na d -++++≤++, 整理得211131()10222d n a d n a ++----≥,因为上述不等式对一切*n ∈N 恒成立,所以必有102d +≥,解得1d ≥-,又1d ≤-,所以1d =-, …… 8分 于是11()110a n a --≥+,即1()()110a n -≥+, 所以110a +≥,即11a ≥-,所以5151111(2288)9a a a a a d a a --=+=+=-+≥-,因此512a a -的取值范围是[)9,-+∞. …… 10分(3)由1n n a S +≤得1n n n S S S +-≤,所以12n n S S +≤,即12n n SS +≤,所以1312112×2n n n nS S S S S S S S ++=⨯⨯≤,从而有11122n n n S S a +≤⨯⨯=, 又1n n a S +≤,所以2112n n n a S a ++≤≤⨯,即212)3(n n a a n -≤⨯≥, 又222112a S a -⨯=≤,12112a a -⨯<,所以有2*12()n n a a n -≤⨯∈N ,所以144×2n nn a a ≥, …… 12分 假设数列{}n b (其中4nn nb a =)中存在无穷多项依次成等差数列,不妨设该等差数列的第n 项为dn b +(b 为常数),则存在*m ∈N ,m n ≥,使得11444×22m m m n m a a dn b b a +≥=≥⨯=, 即2112n da n ba ++≥, …… 14分设2*2()32n n f n n n +=∈≥N ,,,则222323(1)2(1)(1)()0222n n n n n n f n f n ++++--+-=-=<,即9(1)()(3)132f n f n f +<≤=<, 于是当3n ≥时,222n n +>,从而有:当3n ≥时211da n ba n +>,即2110n da n ba --<,于是当3n ≥时,关于n 的不等式2110n da n ba --<有无穷多个解,显然不成立, 因此数列{}n b 中是不存在无穷多项依次成等差数列. …… 16分。
南京市、盐城市2018届高三年级第一次模拟考试数学试卷与答案
市、市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的、号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ .3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x x y e a e=+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值围是 ▲ .8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ . 9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值围是 ▲ .10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单位:分钟)50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x-≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =- 有四个不同的零点,则实数m 的取值围是 ▲ .12.在平面直角坐标系xOy 中,若直线(33)y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =u u u r u u u r,则实数k 的最小值为 ▲ .13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点.(1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB A C ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 已知5c =. (1)若2C B =,求cos B 的值;(2)若AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r ,求cos()4B π+的值.A第13题图ABCA 1B 1C 1MN第15题图有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N 运动到点2处时,点Q的坐标为(,0)3. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =u u u r u u u u r时,求直线BM 的方程.第17题-图甲 F H 第17题-图乙设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数.(1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立.求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值;(2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值;(3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.市、市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.C .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.A B ED F O· 第21(A)图[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===.(1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M B C D O P 第22题图市、市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞ 8.34π 9.1(0,]4 10.4034 11.9[1,)412.3.24 14.100 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N .所以四边形1A NBM 是平行四边形,从而1//A M BN . ……………4分 又BN ⊄平面1A MC ,1A M ⊂平面1A MC ,所以BN ∥面1A MC . ……………6分 (2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A I 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分 又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1A M MC M =I ,所以1AB ⊥平面1A MC . ……………12分又1AC ⊂平面1A MC ,所以11AB A C ⊥. ……………14分 16.解:(1)因为5c =,则由正弦定理,得5sin C B =. ……………2分 又2C B =,所以5sin 22B B =,即4sin cos 5B B B =. ……………4分 又B 是ABC ∆的角,所以sin 0B >,故5cos 4B =. ……………6分(2)因为AB AC CA CB ⋅=⋅u u u r u u u r u u u r u u u r, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而222()35cos 25c c c a c b B ac +-+-===, ……………12分又0B π<<,所以24sin 1cos 5B B =-=.从而32422cos()cos cos sin sin 444525210B B B πππ+=-=⨯-⨯=-. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET ∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2R MT OM OT =-=.从而2RBE MT ==,即22R BE ==. ……………2分 故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=-分又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-分(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=.又所得柱体的高62EG x =-,所以V S EG =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分列表如下:所以当x =答:当BE 的长为2分米时,折卷成的包装盒的容积最大. …………………14分18.解:(1)由2N Q ,得直线NQ 的方程为32y x = …………………2分 令0x =,得点B 的坐标为(0,.所以椭圆的方程为22213x y a +=. …………………4分 将点N的坐标2213=,解得24a =. 所以椭圆C 的标准方程为22143x y +=. …………………8分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =-在y kx =0y =,得P x =,而点Q 是线段OP 的中点,所以Q x = 所以直线BN 的斜率2BN BQk k k ===. ………………10分联立22143y kx x y ⎧=⎪⎨+=⎪⎩,消去y,得22(34)0k x +-=,解得M x =. 用2k 代k,得2316N x k =+. ………………12分又2DN NM =u u u r u u u u r ,所以2()N M N x x x =-,得23M N x x =. ………………14分故222334316k k ⨯=⨯++,又0k >,解得2k =. 所以直线BM的方程为2y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为1y x =0y =,得P x =同理,得Q x =.而点Q 是线段OP 的中点,所以2P Q x x ==…………………10分 又2DN NM =u u u r u u u u r ,所以2122()x x x =-,得21203x x =>4=,解得2143y y =. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=⎪⎩代入到椭圆C的方程中,得2211(41927x y ++=. 又22114(1)3y x =-,所以214(1)319y -+=21120y +=,解得1y =1y =.又10x >,所以点M的坐标为(3M .……………14分 故直线BM的方程为y x =-. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分 (2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立,则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分 令172n n n b --=,则11678222n n n n n n n n b b +-----=-=,所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分(3)因为数列{}n a 不是常数列,所以2T ….①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-;由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当0c =时,()b g x ax x =+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分 因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分(2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aax c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分 即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩,所以c t >对(0,),(0,3)t a ∈+∞∈恒成立. ………………8分因为03a <<,所以23=(当且仅当32a =时取等号), 又0t -<,所以t 的取值围是(,3)-∞,所以3c …. 故c 的最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x cx b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分 要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--, 即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x x x x x -<<-. ………………14分 令21x t x =,则1t >,此时即证11ln 1t t t-<<-. 令1()ln 1t t t ϕ=+-,所以22111()0t t t t tϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增.又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述, 实数12,x x 满足122121x x x b x x x -<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,ABE DF O · 第21(A)图设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002x x y y =⎧⎨=⎩,解得0012x x y y⎧=⎪⎨⎪=⎩, ………………5分代入2201x y +=,得2214x y +=,即为所求的曲线方程. ………………10分 (C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=,得直线的直角坐标方程为20x --=. ………………5分曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即1r =. ……………10分(D)解:由柯西不等式,得22222[)][1(](1)33x x ++≥⨯+⨯, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y ≤+≤ ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得2x y ⎧=⎪⎪⎨⎪=⎪⎩26x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =. ………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系.则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -.所以(2,0,4)AP =-u u u r ,(1,1,2)BM =--u u u u r,10AP BM ⋅=u u u r u u u u r ,||AP =u u u r ,||BM =u u u u r. 则cos ,6||||AP BM AP BM AP BM ⋅<>===u u u u ru u u r u u u u r u u u r u u u u r . 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-u u u r ,(1,1,2)BM =--u u u u r.设平面ABM 的一个法向量为(,,)n x y z =r,C第22题图则0n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r ,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =r.又平面PAC 的一个法向量为(0,1,0)OB =u u u r ,所以n r 4OB ⋅=u u u r,||n =r ||1OB =u u u r .则cos ,||||n OB n OB n OB ⋅<>===r u u u rr u u u r r u u ur 故平面ABM 与平面PAC………………10分23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分 在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分 在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分(2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立.方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!rr n n r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n n rC C rC C nC C -----==.故只需证明00111111211111n r r n n n n n n n n n n n nC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n n C C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -.而右边1(1)(1)n n x x -++()()01221101221111n n n n n n n n n n n n C C x C x C xC C x C x C x ------=++++++++L L , 所以nx 的系数为01111111111n n r n r n n n n n n n n n C C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+.由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立.综上,()21n n f n C -=成立. ………………10分 方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn nC C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n n n n C C C C C C -----+++L . 另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21n n C -.故0111121111n n n n n n n n n n n C C C C C C C ------=++L ,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x +=++++L ③.两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++L L ④.③×④, 得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++L L L ⑤.左边n x 的系数为21nn nC -.右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+1021112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n n n n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n n nC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+.故()21n n f n C -=成立. ………………10分。
优质金卷:江苏省镇江市2018届高三第一次模拟考试数学试题【考试版】
第1页 共4页 ◎ 第2页 共4页绝密★启用前镇江2018一模考试范围:集合、复数、简易逻辑、数列、函数、三角与向量、导数、解析几何、立体几何、矩阵、坐标系与参数方程、空间向量、分布列与数学期望; 考试时间:120分钟;理科附加30分钟. 一、填空题1.已知集合={2,0,1,3}A -, {}1,0,1,2B =-,则A B ⋂=__________.2.已知,x y R ∈,则“1a =”是直线10ax y +-=与直线10x ay ++=平行的__________条件(从“充分不必要”“必要不充分”“充分必要”“既不充分也不必要”中选择一个) 3.函数3sin 24y x π⎛⎫=+ ⎪⎝⎭图像两对称轴的距离为__________. 4.设复数z 满足345ii z+=,则z =__________. 5.已知双曲线2221xy a-=左焦点与抛物线212y x =-的焦点重合,则双曲线的右准线方程为__________. 6.已知正四棱锥的底面边长为2,则正四棱锥的体积为__________. 7.设等比数列{}n a 的前n 项和n S ,若12a =-, 639S S =,则5a 的值为__________. 8.已知锐角θ满足tan θθ=,则sin cos sin cos θθθθ+=-__________.9.已知函数()24f x x kx =-+对任意的[]1,3x ∈,不等式()0f x ≥恒成立,则实数k 的最大值为________.10.函数cos tan y x x x =-的定义域为,44ππ⎡⎤-⎢⎥⎣⎦,其值域为__________. 11.已知圆C 与圆2210100x y x y+++=相切于原点,且过点()0,6A -,则圆C 的标准方程为__________.12.已知点()1,0P ,直线:l y x t =+与函数2y x =的图像相交于A B 、两点,当·PA PB 最小时,直线l 的方程为__________.13.已知,a b R ∈, 4a b +=,则221111a b +++的最大值为__________. 14.已知k 为常数,函数()2,0{ 1,0x x f x x lnx x +≤=->,若关于x 的方程()2f x kx =+有且只有4个不同解,则实数k 的取值集合为__________.二、解答题15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若cos cos 2cos b A a B c C +=-. (1)求C 的大小;(2)若2b a =,且ABC ∆的面积为c .16.如图,在直三棱柱111ABC A B C -中, D 为BC 中点, AB AC =, 11BC B D ⊥求证:(1)1//AC 平面1ADB (2)平面111A BC ADB ⊥17.如图,准备在墙上钉一个支架,支架由两直杆AC 与BD 焊接而成,焊接点D 把杆AC 分成,AD CD 两段,其中两固定点,A B 间距离为1米, AB 与杆AC 的夹角为60︒,杆AC 长为1米,若制作AD 段的成本为/a 元米,制作CD 段的成本是2/a 元米,制作杆BD 成本是4/a 元米.设ADB α∠=,则制作整个支架的总成本记为S 元.(1)求S 关于α的函数表达式,并求出α的取值范围; (2)问AD 段多长时, S 最小?18.如图,在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的离心率为,左焦点()2,0F -,直线:l y t =与椭圆交于,A B 两点, M 为椭圆上异于,A B 的点.第3页 共4页 ◎ 第4页 共4页(1)求椭圆E 的方程;(2)若()1M -,以AB 为直径的圆P 过M 点,求圆P 的标准方程; (3)设直线,MA MB 与y 轴分别交于,C D ,证明: OC OD ⋅为定值. 19.已知0b >,且1b ≠,函数()xxf x e b =+,其中e 为自然对数的底数:(1)如果函数()f x 为偶函数,求实数b 的值,并求此时函数的最小值;(2)对满足0b >,且1b ≠的任意实数b ,证明函数()y f x =的图像经过唯一的定点; (3)如果关于x 的方程()2f x =有且只有一个解,求实数b 的取值范围.20.已知数列{}n a 的前n 项和n S ,对任意正整数n ,总存在正数,,p q r 使得1n n a p -=, n n S q r =-恒成立:数列{}n b 的前n 项和n T ,且对任意正整数n , 2n n T nb =恒成立. (1)求常数,,p q r 的值; (2)证明数列{}n b 为等差数列;(3)若12b =,记31222224n n n n n b n b n b P a a a +++=++ 1212222n n n n n nn b n b a a ---+++⋯++,是否存在正整数k ,使得对任意正整数n , n P k ≤恒成立,若存在,求正整数k 的最小值,若不存在,请说明理由.21.选修4-1:几何证明选讲如图,四边形ABCD 是圆的内接四边形, BC BD =, BA 的延长线交CD 的延长线于点E ,延长CA 至F .求证: AE 是DAF∠的角平分线.22.(选修4-2:矩阵与变换)已知矩阵21a M b ⎡⎤=⎢⎥⎣⎦,其中,a b 均为实数,若点(3,1)A -在矩阵M 的变换作用下得到点(3,5)B ,求矩阵M 的特征值. 23.选修4-3:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为{x acos y bsin ϕϕ==(0a b >>, ϕ为参数),且曲线C 上的点(M 对应的参数3πϕ=,以O 为极点, x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的普通方程;(2)若曲线C 上的,A B 两点的极坐标分别为()1,A ρθ, 2,2B πρθ⎛⎫+ ⎪⎝⎭,求221211ρρ+的值.24.选修4-4:不等式选讲已知函数()f x x a x a =-++,若对任意x R ∈,不等式()23f x a >-恒成立,求实数a 的取值范围.25.如图, AC BC ⊥, O 为AB 中点,且DC ⊥平面ABC , //DC BE .已知2A C B C D C B E====.(1)求直线AD 与CE 所成角;(2)求二面角O CE B --的余弦值.26.某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立.规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级则加5分,记1ξ表示该生的加分数, 2ξ表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值.(1)求1ξ的数学期望; (2)求2ξ的分布列.。
江苏省镇江市2018届高三第一次模拟考试数学
2018届高三年级第一次模拟考试(三)数学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={-2,0,1,3},B ={-1,0,1,2},则A ∩B =________.2. 已知x ,y ∈R ,则“a =1”是“直线ax +y -1=0与直线x +ay +1=0平行”的________条件.(填“充分不必要”“必要不充分”“充分必要”或“既不充分又不必要”)3. 函数y =3sin ⎝⎛⎭⎫2x +π4图象两相邻对称轴的距离为________.4. 设复数z 满足3+4iz=5i ,其中i 为虚数单位,则|z|=________.5. 已知双曲线的左焦点与抛物线y 2=-12x 的焦点重合,则双曲线的右准线方程为________.6. 已知正四棱锥的底面边长为2,侧棱长为6,则该正四棱锥的体积为________.7. 设等比数列{a n }的前n 项和为S n ,若a 1=-2,S 6=9S 3,则a 5的值为________. 8. 已知锐角θ满足tan θ=6cos θ,则sin θ+cos θsin θ-cos θ=________.9. 已知函数f(x)=x 2-kx +4,对任意x ∈[1,3],不等式f(x)≥0恒成立,则实数k 的最大值为________.10. 函数y =cos x -x tan x 的定义域为⎣⎡⎦⎤-π4,π4,则其值域为________.11. 已知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A(0,-6),则圆C 的标准方程为________.12. 已知点P(1,0),直线l :y =x +t 与函数y =x 2的图象交于A ,B 两点,当PA →·PB →最小时,直线l 的方程为________.13. 已知a ,b ∈R ,a +b =4,则1a 2+1+1b 2+1的最大值为________.14. 已知k 为常数,函数f(x)=⎩⎪⎨⎪⎧x +2x +1, x ≤0,|ln x|, x>0,若关于x 的方程f(x)=kx +2有且只有四个不同解,则实数k 的取值构成的集合为________.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC中,角A,B,C所对的边分别为a,b,c,若b cos A+a cos B=-2c cos C.(1) 求角C的大小;(2) 若b=2a,且△ABC的面积为23,求c的值.16. (本小题满分14分)如图,在直三棱柱ABCA1B1C1中,D为BC的中点,AB=AC,BC1⊥B1D.求证:(1) A1C∥平面ADB1;(2) 平面A1BC1⊥平面ADB1.如图,准备在墙上钉一个支架,支架由两直杆AC与BD焊接而成,焊接点D把杆AC 分成AD,CD两段.其中两固定点A,B间距离为1米,AB与杆AC的夹角为60°,杆AC 长为1米.若制作AD段的成本为a元/米,制作CD段的成本是2a元/米,制作杆BD的成本是4a元/米.设∠ADB=α,制作整个支架的总成本记为S元.(1) 求S关于α的函数表达式,并指出α的取值范围;(2) 问AD段多长时,S最小?如图,在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,左焦点F(-2,0),直线l :y =t 与椭圆交于A ,B 两点,M 为椭圆E 上异于A ,B 的点.(1) 求椭圆E 的方程;(2) 若M(-6,-1),以AB 为直径的圆P 过点M ,求圆P 的标准方程; (3) 设直线MA ,MB 与y 轴分别相交于点C ,D ,证明:OC·OD 为定值.已知b>0,且b≠1,函数f(x)=e x+b x,其中e为自然对数的底数.(1) 如果函数f(x)为偶函数,求实数b的值,并求此时函数f(x)的最小值;(2) 对满足b>0,且b≠1的任意实数b,证明:函数y=f(x)的图象经过唯一定点;(3) 如果关于x的方程f(x)=2有且只有一个解,求实数b的取值范围.已知数列{a n }的前n 项和为S n ,对任意正整数n ,总存在正数p ,q ,r ,使得a n =p n -1,S n =q n -r 恒成立;数列{b n }的前n 项和为T n ,且对任意正整数n ,2T n =nb n 恒成立.(1) 求常数p ,q ,r 的值;(2) 证明:数列{b n }为等差数列;(3) 若b 2=2,记P n =2n +b 1a n +2n +2b 22a n +2n +b 34a n +…+2n +b n -12n -2a n +2n +b n2n -1a n,是否存在正整数k ,使得对任意正整数n ,P n ≤k 恒成立?若存在,求正整数k 的最小值;若不存在,请说明理由.2018届高三年级第一次模拟考试(三)数学附加题(本部分满分40分,考试时间30分钟)21. 【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修41:几何证明选讲](本小题满分10分)如图,四边形ABCD 是圆的内接四边形,BC =BD ,BA 的延长线交CD 的延长线于点E ,延长CA 至点F .求证:AE 是∠DAF 的平分线.B. [选修42:矩阵与变换](本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤2a b 1,其中a ,b 均为实数,若点A (3,-1)在矩阵M 的变换作用下得到点B (3,5),求矩阵M 的特征值.C. [选修44:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),且曲线C 上的点M (2,3)对应的参数φ=π3,以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1) 求曲线C 的普通方程;(2) 若曲线C 上的A ,B 两点的极坐标分别为A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+π2,求1ρ21+1ρ22的值.D. [选修45:不等式选讲](本小题满分10分)已知函数f (x )=|x -a |+|x +a |,若对任意x ∈R ,不等式f (x )>a 2-3恒成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤22. (本小题满分10分)如图,AC ⊥BC ,O 为AB 的中点,且DC ⊥平面ABC ,DC ∥BE.已知AC =BC =DC =BE =2.(1) 求直线AD 与CE 所成角; (2) 求二面角OCEB 的余弦值.23. (本小题满分10分)某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立.规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级则加5分.记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值.(1) 求ξ1的数学期望; (2) 求ξ2的分布列.2018届镇江高三年级第一次模拟考试数学参考答案1. {0,1}2. 充要3.π2 4. 1 5. x =836. 837. -328. 3+229. 4 10. [22-π4,1] 11. (x +3)2+(y +3)2=18 12. y =x +1213.2+54 14. ⎩⎨⎧⎭⎬⎫1c 3∪(-e ,-1) 15. 解析:(1) 由正弦定理a sin A =b sin B =c sin C ,且b cos A +a cos B =-2c cos C 得(2分) sin B cos A +sin A cos B =-2sin C cos C , 所以sin (B +A)=-2sin C cos C.(3分)因为A ,B ,C 为三角形的内角,所以B +A =π-C , 所以sin C =-2sin C cos C.(4分)因为C ∈(0,π),所以sin C>0.(5分) 所以cos C =-12,(6分)所以C =2π3.(7分)(2) 因为△ABC 的面积为23, 所以12ab sin C =2 3.(8分)由(1)知C =2π3,所以sin C =32,所以ab =8.(9分)因为b =2a ,所以a =2,b =4,(11分)所以c 2=a 2+b 2-2ab cos C =22+42-2×2×4×⎝⎛⎭⎫-12=28,(13分) 所以c =27.(14分)16. 解析:(1) 设A 1B ∩AB 1=E. 因为ABC-A 1B 1C 1为直三棱柱,所以AA 1B 1B 为矩形,所以E 为A 1B 的中点.(1分)因为D 为BC 的中点,所以DE 为△BA 1C 的中位线,(2分) 所以DE ∥A 1C ,且DE =12A 1C.(3分)因为A 1C ⊄平面ADB 1,DE ⊂平面ADB 1,(5分) 所以A 1C ∥平面ADB 1.(7分)(2) 因为AB =AC ,D 为BC 的中点, 所以AD ⊥BC.(8分)因为ABCA 1B 1C 为直三棱柱, 所以BB 1⊥平面ABC.因为AD ⊂平面ABC ,所以BB 1⊥AD.(9分)因为BC ⊂平面BCC 1B 1,BB 1⊂平面BCC 1B ,BC ∩BB 1=B , 所以AD ⊥平面BCC 1B 1.(10分)因为BC 1⊂平面BCC 1B 1,所以AD ⊥BC 1.(11分)因为BC 1⊥B 1D ,AD ⊂平面ADB 1,B 1D ⊂平面ADB 1,AD ∩B 1D =D , 所以BC 1⊥平面ADB 1.(13分) 因为BC 1⊂平面A 1BC 1,所以平面A 1BC 1⊥平面ADB 1.(14分)17. 解析:(1) 在△ABD 中,由正弦定理得1sin α=BD sin π3 =ADsin ⎝⎛⎭⎫2π3-α,(1分)所以BD =32sin α,AD =3cos α2sin α+12,(3分)则S =a ⎝⎛⎭⎪⎫3cos α2sin α+12+2a[1-(3cos α2sin α+12)]+4a ⎝ ⎛⎭⎪⎫32sin α=a ⎝ ⎛⎭⎪⎫43-3cos α2sin α+32,(6分)由题意得α∈⎝⎛⎭⎫π3,2π3.(7分)(2) 令S′=3a ·1-4cos αsin 2α=0,设cos α0=14.(11分)所以当cos α=14时,S 最小,此时sin α=154,AD =3cos α2sin α+12=5+510.(12分) 18. 解析:(1) 因为e =c a =22且c =2,所以a =22,b =2.(2分) 所以椭圆方程为x 28+y 24=1.(4分)(2) 设A(s ,t),则B(-s ,t),且s 2+2t 2=8.① 因为以AB 为直径的圆P 过M 点,所以MA ⊥MB ,所以·=0,(5分) 因为=(s +6,t +1),=(-s +6,t +1), 所以6-s 2+(t +1)2=0. ②(6分) 由①②解得t =13或t =-1(舍),所以s 2=709.(7分)因为圆P 的圆心为AB 的中点(0,t),半径为AB2=|s|,(8分)所以圆P 的标准方程为x 2+⎝⎛⎭⎫y -132=709.(9分) (3) 设M(x 0,y 0),则l AM 的方程为y -y 0=t -y 0s -x 0·(x -x 0),若k 不存在,显然不符合条件.令x =0得y C =-tx 0+sy 0s -x 0;同理y D =-tx 0-sy 0-s -x 0,(11分)所以OC·OD =|y C ·y D |=⎪⎪⎪⎪⎪⎪-tx 0+sy 0s -x 0·-tx 0-sy 0-s -x 0=⎪⎪⎪⎪⎪⎪t 2x 20-s 2y 20x 20-s 2(13分)=⎪⎪⎪⎪⎪⎪t 2x 20-s 2y 20x 20-s 2=⎪⎪⎪⎪⎪⎪t 2(8-2y 20)-(8-2t 2)y 208-2y 20-(8-2t 2)=⎪⎪⎪⎪⎪⎪8t 2-8y 202t 2-2y 20=4为定值.(16分) 19. 解析:(1) 由f(1)=f(-1)得e +b =1e +1b ,解得b =-e (舍),或b =1e,(1分)经检验f(x)=e x +1e x 为偶函数,所以b =1e .(2分)因为f(x)=e x +1ex ≥2,当且仅当x =0时取等号,(3分)所以f(x)的最小值为2.(4分)(2) 假设y =f(x)过定点(x 0,y 0),则y 0=e x 0+bx 0对任意满足b>0,且b ≠1恒成立.(5分)令b =2得y 0=e x 0+2x 0;令b =3得y 0=e x 0+3x 0,(6分)所以2x 0=3x 0,即⎝⎛⎭⎫32x 0=1,解得唯一解x 0=0,所以y 0=2,(7分)经检验当x =0时,f(0)=2,所以函数y =f(x)的图象经过唯一定点(0,2).(8分)(3) 令g(x)=f(x)-2=e x +b x -2为R 上的连续函数,且g (0)=0,则方程g (x )=0存在一个解.(9分)(i) 当b >0时,g (x )为增函数,此时g (x )=0只有一解.(10分)(ii) 当0<b <1时,令g ′(x )=e x +b x ln b =e x (1+(be )x ln b )=0,解得x 0=log ⎝⎛⎭⎫e b (-ln b ).(11分) 因为e x>0,0<b e <1,ln b <0,令h (x )=⎝⎛⎭⎫1+⎝⎛⎭⎫b e x ln b ,h (x )为单调增函数,所以当x ∈(-∞,x e )时,h (x )<0,所以g ′(x )<0,g (x )为单调减函数;当x ∈(x 0,+∞)时,h (x )>0,所以g ′(x )>0,g (x )为单调增函数,所以g 极小(x )=g (x 0).因为g (x )定义域为R ,所以g min (x )=g (x 0).(13分)①若x 0>0,g (x )在(-∞,x 0)上为单调减函数,g (x 0)<g (0)=0,而g (ln2)=2+b ln2-2=b ln2>0,所以当x ∈(x 0,ln2)时,g (x )至少存在另外一个零点,矛盾.(14分)②若x 0<0,g (x )在(x 0,+∞)上为单调增函数,g (x 0)<g (0)=0,而g (log b 2)=elog b 2+2-2=elog b 2>0,所以g (x )在(log b 2,x 0)上存在另外一个解,矛盾.(15分)③当x 0=log ⎝⎛⎭⎫e b (-ln b )=0,则-ln b =1,解得b =1e ,此时方程为g (x )=e x+1e x -2=0, 由(1)得,只有唯一解x 0=0,满足条件.综上所述,当b >1或b =1e 时,方程f (x )=2有且只有一个解.(16分)20. 解析:(1) 因为S n =q n -r ,①所以S n -1=q n -1-r ,(n ≥2)②①-②得S n -S n -1=q n -q n -1,即a n =q n -q n -1,(n ≥2),(1分)因为a n =p n -1,所以p n -1=q n -q n -1,(n ≥2), 当n =2时,p =q 2-q ;当n =3时,p 2=q 3-q 2. 因为p ,q 为正数,所以p =q =2.(3分)因为a 1=1,S 1=q -r ,且a 1=S 1,所以r =1.(4分) (2) 因为2T n =nb n ,③当n ≥2时,2T n -1=(n -1)b n -1,④③-④得2b n =nb n -(n -1)b n -1,即(n -2)b n =(n -1)b n -1,⑤(6分) 方法一:由(n -1)b n +1=nb n ,⑥⑤+⑥得(2n -2)b n =(n -1)b n -1+(n -1)b n +1,(7分) 即2b n =b n -1+b n +1,所以{b n }为等差数列.(8分) 方法二:由(n -2)b n =(n -1)b n -1, 得b nn -1=b n -1n -2, 当n ≥3时,b n n -1=b n -1n -2=…=b 21,所以b n =b 2(n -1),所以b n -b n -1=b 2.(6分)因为n =1时,由2T n =nb n 得2T 1=b 1, 所以b 1=0,则b 2-b 1=b 2,(7分)所以b n -b n -1=b 2对n ≥2恒成立,所以{b n }为等差数列.(8分)(3) 因为b 1=0,b 2=2,由(2)知{b n }为等差数列,所以b n =2n -2.(9分)又由(1)知a n =2n -1,所以P n =2n 2n -1+2n +22n +…+4n -422n -3+4n -222n -2,P n +1=2n +22n +…+4n -422n -3+4n -222n -2+4n 22n -1+4n +222n ,所以P n +1-P n =4n22n -1+4n +222n -2n 2n -1=12n +2-4n·2n4n ,(12分)令P n +1-P n >0得12n +2-4n·2n >0,所以2n <6n +12n =3+12n <4,解得n =1,所以当n =1时,P n +1-P n >0,即P 2>P 1,(13分) 当n ≥2时,因为2n ≥4,3+12n<4, 所以2n >3+12n =6n +12n,即12n +2-4n·2n <0,此时P n +1<P n ,即P 2>P 3>P 4>…,(14分)所以P n 的最大值为P n =2×22+2×2+222=72,(15分)若存在正整数k ,使得对任意正整数n ,P n ≤k 恒成立,则k ≥P max =72,所以正整数k 的最小值为4.(16分)21. A . 解析:因为四边形ABCD 是圆的内接四边形, 所以∠DAE =∠BCD ,∠F AE =∠BAC =∠BDC .(4分) 因为BC =BD ,所以∠BCD =∠BDC ,(6分) 所以∠DAE =∠F AE ,(8分)所以AE 是四边形ABCD 的外角∠DAF 的平分线.(10分)B . 解析:由题意得⎣⎢⎡⎦⎥⎤2 a b 1⎣⎢⎡⎦⎥⎤3-1=⎣⎢⎡⎦⎥⎤35,即⎩⎪⎨⎪⎧6-a =3,3b -1=5,(3分) 解得⎩⎪⎨⎪⎧a =3,b =2,所以M =⎣⎢⎡⎦⎥⎤2 32 1.(5分)令f (λ)=(λ-2)(λ-1)-6=0,(7分) 解得λ=-1或λ=4,(9分)所以矩阵M 的特征值为-1和4.(10分)C . 解析:(1) 将M (2,3)及对应的参数φ=π3,代入⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),得⎩⎨⎧2=a cos π3,3=b sin π3,所以⎩⎪⎨⎪⎧a =4,b =2,所以曲线C 1的普通方程为x 216+y 24=1.(5分)(2) 曲线C 1的极坐标方程为ρ2cos 2θ16+ρ2sin 2θ4=1,将A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+π2代入得ρ21cos 2θ16+ρ21sin 2θ4=1,ρ22sin 2θ16+ρ22cos 2θ4=1,所以1ρ21+1ρ22=516.(10分)D . 解析:因为对任意x ∈R ,不等式f (x )>a 2-3恒成立,所以f min (x )>a 2-3.(2分) 因为|x -a |+|x +a |≥|x -a -(x +a )|=|2a |, 所以|2a |>a 2-3, ①(4分) 方法一:即|a |2-2|a |-3<0, 解得-1<|a |<3,(8分) 所以-3<a <3.(10分)方法二:①式等价于2a >a 2-3, ② 或2a <-a 2+3, ③(6分) 由②得-1<a <3;(7分) 由③得-3<a <1,(8分) 所以-3<a <3.(10分)22. 解析:(1) 因为AC ⊥CB ,且DC ⊥平面ABC ,则以C 为原点,CB 为x 轴正方向,CA 为y 轴正方向,CD 为z 轴正方向,建立如图所示的空间直角坐标系.(1分)因为AC =BC =BE =2,所以C(0,0,0),B(2,0,0),A(0,2,0),O(1,1,0),E(2,0,2),D(0,0,2), =(0,-2,2),=(2,0,2).(2分)所以cos 〈,〉=422×22=12.(4分)所以AD 和CM 的夹角为60°.(2) 平面BCE 的一个法向量为n =(0,1,0),设平面OCE 的一个法向量为n =(x 0,y 0,z 0).(6分)由=(1,1,0),=(2,0,2),n ⊥,n ⊥,得则⎩⎪⎨⎪⎧2x 0+2z 0=0,x 0+y 0=0,解得⎩⎪⎨⎪⎧z 0=-x 0,y 0=-x 0,(8分)令x 0=-1,则n =(-1,1,1).(9分) 因为二面角OCEB 为锐角二面角,记为θ, 则cos θ=|cos 〈m ,n 〉|=|m·n||m||n|=33.(10分) 23. 解析:(1) 记该学生有i 门学科获得A 等级为事件A i ,i =1,2,3,4.(1分) ξ1的可能取值为0,1,2,3,5.(2分) 则P(A i )=C i 4⎝⎛⎭⎫14i ⎝⎛⎭⎫344-i,(3分)即P(A 0)=81256,P(A 1)=2764,P(A 2)=27128,P(A 3)=364,P(A 4)=1256,则ξ1的分布列为所以E(ξ1)=0×81256+1×2764+2×27128+3×364+5×1256=257256.(5分)(2) ξ2的可能取值为0,2,4,则 P(ξ2=0)=P(A 2)=27128;(7分)P(ξ2=2)=P(A 1)+P(A 3)=2764+364=1532;(8分)P(ξ2=4)=P(A 0)+P(A 5)=81256+1256=41128,(9分)则ξ2的分布列为。
江苏省镇江市2018届高三第一次模拟考试数学试卷(含答案)
镇江市2018届高三年级第一次模拟考试数学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={-2,0,1,3},B ={-1,0,1,2},则A ∩B =________.2. 已知x ,y ∈R ,则“a =1”是“直线ax +y -1=0与直线x +ay +1=0平行”的________条件.(填“充分不必要”“必要不充分”“充分必要”或“既不充分又不必要”)3. 函数y =3sin ⎝⎛⎭⎫2x +π4图象两相邻对称轴的距离为________.4. 设复数z 满足3+4iz=5i ,其中i 为虚数单位,则|z|=________.5. 已知双曲线的左焦点与抛物线y 2=-12x 的焦点重合,则双曲线的右准线方程为________.6. 已知正四棱锥的底面边长为2,侧棱长为6,则该正四棱锥的体积为________.7. 设等比数列{a n }的前n 项和为S n ,若a 1=-2,S 6=9S 3,则a 5的值为________.8. 已知锐角θ满足tan θ=6cos θ,则sin θ+cos θsin θ-cos θ=________.9. 已知函数f(x)=x 2-kx +4,对任意x ∈[1,3],不等式f(x)≥0恒成立,则实数k 的最大值为________.10. 函数y =cos x -x tan x 的定义域为⎣⎡⎦⎤-π4,π4,则其值域为________.11. 已知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A(0,-6),则圆C 的标准方程为________.12. 已知点P(1,0),直线l :y =x +t 与函数y =x 2的图象交于A ,B 两点,当PA →·PB →最小时,直线l 的方程为________.13. 已知a ,b ∈R ,a +b =4,则1a 2+1+1b 2+1的最大值为________.14. 已知k 为常数,函数f(x)=⎩⎪⎨⎪⎧x +2x +1, x ≤0,|ln x|, x>0,若关于x 的方程f(x)=kx +2有且只有四个不同解,则实数k 的取值构成的集合为________.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC中,角A,B,C所对的边分别为a,b,c,若b cos A+a cos B=-2c cos C.(1) 求角C的大小;(2) 若b=2a,且△ABC的面积为23,求c的值.16. (本小题满分14分)如图,在直三棱柱ABCA1B1C1中,D为BC的中点,AB=AC,BC1⊥B1D.求证:(1) A1C∥平面ADB1;(2) 平面A1BC1⊥平面ADB1.如图,准备在墙上钉一个支架,支架由两直杆AC与BD焊接而成,焊接点D把杆AC分成AD,CD两段.其中两固定点A,B间距离为1米,AB与杆AC的夹角为60°,杆AC长为1米.若制作AD段的成本为a元/米,制作CD段的成本是2a元/米,制作杆BD的成本是4a元/米.设∠ADB =α,制作整个支架的总成本记为S元.(1) 求S关于α的函数表达式,并指出α的取值范围;(2) 问AD段多长时,S最小?如图,在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,左焦点F(-2,0),直线l :y =t 与椭圆交于A ,B 两点,M 为椭圆E 上异于A ,B 的点.(1) 求椭圆E 的方程;(2) 若M(-6,-1),以AB 为直径的圆P 过点M ,求圆P 的标准方程; (3) 设直线MA ,MB 与y 轴分别相交于点C ,D ,证明:OC·OD 为定值.已知b>0,且b≠1,函数f(x)=e x+b x,其中e为自然对数的底数.(1) 如果函数f(x)为偶函数,求实数b的值,并求此时函数f(x)的最小值;(2) 对满足b>0,且b≠1的任意实数b,证明:函数y=f(x)的图象经过唯一定点;(3) 如果关于x的方程f(x)=2有且只有一个解,求实数b的取值范围.已知数列{a n }的前n 项和为S n ,对任意正整数n ,总存在正数p ,q ,r ,使得a n =p n -1,S n =q n-r 恒成立;数列{b n }的前n 项和为T n ,且对任意正整数n ,2T n =nb n 恒成立.(1) 求常数p ,q ,r 的值;(2) 证明:数列{b n }为等差数列;(3) 若b 2=2,记P n =2n +b 1a n +2n +2b 22a n +2n +b 34a n +…+2n +b n -12n -2a n +2n +b n2n -1a n,是否存在正整数k ,使得对任意正整数n ,P n ≤k 恒成立?若存在,求正整数k 的最小值;若不存在,请说明理由.2018届高三年级第一次模拟考试(三)数学附加题(本部分满分40分,考试时间30分钟)21. 【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修41:几何证明选讲](本小题满分10分)如图,四边形ABCD 是圆的内接四边形,BC =BD ,BA 的延长线交CD 的延长线于点E ,延长CA 至点F .求证:AE 是∠DAF 的平分线.B. [选修42:矩阵与变换](本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤2a b 1,其中a ,b 均为实数,若点A (3,-1)在矩阵M 的变换作用下得到点B (3,5),求矩阵M 的特征值.C. [选修44:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),且曲线C 上的点M (2,3)对应的参数φ=π3,以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1) 求曲线C 的普通方程;(2) 若曲线C 上的A ,B 两点的极坐标分别为A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+π2,求1ρ21+1ρ22的值.D. [选修45:不等式选讲](本小题满分10分)已知函数f (x )=|x -a |+|x +a |,若对任意x ∈R ,不等式f (x )>a 2-3恒成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤22. (本小题满分10分)如图,AC ⊥BC ,O 为AB 的中点,且DC ⊥平面ABC ,DC ∥BE.已知AC =BC =DC =BE =2. (1) 求直线AD 与CE 所成角; (2) 求二面角OCEB 的余弦值.23. (本小题满分10分)某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立.规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级则加5分.记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值.(1) 求ξ1的数学期望; (2) 求ξ2的分布列.2018届镇江高三年级第一次模拟考试数学参考答案1. {0,1}2. 充要3.π2 4. 1 5. x =836. 837. -328. 3+229. 4 10. [22-π4,1] 11. (x +3)2+(y +3)2=18 12. y =x +1213.2+54 14. ⎩⎨⎧⎭⎬⎫1c 3∪(-e ,-1) 15. 解析:(1) 由正弦定理a sin A =b sin B =c sin C ,且b cos A +a cos B =-2c cos C 得(2分) sin B cos A +sin A cos B =-2sin C cos C , 所以sin (B +A)=-2sin C cos C.(3分)因为A ,B ,C 为三角形的内角,所以B +A =π-C , 所以sin C =-2sin C cos C.(4分)因为C ∈(0,π),所以sin C>0.(5分) 所以cos C =-12,(6分)所以C =2π3.(7分)(2) 因为△ABC 的面积为23, 所以12ab sin C =2 3.(8分)由(1)知C =2π3,所以sin C =32,所以ab =8.(9分)因为b =2a ,所以a =2,b =4,(11分)所以c 2=a 2+b 2-2ab cos C =22+42-2×2×4×⎝⎛⎭⎫-12=28,(13分) 所以c =27.(14分)16. 解析:(1) 设A 1B ∩AB 1=E. 因为ABC-A 1B 1C 1为直三棱柱,所以AA 1B 1B 为矩形,所以E 为A 1B 的中点.(1分)因为D 为BC 的中点,所以DE 为△BA 1C 的中位线,(2分) 所以DE ∥A 1C ,且DE =12A 1C.(3分)因为A 1C ⊄平面ADB 1,DE ⊂平面ADB 1,(5分)所以A 1C ∥平面ADB 1.(7分)(2) 因为AB =AC ,D 为BC 的中点, 所以AD ⊥BC.(8分)因为ABCA 1B 1C 为直三棱柱, 所以BB 1⊥平面ABC.因为AD ⊂平面ABC ,所以BB 1⊥AD.(9分)因为BC ⊂平面BCC 1B 1,BB 1⊂平面BCC 1B ,BC ∩BB 1=B , 所以AD ⊥平面BCC 1B 1.(10分)因为BC 1⊂平面BCC 1B 1,所以AD ⊥BC 1.(11分)因为BC 1⊥B 1D ,AD ⊂平面ADB 1,B 1D ⊂平面ADB 1,AD ∩B 1D =D , 所以BC 1⊥平面ADB 1.(13分) 因为BC 1⊂平面A 1BC 1,所以平面A 1BC 1⊥平面ADB 1.(14分)17. 解析:(1) 在△ABD 中,由正弦定理得1sin α=BD sin π3 =ADsin⎝⎛⎭⎫2π3-α,(1分)所以BD =32sin α,AD =3cos α2sin α+12,(3分)则S =a ⎝⎛⎭⎪⎫3cos α2sin α+12+2a[1-(3cos α2sin α+12)]+4a ⎝ ⎛⎭⎪⎫32sin α=a ⎝ ⎛⎭⎪⎫43-3cos α2sin α+32,(6分)由题意得α∈⎝⎛⎭⎫π3,2π3.(7分)(2) 令S′=3a ·1-4cos αsin 2α=0,设cos α0=14.(11分)所以当cos α=14时,S 最小,此时sin α=154,AD =3cos α2sin α+12=5+510.(12分) 18. 解析:(1) 因为e =c a =22且c =2,所以a =22,b =2.(2分)所以椭圆方程为x 28+y 24=1.(4分)(2) 设A(s ,t),则B(-s ,t),且s 2+2t 2=8.① 因为以AB 为直径的圆P 过M 点, 所以MA ⊥MB ,所以MA →·MB →=0,(5分) 因为MA →=(s +6,t +1),MB →=(-s +6,t +1), 所以6-s 2+(t +1)2=0. ②(6分) 由①②解得t =13或t =-1(舍),所以s 2=709.(7分)因为圆P 的圆心为AB 的中点(0,t),半径为AB2=|s|,(8分)所以圆P 的标准方程为x 2+⎝⎛⎭⎫y -132=709.(9分) (3) 设M(x 0,y 0),则l AM 的方程为y -y 0=t -y 0s -x 0·(x -x 0),若k 不存在,显然不符合条件. 令x =0得y C =-tx 0+sy 0s -x 0;同理y D =-tx 0-sy 0-s -x 0,(11分)所以OC·OD =|y C ·y D |=⎪⎪⎪⎪⎪⎪-tx 0+sy 0s -x 0·-tx 0-sy 0-s -x 0=⎪⎪⎪⎪⎪⎪t 2x 20-s 2y 20x 20-s 2(13分) =⎪⎪⎪⎪⎪⎪t 2x 20-s 2y 20x 20-s 2=⎪⎪⎪⎪⎪⎪t 2(8-2y 20)-(8-2t 2)y 208-2y 20-(8-2t 2)=⎪⎪⎪⎪⎪⎪8t 2-8y 202t 2-2y 20=4为定值.(16分) 19. 解析:(1) 由f(1)=f(-1)得e +b =1e +1b ,解得b =-e (舍),或b =1e,(1分)经检验f(x)=e x +1e x 为偶函数,所以b =1e .(2分)因为f(x)=e x +1ex ≥2,当且仅当x =0时取等号,(3分)所以f(x)的最小值为2.(4分)(2) 假设y =f(x)过定点(x 0,y 0),则y 0=e x 0+bx 0对任意满足b>0,且b ≠1恒成立.(5分) 令b =2得y 0=e x 0+2x 0;令b =3得y 0=e x 0+3x 0,(6分)所以2x 0=3x 0,即⎝⎛⎭⎫32x 0=1,解得唯一解x 0=0,所以y 0=2,(7分)经检验当x =0时,f(0)=2,所以函数y =f(x)的图象经过唯一定点(0,2).(8分)(3) 令g(x)=f(x)-2=e x +b x -2为R 上的连续函数,且g (0)=0,则方程g (x )=0存在一个解.(9分)(i) 当b >0时,g (x )为增函数,此时g (x )=0只有一解.(10分)(ii) 当0<b <1时,令g ′(x )=e x +b x ln b =e x (1+(be )x ln b )=0,解得x 0=log ⎝⎛⎭⎫e b (-ln b ).(11分) 因为e x>0,0<b e <1,ln b <0,令h (x )=⎝⎛⎭⎫1+⎝⎛⎭⎫b e x ln b ,h (x )为单调增函数,所以当x ∈(-∞,x e )时,h (x )<0,所以g ′(x )<0,g (x )为单调减函数;当x ∈(x 0,+∞)时,h (x )>0,所以g ′(x )>0,g (x )为单调增函数,所以g 极小(x )=g (x 0).因为g (x )定义域为R ,所以g min (x )=g (x 0).(13分)①若x 0>0,g (x )在(-∞,x 0)上为单调减函数,g (x 0)<g (0)=0,而g (ln2)=2+b ln2-2=b ln2>0, 所以当x ∈(x 0,ln2)时,g (x )至少存在另外一个零点,矛盾.(14分) ②若x 0<0,g (x )在(x 0,+∞)上为单调增函数,g (x 0)<g (0)=0,而g (log b 2)=elog b 2+2-2=elog b 2>0,所以g (x )在(log b 2,x 0)上存在另外一个解,矛盾.(15分)③当x 0=log ⎝⎛⎭⎫e b (-ln b )=0,则-ln b =1,解得b =1e ,此时方程为g (x )=e x+1e x -2=0, 由(1)得,只有唯一解x 0=0,满足条件.综上所述,当b >1或b =1e 时,方程f (x )=2有且只有一个解.(16分)20. 解析:(1) 因为S n =q n -r ,①所以S n -1=q n -1-r ,(n ≥2)②①-②得S n -S n -1=q n -q n -1,即a n =q n -q n -1,(n ≥2),(1分)因为a n =p n -1,所以p n -1=q n -q n -1,(n ≥2), 当n =2时,p =q 2-q ;当n =3时,p 2=q 3-q 2. 因为p ,q 为正数,所以p =q =2.(3分)因为a 1=1,S 1=q -r ,且a 1=S 1,所以r =1.(4分) (2) 因为2T n =nb n ,③当n ≥2时,2T n -1=(n -1)b n -1,④③-④得2b n =nb n -(n -1)b n -1,即(n -2)b n =(n -1)b n -1,⑤(6分) 方法一:由(n -1)b n +1=nb n ,⑥⑤+⑥得(2n -2)b n =(n -1)b n -1+(n -1)b n +1,(7分) 即2b n =b n -1+b n +1,所以{b n }为等差数列.(8分) 方法二:由(n -2)b n =(n -1)b n -1, 得b nn -1=b n -1n -2, 当n ≥3时,b n n -1=b n -1n -2=…=b 21,所以b n =b 2(n -1),所以b n -b n -1=b 2.(6分)因为n =1时,由2T n =nb n 得2T 1=b 1, 所以b 1=0,则b 2-b 1=b 2,(7分)所以b n -b n -1=b 2对n ≥2恒成立,所以{b n }为等差数列.(8分)(3) 因为b 1=0,b 2=2,由(2)知{b n }为等差数列,所以b n =2n -2.(9分)又由(1)知a n =2n -1,所以P n =2n 2n -1+2n +22n +…+4n -422n -3+4n -222n -2,P n +1=2n +22n +…+4n -422n -3+4n -222n -2+4n 22n -1+4n +222n ,所以P n +1-P n =4n22n -1+4n +222n -2n 2n -1=12n +2-4n·2n4n ,(12分)令P n +1-P n >0得12n +2-4n·2n >0, 所以2n <6n +12n =3+12n <4,解得n =1,所以当n =1时,P n +1-P n >0,即P 2>P 1,(13分) 当n ≥2时,因为2n ≥4,3+12n<4, 所以2n >3+12n =6n +12n,即12n +2-4n·2n <0,此时P n +1<P n ,即P 2>P 3>P 4>…,(14分)所以P n 的最大值为P n =2×22+2×2+222=72,(15分)若存在正整数k ,使得对任意正整数n ,P n ≤k 恒成立,则k ≥P max =72,所以正整数k 的最小值为4.(16分)21. A . 解析:因为四边形ABCD 是圆的内接四边形, 所以∠DAE =∠BCD ,∠F AE =∠BAC =∠BDC .(4分) 因为BC =BD ,所以∠BCD =∠BDC ,(6分) 所以∠DAE =∠F AE ,(8分)所以AE 是四边形ABCD 的外角∠DAF 的平分线.(10分)B . 解析:由题意得⎣⎢⎡⎦⎥⎤2 a b 1⎣⎢⎡⎦⎥⎤3-1=⎣⎢⎡⎦⎥⎤35, 即⎩⎪⎨⎪⎧6-a =3,3b -1=5,(3分) 解得⎩⎪⎨⎪⎧a =3,b =2,所以M =⎣⎢⎡⎦⎥⎤2 32 1.(5分)令f (λ)=(λ-2)(λ-1)-6=0,(7分) 解得λ=-1或λ=4,(9分)所以矩阵M 的特征值为-1和4.(10分)C . 解析:(1) 将M (2,3)及对应的参数φ=π3,代入⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),得⎩⎨⎧2=a cos π3,3=b sin π3,所以⎩⎪⎨⎪⎧a =4,b =2,所以曲线C 1的普通方程为x 216+y 24=1.(5分)(2) 曲线C 1的极坐标方程为ρ2cos 2θ16+ρ2sin 2θ4=1,将A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+π2代入得ρ21cos 2θ16+ρ21sin 2θ4=1,ρ22sin 2θ16+ρ22cos 2θ4=1,所以1ρ21+1ρ22=516.(10分) D . 解析:因为对任意x ∈R ,不等式f (x )>a 2-3恒成立,所以f min (x )>a 2-3.(2分)因为|x -a |+|x +a |≥|x -a -(x +a )|=|2a |, 所以|2a |>a 2-3, ①(4分) 方法一:即|a |2-2|a |-3<0, 解得-1<|a |<3,(8分) 所以-3<a <3.(10分)方法二:①式等价于2a >a 2-3, ② 或2a <-a 2+3, ③(6分) 由②得-1<a <3;(7分) 由③得-3<a <1,(8分) 所以-3<a <3.(10分)22. 解析:(1) 因为AC ⊥CB ,且DC ⊥平面ABC ,则以C 为原点,CB 为x 轴正方向,CA 为y 轴正方向,CD 为z 轴正方向,建立如图所示的空间直角坐标系.(1分)因为AC =BC =BE =2,所以C(0,0,0),B(2,0,0),A(0,2,0),O(1,1,0),E(2,0,2),D(0,0,2),AD →=(0,-2,2),CE →=(2,0,2).(2分) 所以cos 〈AD →,CE →〉=422×22=12.(4分)所以AD 和CM 的夹角为60°.(2) 平面BCE 的一个法向量为n =(0,1,0),设平面OCE 的一个法向量为n =(x 0,y 0,z 0).(6分)由CO →=(1,1,0),CE →=(2,0,2),n ⊥CO →,n ⊥CE →, 得⎩⎪⎨⎪⎧n·CE →=0,n·CO →=0,则⎩⎪⎨⎪⎧2x 0+2z 0=0,x 0+y 0=0,解得⎩⎪⎨⎪⎧z 0=-x 0,y 0=-x 0,(8分) 令x 0=-1,则n =(-1,1,1).(9分)因为二面角OCEB 为锐角二面角,记为θ, 则cos θ=|cos 〈m ,n 〉|=|m·n||m||n|=33.(10分) 23. 解析:(1) 记该学生有i 门学科获得A 等级为事件A i ,i =1,2,3,4.(1分) ξ1的可能取值为0,1,2,3,5.(2分) 则P(A i )=C i 4⎝⎛⎭⎫14i⎝⎛⎭⎫344-i,(3分)即P(A 0)=81256,P(A 1)=2764,P(A 2)=27128,P(A 3)=364,P(A 4)=1256,则ξ1的分布列为所以E(ξ1)=0×81256+1×2764+2×27128+3×364+5×1256=257256.(5分)(2) ξ2的可能取值为0,2,4,则P (ξ2=0)=P(A 2)=27128;(7分)P (ξ2=2)=P(A 1)+P(A 3)=2764+364=1532;(8分)P (ξ2=4)=P(A 0)+P(A 5)=81256+1256=41128,(9分)则ξ2的分布列为。
江苏省镇江市2018届高三上学期期末数学试题
镇江市 2018 届高三上学期期末数学 Ⅰ试题2018. 1参照公式:锥 体体积公式: V1Sh ,此中 S 为底面积 , h 为高 .3一、填空题:本大题共 14 小题,每题 5 分,合计 70 分.不需要写出解答过程,请把答案直接填在答题 ..卡相应地点上 .......1. 已知会合 A 2,0,1,3 , B1,0,1,2 , 则 A B2. 已知 x, y R, 则" a 1" 是直线 ax y 1 0与直线 x ay 1 0 平行的条件(从“充足不用要”“必需不充足”“充足必需”“既不充足也不用要”中选择一个)3. 函数 y 3sin(2x4 ) 图像两对称轴的距离为4.3 4i5i ,则 z = 设复数 z 知足z5. 已知双曲线x 2y 2 1 左焦点与抛物线 y 212x 的焦点重合,则双曲线的右准线方程为a 26. 已知正四棱锥的底面边长为 2,侧棱长为6 ,则正四棱锥的体积为7. 设等比数列a n 的前 n 项和 Sn ,若a 1 2, S 69S 3 , 则 a 5 的值为8. 已知锐角 知足 tan6 cos ,则 sincossincos9. 已知函数 f (x) x 2 kx4 对随意的 x 1,3 ,不等式 f (x) 0 恒建立,则实数 k 的最大值为10. 函数 y cosxx tan x 的定义域为4 , ,其值域为411.已知圆 C 与圆 x 2y 2 10x 10 y 0 相切于原点,且过点 A(0, 6) ,则圆 C 的标准 方程为12. 已知点 P(1,0) ,直线 l : yx t 与函数 y x 2的图像订交于A 、B 两点,当PA PB P 最小时,直线 l 的方程为13. 已知 a, b R, a b 4,1 1则a 2 1 b2 1 的最大值为14. 已知 k 为常数,函数 f (x) x2, x 0,若对于 x 的方程 f (x) kx 2 有且只有4 个不一样的解,x 1ln x x 0则实数 k 的取值会合为二、解答题:本大题共 6 小题,合计90 分.请在答题卡指定地区内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)在ABC 中,角 A, B, C 所对的边分别为a, b, c ,若 b cos A a cos B2c cos C .(1)求 C 的大小;( 2 )若b2a, 且ABC 的面积为 2 3 ,求 c.16.(本小题满分14 分)如图,在直三棱柱ABC A1B1C1中, D 为 BC 中点,AB AC, BC1B1D求证:(1 )A1C //平面ADB1(2)平面A1BC1ADB117.(本小题满分 14 分)如图,准备在墙上钉一个支架,支架由两直杆AC 与 BD 焊接而成,焊接点 D 把杆 AC 分红 AD, CD 两段,此中两固定点 A ,B 间距离为 1 米,AB与杆AC的夹角为60 ,杆 AC 长为 1 米,若制作 AD 段的成本为 a 元/米,制作 CD 段的成本是 2a 元/ 米,制作杆BD 成本是 4a 元/米. 设ADB,则制作整个支架的总成本记为S 元.(1)求S 对于的函数表达式,并求出的取值范围;(2)问AD 段多长时, S 最小?18.(本小题满分16 分)如图,在平面直角坐标系x 2 y 21 (a b 0) 的离心率xOy 中,已知椭圆E :2b 2a为2F ( 2,0) ,直线 l : y t 与椭圆交于 A, B 两点, M 为椭圆上异于A, B 的点.,左焦点2(1 )求椭圆E的方程;(2 )若M6, 1 ,以AB为直径的圆P过M点,求圆P的标准方程;( 3 )设直线MA, MB 与 y 轴分别交于C, D ,证明:OC OD 为定值.19.(本小题满分 16 分)已知 b 0, 且 b 1,函数 f (x) e x b x,此中 e 为自然对数的底数:( 1 )假如函数 f (x) 为偶函数,务实数 b 的值,并求此时函数的最小值;( 2 )对知足 b 0, 且 b 1 的随意实数 b ,证明函数y f (x) 的图像经过独必定点;( 3 )假如对于x 的方程 f (x) 2 有且只有一个解,务实数 b 的取值范围.20.(本小题满分 16 分)已知数列a n 的前n 项和Sn ,对随意正整数n ,总存在正数p, q, r 使得a n p n 1 , S n q n r 恒建立:数列b n 的前n 项和T n,且对随意正整数n,2T n nb n 恒建立 . (1 )求常数p, q, r的值;(2 )证明数列b n为等差数列;( 3 )若b12,记P n 2n b1 2n b2 2n b3 2n b n 1 2n bn,能否存在正整数k ,a n 2a n 4a n 2 n 2 a n 2n 1 a n使得对随意正整数n , P n k 恒建立,若存在,求正整数k 的最小值,若不存在,请说明原因.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届高三年级第一次模拟考试(三)
数学
(满分160分,考试时间120分钟)
一、 填空题:本大题共14小题,每小题5分,共计70分.
1. 已知集合A ={-2,0,1,3},B ={-1,0,1,2},则A ∩B =________.
2. 已知x ,y ∈R ,则“a =1”是“直线ax +y -1=0与直线x +ay +1=0平行”的________条件.(填“充分不必要”“必要不充分”“充分必要”或“既不充分又不必要”)
3. 函数y =3sin ⎝⎛⎭⎫2x +π
4图象两相邻对称轴的距离为________.
4. 设复数z 满足3+4i
z
=5i ,其中i 为虚数单位,则|z|=________.
5. 已知双曲线的左焦点与抛物线y 2=-12x 的焦点重合,则双曲线的右准
线方程为________.
6. 已知正四棱锥的底面边长为2,侧棱长为6,则该正四棱锥的体积为________.
7. 设等比数列{a n }的前n 项和为S n ,若a 1=-2,S 6=9S 3,则a 5的值为________. 8. 已知锐角θ满足tan θ=6cos θ,则sin θ+cos θ
sin θ-cos θ
=________.
9. 已知函数f(x)=x 2-kx +4,对任意x ∈[1,3],不等式f(x)≥0恒成立,则实数k 的最大值为________.
10. 函数y =cos x -x tan x 的定义域为⎣⎡⎦
⎤-π4,π
4,则其值域为________.
11. 已知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A(0,-6),则圆C 的标准方程为________.
12. 已知点P(1,0),直线l :y =x +t 与函数y =x 2的图象交于A ,B 两点,当PA →·PB →
最小时,直线l 的方程为________.
13. 已知a ,b ∈R ,a +b =4,则1a 2+1+1
b 2+1
的最大值为________.
14. 已知k 为常数,函数f(x)=⎩⎪⎨⎪⎧x +2x +1, x ≤0,
|ln x|, x>0,若关于x 的方程f(x)=kx +2有且只有四
个不同解,则实数k 的取值构成的集合为________.
二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.
15. (本小题满分14分)
在△ABC中,角A,B,C所对的边分别为a,b,c,若b cos A+a cos B=-2c cos C.
(1) 求角C的大小;
(2) 若b=2a,且△ABC的面积为23,求c的值.
16. (本小题满分14分)
如图,在直三棱柱ABCA1B1C1中,D为BC的中点,AB=AC,BC1⊥B1D.求证:
(1) A1C∥平面ADB1;
(2) 平面A1BC1⊥平面ADB1.
如图,准备在墙上钉一个支架,支架由两直杆AC与BD焊接而成,焊接点D把杆AC 分成AD,CD两段.其中两固定点A,B间距离为1米,AB与杆AC的夹角为60°,杆AC 长为1米.若制作AD段的成本为a元/米,制作CD段的成本是2a元/米,制作杆BD的成本是4a元/米.设∠ADB=α,制作整个支架的总成本记为S元.
(1) 求S关于α的函数表达式,并指出α的取值范围;
(2) 问AD段多长时,S最小?
如图,在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为2
2,左焦
点F(-2,0),直线l :y =t 与椭圆交于A ,B 两点,M 为椭圆E 上异于A ,B 的点.
(1) 求椭圆E 的方程;
(2) 若M(-6,-1),以AB 为直径的圆P 过点M ,求圆P 的标准方程; (3) 设直线MA ,MB 与y 轴分别相交于点C ,D ,证明:OC·OD 为定值.
已知b>0,且b≠1,函数f(x)=e x+b x,其中e为自然对数的底数.
(1) 如果函数f(x)为偶函数,求实数b的值,并求此时函数f(x)的最小值;
(2) 对满足b>0,且b≠1的任意实数b,证明:函数y=f(x)的图象经过唯一定点;
(3) 如果关于x的方程f(x)=2有且只有一个解,求实数b的取值范围.
已知数列{a n }的前n 项和为S n ,对任意正整数n ,总存在正数p ,q ,r ,使得a n =p n -
1,S n =q n -r 恒成立;数列{b n }的前n 项和为T n ,且对任意正整数n ,2T n =nb n 恒成立.
(1) 求常数p ,q ,r 的值;
(2) 证明:数列{b n }为等差数列;
(3) 若b 2=2,记P n =2n +b 1a n +2n +2b 22a n +2n +b 34a n +…+2n +b n -12n -2a n +2n +b n
2n -1a n
,是否存在正整
数k ,使得对任意正整数n ,P n ≤k 恒成立?若存在,求正整数k 的最小值;若不存在,请说
明理由.
2018届高三年级第一次模拟考试(三)
数学附加题
(本部分满分40分,考试时间30分钟)
21. 【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
A. [选修41:几何证明选讲](本小题满分10分)
如图,四边形ABCD 是圆的内接四边形,BC =BD ,BA 的延长线交CD 的延长线于点E ,延长CA 至点F .求证:AE 是∠DAF 的平分线.
B. [选修42:矩阵与变换](本小题满分10分)
已知矩阵M =⎣⎢⎡⎦
⎥⎤2a b 1,其中a ,b 均为实数,若点A (3,-1)在矩阵M 的变换作用下得到点B (3,5),求矩阵M 的特征值.
C. [选修44:坐标系与参数方程](本小题满分10分)
在平面直角坐标系xOy 中,曲线C 的参数方程为⎩
⎪⎨⎪
⎧x =a cos φ,y =b sin φ(a >b >0,φ为参数),且曲
线C 上的点M (2,3)对应的参数φ=π
3
,以O 为极点,x 轴的正半轴为极轴建立极坐标系.
(1) 求曲线C 的普通方程;
(2) 若曲线C 上的A ,B 两点的极坐标分别为A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+π2,求1ρ21+1
ρ22
的
值.
D. [选修45:不等式选讲](本小题满分10分)
已知函数f (x )=|x -a |+|x +a |,若对任意x ∈R ,不等式f (x )>a 2-3恒成立,求实数a 的取值范围.
【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤
22. (本小题满分10分)
如图,AC ⊥BC ,O 为AB 的中点,且DC ⊥平面ABC ,DC ∥BE.已知AC =BC =DC =BE =2.
(1) 求直线AD 与CE 所成角; (2) 求二面角OCEB 的余弦值.
23. (本小题满分10分)
某学生参加4门学科的学业水平测试,每门得A 等级的概率都是1
4,该学生各学科等级
成绩彼此独立.规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级则加5分.记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值.
(1) 求ξ1的数学期望; (2) 求ξ2的分布列.。