八年级数学上册5.2二次根式的乘法和除法第2课时二次根式的除法作业课件(新版)湘教版

合集下载

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件

人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;

16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4

4 5;
(2) 4 2

2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因

二次根式乘除法则

二次根式乘除法则

二次根式乘除法则1. 二次根式的定义与性质二次根式是指形如√a的数,其中a是一个非负实数。

二次根式可以表示为分数形式,即a的平方根除以b的平方根,其中a和b是正实数。

下面是一些二次根式的性质: - 乘法性质:√a * √b = √(a * b) - 除法性质:√a / √b = √(a / b),其中b不等于0 - 同底数相加减:√a ± √b = √(a± b)2. 二次根式的乘法法则a) 同底数相乘当两个二次根式具有相同的底数时,可以将它们相乘,并将底数保持不变。

例如:√2 * √3 = √(2 * 3) = √6b) 不同底数相乘当两个二次根式具有不同的底数时,可以将它们相乘,并合并为一个二次根式。

例如:√2 * √6 = √(2 * 6) = √12 = 2√33. 二次根式的除法法则a) 同底数相除当两个二次根式具有相同的底数时,可以将它们相除,并将底数保持不变。

例如:√6 / √2 = √(6 / 2) = √3b) 不同底数相除当两个二次根式具有不同的底数时,可以将它们相除,并合并为一个二次根式。

例如:√12 / √2 = √(12 /2) = √64. 二次根式乘除法的综合运用a) 乘法与除法的结合运算在一个表达式中同时使用乘法和除法时,我们可以先进行乘法运算,再进行除法运算。

例如:(√3 * √5) / (√2 * √4) = (√15) / (√8)b) 化简复杂的二次根式当一个二次根式较为复杂时,我们可以通过化简来简化计算。

例如:√(18/9) = (√18) / (√9) = (√2 * √9) / (√3 * √3) = (3√2) / 3 = √25. 实际问题中的应用二次根式乘除法经常在解决实际问题中被使用。

下面是一些实际问题的例子:a) 计算面积和体积当计算图形的面积或体积时,我们经常会遇到涉及二次根式乘除法的问题。

例如,计算一个圆的面积可以使用公式A = πr²,其中r是圆的半径。

灵武市师院附中八年级数学上册第5章二次根式二次根式的乘法说课稿新版湘教版2

灵武市师院附中八年级数学上册第5章二次根式二次根式的乘法说课稿新版湘教版2

《二次根式的乘法》说课稿各位评委老师好:我是XX号,今天我说的课题是湘教版八年级下册第5章第二节第一课时《二次根式的乘法》。

一、说教材(一)教材的地位及作用分析:“二次根式”是初中代数重要的内容之一。

本节内容是在学习了二次根式的概念、性质的基础上进一步学习二次根式的乘法,同时也为后面学习二次根式的除法、加、减法等运算做准备,具有承上启下的作用,在教材中处于重要的地位。

对于学生,通过之前学习了二次根式的性质、化简,现在所学的乘法是对性质的一个应用,一个实践。

学生在观察讨论交流的过程中,能主动探索,勇于发现,培养学生知识的迁移和联系能力以及转化的数学思想。

(二)教学重点:(a≥0,b≥0),二次根a≥0,b≥0),并利用它们进行计算和化简。

(三)教学难点:在具体化简问题中,发现规律,利用积的算术平方根性质和二次根式乘法法则进行化简。

二、教学目标:依据课标要求,结合教材和学生实际,我指定了如下教学目标:(一)知识与技能目标1.通过学习,是学生进一步熟练掌握积的算术平方根的性质。

2.通过引导,让学生会运用积的算术平方根的性质进行二次根式的乘法运算和根式化简。

(二)过程与方法目标通过探索灵活运用积的算术平方根,使学生感知数学知识具有普遍的联系性。

熟练掌握运算法则,培养学生由特殊到一般的思维能力(三)情感与态度目标通过主动探究,合作交流,让学生充分参与到数学学习的过程中来,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,同时进一步培养同学间的合作交流能力和团队合作精神。

三、教法简介:教学法:根据教材特点和八年级学生的心理特征和认知水平,本课我采用引导设问法、讨论法、练习法等方法,激发学生学习兴趣,并在教学过程中注意加强对学生的启发和引导,充分展示自己的观点和见解,创设一个宽松愉快的学习氛围。

学生通过自主学习、合作探究等方法学习,充分体现出学生的主体地位。

【下面,我重点说下本课题的教学过程】四、教学过程:(一)复习,导入新课1.(a≥0,b≥0)2.在黑板分别板书3道带有根号有关算术平方根的积和积的算术平方根的计算题,请同学们完成。

八年级数学上册第5章二次根式湘教版

八年级数学上册第5章二次根式湘教版

八年级数学上册第5章二次根式(湘教版)第5章二次根式二次根式第1课时二次根式的概念及性质1.了解二次根式的概念.2.理解并掌握二次根式的性质:(a)2=a(a≥0)和a2=a(a≥0).(重点)自学指导:阅读教材P155~157,完成下列问题.(一)知识探究1.形如a的式子叫作二次根式,根号下的数叫作被开方数.只有当被开方数是非负实数时,二次根式才在实数范围内有意义.2.二次根式的性质:(1)(a)2=a(a≥0);(2)a2=|a|=a(a≥0),-a(a0).(二)自学反馈1.下列各式中,一定是二次根式的是(C)A.-7 B+x2 D.2x二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.2.代数式x+1有意义,则x的取值范围是(A)A.x≥-1B.x≠x≥1D.x≤-1二次根式有意义的条件是:被开方数大于等于零. 活动1 小组讨论例1 当x是怎样的实数时,二次根式x-1在实数范围内有意义?解:由x-1≥0,解得x≥1.因此,当x≥1时,x-1在实数范围内有意义.例2 计算:(1)(5)2;(2)(22)2.解:(1)(5)2=5.(2)(22)2=22×(2)2=4×2=8.例3 计算:(1)(-2)2;(2)(-1.2)2.解:(1)(-2)2=22=2.(2)(-1.2)2=1.22=1.2.活动2 跟踪训练1.若(a-3)2=a-3,则a的取值范围是(D)A.a3B.a≤a3 D.a≥32.把下列非负数写成一个非负数的平方的形式:(1)5=(5)2;(2)3.4=(3.4)2;(3)16=(16)2;(4)x=(x)2(x≥0)当x是怎样的实数时,下列二次根式有意义?(1)-x;(2)5-2x;(3)x2+1.解:(1)由-x≥0,得x≤0.因此,当x≤0时,-x 有意义.(2)由5-2x≥0,得x≤52.因此,当x≤52时,5-2x有意义.(3)由x2+1≥0,得x为任意实数.因此,当x为任意实数时,x2+1都有意义计算:(1)(11)2;(2)(-6)2;(3)(-25)2;(4)-2(18)2.解:(1)11.(2)6.(3)20.(4)-活动3 课堂小结本节课你有什么收获?第2课时二次根式的化简1.了解最简二次根式的概念.2.会利用积的算术平方根的性质化简二次根式.(重点)自学指导:阅读教材P157~159,完成下列问题.(一)知识探究1.积的算术平方根的性质:ab=ab(a≥0,b≥0).化简二次根式时,可以直接把根号下的每一个平方因子去掉平方号以后移到根号外(注意:从根号下直接移到根号外的数必须是非负数).2.最简二次根式应有如下两个特点:(1)被开方数中不含开得尽方的因数(或因式);(2)被开方数不含分母.(二)自学反馈1.下列各式正确的是(D)A.(-4)×(-9)=-4×-9B.16+94=16×=4×D.4×9=4×9运用积的算术平方根的性质ab=ab化简时,注意a≥0,b≥0这一条件.2.把200化成最简二次根式是102.活动1 小组讨论例1 化简下列二次根式:(1)18;(2)20;(3)72;解:(1)18=9×2=9×2=32.(2)20=4×5=4×5=25.(3)72=8×9=2×22×32=2×32=62.例2 化简下列二次根式:(1)12;(2)解:(1)12=1×22×2=(12)2×2=122.(2)35=3×55×5=(15)2×15=活动2 跟踪训练1.下列二次根式中是最简二次根式的是(A)A.30B.12C.8D.122.实数0.5的算术平方根等于(C)A.2B.2C.22D.123.化简二次根式(-3)2×6得(B)A.-36B.36C.18 D化简下列二次根式:(1)12;(2)45;(3)72;(4)72.解:(1)23.(2)35.(3)62.(4)142.活动3 课堂小结本节课你有什么收获?5.2 二次根式的乘法和除法第1课时二次根式的乘法会逆用积的算术平方根的性质进行二次根式的乘法运算.(重难点)自学指导:阅读教材P161~162,完成下列问题.(一)知识探究积的算术平方根的性质:ab=ab(a≥0,b≥0),反过来,ab=ab(a≥0,b≥0),利用这一公式,可以进行二次根式的乘法运算.(二)自学反馈计算:(1)5×7;(2)13×9;(3)9×27.解:(1)35.(2)3.(3) (1)这里要用到公式:ab=ab(a≥0,b≥0);(2)计算9×27时,将27写成9×3,方便开平方.活动1 小组讨论例1 计算:(1)3×6;(2)13×72.解:(1)3×6=3×6=32×2=32.(2)13×72=13×72=24=22×6=26.例2 计算:(1)23×521;(2)32×(-184).解:(1)23×521=2×5×3×21=1032×7=307.(2)32×(-184)=3×(-14)×2×18=-342×18=-92.例3 已知一张长方形图片的长和宽分别是37 cm和7 cm,求这张长方形图片的面积.解:37×7=3×7=21(cm)2.答:这张长方形图片的面积为21 cm2.活动2 跟踪训练1.计算2×3的结果是(B)A.5B.6C.23D.322.下列各等式成立的是(D)A.45×25=85B.53×42=20×32=75 D.53×42=200a的值是一个整数,则正整数a的最小值是(B)A.1B.2C.3 D一个直角三角形的两条直角边分别为a=23 cm,b=36 cm,那么这个直角三角形的面积为92cm2计算下列各题:(1)3×5;(2)12×3;(3)12×32;(4)32×27;(5)6×15×10;(6)68×(-32).解:(1)15.(2)6.(3)22.(4)614.(5)30.(6)-72.活动3 课堂小结本节课你有什么收获?第2课时二次根式的除法1.理解商的算术平方根的性质ab=ab(a≥0,b>0),并能运用于二次根式的化简.(重点)2.能熟练运用二次根式的除法法则ab=ab(a≥0,b >0)进行二次根式的除法运算.(重难点)自学指导:阅读教材P163~164,完成下列问题.(一)知识探究1.商的算术平方根的性质:ba=ba(a>0,b≥0),可以利用它进行二次根式的化简.2.二次根式的除法规定:ba=ba(a>0,b≥0).(二)自学反馈1.下列各式成立的是(A)A.-3-5=35=B.-7-6=-7-2-9=2-9D.9+14=9+14=3122.计算123÷13的结果正确的是(B)A.3B.15C.5 D化简下列二次根式:(1)7100;(2)0.24;(3)315;(4)解:(1)710.(2)65.(3)455.(4)87.活动1 小组讨论例1 化简下列二次根式:(1)716;(2)解:(1)716=716=(2)95=95=35=3×55×5=例2 计算:(1)15÷3;(2)34256;(3)解:(1)15÷3=153=153=5.(2)34256=35426=(3)146=146=73=7×33×3=2例 3 电视塔越高,从塔顶发射出的电磁波传播得越远,从而能接收到电视节目信号的区域就越广.已知电视塔高h(km)与电视节目信号的传播半径r(km)之间满足r=2Rh(其中R是地球半径).现有两座高分别为h1=400 m,h2=450 m的电视塔,问它们的传播半径之比等于多少?解:设两座电视塔的传播半径分别为r1,r2.因为r=2Rh,400 m=0.4 km,450 m=0.45 km,所以r1r2=2Rh12Rh2=h1h2=0.40.45=4045=21035=223.活动2 跟踪训练1.下列运算正确的是(D)A.50÷5=10B.10÷25=222+42=3+4=7 D.27÷3=32.计算:123=2如果一个三角形的面积为15,一边长为3,那么这边上的高为2计算:(1)40÷5;(2)322;(3)44876;(4)45÷2解:(1)22.(2)4.(3)827.(4)6.活动3 课堂小结1.商的算术平方根的性质.2.二次根式的除法法则二次根式的加法和减法第1课时二次根式的加法和减法1.理解二次根式的加、减运算法则.2.会进行简单的二次根式的加、减运算.(重难点) 自学指导:阅读教材P167~168,完成下列问题.(一)知识探究在进行二次根式的加减运算时,应先将每个二次根式化简,然后再将被开方数相同的二次根式相加减.(二)自学反馈计算:(1)80-45;(2)28+47;(3)18-32+2;(4)(45+18)-(8-125).解:(1)5.(2)1677.(3)0.(4)85+2.活动1 小组讨论例1 计算:(1)58-227+18;(2)218-50+解:(1)原式=102-63+32=132-(2)原式=62-52+5=2+5.二次根式的加减与合并同类项类似,进行二次根式的加减运算时,必须先将各个二次根式化简,再合并被开方数相同的二次根式.例2 如图是某土楼的平面剖面图,它是由两个相同圆心的圆构成.已知大圆和小圆的面积分别为763.02 m2和150.72 m2,求圆环的宽度d(π取3.14).解:设大圆和小圆的半径分别为R,r,面积分别为S1,S2,由S1=πR2,S2=πr2可知R=S1π,r=S2π,则 d=R-r=S1π-S2π=763.023.14-150.72=243-48=93-43=答:圆环的宽度d为活动2 跟踪训练1.下列二次根式中,不能与2合并的是(C)A.12B.8C.24 D2.下列计算是否正确?为什么?(1)8-3=8-3;(2)4+9=4+9;(3)32-2=22.解:(1)不正确.此式结果为22-3.(2)不正确.此式结果为5.(3)正确计算:(1)8+18;(2)212+27;(3)80-20+5;(4)18+(98-27);(5)(75-54)-(108-96).解:(1)52.(2)73.(3)35.(4)102-33.(5)6-3.活动3 课堂小结怎样进行二次根式的加减计算?第2课时二次根式的混合运算会正确快速地进行二次根式的混合运算.(重难点)自学指导:阅读教材P169~171,完成下列问题.(一)知识探究1.二次根式的运算顺序:先算乘方,再算乘除,最后算加减;有括号的先算括号里的,再算括号外面的. 2.与二次根式相关的乘法公式:(a+b)(a-b)=a-b,(a+b)2=a+2ab+b,(a-b)2=a-2ab+b.(二)自学反馈计算:(1)(5+1)2;(2)(13+3)(13-3);(3)(12-13)×3;(4)8+182.解:(1)(5+1)2=(5)2+25+1=5+25+1=6+25.(2)(13+3)(13-3)=(13)2-32=13-9=4.(3)(12-13)×3=12×3-13×3=36-1=6-1=5.(4)8+182=82+182=4+9=2+3=5.活动1 小组讨论例1 计算:(1)(6-38)×2;(2)(2+2)(1-2).解:(1)(6-38)×2=6×2-38×2=6×2-38×2=23-32=323.(2)(2+2)(1-2)=2-22+2-2×2=2-22+2-2=-2.例2 计算:(1)(2+1)(2-1);(2)(2-3)2.解:(1)(2+1)(2-1)=(2)2-12=1.(2)(2-3)2=(2)2-22×3+(3)2=2-22×3+3=5-26.例3 计算:(1)(32+2)÷2;(2)12+3+12-3.解:(1)(32+2)÷2=(42+2)÷2=52÷2=5.(2)12+3+12-3=2-3(2+3)(2-3)+2+3(2+3)(2-3)=4(2+3)(2-3)=422-(3)2=4.活动2 跟踪训练1.化简8-2(2-2)的结果是(D)A.-2B.2-2C.2D.42-22.估计20×15+3的运算结果应在(C)A.1到2之间B.2到3之间到4之间 D.4到5之间3.计算:(27-13)×3=计算:(1)(3+5)(3-5);(2)(3+5)2.解:(1)-2.(2)8+2计算:(1)3(2-3)-24-6-3;(2)23÷223×25-110.解:(1)原式=6-3-26+6-3=-6.(2)原式=23×38×25-110=1010-1010=0.活动3 课堂小结如何进行二次根式的混合运算?。

二次根式的计算方法

二次根式的计算方法

添加标题
乘法运算的应用:二次根式的乘法运算在解决实际问题中具有广泛的应用,例如在计算面积、 体积、长度等物理量时,常常需要进行二次根式的乘法运算。
除法运算
公式:a√b/c√d = (a/c)√(b/d) 例题:(2√3)/(3√2) = (2/3)√(3/2) 注意事项:除法运算中,分母不能为0 应用:二次根式的除法运算在解决实际问题中具有广泛应用
二次根式的定义
概念:二次根式是形如√a(a≥0)的代数式,其中a称为被开方数,√a称为根号。
性质:二次根式具有非负性,即√a≥0(a≥0)。
运算:二次根式的运算包括加法、减法、乘法和除法,遵循一定的运算法则。
应用:二次根式在数学、物理、工程等领域有着广泛的应用,如求解方程、计算面积、体积 等。
二次根式的性质
转化为同类二次根式
概念:非同类二次根式是指 根号下含有不同字母的二次 根式
加减运算:将转化后的同类 二次根式进行加减运算,得
到结果
加减法运算规则
二次根式与有理数相加减, 先化成最简二次根式,再相 加减
不同底二次根式相加减,先 化成同底二次根式,再相加 减
同底二次根式相加减,底数 不变,被开方数相加减
03
二次根式的乘除法
乘法运算
添加标题
乘法运算的定义:二次根式的乘法运算是将两个二次根式相乘,得到一个新的二次根式。
添加标题
乘法运算的法则:二次根式的乘法运算法则是:(a√b)(c√d)=(ac)√(bd)。
添加标题
乘法运算的步骤:首先,将两个二次根式相乘,得到新的二次根式;然后,将新的二次根式的 被开方数相乘,得到新的被开方数;最后,将新的二次根式的系数相乘,得到新的系数。
乘除法运算规则

八年级数学上册第5章二次根式5.2二次根式的乘法和除法二次根式的乘法

八年级数学上册第5章二次根式5.2二次根式的乘法和除法二次根式的乘法
第七页,共十四页。
10.计算- 40×(-12 90)的结果是( A )
A.30
B.3 10
C.-3 10
D.-30
11.设 2=m, 3=n,用含 m、n 的式子表示 54,则下列表示正确的是( B )
A.mn
B.3mn
C.mn2
D.m2n
第八页,共十四页。
12.已知 m=(- 33)×(-2 21),则有( A )
解:原式=2aa--bb2÷a-abb=a-2 b·aa-bb=a2b.
5+1 5-1 5-1
当 a= 5+1,b= 5-1 时,原式=
2
= 2 =2.
第十三页,共十四页。
内容 总结 (nèiróng)
第5章 二次根式(gēnshì)。6
第十四页,共十四页。
自我诊断 1. 计算 81× 4= 18 ;
2× 18= 6 .
二次根式的乘法计算结果,一定要化为 最简二次根式(gēnshì).
自我诊断 2. 计算: 45× 27.
解:原式=3 5×3 3=9 15.
第二页,共十四页。
1.计算 8× 12的结果为( B )
A.1
B.2
C.3
D.5
2.下列各等式成立的是( D )
A.5<m<6
B.4<m<5
C.-5<m<-4
D.-6<m<-5
13.计算( 10+3)2017·( 10-3)2018 的结果是( D )
A. 10+3
B.3
C.-3
D. 10-3
14.如果 27× 2a是一个整数,那么 a 的最小正整数值为 6 .
15.定义一种新运算“ ”的运算法则为 a b= a× b,则 6 8= 4 3 .

二次根式(第1课时)北师大数学八年级上册PPT课件

二次根式(第1课时)北师大数学八年级上册PPT课件
两个必备特征 ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式 例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14; (2)81; (3) - 0.8;(4) -3x (x 0)
(5) m (m,n异号,n 0)(6) x2 ;4 (7) 3 15
n
分析: 是否含二 是 被开方数是 是 二次
探究新知 知识点 1
二次根式的概念
5, 11, 7.2, 49 , (c b)(c b)(其中b 24, c 25) 121
这些式子有什么共同特征? ①根指数都为2; ②被开方数为非负数.
探究新知
一般地,我们把形如 a (a 0) 的式子叫做二次根式. “ ”称为二次根号.
提示:a可以是数,也可以是式. ①外貌特征:含有“ ”
巩固练习
变式训练
判断下列各式是否为最简二次根式?
(1) 12 ( ×) (3) 3 ( √ ) × (5) ab2 ( )
(2) 4.5 ( × ) × (4) 1 ( )
2
× (6) 2x2 8x 8( )
连接中考
1. 下列式子中,为最简二次根式的是( B )
A. 1
2
B. 2 C. 4
D. 12
当x≥2时,
在实数范围内有意义.
思考 当x是怎样的实数时,下列各式在实数范围内有意义?
1
(1) x 1
解:由题意得x-1>0, 所以x>1.
探究新知
(2) x 3
x 1
解:因为被开方数需大于或等于零, 所以x+3≥0,即x≥-3. 因为分母不能等于零, 所以x-1≠0,即x≠1. 所以x≥-3 且x≠1.

《二次根式》第2课时示范课教学设计【数学八年级上册北师大】

《二次根式》第2课时示范课教学设计【数学八年级上册北师大】

《二次根式》教学设计
第2课时
一、教学目标
1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
2.会用二次根式的四则运算法则进行简单运算.
3.用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围内正确计算,培养类比学习的能力.
4.增强学生的符号、应用意识,培养学生合作交流、合情推理、表达能力。

二、教学重难点
重点:掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
难点:会用二次根式的四则运算法则进行简单运算.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
a a
(a≥0,b>0)
=
b b
思考长方形的面积是20,它的长是5,宽是多少?
教师追问:该怎么计算呢?
教师提示:这一节我们根据之前学过的二次根式的性质来解决二次根式的四则运算问题吧.
a b=a b(a≥0
a
(a≥0,b>0)
=
b
加法、减法法则:
先化为最简二次根式.
35
思维导图的形式呈现本节课的主要内容:。

人教版数学八年级下册《二次根式的除法》课件

人教版数学八年级下册《二次根式的除法》课件

5 8
=
2 3
1 =21=1. 36 3 6 9
二 商的算术平方根的性质 我们知道,把二次根式的乘法法则反过来就
得到积的算术平方根的性质.
类似的,把二次根式的除法法则反过来,就得到 二次根式的商的算术平方根的性质:
a a (a 0,b 0). bb
语言表述:商的算术平方根,等于积中各因式 的算术平方根的商.
我们可以运用它来进行二次根式的解题和化简.
a
a a 0,b 0
注意: 如果被开方数是带分
bb
数,应先化成假分数。
例5:化简 (1) 3 100
(2) 1 3 16
3 25x
9y2
解:1 3 3 3
100 100 10
(1)化什么?
(2)观察三个式子 有什么共同特征?
(2)1 3 = 19 = 19 = 19 根号内有分母 16 16 16 4
5
34 2 3 2
4
计算:
(1) 18 2;
(2) 6a 3a;
(3) 72 ; 6
(4) 2 3 1 3. 45 2 5
解: (1)原式= 18 2 9 3;
(2)原式= 6a 2;
3a
(3)原式= 72 6 12 2 3;
(4)原式=
1
3 2
2 8 45 5
1
2 3
2 45
10
高空抛物到落地所需时间t2是从50米高空抛物到落地 所需时间t1的多少倍?
2 100
解:由题意得 t2 10 20 2.
t1 2 50 10 10
1.【章前引言】如果两个电视塔的高分别是h1km,
h2km,那么它们的传播半径的比为

2020湘教版八年级数学上册(全套)精品课件

2020湘教版八年级数学上册(全套)精品课件
2020湘教版八年级数学上册(全套 )精品课件目录
0002页 0069页 0092页 0119页 0152页 0176页 0212页 0214页 0251页 0271页 0331页 页 0418页 0468页 0470页 0512页
第1章 分式 1.2 分式的乘法和除法 1.4 分式的加法和减法 第2章 三角形 2.2 命题与证明 2.4 线段的垂直平分线 2.6 用尺规作三角形 数学文化 欧几里得与原本 第3章 实数 3.2 立方根 IT教室 用Excel找√8的近视值 第4章 一元一次不等式(组) 4.2 不等式的基本性质 4.4 一元一次不等式的应用 第5章 二次根式 5.2 二次根式的乘法和除法
1.3 整数指数幂
2020湘教版八年级数学上册(全套) 精品课件
1.4 分式的加法和减法
2020湘教版八年级数学上册(全套) 精品课件
第1章 分式
2020湘教版八年级数学上册(全套) 精品课件
1.1 分式
2020湘教版八年级数学上册(全套) 精品课件
1.2 分式的乘法和除法
2020湘教版八年级数学上册(全套) 精品课件

湘教版八年级数学上册全册教学课件

湘教版八年级数学上册全册教学课件
湘教版八年级数学上册全册教学 课件目录
0002页 0034页 0072页 0089页 0136页 0178页 0180页 0199页 0201页 0298页 0317页 0343页 0359页 0426页 0502页
第1章 分式 1.2 分式的乘法和除法 1.4 分式的加法和减法 第2章 三角形 2.2 命题与证明 2.4 线段的垂直平分线 2.6 用尺规作三角形 数学文化 欧几里得与原本 第3章 实数 3.3 实数 数学文化 无理数的由来 4.2 不等式的基本性质 4.4 一元一次不等式的应用 第5章 二次根式 5.2 二次根式的乘法和除法
第1章 分式
湘教版八年级数学上册全册教学课 件
1.1 分式
湘教版八年级数学上册全册教学课 件
1.2 分式的乘法和除法
湘教版八年级数学上册全册教学课 件
1.3 整数指数幂湘教源自八年级数学上册全册教学课 件1.4 分式的加法和减法
湘教版八年级数学上册全册教学课 件

二次根式的乘法和除法课件初中数学湘教版八年级上册

二次根式的乘法和除法课件初中数学湘教版八年级上册

.
解:(1) 2 3 5 21 根号里面
数的相乘
25 321
根号外面 10 327
数的相乘
3
2
18 4
3
1 4
2
18
3 4
218
根号与根 号相乘
系数与系 数相乘
30 7 .
92.
当二次根式根号外的因数不为1时,m a n b mn ab a≥0,b≥0
练一练 计算:
(1) 2 3 5 21 ;
5.2 二次根式的乘法和除法 第1课时 二次根式的乘法
学习目标
1. 理解积的算术平方根的性质; 2. 灵活运用积的算术平方根的性质进行二次根式的 乘法运算.
※ 新课导入 积的算术平方根的性质是什么?
a b a b (a≥0,b≥0).
将上式从右至左看,得到
a b a b (a≥0,b≥0).
3 1的结果是( C )
46
B. 2
4
C. 3 2 D. 3
2
2
3.化简: (1) 3 ;
100
(2) 75 ; 27
(3) 2 7 . 9
解:
(1)
3
3 3.
100 100 10
(2)
75 27
52 3 32 3
52 5 . 32 3
补充解法: 75 75 5 3 5 .
27 27 3 3 3
4.在方格中,若要使横、竖、斜对角的3个实数 相乘都得到同样的结果,则2个空格的实数之积 为__6___2___.
5.计算:
(1)2 5 3 7;
(2)4
27

1 2
3
.
解:
(1)2 5 3 7 23 5 7 =6 35.

八年级数学上第5章二次根式5.2二次根式的乘法和除法第1课时二次根式的乘法课湘教

八年级数学上第5章二次根式5.2二次根式的乘法和除法第1课时二次根式的乘法课湘教

(3)a
3bc a ·2
2bac(a>0,b>0,c≥0).
解:原式=2a 3abc·2bac=2a 6c2=2 6ac.
*11.将 a -1a根号外的因式移到根号内为( A. -a B.- -a C.- a
) D. a
错解:A 诊断:本题学生容易把 a 直接从外面平方后 移到根号内化简,即 a -1a= a2·-1a= -a.忽视了 a 的取值为负数,应先留负号在根号外,然后再平方后 移到根号内化简.
9.一个直角三角形的两条直角边长分别为 a=2 3,b=3
6,那么这个直角三角形的面积是( C )
A.8 2
B.7 2
C.9 2
D. 2
10.计算:
(1)2 3×5 15;
解:原式=2×5× 3×15=10 3×3×5=30 5.
(2)
2a 3·
18ab(a≥0,b≥0);
原式= 23a·18ab= 12a2b=2a 3b.
2 (3)b
ab3·-32
a3b·3
ab(a>0,b>0).
解:原式=2b·-32·3· ab3·a3b·ab=-9b a5b3=-9a2 ab.
13.把下列根号外的因式移到根号内: (1)a 1a; 【点拨】要想把根号外的因式移到根号内,需利用 a= a2(a≥0)将根号外的因式转化为二次根式的形式. 解:因为 a>0,所以 a= a2. 所以 a 1a= a2· 1a= a2·1a= a.
(3)-2a 21a; 【点拨】要想把根号外的因式移到根号内,需利用 a=
a2(a≥0)将根号外的因式转化为二次根式的形式. 解:因为21a>0,所以 2a>0.所以-2a=- (2a)2.所以- 2a 21a=- (2a)2·21a =- 2a.

二次根式乘除法

二次根式乘除法

二次根式乘除法二次根式乘除法是数学中的一种常见运算方法,用于对含有二次根式的表达式进行乘法和除法运算。

本文将围绕二次根式乘法和除法展开讨论,详细介绍其运算规则和应用场景。

一、二次根式乘法二次根式乘法是指两个含有二次根式的表达式进行相乘的运算。

在进行二次根式乘法时,我们需要注意以下几个规则:规则1:二次根式相乘时,可以将根号内的数相乘,并将根号外的系数相乘。

例如,对于√a * √b,可以将根号内的数a和b相乘,得到√(a*b);同时,将根号外的系数相乘,得到√a * √b = √(a*b)。

规则2:二次根式相乘时,如果根号内的数相同,则可以合并为一个根号,并将根号外的系数相乘。

例如,对于√a * √a,可以将根号内的数a相乘,得到√(a^2) = a;同时,将根号外的系数相乘,得到√a * √a = a。

规则3:二次根式相乘时,如果根号内的数不同,则无法进行合并。

例如,对于√a * √b,根号内的数a和b不同,无法进行合并,所以√a * √b无法进行简化。

通过以上规则,我们可以进行二次根式的乘法运算。

举个例子,计算√2 * √3:将根号内的数2和3相乘,得到√(2*3) = √6;然后,将根号外的系数1和1相乘,得到√2 * √3 = 1 * 1 = 1;所以,√2 * √3 = 1 * √6 = √6。

二、二次根式除法二次根式除法是指将一个含有二次根式的表达式除以另一个含有二次根式的表达式的运算。

在进行二次根式除法时,我们需要注意以下几个规则:规则1:二次根式除法可以转化为乘法,即将除法转化为分子与倒数的乘法。

例如,对于√a / √b,可以转化为√a * (1 / √b)。

规则2:二次根式的倒数等于二次根式中根号内的数的倒数乘以根号外的系数。

例如,对于1 / √a,其倒数为1 / √a = (1 / a)√a。

通过以上规则,我们可以进行二次根式的除法运算。

举个例子,计算√6 / √2:将除法转化为乘法,即√6 / √2 = √6 * (1 / √2);然后,根号内的数6除以2,得到√(6/2) = √3;根号外的系数1除以根号内的数2,得到√6 / √2 = √3。

最新湘教版八年级数学上册全册教学课件

最新湘教版八年级数学上册全册教学课件

1.5 可化为一元一次方程的分式 方程
最新湘教版八年级数学上册全册教 学课件
第2章 三角形
最新湘教版八年级数学上册全册教 学课件
2.1 三角形
最新湘教版八年级数学上册全册教 学课件
最新湘教版八年级数学上册全册 教学课件目录
0002页 0033页 0065页 0126页 0155页 0189页 0218页 0220页 0252页 0316页 0335页 0363页 0379页 0407页 0439页
第1章 分式 1.2 分式的乘法和除法 1.5 可化为一元一次方程的分式方程 2.1 三角形 2.3 等腰三角形 2.5 全等三角形 IT教室 用几何画板探究"将军饮马"问题 综合实践 找重心 3.1 平方根 3.3 实数 数学文化 无理数的由来 4.2 不等式的基本性质 4.4 一元一次不等式的应用 第5章 二次根式 5.2 二次根式的乘法和除法
第1章 分式
最新湘教版八年级数学Βιβλιοθήκη 册全册教 学课件1.1 分式
最新湘教版八年级数学上册全册教 学课件
1.2 分式的乘法和除法
最新湘教版八年级数学上册全册教 学课件
1.3 整数指数幂
最新湘教版八年级数学上册全册教 学课件
2.2 命题与证明
最新湘教版八年级数学上册全册教 学课件

二次根式(第3课时)课件18张北师大版八年级上册数学

二次根式(第3课时)课件18张北师大版八年级上册数学

例1:计算: (1) 5 2 5 2 24 6 3
解:(1) 5 2 5 2 24 6 352 22 26 3
6
522 6 63 6
三、典型例题
(2)
32
1 2
2
24 2 3 2
2 3
解:(2)
32
1 2
2
24 2
3 2
2 3
4 242 6 2 332 2
∴ a2b-ab2 = ab(a-b) = -1×(-4)=4
三、典型例题
例3: 阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:

2 5
2 5 2 5 5 5 5
;

1
1 ( 2 1)
2 1
2 1 ( 2 1)( 2 1) ( 2)2 1
2 1 等
运算都是分母有理化.根据上述材料,
1
(1)化简: 3 2
xy
y
6 xy 3 xy 4x xy 6 xy y
3
4x y
xy
当x=
3 2
,y=
27,原式
3
6 27
81 25 22
2
【当堂检测】
4.已知:a= 3 2 ,b= 3 2 ,求代数式a2b-ab2的值;
解:∵ a= 3 2 ,b= 3 2
∴ ab=( 3 2 )( 3 2 )=3-4=-1 a-b= 3 2 3 2 = -4
16 2 2 3 2 2
13 2 3
三、典型例题
归纳总结
在进行二次根式混合运算时,运算顺序与实数的运算顺序相同,若其 结果是二次根式,则二次根式一定是最简二次根式.
【当堂检测】
1.计算:

二次根式的基本运算

二次根式的基本运算

二次根式的基本运算二次根式是代数中的重要概念之一,它与平方根有着密切的关系。

在本文中,将探讨二次根式的基本运算,包括加法、减法、乘法和除法。

通过了解和掌握这些运算规则,读者将能够更加熟练地处理二次根式的相关问题。

1. 加法运算:当两个二次根式的被开方数和指数相等时,可以进行加法运算。

例如:√a + √a = 2√a√5 + √5 = 2√5当两个二次根式的被开方数相等,但指数不相等时,不能直接进行加法运算。

例如:√a + √b (a ≠ b) = √a + √b (无法化简)当然,我们也可以将不同的二次根式化简成一个根式。

例如:√2 + √8 = √2 + 2√2 = 3√22. 减法运算:减法运算和加法运算类似,需要根据被开方数和指数是否相等进行不同的处理。

例如:√a - √a = 0√5 - √5 = 0当两个二次根式的被开方数相等,但指数不相等时,同样不能直接进行减法运算。

例如:√a - √b (a ≠ b) = √a - √b (无法化简)同样地,我们可以将不同的二次根式化简成一个根式。

例如:√8 - √2 = 2√2 - √2 = √23. 乘法运算:乘法运算是根据乘法分配律进行的,即:√a × √b = √(a × b)例如:√2 × √3 = √6当然,我们也可以将乘法运算简化,如:√2 × √2 = 24. 除法运算:除法运算是根据乘法的逆运算进行的,即:√a ÷ √b = √(a ÷ b)例如:√8 ÷ √2 = √(8 ÷ 2) = √4 = 2同样地,我们也可以将除法运算简化,如:√2 ÷ √2 = 1通过以上对二次根式的基本运算的讨论,我们可以看到,要学好和运用好二次根式的基本运算,关键在于熟练掌握运算规则和化简技巧。

在解题过程中,我们需要根据具体情况灵活运用这些规则,并结合代数运算的基本性质,如结合律、交换律和分配律等,从而得到正确的结果。

2020最新湘教版八年级数学上册(全套)精品课件

2020最新湘教版八年级数学上册(全套)精品课件
2020最新湘教版八年级数学上册( 全套)精品课件目录
0002页 0043页 0076页 0112页 0193页 0273页 0372页 0403页 0405页 0463页 0490页 0492页 0524页 0559页 0619页 0679页
第1章 分式 1.2 分式的乘法和除法 1.4 分式的加法和减法 第2章 三角形 2.2 命题与证明 2.4 线段的垂直平分线 2.6 用尺规作三角形 数学文化 欧几里得与原本 第3章 实数 3.2 立方根 IT教室 用Excel找√8的近视值 第4章 一元一次不等式(组) 4.2 不等式的基本性质 4.4 一元一次不等式的应用 第5章 二次根式 5.2 二次根式的乘法和除法
2020最新湘教版八年级数学上册( 全套)精品课件
2.1 三角形
2020最新湘教版八年级数学上册( 全套)精品课件
2.2 命题与证明
2020最新湘教版八年级数学上册( 全套)精品课件
2.3 等腰三角形
2020最新湘教版八年级数学上册( 全套)精品课件
2.4 线段的垂直平分线
2020最新湘教版八年级数学上册( 全套)精品课件
2.5 全等三角形
2020最新湘教版八年级数学上册( 全套)精品课件
2.6 用尺规作三角形
2020最新湘教版八年级数学上册( 全套)精品课件
2020最新湘教版八年级数学上册( 全套)精品课件
1.4 分式的加法和减法
2020最新湘教版八年级数学上册( 全套)精品课件
1.5 可化为一元一次方程的分式 方程
2020最新湘教版八年级数学上册( 全套)精品课件
第2章 三角形
IT教室 用几何画板探究"将军饮 马"问题
2020最新湘教版八年级数学上册( 全套)精品课件

二次根式的乘除(课件)八年级数学下册(苏科版)

二次根式的乘除(课件)八年级数学下册(苏科版)
足公式 t
2h
.从100米高空抛物到落地所需时间t2是从50米高
10
空抛物到落地所需时间t1的多少倍?
解:由题意得
t2

t1
2 100
10 20 2.
10
2 50
10
课堂练习
1.化简
A.9
18 2 的结果是( B )
B.3
C. 3 2
D.
2 3
2.下列根式中,最简二次根式是( C )
注意:被开方数 a,b 既可以是数,也可以是代数式,但都必须是非
负的.
典型例题
例1 计算:
1
3 5;
2
1
27.
3
解: 1 3 5= 3 5= 15;
2
1
1
27 = 27 = 9=3.
3
3
提示:
两个二次根式相乘,把被开方数
相乘,根指数不变.即:
a b ab (a≥0,b≥0)
7
7
5
× × =
2²×2×5
2 10


5×5
5
8
5
探究新知
二次根式的乘除混合运算中的四点注意:
(1)带分数要化成假分数;
(2)要注意确定最后结果的符号;
(3)最后结果一般要化为最简二次根式或整式;
(4)在二次根式的乘除混合运算中,有理数的运算法则同样适用.
05
二次根式乘除法的应用
典型例题
例题9. 一个长方形的长和宽分别是 10 和2 2 .求这个
可以发现这些数不能再化简,这些数有两个特点:
(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档