三、待定系数法求解析式
考点08 一次函数的图象与性质【无答案】
考点08 一次函数的图象和性质一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。
各地对一次函数的图象与性质的考察也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面。
也因为一次函数是一个结合型比较强的知识点,所以其图象和性质也是后续函数问题学习的一个基础。
故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。
一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象1.下列函数:①y=4x;②y=﹣;③y=;④y=﹣4x+1,其中一次函数的个数是()A.1B.2C.3D.42.如图,在平面直角坐标系中,函数y=k(x﹣1)(k>0)的图象大致是()A.B.C.D.3.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.4.在平面直角坐标系中,直线是函数y=6x﹣2的图象,将直线l平移后得到直线y=6x+2,则下列平移方式正确的是()A.将1向右平移4个单位长度B.将1向左平移4个单位长度C.将1向上平移4个单位长度D.将1向下平移4个单位长度5.直线y=2x﹣4向上平移2个单位后所得的直线与x轴交点的坐标是.6.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是()A.k1k2<0B.k1+k2<0C.b1﹣b2>0D.b1b2>0考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上1.一次函数y=﹣3x+1的图象经过()A.第一、二、四象限B.第一、三、四象限C.第一、二、三象限D.第二、三、四象限2.已知点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定3.已知A(x1,y1),B(x2,y2)是关于x的函数y=(m﹣1)x图象上的两点,当x1<x2时,y1<y2,则m 的取值范围是()A.m>0B.m<0C.m>1D.m<14.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是()A.函数图象经过第一、二、四象限B.图象与y轴的交点坐标为(1,0)C.y随x的增大而减小D.图象与坐标轴调成三角形的面积为5.已知点(﹣2,y1),(2,y2)都在直线y=2x﹣3上,则y1y2.(填“<”或“>”或“=”)考向三:待定系数法求一次函数的解析式1.一个正比例函数的图象过点(﹣2,3),它的表达式为()A.B.C.D.2.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m的值为()A.2B.﹣2 C.2或﹣2D.m的值不存在3.已知y与x成正比例,且当x=2时,y=﹣3.则当x=﹣时,y=.4.已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.5.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式.考向四:一次函数与方程不等式间的关系1.已知方程2x﹣1=﹣3x+4的解是x=1,则直线y=2x﹣1和y=﹣3x+4的交点坐标为()A.(1,0)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)2.如图,直线y=ax+b(a≠0)过点A(0,1),B(2,0),则关于x的方程ax+b=0的解为.3.如图,一次函数y=2x+1的图象与y=kx+b的图象相交于点A,则方程组的解是()A.B.C.D.4.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则x+y=.5.若定义一种新运算:,例如:2@4=2+4﹣3=3,2@1=2﹣1+3=4,下列说法:①(﹣1)@(﹣2)=4;②若x@(x+2)=5,则x=3;③x@2x=3的解为x=2;④函数y=(x2+1)@1与x轴交于(﹣1,0)和(1,0).其中正确的个数是()A.4B.3C.2D.16.如图,已知一次函数y1=kx﹣b与y2=nx函数图象相交于点M,当kx﹣b=nx时,x的值是,当y1>y2时,x的取值范围是,当y1<y2时,x的取值范围是.7.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m=,n=.(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:.(3)当时,x的取值范围为.考向五:一次函数与三角形面积一.一次函数与坐标轴围成三角形面积的规律方法归纳3.求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;二.一次函数图象与几何图形动点面积1.此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息2.对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点3.动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。
待定系数法求函数解析式
已知顶点坐标或对称轴或最值,选择顶点式
已知抛物线与x轴的两交点坐标,选择交点式
例1、已知一个二次函数的图象过点(0,-3) (4,5)(-1, 0)三点,求这个函数的解析式?
解: 设所求的二次函数为 y=ax2+bx+c
∵二次函数的图象过点(0,-3)(4,5)(-1, 0) a= 1 c=-3 解得 b=-2 16a+4b+c=5 ∴ x=0时,y=-3; a-b+c=0 c= -3
交点式: y=a(x-x1)(x-x2)
-1
o
1
x
顶点式: y=a(x-h)2+k
故所求的抛物线解析式为 y=- (x+1)(x-1) 即:y=-x2+1
已知一个二次函数的图象过点(0,-3) (4,5) 对称轴为直线x=1,求这个函数的解析式?
解:设所求的二次函数为 y=ax2+bx+c c=-3 依题意得 16a+4b+c=0 - b =1 2a
用待定系数法求函数的解析式的一般步骤
一、设 二、代 三、解 四、还原
用待定系数法确定二次函数的解析式时, 应该根据条件的特点,恰当地选用一种函数表达式。
二次函数常用的几种解析式
一般式 顶点式 交点式 y=ax2+bx+c (a≠0) y=a(x-h)2+k (a≠0) y=a(x-x1)(x-x2) (a≠0)
x=4时,y=5;
∴所求二次函数为 y=x2-2x-3
x=-1时,y=0;
最低点为( x=1,y最值 1, =-4 -4)
例2、已知抛物线的顶点为(1,-4), 且过点(0,-3),求抛物线的解析式?
人教版数学八年级下册 用待定系数法求一次函数解析式(教案与反思)
第3课时用待定系数法求一次函数解析式路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!前事不忘,后事之师。
《战国策·赵策》原创不容易,【关注】店铺,不迷路!原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。
柳宗元【知识与技能】1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数,一个条件确定一个正比例函数. 【过程与方法】1.经历待定系数法的应用过程,提高解决数学问题的能力.2.体验一次函数中数形结合思想的运用.【情感态度】能把实际问题与数学问题相互转化,认识数学与生活的密切关系. 【教学重点】待定系数法确定一次函数解析式.【教学难点】灵活运用有关知识解决实际问题.一、情境导入,初步认识已知两个函数的图象如图所示,请根据图象写出每条直线的表达式.【教学说明】从图象知,图1中直线表示的是正比例函数,其解析式为y=kx形式,关键是如何求出k的值;由图可知图象过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值.图2中直线表示的是一次函数,其解析式为y=kx+b形式,代入直线上两点坐标(2,0)与(0,3),通过解方程组即可求出k、b,确定解析式.学生讨论后,由教师小结.确定正比例函数解析式需要1个条件,确定一次函数的解析式需要2个条件,先设出相应的解析式,然后将条件代入得到方程或方程组,求解后确定解析式.二、典例精析,掌握新知先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.例1已知正比例函数的图象经过点(-4,3),求它的解析式.【分析】求解正比例函数的解析式,我们可以首先设它的解析式为y=kx,根据已知条件,求解出k的值即可.根据这个正比例函数图象经过点(-4,3),意味着当x=-4时,y=3,从而得到k的值.解:由题意可知3=-4k,k=-34所以,这个正比例函数解析式为y=-34x.例2问点A(-1,3),B(1,-1),C(3,-5)是否在同一条直线上. 解:设直线AB的解析式为y=kxb,由题意得3 1k b k b=-+⎧⎨-=+⎩解得错误!未找到引用源。
待定系数法求直线解析式的方法与步骤
待定系数法求直线解析式的方法与步骤
嘿,咱今儿就来唠唠待定系数法求直线解析式这档子事儿哈!
咱先想想,直线这玩意儿,不就是在那平地上直直地往前伸展嘛。
那要怎么来描述它呢?这就得靠解析式啦!待定系数法呢,就像是给
直线找个最合适的“身份牌”。
比如说哈,咱知道一条直线过两个点,那这两个点不就像是这条直
线的两个“标记”嘛。
咱就可以设这条直线的解析式是 y=kx+b,这里的
k 和 b 就是咱要待定的系数呀。
然后把那两个点的坐标代进去,这不就有了两个方程嘛。
就好比解方程一样,解出来 k 和 b 的值,那这条直线不就被咱给“抓住”啦!这多有意思呀!
你想想,要是没有这个待定系数法,咱咋知道这条直线到底是啥样
的呀。
就好像你要找一个人,总得有他的一些特征信息吧,不然茫茫
人海,你咋找呀。
咱再举个例子哈,有一条直线过点(1,2)和(3,4),那咱就把这两个点
代进去呗。
得到一个方程组,解一解,k 和 b 的值不就出来啦。
哎呀,你说这待定系数法是不是很神奇呀!它能让咱把那些看起来
很抽象的直线给实实在在地抓住,给它一个明确的表达方式。
这就像是给直线穿上了一件合适的衣服,让它变得更加清晰可见啦。
咱在学习的时候呀,可别嫌麻烦,多做几道题,多练练手,慢慢就
会发现其中的乐趣啦。
等你熟练掌握了,看到那些直线呀,就像看到
老朋友一样亲切呢!
总之呀,待定系数法求直线解析式,那可是数学里的一个好帮手呀,咱可得好好利用它,让咱的数学世界更加丰富多彩哟!。
待定系数法求解析式
待定系数法求函数解析式【要点梳理】一.已知三点求抛物线解析式例1 二次函数的图象经过点(1,4),(-1,0)和(-2,5),求二次函数的解析式.例2若抛物线经过A(-1,0)和B(3,0),且与y轴交于点(0,-3),求此抛物线的解析式及顶点坐标.二.已知顶点坐标及另一点坐标求抛物线解析式例3 已知抛物线的顶点坐标是(-2,3)且过(-1,5),求抛物线的解析式.三.已知两点及对称轴,求抛物线解析式例4已知抛物线过A(1,0),B(0,-3)两点,且对称轴为直线x=2,求抛物线解析式.四.已知x轴上两点坐标及另一点坐标求抛物线解析式例5若抛物线经过A(-2,0)和B(4,0),且与y轴交点(0,-3),求此抛物线的解析式及顶点坐标.五.求平移后新抛物线解析式例6把抛物线2xy-=向左平移1个单位,然后向上平移3个单位,求平移后新的抛物线解析式.六.求沿坐标轴翻折后新抛物线解析式例7 在一张纸上作出函数322+-=xxy的图象,沿x轴把这张纸对折,描出与函数322+-=xxy的图象关于x轴对称的抛物线,并写出新抛物线解析式.【课堂操练】1.求下列条件下的二次函数解析式:(1)过点(-1,0),(0,2)和(4,0).(2)顶点为(2,-3),且过点(-1,15).2.已知二次函数cbxaxy++=2的图象如图所示,求它关于y轴对称的抛物线解析式.3.已知二次函数cbxaxy++=2的图象如图所示,求它关于x轴对称的抛物线解析式.4.已知二次函数cbxxy++=221的图象过点A(c,-2),,求证:这个二次函数图象的对称轴是直线x=3,题目中横线上方部分是被墨水污染了无法辨认的文字.(1)根据已知和结论中现有信息,你能否求出题目中的二次函数解析式?若能,请写出解题过程;若不能,请说明理由.(2)请你根据已有的信息,在原题中的横线上添加一个适当的条件,把原题补充完整.【课后巩固】1.将抛物线2y x=的图像向右平移3个单位,则平移后的抛物线的解析式为___________.2.二次函数342++=xxy的图象可以由二次函数2xy=的图象平移而得到,下列平移正确的是()A、先向左平移2个单位长度,再向上平移1个单位长度B、先向左平移2个单位长度,再向下平移1个单位长度C、先向右平移2个单位长度,再向上平移1个单位长度D、先向右平移2个单位长度,再向下平移1个单位长度3.已知2y ax bx c=++的图象过(-2,-6)、(2,10)和(3,24)三点,求函数解析式.4.已知函数2y ax bx c=++,当x=1时,有最大值-6,且经过点(2,-8),求出此抛物线的解析式.5.已知二次函数的图象与x轴的交点横坐标分别为2和3,与y轴交点的纵坐标是72,求它的解析式.6.已知抛物线22(2)4y m x mx n =--+的对称轴是x =2,且它的最高点在直线112y x =+上,求此抛物线的解析式.7.已知抛物线2y ax bx c =++(a ≠0)经过 (0,1)和(2,-3)两点. (1)如果抛物线开口向下,对称轴在y 轴的左侧,求a 的取值范围.(2)若对称轴为x =-1,求抛物线的解析式.8. 二次函数图象过A 、B 、C 三点,点A 的坐标为(-1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB =OC . (1)求C 的坐标;(2)求二次函数的解析式,并求出函数最大值.9.在平面直角坐标系中,△AOB 的位置如图所示.已知∠AOB =90°,AO =BO ,点A 的坐标为 (-3,1).(1)求点B 的坐标,(2)求过A ,O ,B 三点的抛物线的解析式, (3)设点B 关于抛物线的对称轴的对称点为B l ,求△AB l B 的面积.10.已知点A (-2,-c )向右平移8个单位得到 点A ',A 与A '两点均在抛物线2y ax bx c =++上, 且这条抛物线与y 轴的交点的纵坐标为-6,求这 条抛物线的顶点坐标.11.在直角坐标平面内,二次函数图象的顶点为A (1,-4),且过点B (3,0). (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.12.一次函数y =x -3的图象与x 轴,y 轴分别交于点A ,B .一个二次函数y =x 2+bx +c 的图象经过点A ,B .(1)求点A ,B 的坐标,并画出一次函数y =x -3的图象;(2)求二次函数的解析式及它的最小值.13.在平面直角坐标系中,已知二次函数k x a y +-=2)1(的图像与x 轴相交于点A 、B ,顶点为C ,点D 在这个二次函数图像的对称轴上,若四边形ABCD 时一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式.14.关于x 的函数22(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方. (1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式; (3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.。
用待定系数法求一次函数解析式
y=3x-30
60 元上网费用; (2)若小李 4 月份上网 20 小时,他应付________
(3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间 是__________.
35
点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b,
30k b 60 k 3 则 ,解得 .所以 y=3x-30. b 30 40k b 90
k=2 ∴ y=2 x +2 ∴ x=-1 时 y=度y(厘米)在一定限度内 所挂重物质量x(千克)的一次函数,现已测得 不挂重物时弹簧的长度是6厘米,挂4千克质量 的重物时,弹簧的长度是7.2厘米,求这个一次 函数的解析式。
解:设这个一次函数的解析式为:y=kx+b 根据题意,把x=0,y=6和x=4,y=7.2代入,得: b=6 k=0.3 4k+b=7.2 解得 b=6
Page 2
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解: ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b
解得
b=-5
∴这个一次函数的解析式为y=2x-5
Page
3
变式4:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个一 次函数的解析式. ∵ y=kx+b 的图象与y=2x平行. 解:
当B点的坐标为(0,4)时,则 y=kx+4
4 ∴ 0=3k+4, ∴k= - ∴ 3 4 ∴ 0=3k+4, ∴k= 3
y= -
4 x+4 3
当B点的坐标为(0,-4)时,则 y=kx-4
求函数f(x)的解析式
例2 已知 f ( x 1) x 2 x ,求 f ( x )
2 解:令 t x 1,则 t 1 , x (t 1)
f ( x 1) x 2 x
f (t ) (t 1) 2 2(t 1) t 2 1,
2
f ( x) x 1 ( x 1)
2 a x+ab+b f[f(x)]=af(x)+b=a(ax+b)+b=
a 2 4 ab b 3
a 2 a 2 或 b 1 b -3
f ( x) 2x 1 或 f ( x) 2x - 3
二、【换元法】
已知f(g(x)),求f(x)的解析式,一般的可用换元法,具体为:令 t=g(x),在求出f(t)可得f(x)的解析式。换元后要确定新元t的取值 范围。
2
f ( x) ( x 1) 1
2
作业: 《全优课堂》 1、P23 例3 2、P24能力提高7
再
见
解:1、令x=1,y=0则有 f(1)-f(0)=2,由f(1)=0的f(0)=-2 。 2、令y=0则有 f(x)-f(0)=(x+1)x, 所以 f(x)=(x+1)x+2 .
求函数解析式的题型有:
(1)已知函数类型,求函数的解析式:待定系 数法;
(2)已知f(x)求f[g(x)]或已知f[g(x)]求f(x) :换元法、 配凑法; (3)已知含有两个不同变量的函数的关系式: 列方程组法(消去法) (4)已知关系式中的变量可任意取值:赋值法
练习:
1、若f (3x 1) 4 x 3, 求f ( x)的解析式。 2、已知f ( x 1) x 1, 求f ( x)的解析式。
待定系数法求一次函数解析
感谢您的观看
THANKS
未知参数较多或未知参数之间的关系不明确
待定系数法更为适用,可以通过设立方程组求解。
与其他方法的结合使用
• 在某些情况下,可能需要结合待定系数法和点斜式或两点式来 求解一次函数的解析式。例如,已知一点和斜率,同时还需要 确定其他参数时,可以先使用点斜式得到初步的函数解析式, 再结合待定系数法求解其他参数。
实例二:已知与x轴交点求一次函数解析式
总结词
利用与x轴交点坐标求一次函数解析式
VS
详细描述
给定一次函数与x轴的交点$(x_0, 0)$,通 过待定系数法可以求出一次函数$y = kx + b$的解析式。首先,根据交点坐标计算斜 率$k = frac{0 - b}{x_0 - 0} = frac{b}{x_0}$,然后代入交点坐标$(x_0, 0)$求出截距$b = 0 - kx_0$,最终得到一 次函数解析式。
实例三:已知与y轴交点求一次函数解析式
总结词
利用与y轴交点坐标求一次函数解析式
详细描述
给定一次函数与y轴的交点$(0, y_0)$,通过 待定系数法可以求出一次函数$y = kx + b$ 的解析式。首先,根据交点坐标计算截距 $b = y_0$,然后根据斜率$k$和截距$b$ 的关系计算斜率$k = frac{y_0 - b}{0 - 0} = frac{y_0 - y_0}{0} = 0$,最终得到一次函 数解析式。
03
待定系数பைடு நூலகம்求一次函数解析 步骤
设定一次函数形式
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是待 求的系数。
根据题目条件,设定一次函数的具体形式,例如 $y = kx + b$。
用待定系数法求函数解析式用
经过点P(1,2)的一次函数的解析式,则这个一次
函数解析式为 y x 1 。
2、(2007年郴州)已知正比例函数y=kx经过点 P(1,2),求这个正比例函数的解析式为 y 2x 。
3、(2010年郴州)已知双曲线 (1,2)则双曲线的解析式为
y
k x
y
的图象经过A
2 。
x
展现 自我
1、(2013年郴州)已知:如图,一次函数的图
象与y轴交于C(0,3),且与反比例函数y= 2 的图象在第一象限内交于A,B两点,其中 x
A(1,a),求这个一次函数的解析式.1
这个一次函数的解析式y=-x+3
.
2、(2012年郴州)已知反比例函数的图象与 直线y=2x相交于A(1,a),求这个反比例 函数的解析式. 这个反比例函数的解析式为y= 2
(1)求抛物线的表达式; (2)、(3)待续
y 2 x2 11 x 4 33
方法点拔 看图找点 见形想式 建模求解
畅谈所得
感悟提升
通过本节课的复习你对用待 定系数法求函数解析式又有什么 新的认识?
轻松 应对
任选以下三个条件中的一个,求二次函数
y=ax2+bx+c的解析式; ① 0)已知直线上两个点的坐标
反比例函数
yy kk(k 0) xx
二次函数一般式 y=ax2+bx+c
已知双曲线上一个点的坐标 已知抛物线上三个点的坐标
二次函数顶点式 y=a(x-h)2+k 已知抛物线顶点坐标(h, k)
二次函数交点式
y=a(x-x1)(x-x2)
已知抛物线与x 轴的两个交 点(x1,0)、 (x2,0),
高中数学用待定系数法求函数的解析式
高中数学用待定系数法求函数的解析式待定系数法是一种求未知数的方法。
一般用法是:将一个多项式表示成另一种含有待定系数的新的形式,从而得到一个恒等式,然后根据恒等式的性质得出系数应满足的方程或方程组,最后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。
例1、已知一次函数y=kx+b(k,b为常数,),当x=4时,y的值为9;当x=2时,y的值为-3;求这个函数的关系式。
分析:将已知条件代入函数的解析式得到关于的方程再求解即可。
解:依题意得:∴y=6x-15思考:一般地,函数关系式中有几个系数,就需要有几个等式才能求出函数关系式。
如,一次函数关系:那么,如果要确定二次函数的关系式,又需要几个条件呢?例2、已知二次函数的图象经过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式。
分析:给出三个条件需要列三个等式,应设二次函数的解析式为一般式。
解:设函数的解析式为,则有解得∴y=1.5x2-1.5x+1例3、已知一个二次函数的图象经过点(0,1),它的顶点坐标为(8,9),求这个二次函数的关系式。
分析:本题的题目中给了顶点坐标,所以可设二次函数解析式为顶点式。
解:∵顶点坐标是(8,9)∴可设函数关系式为:y=又∵函数图象经过点(0,1)∴a×+9=1 解得a=∴函数关系式为:y=(x-8)+9例4、抛物线的图象经过(0,0)与(12,0)两点,其顶点的纵坐标是3,求它的函数关系式。
分析:根据抛物线的对称性,知顶点的坐标是(6,3)方法一:可设函数关系式为:再将(0,0)点的坐标代入得,解得,所以,所求抛物线解析式为方法二:设函数关系式为:由题意,得,解得所以,所求抛物线解析式为思考:利用已知条件求二次函数的解析式,常用的方法是待定系数法,但可根据不同的条件选用适当形式求的解析式。
如:(1)给出三点坐标,宜使用一般式:(2)已知抛物线的顶点坐标与对称轴有关或与最大(小)值有关时,常用顶点式:。
第3课时待定系数法求一次函数的解析式
2、已知一次函数的图像经过点(1,1)和(2,3),
求这个一次函数的解析式。
y
解:设一次函数的解析式为 y=kx+b , 3
一次函数y=kx+b经过点(1,1)和(2,3) 2
k+b=1 2k+b=3 解得 k= 2
k+b=1 2k+b=3
1
-1 0 1 2 3 x
-1
b= -1
一次函数的解析式为 y=2x-1
1
的面积为 1 2 | -3 | 3 2
-1 0 1 2 3 x
-1
-2
-3
待定系数法
1、通过这节课的学习。你知道利用什么方法确
定正比例函数或一次函数的解析式吗?
2、你还记得利用待定系数法确定函数解析式的
一般步骤吗?
一设二列三解 四写
的点,你能求出它的解析式吗?
不同的取法吗?
从数到形
函数解析式 y = kx+b
选取
满足条件的两定点 (x1,y1)与(x2,y2)
画出
一次函数的 图象:直线
1、求图中直线的函数解析式。
分析:(1)观察函数图像的特点,经过哪些点?
( 0,0 )和( 4,2 ) (2)是什么函数呢?
正比例函数
(3)确定函数解析式也就是求什么值呢?
解得 k= 2式为 y=2x-1
写
归纳:用待定系数法求一次函数解析式的步骤
1、设出一次函数解析式_y_=__k_x_+__b; 2、列,根据已知条件列出关于 k、b 的二元一次方程组 3、解方程组,求出__k_、__b_的值; 4、写,将 k、b 的值代入 y=kx+b,得到所求函数解析式.
从数到形
「初中数学」求反比例函数解析式的六种常用方法
「初中数学」求反⽐例函数解析式的六种常⽤⽅法解有关函数的习题,⾸要的⼯作应该是知道函数的解析式,每⼀类函数都有各⾃解析式的求法,那么反⽐例函数的解析式如何求解呢?下边⼀⼀介绍.⽅法⼀.利⽤反⽐利函数的定义求解析式【分析】反⽐例函数有三种表达形式:(1)y=K/x;(2)y=Kx-';(3)xy=K,其中K是常数,且K≠0.(第⼆种形式是y等于K与x的负1次⽅的积),特别要注意K≠0,1.解:由m²⼀10=⼀1,解得m=±3,⽽m=⼀3时K=(m+3)=0,∴m=3,则K=m+3=6,∴反⽐例函数解析式为y=6/x2.解:由3m²+m⼀5=⼀1,解得m=1或m=⼀4/3,⽽m=1时,K=m²⼀1=0,∴m=⼀4/3,则m²⼀1=7/9,所以反⽐例函数解析式为y=7/(9x).⽅法⼆.利⽤反⽐例函数的性质求解析式【分析】由反⽐例函数的概念知,第3题n²+2n⼀9=⼀1,由于反⽐例函数在每个象限内,y随x的增⼤⽽减⼩,所以n+3为正数;第4题m²⼀5=⼀1,⼜由于反⽐例函数的图象在每个象限内y随x值的增⼤⽽增⼤,所以m为负值.3.解:由题意得,n²+2n⼀9=⼀1,解得n=⼀4或n=2,由于其图象在每个象限内y随x值的增⼤⽽减⼩,所以n+3>0,∴n=2,则n+3=5,所以反⽐例函数图象为y=5/x.4.解:由题意得,m²⼀5=⼀1,解得m=±2,⼜由于其图象在每个象限内y随x值的增⼤⽽增⼤,所以m=⼀2,所以反⽐例函数的解析式为y=⼀2/x.⽅法三.利⽤反⽐例函数的图象求解析式5.如图,在△ABC中,AC=BC,AB⊥x轴,垂⾜为A,反⽐例函数y=K/x(x>0)的图象经过点C,交AB于点D.已知AB=4,BC=5/2.(1)若OA=4,求反⽐例函数的解析式;(2)连接OC,若BD=BC,求OC的长.【分析】这类题的特征⼀般是通过条件求图象上某⼀点的坐标,然后根据xy=K,从⽽确定解析式.第⼀问,根据AC=BC=5/2,过C点作CE⊥AB于E,则E为AB的中点,则AE=BE=2,由于AB⊥x轴,所以C点纵坐标为2,在Rt△BEC中,求出CE的长为3/2,因为OA=4,所以C点横坐标为4⼀3/2=5/2,则C点坐标确定,所以反⽐例函数解析式可得.第⼆问,由于BD=BC=5/2,所以AD=AB⼀BD=4⼀5/2=3/2,所以D点纵坐标为3/2,⽽C点纵坐标还是2,C到AB的距离长CE=3/2,若设出A点坐标为(m,0),则C点坐标为(m⼀3/2,2),D点坐标为(m,3/2),由于C,D两点都在反⽐例函数图像上,利⽤xy=K建⽴⽅程可求得m,进⽽求得C点坐标,利⽤勾股定理可得OC的长.解:(1)过C点作CE⊥AB于E,如图,∵AC=BC,AB=4,∴AE=BE=2,在Rt△BCE中,BC=5/2,BE=2,∴CE=3/2,∵OA=4,∴C点坐标为(5/2,2),⼜C点在y=K/x的图象上,∴xy=K,即K=2×5/2=5,所以反⽐例函数的图象为y=5/x.(x>0).(2).如图,作CF⊥x轴,垂⾜为F,设A点的坐标为(m,0),∵BD=BC=5/2,AB=4,∴AD=3/2,∴D点坐标为(m,3/2),由(1)知CE=3/2,AE=BE=2,∴C点坐标为(m⼀3/2,2),∵C,D两点都在y=K/x的图象上,∴3m/2=2(m ⼀3/2),解得m=6,∴C点坐标为(9/2,2),∴OF=9/2,CF=2,在Rt△OFC中,由勾股定理可得,OC=√97/2.6.如图,矩形AOCB的两边OC,OA分别在x轴,y轴上,点B的坐标为(⼀20/3,5),D是AB上的⼀点,将△ADO沿直线OD翻折,使A点恰好落在对⾓线OB上的点E处,若点E在⼀反⽐例函数的图象上,求该反⽐例函数的解析式.【分析】求反⽐例函数解析式,实质上是求系数K,那么就只需要⼀个条件,⼤多数是求图象上点的坐标,本题只要求出E点坐标即可,由于折叠A点落在E处,则OA=BC=OE=5,过E作EF⊥x轴于F,则△OEF∽△OBC,则OE/OB=EF/BC=OF/OC,由题意知BC=5,OC=20/3,则OB=25/3,可求出OF,EF,则E点坐标求出,反⽐例函数解析式可求出.当然也可⽤三⾓函数求E点坐标.解:如图,过E点作EF⊥x轴于F,设过E点的反⽐例函数解析式为y=K/x,(K≠0).由矩形AOCB知BC⊥x轴,∴△OEF∽△OBC,∴OE/OB=EF/BC=OF/OC,∵B点坐标为(⼀20/3,5),∴BC=5,OC=20/3,由于△ADO沿OD翻折,A点落在OB上E处,∴OE=OA=BC=5,在Rt△BCO中,由勾股定理求得OB=25/3,∴可求得,EF=3,OF=4,∴E点坐标为(⼀4,3),代⼊y=K/x,得K=⼀12,所以反⽐例函数解析式为y=⼀12/x.⽅法四,利⽤待定系数法求解析式7.已知y1与x成正⽐例,y2与x成反⽐例,若y=y1+y2的图象经过点(1,2),(2,1/2),求y与x的函数解析式.【分析】这种题型,根据题意,设出对应的函数解析式,利⽤条件列⽅程组,解出相应的待定系数即可,注意待定系数在不同的函数中应⽤不同的字母.解:∵y1与x成正⽐例,∴设y1=Kx(K≠0),∵y2与x成反⽐例,∴设y2=m/x(m≠0),由y=y1+y2得,y=Kx⼗m/x,⼜∵y=Kx+m/x的图象经过(1,2)和(2,1/2)两点,∴可得8.已知y=y1+y2,y1与x成正⽐例,y2与x²成反⽐例,且x=2与x=3时,y的值都等于19,求y与x 间的函数关系式解∵y1与x成正⽐例,∴设y1=Kx(K≠0),∵y2与x²成反⽐例,∴设y2=m/x²(m≠0),∴y=y1+y2=Kx⼗m/x,∵当x=2时y=19,当x=3时y=19,∴可得⽅法五.利⽤图形的⾯积求解析式9.如图,点A在双曲线y=1/x上,点B在双曲线y=K/x上,且AB∥x轴,C,D两点在x轴上,若矩形ABCD的⾯积为6,求点B所在双曲线对应的函数解析式.【分析】反⽐例函数y=K/x的系数K具有⼀定的⼏何意义,|K|等于图象上任意⼀点向两坐标轴所作垂线与坐标轴所围成的矩形的⾯积.如图|K|=S矩形AEOC=S矩形BFOD,|K|/2=2S△AOC=2S△BOD=2S△AOE=S△BOF.灵活运⽤K的⼏何意义,通过⾯积求出K,也就求得解析式.所以延长BA交y轴于点E,则四边形AEOD,BEOC 均为矩形,则由题意得,S矩形AEOD=1,S矩形BEOC=|K|,∴|K|=1+6=7,由于反⽐例函数图象在第⼀,三象限,K>0,∴K=7,∴反⽐例函数解析式为y=7/x.如图.解:延长BA交y轴于点E,由题意可知S矩形AEOD=1,S矩形BEOC=K,∵S矩形ABCD=6,∴K ⼀1=6,K=7,∴B点所在双曲线对应的函数解析式是y=7/x.10.如图,A,B是双曲线y=K/x(K≠0)上的两点,过A点作AC⊥x轴,交OB于D点,垂⾜为C,若△ADO的⾯积为1,D为OB的中点,求反⽐例函数的解析式.【分析】反⽐例函数有些与⾯积有关的习题,灵活运⽤|K|的⼏何意义,结合题中的条件建⽴关于K的⽅程,是这类题的常见的解法,本题过B作BE⊥x轴于E,由于D为OB的中点,则BE=2CD,AD=AC⼀CD=AC⼀BE/2,OE=2OC,如图,设A点坐标为(x,K/x),(K>0),∵C,A两点横坐标都为x,则B点横坐标2x,∴B点坐标为(2x,K/2x),∴CD=k/4x,AD=K/x⼀K/4x,∵S△AOD=1,即1/2(K/x⼀K/4x)x=1,解得K=8/3.所以反⽐例函数解析式为y=8/3x.(反⽐例函数有这样的优势,通过设坐标,引进系数K,也就引进了⾯积,这⼀点同学们多体会⼀下).⽅法六.利⽤实际问题的关系求解析式11.某运输队要运300t物资到江边防洪.(1)运输时间t(单位:h)与运输速度v(单位:t/h)之间有怎样的函数关系?(2)运了⼀半时,接到防洪指挥部命令,剩下的物资要在2h之内运到江边,则运输速度⾄少为多少?【分析】实际问题往往通过具体的量的关系,抽象为数学模型,⽤对应模型的数学知识解决实际问题.(1)本题数量关系为:物资总量=运输时间×运输速度,由于物资总量300t⼀定,所以运输时间与运输速度成反⽐例关系即t=300/v.(2)运输物资剩下⼀半即150t时,剩下的要在2h运到江边,所以运输速度⾄少为150÷2=75(t/h).(实际问题中的数量关系求反⽐例函数解析式,必须是a×b=c,c⼀定的数学模型).12.某汽车的功率P(单位:W)为⼀定值,它的速度v(单位:m/s)与它所受的牵引⼒F(单位:N)有关系:v=P/F,且当F=3000时,v=20.(1)这辆汽车的功率是多少⽡?请写出这⼀函数的解析式.(2)当它所受的牵引⼒为2500N时,汽车的速度为多少?(3)若限定汽车的速度不超过30m/s,则牵引⼒在什么范围?解:(1)由v=P/F,得P=Fv=3000×20=60000所以这辆汽车的功率为60000W,此函数解析式为v=60000/F.(2)当F=2500N时,代⼊v=60000/F,得v=60000÷2500=24,所以汽车的速度为24m/s.(3)由v≤30m/s,∴60000÷F≤30,∵F>0,∴F≥2000,所以牵引⼒⼤于或等于2000N.【总结】求反⽐例函数解析式,⼀般不太难,同学们把常见的⽅法掌握好,求出解析式为进⼀步攻克难题打下基础关.。
初三 专题 待定系数法 求解析式
初三专题待定系数法求解析式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!初三数学专题:待定系数法求解析式在初三数学学习中,待定系数法是解决代数表达式问题的重要方法之一。
《待定系数法求三次函数解析式》教学设计
《待定系数法求三次函数解析式》教学设计待定系数法求三次函数解析式教学设计一、教学目标本教学设计旨在帮助学生掌握使用待定系数法求解三次函数解析式的方法,达到以下目标:1. 理解待定系数法的基本原理和步骤;2. 掌握待定系数法求解三次函数解析式的具体操作方法;3. 能够独立运用待定系数法解决相关的三次函数问题;4. 培养学生的逻辑思维和问题解决能力。
二、教学内容1. 待定系数法的基本原理和步骤;2. 待定系数法求解三次函数解析式的具体操作方法;3. 实际应用案例分析。
三、教学方法本教学设计将采用以下教学方法:1. 讲授法:通过教师讲解待定系数法的原理和步骤,引导学生理解;2. 实例演示法:通过具体案例展示待定系数法的应用过程,帮助学生掌握操作技巧;3. 分组讨论法:将学生分组进行案例分析和解决问题,激发学生的思维活动和团队合作能力。
四、教学步骤1. 引入:通过一个简单的实际问题引入待定系数法的概念和应用背景,激发学生的研究兴趣。
2. 讲解:详细讲解待定系数法的基本原理和步骤,引导学生理解其中的数学思想和推导过程。
3. 示例演示:通过一个具体的三次函数问题,演示待定系数法的求解过程,帮助学生掌握具体的操作方法。
4. 练训练:提供一些练题,让学生独立运用待定系数法求解三次函数的解析式。
5. 分组讨论:将学生分组,给予一些实际应用案例,鼓励学生彼此合作,分析问题和解决问题。
6. 总结归纳:对待定系数法的基本原理和应用步骤进行总结,帮助学生加深理解,并检查学生的掌握程度。
7. 作业布置:布置一些练题和实际应用题作为作业,巩固学生的研究成果。
五、教学评估1. 教学过程中的提问与互动;2. 学生在分组讨论中的表现;3. 学生独立完成的作业。
六、教学资源1. 课本教材:提供相关的知识和理论依据;2. 案例分析资料:提供实际应用案例,激发学生的思考和讨论。
七、教学反思本教学设计通过引入实际问题、讲解理论知识、演示示范和分组讨论等多种教学方法,旨在帮助学生全面理解和掌握待定系数法求解三次函数解析式的方法。
待定系数法求函数解析式(1)
(2) 把自变量与函数的对应值代入函数解析式中,得到关于待定系数的方 程或方程组.
(3) 解方程(组)求出待定系数的值,从而写出函数解析式.
2
3. 函数解析式
k 反比例函数 y (k 0) x 正比例函数 y kx(k 0)
一次函数 y kx b(k 0)
y ax 2 bx c(a 0) 二次函数
5
m y 的图 例2、已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数 x 象的两个交点. (2) 根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
6
例3、已知:反比例函数 y 和一次函数 y mx n 图象的一个交点为A(-3,4)且
次函数的解析式.
待定系数法求函数解析式(1)
北京市数学高级教师 郭洁
1
内容提要:
1. 待定系数法:在许多数学问题或实际问题中,建立了函数的模型后,
需要求出其中的待定的系数(这可以通过列方程组并且解这个方程组 求出),从而求出函数的解析式,这种方法叫做待定系数法.
2. 待定系数法的步骤:
(1) 写出函数解析式的一般形式,其中包括未知的系数(需要确定这些系数, 因此叫做待定系数)
y
A(-2,1) 与x轴的交点到原点的距离为5. 分别确定反比例函数和一
7
m 例4、如图,一次函数 y kx b 的图象与反比例函数 y 的图象交于A,B两 x 点.则反比例函数的解析式为_________________,一次函数的解析式为 _________________,SAOB _________________.
3
典型例题:
例1、已知y与x成反比例,并且x=3时,y=7.求:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
待定系数法求解析式
方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。
☆已知是直线或一次函数可以设y=kx+b(k≠0);
☆若点在直线上,则可以将点的坐标代入解析式构建方程。
题型一:求定义域
1(2014•济宁,第4题3分)函数y=中的自变量x的取值范围是()
题型二、求解析式
一. 定义型
例1. 已知函数是一次函数,求其解析式。
二. 点斜型
例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。
三. 两点型
已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
四. 图像型
例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
五. 斜截型
例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。
六. 平移型
例6. 把直线向下平移2个单位得到的图像解析式为___________。
七. 实际应用型
例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。
八. 面积型
例8. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为
例9. 若直线l与直线关于y轴对称,则直线l的解析式为____________。
十. 综合题
(2014•湘潭,第24题)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.
(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;
(2)直线经过A(2,3),且与y=x+3垂直,求解析式.。