辽宁省大连市2015年中考数学试题含答案解析(word版)
2015年辽宁省大连市中考数学试题(解析版)
2015辽宁省大连市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015辽宁大连,1,3分)﹣2的绝对值是( ) A. 2 B.-2 C. 21 D.-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱 【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C .3.(2015辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A. 1,2,3 B.,1,2,3 C.3,4,8 D.4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2015辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D . 5. (2015辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=xB. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x +2-2x =4.移项合并得:2=x 。
故选C .6. (2015辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9-【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C .7. (2015辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B .8. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C =90°,AC =2,所以CD =()1252222=-=-AC AD ,因为∠ADC =2∠B ,∠ADC =∠B +∠BAD ,所以∠B =∠BAD ,所以BD =AD =5,所以BC =5+1,故选D .二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。
辽宁省大连市2015年中考数学试卷(解析版)
2015辽宁省大连市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015辽宁大连,1,3分)﹣2的绝对值是( ) A. 2 B.-2 C.21 D.-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C .3.(2015辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A. 1,2,3 B.,1,2,3 C.3,4,8 D.4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D .4. (2015辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2)【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D .5. (2015辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( ) A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x +2-2x =4.移项合并得:2=x 。
故选C .6. (2015辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6 B.2x 6- C.2x 9 D.2x 9-【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C .7. (2015辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B .8. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为( )A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C =90°,AC =2,所以CD =()1252222=-=-AC AD ,因为∠ADC =2∠B ,∠ADC =∠B +∠BAD ,所以∠B =∠BAD ,所以BD =AD =5,所以BC =5+1,故选D .二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=) 【答案】>【解析】解:根据一切正数大于负数,故答案为>。
2015年辽宁省大连市高新区中考一模数学试卷(解析版)
2015年辽宁省大连市高新区中考数学一模试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)2的倒数是()A.2B.﹣2C.D.﹣2.(3分)如图,直线a∥b,直线a、b被直线c所截,∠1=40°,则∠2的度数为()A.40°B.80°C.140°D.160°3.(3分)为促进义务教育办学条件均衡,某市投入260万元资金为部分学校添置实验仪器,260万用科学记数法表示为()A.260×103B.26×105C.2.6×105D.2.6×106 4.(3分)下列计算正确的是()A.a2+a2=a4B.(2a2)3=6a6C.a8÷a2=a4D.a3•a4=a7 5.(3分)在平面直角坐标系中,点A(﹣2,3)关于x轴对称的对称点B的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)6.(3分)不等式组的解集为()A.x≥2B.x<3C.2≤x<3D.x>37.(3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.8.(3分)一个圆锥的主视图为等边三角形,将这个圆锥沿着一条母线剪开,所得侧面展开图的圆心角度数为()A.60°B.90°C.120°D.180°二、填空题(共8小题,每小题3分,满分24分)9.(3分)分解因式:m2﹣9=.10.(3分)函数y=﹣(x+1)2+5的最大值为.11.(3分)如图,A、B、C三点在圆O上,且OB⊥OC,则∠A的度数是.12.(3分)如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.13.(3分)如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD于点E,则△CDE的周长为.14.(3分)某校数学兴趣小组同学的年龄情况如表:则这个小组同学的平均年龄为岁.15.(3分)小明在距电势塔塔底水平距离58米处,看塔顶的仰角为20°(不考虑小明的身高因素),则此塔高约为米(精确到1米).(参考数据:sin20°≈0.3,sin70°≈0.9,tan20°≈0.4,tan70°≈2.7)16.(3分)反比例反数y=(x>0)的图象如图所示,点B在图象上,连接OB并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象=3,则k=.于点C,连接BC、OC,S△BOC三、解答题(本题共9小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算:(2﹣)2+﹣()﹣1.18.(9分)解分式方程:.19.(9分)如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,BE∥DF,AD∥BC.求证:AD=BC.20.(12分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(9分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?22.(9分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止,两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为km/h,t=;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.23.(10分)如图,D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)图中∠ADB=°,理由是;(2)判断直线CD与圆O的位置关系,并证明;(3)过点B作圆O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求线段BE的长.24.(11分)如图,在矩形ABCD中,AB=2,BC=6,将该矩形沿对角线BD 翻折,C的对应点为G,使△DBG与△DBC在同一平面内,BG交AD于点E,在DA延长线上取点F,使AE=AF,连接BF.(1)△BEF的形状为;(直接写出答案)(2)求线段EG的长;(3)将△BAF沿射线BD方向以每秒2个单位的速度平移,当点B到达点D时停止平移.设平移的时间为t秒,在平移过程中,△BAF与△BDG重叠部分的面积为S,求S与t的函数关系式并直接写出t的取值范围.25.(12分)已知:抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D,抛物线的对称轴交x轴于点E.(1)顶点D的坐标为(用含a的式子表示);(2)连接AC、CD、AD、BC,求△ACD与△ABC的面积之比;(3)若点C(0,﹣3),点M为抛物线上的点,过M作直线CD的垂线,垂足为N,且使得∠CMN=∠BDE,求点M的坐标.2015年辽宁省大连市高新区中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)2的倒数是()A.2B.﹣2C.D.﹣【解答】解:∵2×=1,∴2的倒数是.故选:C.2.(3分)如图,直线a∥b,直线a、b被直线c所截,∠1=40°,则∠2的度数为()A.40°B.80°C.140°D.160°【解答】解:∵a∥b,∴∠3=∠1=40°,∴∠1=∠3=40°.故选:A.3.(3分)为促进义务教育办学条件均衡,某市投入260万元资金为部分学校添置实验仪器,260万用科学记数法表示为()A.260×103B.26×105C.2.6×105D.2.6×106【解答】解:将260万用科学记数法表示为2.6×106.故选:D.4.(3分)下列计算正确的是()A.a2+a2=a4B.(2a2)3=6a6C.a8÷a2=a4D.a3•a4=a7【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、积的乘方等于乘方的积,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.5.(3分)在平面直角坐标系中,点A(﹣2,3)关于x轴对称的对称点B的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)【解答】解:∵点A(﹣2,3),∴关于x轴对称的对称点B的坐标为:(﹣2,﹣3).故选:B.6.(3分)不等式组的解集为()A.x≥2B.x<3C.2≤x<3D.x>3【解答】解:∵解不等式①得:x≥2,解不等式②得:x<3,∴不等式组的解集为2≤x<3,故选:C.7.(3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.【解答】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.8.(3分)一个圆锥的主视图为等边三角形,将这个圆锥沿着一条母线剪开,所得侧面展开图的圆心角度数为()A.60°B.90°C.120°D.180°【解答】解:设侧面展开图的圆心角度数为n°,等边三角形的边长为x,则母线长为x,底面圆的半径为x,根据题意得2π•x=,解得n=180,即侧面展开图的圆心角度数为180°.故选:D.二、填空题(共8小题,每小题3分,满分24分)9.(3分)分解因式:m2﹣9=(m+3)(m﹣3).【解答】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).10.(3分)函数y=﹣(x+1)2+5的最大值为5.【解答】解:∵﹣1<0,∴函数y=﹣(x+1)2+5的最大值为5.故答案为:5.11.(3分)如图,A、B、C三点在圆O上,且OB⊥OC,则∠A的度数是45°.【解答】解:∵OB⊥OC,∴∠BOC=90°,∴∠A=∠BOC=45°.故答案为:45°.12.(3分)如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=4cm.【解答】解:∵∠ACB=90°,D是AB的中点,∴AB=2CD=2×2=4cm.故答案为:4.13.(3分)如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD于点E,则△CDE的周长为6.【解答】解:∵四边形ABCD是平行四边形,AB=2,BC=4,∴AD=BC=4,CD=AB=2,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长为DE+CE+DC=DE+AE+CD=AD+CD=4+2=6,故答案为:6.14.(3分)某校数学兴趣小组同学的年龄情况如表:则这个小组同学的平均年龄为14岁.【解答】解:平均年龄为:=14岁,故答案为:14.15.(3分)小明在距电势塔塔底水平距离58米处,看塔顶的仰角为20°(不考虑小明的身高因素),则此塔高约为23米(精确到1米).(参考数据:sin20°≈0.3,sin70°≈0.9,tan20°≈0.4,tan70°≈2.7)【解答】解:在Rt△ABC中,AB=58米,∠BAC=20°,∵=tan20°,∴BC =AB tan20°=58×0.4≈23(米).故答案为:23.16.(3分)反比例反数y =(x >0)的图象如图所示,点B 在图象上,连接OB 并延长到点A ,使AB =OB ,过点A 作AC ∥y 轴交y =(x >0)的图象于点C ,连接BC 、OC ,S △BOC =3,则k = 4 .【解答】解:如图:延长AC 交x 轴于D 点,设B 点坐标为(a ,),由AB =OB ,得A (2a ,),D (2a ,0).由AB =OB ,得S △ABC =S △BOC =3,S △COD =OD •CD =k .由三角形面积的和差,得S △AOD ﹣S △COD =S △AOC , 即×2a ×﹣k =6. 解得k =4.故答案为:4.三、解答题(本题共9小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算:(2﹣)2+﹣()﹣1.【解答】解:原式=4﹣4+2+3﹣3=3﹣.18.(9分)解分式方程:.【解答】解:去分母,得3﹣2x=x﹣2,整理,得3x=5,解得x=.经检验,x=是原方程式的解.所以原方程式的解是x=.19.(9分)如图,在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,BE∥DF,AD∥BC.求证:AD=BC.【解答】证明:∵BE∥DF,AD∥BC,∴∠BEC=∠DF A,∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴AD=BC.20.(12分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.21.(9分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.22.(9分)一辆轿车从甲地驶往乙地,到达乙地后立即返回甲地,速度是原来的1.5倍,往返共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止,两车同时出发,匀速行驶,设轿车行驶的时间为x(h),两车离开甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图所示.(1)轿车从乙地返回甲地的速度为120km/h,t=;(2)求轿车从乙地返回甲地时y与x之间的函数关系式;(3)当轿车从甲地返回乙地的途中与货车相遇时,求相遇处到甲地的距离.【解答】解:(1)轿车从甲地到乙地的速度是:=80(千米/小时),则轿车从乙地返回甲地的速度为80×1.5=120(千米/小时),则t=+=(小时).故答案是:120,;(2)设y与x的函数解析式是y=kx+b,则,解得:,则函数解析式是y=﹣120x+300;(3)设货车的解析式是y=mx,则2m=120,解得:m=60,则函数解析式是y=60x.根据题意得:,解得:,则轿车从甲地返回乙地的途中与货车相遇时,相遇处到甲地的距离是100千米.23.(10分)如图,D为圆O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)图中∠ADB=90°,理由是直径所对的圆周角是直角;(2)判断直线CD与圆O的位置关系,并证明;(3)过点B作圆O的切线交CD的延长线于点E,若BC=6,tan∠CDA=,求线段BE的长.【解答】(1)解:∵AB是⊙O的直径,∴∠ADB=90°;(2)证明:如图,连OD,OE,∵AB为直径,∴∠ADB=90°,即∠ADO+∠1=90°,又∵∠CDA=∠CBD,而∠CBD=∠1,∴∠1=∠CDA,∴∠CDA+∠ADO=90°,即∠CDO=90°,∴CD是⊙O的切线;(2)解:∵EB为⊙O的切线,∴ED=EB,OE⊥DB,∴∠ABD+∠DBE=90°,∠OEB+∠DBE=90°,∴∠ABD=∠OEB,∴∠CDA=∠OEB.∵tan∠CDA=,∴tan∠OEB==,∵Rt△CDO∽Rt△CBE,∴===,∴CD=×6=4,在Rt△CBE中,设BE=x,∴(x+4)2=x2+62,解得x=.即BE的长为.24.(11分)如图,在矩形ABCD中,AB=2,BC=6,将该矩形沿对角线BD翻折,C的对应点为G,使△DBG与△DBC在同一平面内,BG交AD于点E,在DA延长线上取点F,使AE=AF,连接BF.(1)△BEF的形状为等腰三角形;(直接写出答案)(2)求线段EG的长;(3)将△BAF沿射线BD方向以每秒2个单位的速度平移,当点B到达点D时停止平移.设平移的时间为t秒,在平移过程中,△BAF与△BDG重叠部分的面积为S,求S与t的函数关系式并直接写出t的取值范围.【解答】解:(1)在△F AB和△EAB中,,∴△F AB≌△EAB(SAS),∴BE=BF,∴△BEF是等腰三角形,故答案为:等腰三角形;(2)∵矩形沿对角线BD翻折,∴△BDC≌△BDG,∴DG=DC=AB,在△EBA和△EDG中,,∴△DGE≌△EAB(AAS),∴BE=DE,AE=EG,在Rt△GED中,EG2+DG2=DE2,即,解得:EG=2;(3)①当时,△BAF沿射线BD方向的平移图如图1,∴HQ=HP=BP tan30°=,∴,②当时,△BAF沿射线BD方向的平移图如图2,∴,,,∴,③当时,△BAF沿射线BD方向的平移图如图3,∴,∴,综上所述:S与t的函数关系式为:.25.(12分)已知:抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D,抛物线的对称轴交x轴于点E.(1)顶点D的坐标为(1,﹣4a)(用含a的式子表示);(2)连接AC、CD、AD、BC,求△ACD与△ABC的面积之比;(3)若点C(0,﹣3),点M为抛物线上的点,过M作直线CD的垂线,垂足为N,且使得∠CMN=∠BDE,求点M的坐标.【解答】解:(1)∵y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴该抛物线的解析式可设为y=a(x﹣3)(x+1)=a(x﹣1)2﹣4a,∴顶点D的坐标为(1,﹣4a).故答案是:(1,﹣4a);(2)设直线AD交y轴于点H.由(1)知,该抛物线的解析式为y=a(x﹣1)2﹣4a,则C(0,﹣3a).由A(﹣1,0),D(1,﹣4a)易得直线AD的解析式为:y=﹣2ax﹣2a.则H(0,﹣2a).所以HC=a.又∵A(﹣1,0),B(3,0),∴AB=4,∴===6,即△ACD与△ABC的面积之比是1:6.(3)(i)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y 轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=b,则MN=2b.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=b,∴MF=MN+NF=3b,∴MG=FG=b,∴CG=FG﹣FC=b,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=b,∴MG=FG=b,∴CG=FG+FC=b,∴M(b,﹣3+b).代入抛物线y=(x﹣3)(x+1),解得b=5,∴M(5,12);(ii)当点M在对称轴左侧时.∵∠CMN=∠BDE<45°,∴∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,∴点M不存在.综上可知,点M坐标为(,﹣)或(5,12).第21页(共21页)。
2015年辽宁省大连市中考数学试卷及解析
2015年辽宁省大连市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)(2015•大连)﹣2的绝对值是()A.2B.﹣2 C.D.2.(3分)(2015•大连)某几何体的三视图如图所示,则这个几何体是()A.球B.圆柱C.圆锥D.三棱柱3.(3分)(2015•大连)下列长度的三条线段能组成三角形的是()A.1,2,3 B.1,,3 C.3,4,8 D.4,5,64.(3分)(2015•大连)在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2) B.(3,0) C.(3,4) D.(5,2)5.(3分)(2015•大连)方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2 D.x=16.(3分)(2015•大连)计算(﹣3x)2的结果是()A.6x2B.﹣6x2C.9x2D.﹣9x27.(3分)(2015•大连)某舞蹈队10名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数 2 4 3 1则这10名队员年龄的众数是()A.16 B.14 C.4D.38.(3分)(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+1二、填空题(本题共8小题,每小题3分,满分24分)9.(3分)(2015•大连)比较大小:3﹣2.(填“>”、“<”或“=”)10.(3分)(2015•大连)若a=49,b=109,则ab﹣9a的值为.11.(3分)(2015•大连)不等式2x+3<﹣1的解集为.12.(3分)(2015•大连)如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为.13.(3分)(2015•大连)一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.14.(3分)(2015•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=cm.15.(3分)(2015•大连)如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,则楼BC的高度约为m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)16.(3分)(2015•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB 与直线y=2x+1相交,则m的取值范围为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12,共39分)17.(9分)(2015•大连)计算:(+1)(﹣1)+﹣()0.18.(9分)(2015•大连)解方程:x2﹣6x﹣4=0.19.(9分)(2015•大连)如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.20.(12分)(2015•大连)某地区共有1800名初三学生,为了解这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.等级测试成绩(分) 人数优秀45≤x≤50 140良好37.5≤x<45 36及格30≤x<37.5不及格x<30 6根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有人,达到优秀的人数占本次测试总人数的百分比为%.(2)本次测试的学生数为人,其中,体质健康成绩为及格的有人,不及格的人数占本次测试总人数的百分比为%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.。
辽宁省大连市2015年中考数学试题(word版-含解析)
2015省市中考数学试卷(解析版) (满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015,1,3分)﹣2的绝对值是( )A . 2B .-2C .21 D .-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C.3.(2015,3,3分)下列长度的三条线段能组成三角形的是( )A . 1,2,3B .,1,2,3C .3,4,8D .4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2015,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D.5. (2015,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x+2-2x=4.移项合并得:2=x 。
故选C. 6. (2015,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9- 【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C.7. (2015,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( ) A. 16 B.14 C.4 D.3 【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B.8. (2015,8,3分)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=5,所以BC=5+1,故选D.二、填空题(本大题共8小题,每小题3分,满分24分.)9. (2015,9,3分)比较大小:3__________ -2(填>、<或=) 【答案】>【解析】解:根据一切正数大于负数,故答案为>。
2015年中考数学试题及答案(Word版)
2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
2015年辽宁省大连市甘井子区中考数学二模试卷(解析版)
2015年辽宁省大连市甘井子区中考数学二模试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)数轴上到原点的距离是的点表示的数是()A.B.C.±D.2.(3分)下面的几何体中,主视图为三角形的是()A.B.C.D.3.(3分)下列运算正确的是()A.(﹣2a2)3=﹣8a8 B.3a2﹣a2=2a2C.a6÷a3=a9D.a2×a3=a64.(3分)在平面直角坐标系中,点点(﹣2,3)关于原点对称的点的坐标为()A.(﹣2,﹣3)B.(3,﹣2)C.(2,﹣3)D.(2,3)5.(3分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.30°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.B.C.D.7.(3分)在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,948.(3分)圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm二、填空题(本题共8小题,每小题3分,共24分)9.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.10.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.11.(3分)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为.12.(3分)如图,AB为⊙O的直径,菱形AODC的顶点A,C,D在⊙O上,连接BC,则∠ABC的度数为.13.(3分)不等式组的整数解是.14.(3分)如图,为测量位于一水塘旁的两点A、B间的距离,在地面上确定点O,分别取OA、OB的中点C、D,量得CD=20m,则A、B之间的距离是m.15.(3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为.16.(3分)如图,已知第一象限内的点A在反比例函数y=上,第二象限内的点B在反比例函数y=上,且OA⊥OB,tanA=,则k的值为.三、解答题(本题共4小题,其中17,18,19题各9分,20题12分,共39分)17.(9分)计算:﹣(﹣1)2+(﹣)﹣1+(﹣5)0.18.(9分)先化简,再求值:(1﹣)÷,其中a=﹣1.19.(9分)如图,已知▱ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.20.(12分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?四、解答题(本题共3小题,其中21,22题各9分,23题10分,共28分)21.(9分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.22.(9分)已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y 轴正半轴上,OA=OB,函数y=的图象与线段AB交于M点,且AM=BM.(1)求点M的坐标;(2)求直线AB的解析式.23.(10分)如图所示,已知P为⊙O外一点,PA为⊙O的切线,A为切点,B 为⊙O上一点,且PA=PB,连接OP、AB相交于点D,过点O作OC⊥OP交⊙O 于C,连接BC交OP于E.(1)求证:PB为⊙O的切线;(2)连接AC,若tan∠ACB=,⊙O的半径为5,求CE的长.五、解答题(本题共3小题,其中24题11分,25,26题各12分,共35分)24.(11分)如图1,在Rt△AOC中,∠ACO=90°,动点P从点A出发以每秒1个单位的速度沿AO向终点O运动,动点Q从点O出发以每秒2个单位的速度沿y轴正半轴运动,连接PQ,若P,Q两点同时出发,当点P到达终点时点Q 也停止运动,过点D作PD⊥AO交y轴正半轴于点D,设动点P运动的时间为t 秒,图2是△PDQ的面积S与运动时间t的完整图象,BE,EF为曲线,且B(0,),F(5,0)(1)求△PDQ的面积S关于t的函数关系式;(2)是否存在某一时刻t,使△PDQ为等腰三角形,若存在,求出点Q的坐标,若不存在,请说明理由.(3)过点P作PG⊥OC于点G,连接DG,把△PDG沿直线PD折叠,当点G的对应点G′恰好落在AC边上时,请求出t的值.25.(12分)在△ADB和△AEC中,AD=AE,∠DAE=α,∠AEC=∠ADB=90°,BD=kCE,延长ED交BC于点F.(1)如图1,当k=1时,是否存在与BF相等的线段?若存在,请找出,并加以证明;若不存在,说明理由.(2)如图2,当k≠1时,猜想并证明EC,ED,EF的数量关系(用含k,α的式子表示).26.(12分)如图,抛物线y=ax2+bx+2交x轴于A、B两点,交y轴于点C,∠BCO=∠CAB,tan∠BCO=(1)求抛物线解析式;(2)将抛物线沿y轴负半轴平移t(t>0)个单位,当抛物线与线段OA有且只有一个交点时,请直接写出t的取值范围或者t的值;(3)分别以线段AC的端点为顶点,以AC为一边作一个与∠ABC相等的角,角的另一边与抛物线交于点P,求点P的坐标.2015年辽宁省大连市甘井子区中考数学二模试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)数轴上到原点的距离是的点表示的数是()A.B.C.±D.【解答】解:设这个数是x,则|x|=,解得x=±.故选:C.2.(3分)下面的几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.3.(3分)下列运算正确的是()A.(﹣2a2)3=﹣8a8 B.3a2﹣a2=2a2C.a6÷a3=a9D.a2×a3=a6【解答】解:A、(﹣2a2)3=﹣8a6≠﹣8a8,本选项错误;B、3a2﹣a2=2a2,本选项正确;C、a6÷a3=a3≠a9,本选项错误;D、a2×a3=a5≠a6,本选项错误.故选:B.4.(3分)在平面直角坐标系中,点点(﹣2,3)关于原点对称的点的坐标为()A.(﹣2,﹣3)B.(3,﹣2)C.(2,﹣3)D.(2,3)【解答】解:点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故选:C.5.(3分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.30°B.60°C.90°D.120°【解答】解:由题意得,剩下的三角形是直角三角形,所以,∠1+∠2=90°.故选:C.6.(3分)如图,在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.B.C.D.【解答】解:过A作AC⊥x轴,∵A(2,1),∴AC=1,OC=2,在Rt△AOC中,根据勾股定理得:OA==,则sin∠AOB==,故选:A.7.(3分)在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,94【解答】解:这组数据按顺序排列为:88,92,93,94,95,95,96,故众数为:95,中位数为:94.故选:D.8.(3分)圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm【解答】解:圆锥的底面周长是:6πcm,设母线长是l,则lπ=6π,解得:l=6.故选:B.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.10.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k的取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.11.(3分)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为45°.【解答】解:∵AB∥CD,∴∠ABE=∠CFE,∵∠EBA=45°,∴∠CFE=45°,∴∠E+∠D=∠CFE=45°,故答案为:45°.12.(3分)如图,AB为⊙O的直径,菱形AODC的顶点A,C,D在⊙O上,连接BC,则∠ABC的度数为30°.【解答】解:连接OC,∵四边形AODC是菱形,∴AC=AO,∵OA=OC,∴AC=AO=OC,∴△AOC是等边三角形,∴∠A=60°,∵AB为直径,∴∠ACB=90°,∴∠ABC=90°﹣60°=30°,故答案为:30°.13.(3分)不等式组的整数解是﹣1,0,1.【解答】解:由①得:x>﹣2,解②得:x≤,则不等式组的解集是:﹣2<x≤.则整数解是:﹣1,0,1.故答案为:﹣1,0,1.14.(3分)如图,为测量位于一水塘旁的两点A、B间的距离,在地面上确定点O,分别取OA、OB的中点C、D,量得CD=20m,则A、B之间的距离是40m.【解答】解:∵C、D分别是OA、OB的中点,∴CD是△OAB的中位线,∵CD=20m,∴AB=2CD=2×20=40m.故答案为:40.15.(3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为.【解答】解:共有16种结果,两次都摸到白球的有4种结果,则概率是=.故答案是:.16.(3分)如图,已知第一象限内的点A在反比例函数y=上,第二象限内的点B在反比例函数y=上,且OA⊥OB,tanA=,则k的值为﹣4.【解答】解:如图,作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=()2=(tanA)2=2,=×2=1,又∵S△AOC∴S=2,△OBD∴k=﹣4.故答案为:﹣4.三、解答题(本题共4小题,其中17,18,19题各9分,20题12分,共39分)17.(9分)计算:﹣(﹣1)2+(﹣)﹣1+(﹣5)0.【解答】解:﹣(﹣1)2+(﹣)﹣1+(﹣5)0===﹣10.18.(9分)先化简,再求值:(1﹣)÷,其中a=﹣1.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.19.(9分)如图,已知▱ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.【解答】证明:∵F是BC边的中点,∴BF=CF,∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠C=∠FBE,∠CDF=∠E,∵在△CDF和△BEF中∴△CDF≌△BEF(AAS),∴BE=DC,∵AB=DC,∴AB=BE.20.(12分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表(1)这次抽取了200名学生的竞赛成绩进行统计,其中:m=70,n= 0.12;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强的学生约有420人.四、解答题(本题共3小题,其中21,22题各9分,23题10分,共28分)21.(9分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.【解答】解:(1)ab﹣4x2;(2)依题意有:ab﹣4x2=4x2,将a=6,b=4,代入上式,得x2=3,解得x1=,x2=﹣(舍去).即正方形的边长为22.(9分)已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y 轴正半轴上,OA=OB,函数y=的图象与线段AB交于M点,且AM=BM.(1)求点M的坐标;(2)求直线AB的解析式.【解答】解:(1)过点M作MC⊥x轴,MD⊥y轴,∵AM=BM,∴点M为AB的中点,∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA,∴点C和点D分别为OA与OB的中点,∴MC=MD,则点M的坐标可以表示为(﹣a,a),把M(﹣a,a)代入函数y=中,解得a=2,则点M的坐标为(﹣2,2);(2)∵则点M的坐标为(﹣2,2),∴MC=2,MD=2,∴OA=OB=2MC=4,∴A(﹣4,0),B(0,4),设直线AB的解析式为y=kx+b,把点A(﹣4,0)和B(0,4)分别代入y=kx+b中得,解得:.则直线AB的解析式为y=x+4.23.(10分)如图所示,已知P为⊙O外一点,PA为⊙O的切线,A为切点,B 为⊙O上一点,且PA=PB,连接OP、AB相交于点D,过点O作OC⊥OP交⊙O 于C,连接BC交OP于E.(1)求证:PB为⊙O的切线;(2)连接AC,若tan∠ACB=,⊙O的半径为5,求CE的长.【解答】解:(1)连接OA,OB,∵PA为⊙O的切线,∴∠OAP=90°,在△AOP与△BOP中,,∴△AOP≌△BOP,∴∠PBO=∠OAP=90°,∴OB⊥PB.∴PB为⊙O的切线;(2)∵PA,PB为⊙O的切线,∴∠APO=∠BPO,PA=PB,∴AB⊥OP,∴∠PAD=∠AOP,∵tan∠ACB=,∴tan∠PAD=tan∠AOP=,∴设AD=3x,OD=4x,∴OA=5x=5,∴AD=3,OD=4,∴BD=AD=3,∵OC⊥OP,∴∠COE=∠EDB=90°,∵∠CEO=∠DEB,∴△CEO∽△BDE,∴,即,∴OE=,∴CE===.五、解答题(本题共3小题,其中24题11分,25,26题各12分,共35分)24.(11分)如图1,在Rt△AOC中,∠ACO=90°,动点P从点A出发以每秒1个单位的速度沿AO向终点O运动,动点Q从点O出发以每秒2个单位的速度沿y轴正半轴运动,连接PQ,若P,Q两点同时出发,当点P到达终点时点Q 也停止运动,过点D作PD⊥AO交y轴正半轴于点D,设动点P运动的时间为t 秒,图2是△PDQ的面积S与运动时间t的完整图象,BE,EF为曲线,且B(0,),F(5,0)(1)求△PDQ的面积S关于t的函数关系式;(2)是否存在某一时刻t,使△PDQ为等腰三角形,若存在,求出点Q的坐标,若不存在,请说明理由.(3)过点P作PG⊥OC于点G,连接DG,把△PDG沿直线PD折叠,当点G的对应点G′恰好落在AC边上时,请求出t的值.【解答】解:(1)如图1中,作AM⊥OA于M.由题意OA=5,•OA•AM=,∴AM=,OM===∵AC∥OD,∴∠AOM=∠OAC,∠OAM=∠ACO=90°,∴△OAM∽△ACO,∴==,∴==,∴AC=3,OC=4,由△OPD∽△ACO,得==,∴==,∴OD=(5﹣t),PD=(5﹣t),当OQ=OD时,2t=(5﹣t),解得t=,①当0≤t≤时,作PH⊥OD于H.易知PH=(5﹣t),∴S=•DQ•PH=•[(5﹣t)﹣2t]•(5﹣t)=t2﹣t+.②当<t≤5时,如图2中,S=DQ•PH=﹣t2+t﹣.综上所述,S=.(2)0≤t≤时,①当DQ=PD时,(5﹣t)﹣2t=(5﹣t),解得t=.②当PQ=PD时,cos∠PDQ==,解得t=.③当QD=QP时,cos∠PDQ==,解得t=.<t≤5时,只有DQ=DP时,△DPQ是等腰三角形,2t﹣(5﹣t)=(5﹣t),解得t=3.综上所述,t=s或s或s或3s时,△PDQ是等腰三角形.(3)如图3中,∵PG∥AC,∴=,∴=,∴PG=PG′=(5﹣t),∵∠OPG=∠APG′=∠AOC,∴PG′=AG′=PG,∵=cos∠OAC,∴=,∴t=,∴t=s时,点G的对应点G′恰好落在AC边上.25.(12分)在△ADB和△AEC中,AD=AE,∠DAE=α,∠AEC=∠ADB=90°,BD=kCE,延长ED交BC于点F.(1)如图1,当k=1时,是否存在与BF相等的线段?若存在,请找出,并加以证明;若不存在,说明理由.(2)如图2,当k≠1时,猜想并证明EC,ED,EF的数量关系(用含k,α的式【解答】解:(1)结论:BF=FC.理由如下,如图1中,作CM⊥EF于M,BN⊥EF于N.∵AE=AD,∴∠AED=∠ADE,∵∠ADB=∠AEC=90°,∴∠ADE+∠BDN=90°,∠CEM+∠AED=90°,∴∠CEM=∠BDN,∵k=1,BD=kEC,∴BD=EC,∵BN⊥EF,CM⊥EF,∴∠N=∠CME=90°,NB∥CM,在△BDN和△CEM中,,∴△BDN≌△CEM,在△CFM和△BFN中,,∴△CFM≌△BFN,∴BF=CF.(2)结论:2EC•cosα+ED=(k+1)EF.如图2中,作AH⊥EF于H,CM⊥EF于M,BN⊥EF于N.由(1)可知∠BDN=∠MEC,∵∠EMC=∠BND,∴△BDN∽△CEM,∴==k,∵CM∥BN,∴==k,∴MF=MN,∵AE=AD,AH⊥ED,∴∠HAE=∠HAD=α,∵∠EAH+∠AEH=90°,∠AEH+∠CEM=90°,∴∠BDN=∠CEM=α,∴EM=EC•cosα,DN=BD•cosα,∴EN=ED+DN=ED+BD•cosα,∴MN=EN﹣EM=ED+k•EC•cosα﹣EC•cosα,∴FM=•(ED+k•EC•cosα﹣EC•cosα),∴EF=EM+FM=EC•cosα+(ED+k•EC•cosα﹣EC•cosα),∴EF=•EC•cosα+•ED,∴2kEC•cosα+ED=(k+1)EF.26.(12分)如图,抛物线y=ax2+bx+2交x轴于A、B两点,交y轴于点C,∠BCO=∠CAB,tan∠BCO=(1)求抛物线解析式;(2)将抛物线沿y轴负半轴平移t(t>0)个单位,当抛物线与线段OA有且只有一个交点时,请直接写出t的取值范围或者t的值;(3)分别以线段AC的端点为顶点,以AC为一边作一个与∠ABC相等的角,角的另一边与抛物线交于点P,求点P的坐标.【解答】解:(1)对于抛物线y=ax2+bx+2,令x=0,则y=2,∴C(0,2),∴OC=2,∵∠BCO=∠CAB,tan∠BCO=,∴==,∴OB=1,OA=4,∴B(﹣1,0),A(4,0),把A、B两点坐标代入y=ax2+bx+2得解得,∴抛物线的解析式为y=﹣x2+x+2.(2)∵y=﹣x2+x+2=﹣(x﹣)2+,∴顶点坐标为(,),当抛物线的顶点平移至x轴上时,抛物线的解析式y=﹣(x﹣)2=﹣x2+x ﹣,此时抛物线与线段OA只有1个交点,此时t=,当平移后的抛物线经过点O时,抛物线与线段OA有两个交点,此时t=2,由图象可知,当0<t<2或t=时,抛物线与线段OA有且只有一个交点.(3)如图,①作O关于AC的对称点O′,直线CO′交抛物线于P1,易证∠ACP1=∠ACO=∠ABC.∵A(4,0),C(0,2),∴直线AC的解析式为y=﹣x+2,可得O′(,),∴直线CO′的矩形为y=x+2,由,解得或,∴P1(,).②作线段AC的中垂线EF,易知直线EF的解析式为y=2x﹣3,直线AF交抛物线于P2,此时∠P2AC=∠ACO=∠ABC,可得F(0,﹣3),∴直线AF的解析式为y=x﹣3,由,解得或,∴点P2坐标为(﹣,﹣),综上所述,满足条件的点P坐标为(,)或(﹣,﹣).。
2015年辽宁省大连市甘井子区中考数学二模试卷和解析答案
2015年辽宁省大连市甘井子区中考数学二模试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)数轴上到原点地距离是地点表示地数是()A.B.C.±D.2.(3分)下面地几何体中,主视图为三角形地是()A.B.C.D.3.(3分)下列运算正确地是()A.(﹣2a2)3=﹣8a8 B.3a2﹣a2=2a2C.a6÷a3=a9D.a2×a3=a64.(3分)在平面直角坐标系中,点点(﹣2,3)关于原点对称地点地坐标为()A.(﹣2,﹣3)B.(3,﹣2)C.(2,﹣3)D.(2,3)5.(3分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2地度数是()A.30°B.60°C.90°D.120°6.(3分)如图,在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB地值等于()A.B.C.D.7.(3分)在一次歌咏比赛中,某选手地得分情况如下:92,88,95,93,96,95,94.这组数据地众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,948.(3分)圆锥底面圆地半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm二、填空题(本题共8小题,每小题3分,共24分)9.(3分)PM 2.5是指大气中直径小于或等于0.0000025m地颗粒物,将0.0000025用科学记数法表示为.10.(3分)若关于x地一元二次方程kx2﹣2x﹣1=0有两个不相等地实数根,则k地取值范围是.11.(3分)如图,已知AB∥CD,∠EBA=45°,∠E+∠D地度数为.12.(3分)如图,AB为⊙O地直径,菱形AODC地顶点A,C,D在⊙O上,连接BC,则∠ABC地度数为.13.(3分)不等式组地整数解是.14.(3分)如图,为测量位于一水塘旁地两点A、B间地距离,在地面上确定点O,分别取OA、OB地中点C、D,量得CD=20m,则A、B之间地距离是m.15.(3分)在一个不透明地袋子中,有2个白球和2个红球,它们只有颜色上地区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球地概率为.16.(3分)如图,已知第一象限内地点A在反比例函数y=上,第二象限内地点B在反比例函数y=上,且OA⊥OB,tanA=,则k地值为.三、解答题(本题共4小题,其中17,18,19题各9分,20题12分,共39分)17.(9分)计算:﹣(﹣1)2+(﹣)﹣1+(﹣5)0.18.(9分)先化简,再求值:(1﹣)÷,其中a=﹣1.19.(9分)如图,已知▱ABCD中,F是BC边地中点,连接DF并延长,交AB地延长线于点E.求证:AB=BE.20.(12分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生地安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成地频率分布表和频数分布直方图,解答下列问题:频率分布表(1)这次抽取了名学生地竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)地学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强地学生约有多少人?四、解答题(本题共3小题,其中21,22题各9分,23题10分,共28分)21.(9分)如图所示,在长和宽分别是a、b地矩形纸片地四个角都剪去一个边长为x地正方形.(1)用a,b,x表示纸片剩余部分地面积;(2)当a=6,b=4,且剪去部分地面积等于剩余部分地面积时,求正方形地边长.22.(9分)已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y 轴正半轴上,OA=OB,函数y=地图象与线段AB交于M点,且AM=BM.(1)求点M地坐标;(2)求直线AB地解析式.23.(10分)如图所示,已知P为⊙O外一点,PA为⊙O地切线,A为切点,B 为⊙O上一点,且PA=PB,连接OP、AB相交于点D,过点O作OC⊥OP交⊙O 于C,连接BC交OP于E.(1)求证:PB为⊙O地切线;(2)连接AC,若tan∠ACB=,⊙O地半径为5,求CE地长.五、解答题(本题共3小题,其中24题11分,25,26题各12分,共35分)24.(11分)如图1,在Rt△AOC中,∠ACO=90°,动点P从点A出发以每秒1个单位地速度沿AO向终点O运动,动点Q从点O出发以每秒2个单位地速度沿y轴正半轴运动,连接PQ,若P,Q两点同时出发,当点P到达终点时点Q 也停止运动,过点D作PD⊥AO交y轴正半轴于点D,设动点P运动地时间为t 秒,图2是△PDQ地面积S与运动时间t地完整图象,BE,EF为曲线,且B(0,),F(5,0)(1)求△PDQ地面积S关于t地函数关系式;(2)是否存在某一时刻t,使△PDQ为等腰三角形,若存在,求出点Q地坐标,若不存在,请说明理由.(3)过点P作PG⊥OC于点G,连接DG,把△PDG沿直线PD折叠,当点G地对应点G′恰好落在AC边上时,请求出t地值.25.(12分)在△ADB和△AEC中,AD=AE,∠DAE=α,∠AEC=∠ADB=90°,BD=kCE,延长ED交BC于点F.(1)如图1,当k=1时,是否存在与BF相等地线段?若存在,请找出,并加以证明;若不存在,说明理由.(2)如图2,当k≠1时,猜想并证明EC,ED,EF地数量关系(用含k,α地式子表示).26.(12分)如图,抛物线y=ax2+bx+2交x轴于A、B两点,交y轴于点C,∠BCO=∠CAB,tan∠BCO=(1)求抛物线解析式;(2)将抛物线沿y轴负半轴平移t(t>0)个单位,当抛物线与线段OA有且只有一个交点时,请直接写出t地取值范围或者t地值;(3)分别以线段AC地端点为顶点,以AC为一边作一个与∠ABC相等地角,角地另一边与抛物线交于点P,求点P地坐标.2015年辽宁省大连市甘井子区中考数学二模试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)数轴上到原点地距离是地点表示地数是()A.B.C.±D.【解答】解:设这个数是x,则|x|=,解得x=±.故选:C.2.(3分)下面地几何体中,主视图为三角形地是()A.B.C.D.【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.3.(3分)下列运算正确地是()A.(﹣2a2)3=﹣8a8 B.3a2﹣a2=2a2C.a6÷a3=a9D.a2×a3=a6【解答】解:A、(﹣2a2)3=﹣8a6≠﹣8a8,本选项错误;B、3a2﹣a2=2a2,本选项正确;C、a6÷a3=a3≠a9,本选项错误;D、a2×a3=a5≠a6,本选项错误.故选:B.4.(3分)在平面直角坐标系中,点点(﹣2,3)关于原点对称地点地坐标为()A.(﹣2,﹣3)B.(3,﹣2)C.(2,﹣3)D.(2,3)【解答】解:点(﹣2,3)关于原点对称地点地坐标为(2,﹣3).故选:C.5.(3分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2地度数是()A.30°B.60°C.90°D.120°【解答】解:由题意得,剩下地三角形是直角三角形,所以,∠1+∠2=90°.故选:C.6.(3分)如图,在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB地值等于()A.B.C.D.【解答】解:过A作AC⊥x轴,∵A(2,1),∴AC=1,OC=2,在Rt△AOC中,根据勾股定理得:OA==,则sin∠AOB==,故选:A.7.(3分)在一次歌咏比赛中,某选手地得分情况如下:92,88,95,93,96,95,94.这组数据地众数和中位数分别是()A.94,94 B.95,95 C.94,95 D.95,94【解答】解:这组数据按顺序排列为:88,92,93,94,95,95,96,故众数为:95,中位数为:94.故选:D.8.(3分)圆锥底面圆地半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm【解答】解:圆锥地底面周长是:6πcm,设母线长是l,则lπ=6π,解得:l=6.故选:B.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)PM 2.5是指大气中直径小于或等于0.0000025m地颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.10.(3分)若关于x地一元二次方程kx2﹣2x﹣1=0有两个不相等地实数根,则k地取值范围是k>﹣1且k≠0.【解答】解:∵关于x地一元二次方程kx2﹣2x﹣1=0有两个不相等地实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∵x地一元二次方程kx2﹣2x﹣1=0∴k≠0,∴k地取值范围是:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.11.(3分)如图,已知AB∥CD,∠EBA=45°,∠E+∠D地度数为45°.【解答】解:∵AB∥CD,∴∠ABE=∠CFE,∵∠EBA=45°,∴∠CFE=45°,∴∠E+∠D=∠CFE=45°,故答案为:45°.12.(3分)如图,AB为⊙O地直径,菱形AODC地顶点A,C,D在⊙O上,连接BC,则∠ABC地度数为30°.【解答】解:连接OC,∵四边形AODC是菱形,∵OA=OC,∴AC=AO=OC,∴△AOC是等边三角形,∴∠A=60°,∵AB为直径,∴∠ACB=90°,∴∠ABC=90°﹣60°=30°,故答案为:30°.13.(3分)不等式组地整数解是﹣1,0,1.【解答】解:由①得:x>﹣2,解②得:x≤,则不等式组地解集是:﹣2<x≤.则整数解是:﹣1,0,1.故答案为:﹣1,0,1.14.(3分)如图,为测量位于一水塘旁地两点A、B间地距离,在地面上确定点O,分别取OA、OB地中点C、D,量得CD=20m,则A、B之间地距离是40m.【解答】解:∵C、D分别是OA、OB地中点,∴CD是△OAB地中位线,∵CD=20m,∴AB=2CD=2×20=40m.故答案为:40.15.(3分)在一个不透明地袋子中,有2个白球和2个红球,它们只有颜色上地区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球地概率为.【解答】解:共有16种结果,两次都摸到白球地有4种结果,则概率是=.故答案是:.16.(3分)如图,已知第一象限内地点A在反比例函数y=上,第二象限内地点B在反比例函数y=上,且OA⊥OB,tanA=,则k地值为﹣4.【解答】解:如图,作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=()2=(tanA)2=2,=×2=1,又∵S△AOC=2,∴S△OBD∴k=﹣4.故答案为:﹣4.三、解答题(本题共4小题,其中17,18,19题各9分,20题12分,共39分)17.(9分)计算:﹣(﹣1)2+(﹣)﹣1+(﹣5)0.【解答】解:﹣(﹣1)2+(﹣)﹣1+(﹣5)0===﹣10.18.(9分)先化简,再求值:(1﹣)÷,其中a=﹣1.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.19.(9分)如图,已知▱ABCD中,F是BC边地中点,连接DF并延长,交AB地延长线于点E.求证:AB=BE.【解答】证明:∵F是BC边地中点,∴BF=CF,∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠C=∠FBE,∠CDF=∠E,∵在△CDF和△BEF中∴△CDF≌△BEF(AAS),∴BE=DC,∵AB=DC,∴AB=BE.20.(12分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生地安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成地频率分布表和频数分布直方图,解答下列问题:频率分布表(1)这次抽取了200名学生地竞赛成绩进行统计,其中:m=70,n= 0.12;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)地学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强地学生约有多少人?【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强地学生约有420人.四、解答题(本题共3小题,其中21,22题各9分,23题10分,共28分)21.(9分)如图所示,在长和宽分别是a、b地矩形纸片地四个角都剪去一个边长为x地正方形.(1)用a,b,x表示纸片剩余部分地面积;(2)当a=6,b=4,且剪去部分地面积等于剩余部分地面积时,求正方形地边长.【解答】解:(1)ab﹣4x2;(2)依题意有:ab﹣4x2=4x2,将a=6,b=4,代入上式,得x2=3,解得x1=,x2=﹣(舍去).即正方形地边长为22.(9分)已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y 轴正半轴上,OA=OB,函数y=地图象与线段AB交于M点,且AM=BM.(1)求点M地坐标;(2)求直线AB地解析式.【解答】解:(1)过点M作MC⊥x轴,MD⊥y轴,∵AM=BM,∴点M为AB地中点,∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA,∴点C和点D分别为OA与OB地中点,∴MC=MD,则点M地坐标可以表示为(﹣a,a),把M(﹣a,a)代入函数y=中,解得a=2,则点M地坐标为(﹣2,2);(2)∵则点M地坐标为(﹣2,2),∴MC=2,MD=2,∴OA=OB=2MC=4,∴A(﹣4,0),B(0,4),设直线AB地解析式为y=kx+b,把点A(﹣4,0)和B(0,4)分别代入y=kx+b中得,解得:.则直线AB地解析式为y=x+4.23.(10分)如图所示,已知P为⊙O外一点,PA为⊙O地切线,A为切点,B 为⊙O上一点,且PA=PB,连接OP、AB相交于点D,过点O作OC⊥OP交⊙O 于C,连接BC交OP于E.(1)求证:PB为⊙O地切线;(2)连接AC,若tan∠ACB=,⊙O地半径为5,求CE地长.【解答】解:(1)连接OA,OB,∵PA为⊙O地切线,∴∠OAP=90°,在△AOP与△BOP中,,∴△AOP≌△BOP,∴∠PBO=∠OAP=90°,∴OB⊥PB.∴PB为⊙O地切线;(2)∵PA,PB为⊙O地切线,∴∠APO=∠BPO,PA=PB,∴AB⊥OP,∴∠PAD=∠AOP,∵tan∠ACB=,∴tan∠PAD=tan∠AOP=,∴设AD=3x,OD=4x,∴OA=5x=5,∴AD=3,OD=4,∴BD=AD=3,∵OC⊥OP,∴∠COE=∠EDB=90°,∵∠CEO=∠DEB,∴△CEO∽△BDE,∴,即,∴OE=,∴CE===.五、解答题(本题共3小题,其中24题11分,25,26题各12分,共35分)24.(11分)如图1,在Rt△AOC中,∠ACO=90°,动点P从点A出发以每秒1个单位地速度沿AO向终点O运动,动点Q从点O出发以每秒2个单位地速度沿y轴正半轴运动,连接PQ,若P,Q两点同时出发,当点P到达终点时点Q 也停止运动,过点D作PD⊥AO交y轴正半轴于点D,设动点P运动地时间为t 秒,图2是△PDQ地面积S与运动时间t地完整图象,BE,EF为曲线,且B(0,),F(5,0)(1)求△PDQ地面积S关于t地函数关系式;(2)是否存在某一时刻t,使△PDQ为等腰三角形,若存在,求出点Q地坐标,若不存在,请说明理由.(3)过点P作PG⊥OC于点G,连接DG,把△PDG沿直线PD折叠,当点G地对应点G′恰好落在AC边上时,请求出t地值.【解答】解:(1)如图1中,作AM⊥OA于M.由题意OA=5,•OA•AM=,∴AM=,OM===∵AC∥OD,∴∠AOM=∠OAC,∠OAM=∠ACO=90°,∴△OAM∽△ACO,∴==,∴==,∴AC=3,OC=4,由△OPD∽△ACO,得==,∴==,∴OD=(5﹣t),PD=(5﹣t),当OQ=OD时,2t=(5﹣t),解得t=,①当0≤t≤时,作PH⊥OD于H.易知PH=(5﹣t),∴S=•DQ•PH=•[(5﹣t)﹣2t]•(5﹣t)=t2﹣t+.②当<t≤5时,如图2中,S=DQ•PH=﹣t2+t﹣.综上所述,S=.(2)0≤t≤时,①当DQ=PD时,(5﹣t)﹣2t=(5﹣t),解得t=.②当PQ=PD时,cos∠PDQ==,解得t=.③当QD=QP时,cos∠PDQ==,解得t=.<t≤5时,只有DQ=DP时,△DPQ是等腰三角形,2t﹣(5﹣t)=(5﹣t),解得t=3.综上所述,t=s或s或s或3s时,△PDQ是等腰三角形.(3)如图3中,∵PG∥AC,∴=,∴=,∴PG=PG′=(5﹣t),∵∠OPG=∠APG′=∠AOC,∴PG′=AG′=PG,∵=cos∠OAC,∴=,∴t=,∴t=s时,点G地对应点G′恰好落在AC边上.25.(12分)在△ADB和△AEC中,AD=AE,∠DAE=α,∠AEC=∠ADB=90°,BD=kCE,延长ED交BC于点F.(1)如图1,当k=1时,是否存在与BF相等地线段?若存在,请找出,并加以证明;若不存在,说明理由.(2)如图2,当k≠1时,猜想并证明EC,ED,EF地数量关系(用含k,α地式子表示).【解答】解:(1)结论:BF=FC.理由如下,如图1中,作CM⊥EF于M,BN⊥EF于N.∵AE=AD,∴∠AED=∠ADE,∵∠ADB=∠AEC=90°,∴∠ADE+∠BDN=90°,∠CEM+∠AED=90°,∴∠CEM=∠BDN,∵k=1,BD=kEC,∴BD=EC,∵BN⊥EF,CM⊥EF,∴∠N=∠CME=90°,NB∥CM,在△BDN和△CEM中,,∴△BDN≌△CEM,∴BN=CM,在△CFM和△BFN中,,∴△CFM≌△BFN,∴BF=CF.(2)结论:2EC•cosα+ED=(k+1)EF.如图2中,作AH⊥EF于H,CM⊥EF于M,BN⊥EF于N.由(1)可知∠BDN=∠MEC,∵∠EMC=∠BND,∴△BDN∽△CEM,∴==k,∵CM∥BN,∴==k,∴MF=MN,∵AE=AD,AH⊥ED,∴∠HAE=∠HAD=α,∵∠EAH+∠AEH=90°,∠AEH+∠CEM=90°,∴∠BDN=∠CEM=α,∴EM=EC•cosα,DN=BD•cosα,∴EN=ED+DN=ED+BD•cosα,∴MN=EN﹣EM=ED+k•EC•cosα﹣EC•cosα,∴FM=•(ED+k•EC•cosα﹣EC•cosα),∴EF=EM+FM=EC•cosα+(ED+k•EC•cosα﹣EC•cosα),∴EF=•EC•cosα+•ED,∴2kEC•cosα+ED=(k+1)EF.26.(12分)如图,抛物线y=ax2+bx+2交x轴于A、B两点,交y轴于点C,∠BCO=∠CAB,tan∠BCO=(1)求抛物线解析式;(2)将抛物线沿y轴负半轴平移t(t>0)个单位,当抛物线与线段OA有且只有一个交点时,请直接写出t地取值范围或者t地值;(3)分别以线段AC地端点为顶点,以AC为一边作一个与∠ABC相等地角,角地另一边与抛物线交于点P,求点P地坐标.【解答】解:(1)对于抛物线y=ax2+bx+2,令x=0,则y=2,∴C(0,2),∴OC=2,∵∠BCO=∠CAB,tan∠BCO=,∴==,∴OB=1,OA=4,∴B(﹣1,0),A(4,0),把A、B两点坐标代入y=ax2+bx+2得解得,∴抛物线地解析式为y=﹣x2+x+2.(2)∵y=﹣x2+x+2=﹣(x﹣)2+,∴顶点坐标为(,),当抛物线地顶点平移至x轴上时,抛物线地解析式y=﹣(x﹣)2=﹣x2+x ﹣,此时抛物线与线段OA只有1个交点,此时t=,当平移后地抛物线经过点O时,抛物线与线段OA有两个交点,此时t=2,由图象可知,当0<t<2或t=时,抛物线与线段OA有且只有一个交点.(3)如图,①作O关于AC地对称点O′,直线CO′交抛物线于P1,易证∠ACP1=∠ACO=∠ABC.∵A(4,0),C(0,2),∴直线AC地解析式为y=﹣x+2,可得O′(,),∴直线CO′地矩形为y=x+2,由,解得或,∴P1(,).②作线段AC 地中垂线EF ,易知直线EF 地解析式为y=2x ﹣3,直线AF 交抛物线于P 2,此时∠P 2AC=∠ACO=∠ABC , 可得F (0,﹣3),∴直线AF 地解析式为y=x ﹣3,由,解得或,∴点P 2坐标为(﹣,﹣),综上所述,满足条件地点P 坐标为(,)或(﹣,﹣).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
大连市2015中考二模数学答案
大连市2015年初中毕业升学考试试测(二)数学参考答案与评分标准一、选择题1.C ; 2.D ; 3.D ; 4.B ; 5.A ; 6.C ; 7.B ; 8.B .二、填空题9.x>2;10.x =3;11.乙;12.35;13.28)1(21=-x x ;14.11.6;15.10;16.(13151310,-).三、解答题17.解:原式=3321--+,…………………………………………………………………………8分=3-.………………………………………………………………………………………………9分 18.解:()21)2(22---+=m m m m 原式,…………………………………………………………………3分)2)(2(2)2)(2(2-++--+=m m m m m m , )2)(2()2(2-++-=m m m m ,……………………………………………………………………………………6分 )2)(2(2-+-=m m m , 21+=m .……………………………………………………………………………………………9分19.证明:∵四边形ABCD 为正方形,∴AB =BC =CD=AD ,∠B =∠D= 90°.…………………………………………………………………………4分 ∵∠BCE =∠DCF ,∴△BCE ≌△DCF (ASA ).………………………………………………………………………………6分 ∴BE =DF .……………………………………………………………………………………………………7分 ∴AE =AF . ……………………………………………………………………………………………9分 20.解:(1)12;35;………………………………………………………………………………………4分 (2)240,90; ………………………………………………………………………………………10分(3)6750240604815000=+⨯.答: 估计该市学业考试体育成绩在D 段和E 段的总人数为6750人.………………………………12分 四、解答题21. 解:(1)由题意可得,4.810252=+-t t .解得,2.11=t ,8.22=t .…………………………………………………………………………4分 ∵0≤t ≤4,∴2.11=t ,8.22=t 都符合题意.答:当小球的运动时间为1.2s 或2.8s 时,它的高度是8.4m .……………………………………6分(2)10225102522+--=+-=)(t t t h .…………………………………………………………8分∵25-=a <0, ∴抛物线有最大值10.即小球运动的最大高度是10m .……………………………………………9分 22. 解:(1)∵点A (-2,3)在xmy =的图象上, ∴3=2-m , m =-6.∴反比例函数的解析式为xy 6-=.…………………………………………………………………2分∴n =36-.n = -2. 即点B 的坐标为(3,-2).………………3分∵点A (-2,3),B (3,-2)在y =kx +b 的图象上,∴⎩⎨⎧+=-+-=.32,23b k b k 解得⎩⎨⎧=-=.1,1b k ∴一次函数的解析式为y =-x +1.………………………………6分 (2)设AB 与x 轴相交于点D ,则-x +1=0,x =1.即OD =1. ∴CD =2=BC .∴∠CBD =∠CDB=45°.即∠ABC 的度数是45°.………………………………………………9分 23.解:(1)90,直径所对的圆周角是直角;……………………………………………………………2分(2)作DE ⊥OA ,垂足为E . ∵AC 是⊙O 的切线, ∴AC ⊥OA .∴∠ACO+∠AOC= 90°,34522=+=+=CA OA OC . …………………………………………5分 ∵OD ⊥OC ,∴∠AOC+∠AOD= 90°. ∴∠ACO =∠AOD . ∵∠DEO= 90°=∠OAC ,∴△DEO ∽△OAC .………………………………………………8分∴CAOE OCDO OADE ==.∴2355OE DE==. ∴35=DE ,352=OE .∴3655352352222=⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛=+=BE DE BD .…………………………………………………10分 五、解答题(第23题)24.解:(1)MN ⊥BD ,MN =21BD .……………………………………………………………………1分证明:连接BN 并延长,与DE 的延长线相交于点F (如图1). ∵∠ABC +∠ADE =180° , ∴BC ∥DE .∴∠CBN=∠EFN ,∠BCN=∠FEN . ∵CN = EN ,∴△CBN ≌△EFN .………………………………………3分 ∴BN =FN ,EF =CB =AD .∴DF =DE+EF=AB+BC=AB+AD=BD . 又∵BM =MD ,∴MN =21DF =21BD , MN ∥DF .………………………5分∴∠BMN =∠BDE =90°.∴MN ⊥BD .…………………………………………………………………………………………6分 (2)过点E 做BC 的平行线,与BN 的延长线相交于点F ,连接DF (如图2) . 由(1)可知,△CBN ≌△EFN ,MN =21DF .∴EF =CB=DE ,∠BCE =∠CEF .………………………7分 ∵∠ABC +∠ADE=180°,∴∠BAD +∠BCE+∠CED =540°-180°=360°. ∵∠DEF +∠CEF+∠CED =360°, ∴∠BAD =∠DEF .∵ADED AB EF =, ∴△DEF ∽△DAB .……………………………………9分 ∴BAC ABBC AB EF DB DF ∠===tan .∵55sin =∠BAC ,∴21tan =∠BAC .即DF=21BD .∴MN =21DF=41BD .即41=BDMN .……………… ………………………………………………11分25. 解:(1)60;…………………………………………………………………………………………1分(2)解:如图①,BC =AC tan30°=333⨯=1=B′C ,A ′B ′=AB =2,∠A ′ =∠A由(1)得,∠B ′CB =60°=∠B =∠BB ′C .则△BB ′C 是等边三角形,AB ′=1. ∴∠A ′B ′C=∠B ′CB =60°. ∴A ′B ′∥BC .∴B ′D =21'21=AB ,A ′D =23.23''==∆∆ABCCB A S S.……………………………………………3分 当0<x ≤1时,如图②.图① F (第24题图1)F(第24题图2)由题知B′E= CC′=x.则xDA-=23',)23(3330tan)23(xxDG-=︒⋅-=.∴2')23(63)23(33)23(21'21xxxDGDASDGA-=-⋅-⋅=⋅⋅=∆.同理可证: △B′EF是等边三角形.∴2'43232160sin''21xxxFBEBSEFB=⋅⋅⋅=︒⋅⋅⋅=∆.∴8323123543)23(6323222'''''++-=---=--=∆∆∆xxxxSSSyEFBDGACBA.…………8分∵∠EMA′=∠AED-∠A′=30°=∠A′,∴ME= A′E=2- x.过点M做MN⊥A′B′,垂足为N.MN= ME sin∠MEN=)2(23x-.∴2')2(43)2(23)2(21'21xxxMNEASEMA-=-⋅-⋅=⋅⋅=∆.∴83523123)23(63)2(43222''+-=---=-=∆∆xxxxSSyDGAEMA.……………………11分3343)2(4322'+-=-==∆xxxSyEMA.∴综上⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<+-≤<++-=)223(3343)231(83523123183231235222xxxxxxxxxy)(.…………………12分26. 解:(1)-4;………………………………………………………………………………………1分(2)抛物线62++=bxaxy,当x=0时,y=6.∴OC=6.由题知OA=8.∴10682222=+=+=OCOAAC.由(1)得,OD=4.∴CD=10=CA.∵AE=ED,∴∠ACE=∠DCE.………………………………………………3分C'图②图④A'图③则⎩⎨⎧=+-=+-.0639,06864b a b a 解得⎪⎪⎩⎪⎪⎨⎧==.411,41b a ∴抛物线的解析式为6411412++=x x y .………………………6分(2)存在. 在直线AD 的下方作∠EAQ=∠BAE ,设CE 的延长线与AQ 相交于点G .直线AG 与抛物线的交点就是所求的点P (如图). 由(1)知,CE ⊥AD ,则BE=EG .∵AD OD BAE AB BE =∠=sin . ∴55454=⨯=⋅=AD AB OD BE .过点E 、G 分别作EN ⊥AB ,GM ⊥AB ,垂足分别为N 、M . 则∠BEN=∠BAE . ∴1555sin =⨯=∠⋅=BEN BE BN ,25525cos =⨯=∠⋅=BEN BE EN .∵EN ∥GM , ∴△BEN ∽△BGM . ∴BG BE MG NE BM BN ==.即2121==MG BM.BM =2,MG =4. ∴点G 的坐标是(-5,-4).…………………………………………………………………………9分 设直线AG 的解析式为y=kx+b ,则⎩⎨⎧-=+-=+-45,08b k b k 解得⎪⎪⎩⎪⎪⎨⎧-=-=.332,34b k ∴直线AG 的解析式为33234--=x y .根据题意,641141332342++=--x x x .解得3251-=x ,82-=x (舍去).当x =325-时,y =94332)325(34=--⨯-.∴点P 的坐标为(325-,94).……………………………………………………………………12分。
大连市2015年初中毕业升学考试试题答案及解析
大连市2015年初中毕业升学考试试题解析一、选择题(本题共8小题,每小题3分,在每个小题给出的四个选项中,只有一个选项正确)1. 答案:A解析:负数的绝对值是它的相反数,因为2-的相反数为2,所以答案为A.2. 答案:C解析:由主视图和左视图可判断该几何体是个锥体,又从其俯视图看出其截面是圆形,由此可判断该几何体是圆锥,所以答案为C.3. 答案:D解析:由三角形三边关系即三角形两边之和大于第三边,两边之和小于第三边可知,答案为D.4. 答案:D解析:若点向右平移,即点的横坐标加2,所以答案为D.5. 答案:C解析:将方程去括号得3224x=,故答案为C.+-=,解得2x x6. 答案:C解析::积的乘方,即积中的每一项分别乘方,所以答案为C.7. 答案:B解析:因为一组数据的众数为该组数据中出现次数最多的数据,由此可知该组数据的众数为14,所以答案为B.8. 答案:D解析:因为∠ADC=2∠B,且∠ADC=∠B+∠BADC,所以∠BAD=∠B,则Rt△ADC中,根据勾股定理得CD==,由此可知BC=CD+BD D.1二、填空题(本题共8小题,每小题3分,共24分)9. 答案:>由实数的性质可知,正数大于负数,所以答案为大于号.10.答案:4900解析:9(9)49(1099)491004900-=-=⨯-=⨯=.ab a a b11.答案:2x<-解析:移项得24x<-x<-,系数化为1得 2.12.答案:29°解析:因为AB //CD ,所以∠A =∠DFE ;又∠DFE=∠C +∠E ,所以∠E 的度数为∠DFE-∠C=56°-27°=29°. 13.答案:16解析:掷两次骰子,共有36种情况;但点数之和是7的情况有1和6、6和1、2和5、5和2、3和4、4和3共6种情况,所以点数之和是7的概率为16,14. 解析:因为AC ⊥BC ,所以∠ACB =90°;在平行四边形ABCD 中,AD=BC =8,则在Rt △ABC 中,根据勾股定理得6AC =,所以132OC AC ==;在Rt △OBC 中,根据勾股定理得OB =15.答案:50解析:在Rt △ABD 中,tan 32310.618.6BD AD =≈⨯≈ ,在Rt △ACD 中,tan 4531131CD AD ==⨯= ,所以BC=BD+CD ≈18.6+31≈50.16.答案:213m ≤≤解析:直线21y x =+与直线3y =的交点坐标为(1,3),若线段AB 与直线21y x =+有交点,则有21311, 1.3m m m ≤-≥≤≤且即三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)三、解答题17.解:原式=311-+=1+ 18.解:264x x -=26949x x -+=+ 2(3)13x -=3x -=∴1233x x ==19.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB //CD . ∴∠BAC =∠DCA 在△ABE 和△CDF 中 ∠ABE =∠CDF AB =C D∠BAC =∠DCA∴△ABE ≌△DCA . ∴BE =DF . 20.(1)36,70;(2)200,18,3;(3)解:36140180********+⨯=(人). 答:该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数有1584人. 四、解答题21.解:设甲每小时做x 个零件,则乙每小时做(x -3)个零件.96843x x =- ∴96(x -3)=84 x . 解得x =24.检验:当x =24时,x (x -3)≠0. ∴原分式方程的解为x =24.答:甲每小时做24个零件,乙每小时做21个零件. 22.解:(1)过点B 作BE ⊥x 轴于点E .∵AB //x 轴∴∠ABO =∠BOD .由旋转的性质可知∠ABO =∠OBD ,BO=BD . ∴∠OBD =∠ABO=∠BOD =∠BDO . ∴△BOD 为等边三角形. ∴∠BOD =60°.∴sin 2sin 60=2BE OB BOD =∠=1cos 2cos 60=2=12OE OB BOE =∠=⨯ .∴点B 的坐标为.1k=,k =∴双曲线的解析式为y =.(2)点C 在双曲线上. 理由如下: 过点C 作CF ⊥x 轴于点F .由(1)知∠ABO =∠BOD=60°,∠A =90°-∠ABO=30°. ∴AB=2OB=4.∴OC=BC -OB=AB -OB=4-2=2.FA∴1cos cos 2cos 60=2=12OF OC FOC OC BOE =∠=∠=⨯.s i n s i n 2s i n 6=3F C O C F O C O C B O E =∠=∠=∴点C 的坐标为(1,-.将1x =-代入y =中,y ==∴点C (1,-在双曲线上.23.(1)证明:连接OD.∵AD 是∠CAB 的平分线, ∴∠CAD =∠DAO . ∵OA=OD ,∴∠ADO =∠DAO .………………………2分 ∴∠CAD =∠ADO . ∴AE //OD . ∴∠E =∠FDO ∵EF ⊥AE ∴∠E =90°.∴EF 与O 相切.………………………4分(2)解:连接BD . ∵AB 是O 的直径,∴∠ADB =90°=∠E . ∵∠EAD =∠DAB ,∴△EAD ∽△DAB .………………………………………………………………6分 ∴AD ED AEAB DB AD==.∴163ED AE ==.∵AE //OD .∴△DOF ∽△EAF .………………………………………………………………9分 ∴OD DF AE EF =. 即33163EF EF=.CACA∴EF =……………………………………………………………………10分 五、解答题 24.(1)3249;………………………………………………………………………………1分 解:(2)当0<x ≤87时,S=12x 2.………………………………2分 由题意知,当点R 恰好在AB 上时(如图1),8.7EQ =此时1810422,tan .22775x RQ QA A QA =-=-⨯===当点Q 到达点A 时,20, 4.2xx -==…………5分 当847x <≤时(如图2),设RP 、RQ 与AB 分别相交于点E 、F ,作EG ⊥AC 于点G ,设EG =y . ∵RQ ⊥AC ,RQ=PQ ,∴∠EPG =45°,PG=EG=y.∵tan .EG FQA GA QA == ∴5.tan 4EG yGA A ===4t a n (2).52xFQ QA A ==- ………………8分 ∵5, 2.42y xPA PG GA PD DA y =+=++=+即∴4(2).92xy =+ ∴S =S △EP A -S △FQA 2141425632(2)22222922252454545x x x x x x ⎛⎫⎛⎫⎛⎫=++---=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ . ∴2218(0)27256328(4)4545457x x S x x x ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩………………………………………………11分 25.(1)存在,AB =BE .…………………………………………………………………1分 证明:如图1,在BE 上截取ME=AD .∵∠ADF+∠DEC=180°,∠BED +∠DEC=180° ∴∠ADF =∠BED .又∵DF=DE ,AD=ME , ∴△ADF ≌△MED .图1图2BCNCB E∴∠DAF =∠DME ,∠DF A =∠MDE ∵∠AFE =∠BDE∴∠AFE +∠ADE=180°. ∴∠DAF +∠DEF=180° ∴∠DME +∠DEF=180° ∵∠DME +∠BMD=180°∴∠BMD =∠DEF又∵∠BDE =∠BDM+∠MDE ∠AFE =∠AFD+∠DFE ∴∠BDM =∠DEF ∵∠DEF =∠DFE ∴∠BDM =∠BMD ∴BM=BD∴BD+AD=BM+ME 即AB =BE .(2)解:过点D 作DN ⊥BC ,垂足为N . ∵∠DAF =∠DNE=90°, ∠ADF =∠DEB ∴△DAF ∽△DNE∴1,AF DF AFD NDE DN DE k ==∠=∠∴DN km =∵∠AFE =∠BDE∠AFE =∠DEB+∠DFE ∠BDE =∠NDE+∠BDN ∴∠DFE =∠BDN∴△DFE ∽△BDN∴DF BD EFDN==∴BD 26.解:(1)设CD=x ,由对称性知FC=OC=m ,FD=DB=2m-x .∵四边形OABC 是矩形, ∴∠CFD =∠B=90°. 在Rt △FCD 中,222.FC FD CD +=即222(2).m m x x +-=∴5.4m x =∴点D 的坐标为5(,).4mm …………………………………2分(2)由对称性可知∠CED=∠DEA ,CE=EA .∵四边形OABC 是矩形, ∴CB =O A ,CB //OA .∴∠CDE=∠DEA=∠CED .∴CD =CE =EA .∴OE=OA-EA=CB-CD=532.44m mm -= ∵OE //CD.∴△GOE ∽△GCD. ……………………5分 ∴334,, 2.53+4mGO OE m mGC CD m ===即 ∴点C 、D 的坐标分别为5(0,2),(,2)2. …………………………………7分 过点F 作FH ⊥x 轴,垂足为H ,FH 与BC 相交于点R . ∴11.22FCD S CD FR FC FD ∆== ∴3262.552FR ⨯== 在Rt △FCR中,8.5CR =∴点F 的坐标816(,).55.……………………………………………………………8分 由题意知c =2∴648162,25552552 2.42a b a n ⎧++=⎪⎪⎨⎪++=⎪⎩ ∴5,625.12a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的解析式为25252612y x x =-++. ……………………………………10分(3)点P 的坐标816916,55105⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭或,.…………………………………………12分。
2013-2019年辽宁省大连市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019年辽宁省大连市中考数学试题汇编(含参考答案与解析)1、2013年辽宁省大连市中考数学试题及参考答案与解析 (2)2、2014年辽宁省大连市中考数学试题及参考答案与解析 (28)3、2015年辽宁省大连市中考数学试题及参考答案与解析 (50)4、2016年辽宁省大连市中考数学试题及参考答案与解析 (73)5、2017年辽宁省大连市中考数学试题及参考答案与解析 (98)6、2018年辽宁省大连市中考数学试题及参考答案与解析 (116)7、2019年辽宁省大连市中考数学试题及参考答案与解析 (140)2013年辽宁省大连市中考数学试题及参考答案与解析一、选择题(本大题8小题,每小题3分,共24分)1.﹣2的相反数是()A.﹣2 B.12C.12D.22.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A.B.C.D.3.计算(x2)3的结果是()A.x B.3x2C.x5D.x64.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.355.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>47.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元8.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2二、填空题(本大题共8小题,每小题3分,共24分) 9.因式分解:x 2+x= .10.在平面直角坐标系中,点(2,﹣4)在第 象限. 11.把16000 000用科学记数法表示为 .12.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:成活的频率根据表中数据,估计这种幼树移植成活率的概率为 (精确到0.1).13.化简:2211x x x x ++-+= .14.用一个圆心角为90°半径为32cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为 cm .15.如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),则河的宽度AB 约为 m(精确到0.1m ).≈1.41)16.如图,抛物线y=x 2+bx+92与y 轴相交于点A ,与过点A 平行于x 轴的直线相交于点B (点B 在第一象限).抛物线的顶点C 在直线OB 上,对称轴与x 轴相交于点D .平移抛物线,使其经过点A 、D ,则平移后的抛物线的解析式为 .三、解答题(本大题共4小题,共39分)17.(9分)计算:(11115-⎛⎫++ ⎪⎝⎭18.(9分)解不等式组:()211841x x x x -+⎧⎪⎨+-⎪⎩><.19.(9分)如图,▱ABCD 中,点E 、F 分别在AD 、BC 上,且AE=CF .求证:BE=DF .20.(12分)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天).大连市2012年海水浴场环境质量监测结果统计表,监测时段:2012年7月至9月根据以上信息,解答下列问题:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是 (填浴场名称),海水浴场环境质量为优的数据的众数为 %,海水浴场环境质量为良的数据的中位数为 %; (2)2012年大连市区空气质量达到优的天数为 天,占全年(366)天的百分比约为 (精确到0.1%);(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).四、解答题(本大题共3小题,共28分)21.(9分)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B两种糖果各购进多少千克?22.(9分)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数kyx=的图象相交于点A(m,1)、B(﹣1,n),与x轴相交于点C(2,0),且OC.(1)求该反比例函数和一次函数的解析式;(2)直接写出不等式ax+b≥kx的解集.23.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO的延长线与⊙O 分别相交于点E、F,EB与CF相交于点G.(1)求证:DA=DC;(2)⊙O的半径为3,DC=4,求CG的长.五、解答题(本大题共3小题,共35分)24.(11分)如图,一次函数443y x=-+的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.(1)t为何值时,点D恰好与点A重合?(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.25.(12分)将△ABC 绕点B 逆时针旋转α得到△DBE ,DE 的延长线与AC 相交于点F ,连接DA 、BF .(1)如图1,若∠ABC=α=60°,BF=AF .①求证:DA ∥BC ;②猜想线段DF 、AF 的数量关系,并证明你的猜想; (2)如图2,若∠ABC <α,BF=mAF (m 为常数),求DFAF的值(用含m 、α的式子表示).26.(12分)如图,抛物线2424455y x x =-+-与x 轴相交于点A 、B ,与y 轴相交于点C ,抛物线的对称轴与x 轴相交于点M .P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上).分别过点A 、B 作直线CP 的垂线,垂足分别为D 、E ,连接点MD 、ME . (1)求点A ,B 的坐标(直接写出结果),并证明△MDE 是等腰三角形;(2)△MDE 能否为等腰直角三角形?若能,求此时点P 的坐标;若不能,说明理由;(3)若将“P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上)”改为“P 是抛物线在x 轴下方的一个动点”,其他条件不变,△MDE 能否为等腰直角三角形?若能,求此时点P 的坐标(直接写出结果);若不能,说明理由.参考答案与解析一、选择题(本大题8小题,每小题3分,共24分)1.﹣2的相反数是()A.﹣2 B.12C.12D.2【知识考点】相反数.【思路分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答过程】解:﹣2的相反数是2.故选D.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答过程】解:从上面看易得三个横向排列的正方形.故选A.【总结归纳】本题考查了三视图的知识,要求同学们掌握俯视图是从物体的上面看得到的视图.3.计算(x2)3的结果是()A.x B.3x2C.x5D.x6【知识考点】幂的乘方与积的乘方.【思路分析】根据幂的乘方法则进行解答即可.【解答过程】解:(x2)3=x6,故选:D.【总结归纳】本题考查的是幂的乘方法则,即幂的乘方法则:底数不变,指数相乘.4.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.35【知识考点】概率公式.。
2015年辽宁省大连市中考数学试题及参考答案(word解析版)
2015年辽宁省大连市中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的绝对值是()A.2 B.﹣2 C.12D.12-2.某几何体的三视图如图所示,则这个几何体是()A.球B.圆柱C.圆锥D.三棱柱3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.1,3 C.3,4,8 D.4,5,64.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A.(1,2)B.(3,0)C.(3,4)D.(5,2)5.方程3x+2(1﹣x)=4的解是()A.25x=B.65x=C.x=2 D.x=16.计算(﹣3x)2的结果是()A.6x2B.﹣6x2C.9x2D.﹣9x27.某舞蹈队10则这10名队员年龄的众数是()A.16 B.14 C.4 D.38.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A1B1C1D1二、填空题(本题共8小题,每小题3分,满分24分) 9.比较大小:3 ﹣2.(填“>”、“<”或“=”) 10.若a=49,b=109,则ab ﹣9a 的值为 . 11.不等式2x+3<﹣1的解集为 .12.如图,AB ∥CD ,∠A=56°,∠C=27°,则∠E 的度数为 .13.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为 .14.如图,在▱ABCD 中,AC ,BD 相交于点O ,AB=10cm ,AD=8cm ,AC ⊥BC ,则OB= cm .15.如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32°,底部C 的俯角为45°,观测点与楼的水平距离AD 为31m ,则楼BC 的高度约为 m (结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)16.在平面直角坐标系中,点A ,B 的坐标分别为(m ,3),(3m ﹣1,3),若线段AB 与直线y=2x+1相交,则m 的取值范围为 . 三、解答题(本大题共4小题,共39分)17.(9分)计算:)1112⎛⎫⎪⎝⎭.18.(9分)解方程:x 2﹣6x ﹣4=0.19.(9分)如图,在▱ABCD 中,点E ,F 在AC 上,且∠ABE=∠CDF ,求证:BE=DF .20.(12分)某地区共有1800名初三学生,为了解这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有人,达到优秀的人数占本次测试总人数的百分比为%.(2)本次测试的学生数为人,其中,体质健康成绩为及格的有人,不及格的人数占本次测试总人数的百分比为%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.四、解答题(本大题共3小题,共28分)21.(9分)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?22.(9分)如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线kyx经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D落在x轴的正半轴上.若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.23.(10分)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=EF的长.五、解答题(本大题共3小题,共35分)24.(11分)如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤87,87<x≤m时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.25.(12分)在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).26.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE,设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为y=ax2+bx+c.(1)求点D的坐标(用含m的式子表示);(2)若点G的坐标为(0,﹣3),求该抛物线的解析式;(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM= 12EA?若存在,直接写出点P的坐标;若不存在,说明理由.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣2的绝对值是()A.2 B.﹣2 C.12D.12【知识考点】绝对值.【思路分析】根据负数的绝对值等于它的相反数解答.【解答过程】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【总结归纳】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.某几何体的三视图如图所示,则这个几何体是()A.球B.圆柱C.圆锥D.三棱柱【知识考点】由三视图判断几何体.【思路分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图即可确定具体形状.【解答过程】解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形和圆心可判断出这个几何体应该是圆锥,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015辽宁省大连市中考数学试卷(解析版)(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015辽宁大连,1,3分)﹣2的绝对值是( ) A . 2 B .-2 C .21 D .-21 【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A .2. (2015辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C.3.(2015辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A . 1,2,3 B .,1,2,3 C .3,4,8 D .4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2015辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D. 5. (2015辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x+2-2x=4.移项合并得:2=x 。
故选C.6. (2015辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9- 【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C.7. (2015辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3 【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B. 8. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=5,所以BC=5+1,故选D.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。
10.(2015辽宁大连,10,3分)若a=49,b=109,则ab-9a的值为:__________.【答案】4900【解析】解:ab-9a=a(b-9)=49(109-9)=4900,故答案为4900.11.(2015辽宁大连,11,3分)不等式2x+3<-1的解集是:__________.【答案】x<-2【解析】解:解不等式2x+3<-1,移项得:2x<-1-3,合并得:2x<-4,系数化成1得:x<-2,故答案为x<-2.12.(2015辽宁大连,12,3分)如图,已知AB∥CD,∠A=56°,∠C=27°则∠E的度数为__________.(第12题)【答案】29°【解析】解:因为AB∥CD,∠A=56°所以∠DFE=∠A=56°,又因为∠DFE=∠C+∠E,∠C =27°所以∠E=∠DFE-∠C=56°-27°=29°,故答案为29°.13.(2015辽宁大连,13,3分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,将这枚骰子连续掷两次,其点数之和为7的概率为:__________.1【答案】6【解析】解:列表:1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 10 4 5 6 7 8 9 10 11 5 6 7 8 9 10 11 12 6 7 8 9 10 11 12 13 7891011121314因为共有36种等可能的结果,且朝上一面点数之和为7的有6种。
所以其点数之和为7的概率为:61366=。
故答案为61.14. (2015辽宁大连,14,3分)在□ABCD 中,点O 是对角线AC 、BD 的交点,AC 垂直于BC ,且AB=10cm ,AD=8cm ,则OB=___________cm .(第14题)【答案】73cm.【解析】解:因为AC 垂直于BC,AB=10cm ,BC=AD=8cm , 所以AC=68102222=-=-BC AB ,所以OC=21AC=3cm.所以OB=73832222=+=+BC OC cm.故答案为73cm.15. (2015辽宁大连,15,3分)如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32°,底部C 的俯角为45°,观测点与楼的水平距离AD 为31cm ,则楼BC 的高度约为_______m(结果取整数)。
(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)(第15题)【答案】50【解析】解:BC=BD+CD=AD ×tan32°+AD ×tan45°≈31×0.6+31×1=49.6≈50,故答案为50m. 16.(2015辽宁大连,16,3分)在平面直角坐标系中,点A 、B 的坐标分别是(m,3)、(3m-1,3).若线段AB 与直线y=2x+1相交,则m 的取值范围为__________. 【答案】32≤m ≤1. 【解析】解:因为点A 、B 的纵坐标都是3,所以,线段平行于x 轴,把y=3代入直线y=2x+1中可得x=1,因为线段AB 与直线y=2x+1相交,所以点(1,3)在线段AB 上。
可有两种情况:①m ≤1≤3m-1,解得:32≤m ≤1。
②3m-1≤1≤m ,此时无解。
故答案为32≤m ≤1.三、解答题(本大题共4个小题,其中17、18、19题每小题9分,20题12分,共39分) 17.(2015辽宁大连,17,9分)计算:()()21241313⎪⎭⎫⎝⎛-+-+【答案】26+1.【解析】解:()()21241313⎪⎭⎫⎝⎛-+-+=()1621322-+-=3-1+26-1=26+1.故答案为26+1.18.(2015辽宁大连,18,9分)解方程046x 2=--x【答案】313,313x 21+-=+=x【解析】解:046x 2=--x ,46x 2=-x ,9496x 2+=+-x ,()133-x 2=x-3=±13,所以313,313x 21+-=+=x ,故答案为313,313x 21+-=+=x 19.(2015辽宁大连,19,9分)在□ABCD 中,点E 、F 在AC 上,且∠ABE=∠CDF , 求证:BE=DF.(第19题)【答案】证明△ABE ≌△CDF 。
【解析】证明:因为四边形ABCD 是平行四边形所以AB ∥CD ,AB =CD ,因为AB ∥CD ,所以∠BAE=∠DCF所以在△ABE 和△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠DCF BAE CD AB CDF ABE 所以△ABE ≌△CDF ,所以BE=DF.20.(2015辽宁大连,20,12分)某地区共有1800名初三学生,为解决这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分。
(第20题)根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有_________人,达到优秀的人数占本次测试人数的百分比为____%.(2)本次测试学生人数为_________人,其中,体质健康成绩为及格的有________人,不及格的人数占本次测试总人数的百分比是__________%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数。
【答案】(1)36,70%;(2)200,18,3%;(3)1584【解析】解:(1)由统计表可看出良好的有36人,由统计图可看出优秀的人数占本次测试人数的百分比为70%. (2)140÷70%=200(人) 200-140-36-6=18(人) 6÷200×100%=3% (3)1800×20036140+=1584(人) 答:估计地区初三学生开学之初体质健康成绩达到良好及以上等级的学生有1584人。
四、解答题(本大题共3个小题,其中21、22题每小题9分,23题10分,共28分)21. (2015辽宁大连,21,9分)甲乙两人制作某种机械零件。
已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲乙两人每小时各做多少个零件? 【答案】24和21个【解析】解:乙每小时做x 个零件,则甲每小时做(x+3)个零件,由题意得:x843x 96=+解得x=21,经检验x=21是方程的解,x+3=24. 答:甲乙两人每小时各做24和21个零件.22. (2015辽宁大连,22,9分)如图,在平面坐标系中,∠AOB=90°,AB ∥x 轴,OB=2,双曲线y=xk经过点B.将△AOB 绕点B 逆时针旋转,使点O 的对应点D 落在X 轴的正半轴上。
若AB 的对应线段CB 恰好经过点O.(1)点B 的坐标和双曲线的解析式。
(2)判断点C 是否在双曲线上,并说明理由。
(第22题)【答案】(1)B(1,3),双曲线解析式为y=x3(2)点C 在双曲线上 【解析】解:(1)由旋转可知,∠ABO=∠OBD ,OB=BD,所以∠BOD=∠BDO, 又因为AB ∥x 轴,所以∠ABO=∠BOD,所以∠ABO=∠BOD=∠OBD=60°,所以△BOD 是等边三角形所以AB 垂直于y 轴, 且∠BOE=30°, 所以BE=21OB=1.OE=3122222=-=-BE OB 所以B(1,3),双曲线解析式为y=x3 (2)由(1)知∠ABO=60°,又因为AO 垂直于BC,所以∠A=30度,AB=2OB,由旋转可知,AB=BC,所以BC=2OB,所以OC=OB. 点C 和点B 关于原点对称 所以点C 在双曲线上。