最新人教版高中数学选修4-4《曲线的参数方程》课前导引2
人教版高中数学选修4-4课件:2.1曲线的参数方程 第二课时.2
林老师网络编辑整理
29
【解析】(1)选D.xy=1,x取非零实数,而A,B,C中的x的
范围不符合要求.
(2)①把y=sinθ代入方程,得到 于是x2=4(1-sin2θ)=4cos2θ,
x2 sin2 1, 4
林老师网络编辑整理
30
即x=±2|cosθ|,由于θ具有任意性,sinθ与cosθ的
t
2,(t为参数)化为普通方程为________.
【解析】消去y参 2数t 方程 x 中t2,的参数t,
得到普通方程为y2=4x. y 2t
答案:y2=4x
林老师网络编辑整理
7
【知识探究】 探究点 参数方程和普通方程的互化 1.同一曲线的参数方程是否唯一? 提示:求曲线的参数方程,关键是灵活确定参数,由于参 数不同,同一曲线的参数方程也会有差异,但是一定要 注意等价性.
(θ为参数)
x 2cos,
y 1 2பைடு நூலகம்in
林老师网络编辑整理
5
【解析】选D.圆x2+(y+1)2=2的圆心坐标为C(0,-1),半
径为
2
,所以它的参数方程为 x
2cos,
(θ为参
数).
y 1 2sin,
林老师网络编辑整理
6
2.参数方程
x
(为参数) .
(1)3x+4y=3cosθ+4sinθ+4=4+5sin(θ+φ),
其中 tan 且34φ, 的终边过点(4,3).
因为-5≤5sin(θ+φ)≤5,所以-1≤4+5sin(θ+φ)≤9,
所以3x+4y的最大值为9,最小值为-1.
最新人教版高三数学选修4-4电子课本课件【全册】
四 柱坐标系与球坐标系简介
最新人教版高三数学选修4-4电子 课本课件【全册】
第二讲 参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】目录
0002页 0066页 0118页 0187页 0243页 0338页
引言 一 平面直角坐标系 三 简单曲线的极坐标方程 第二讲 参数方程 二 圆锥曲线的参数方程 四 渐开线与摆线
引言
最新人教版高三数学选修4-4电子 课本课件【全册】
第一讲 坐标系
一 曲线的参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
一 平面直角坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
二 极坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
三 简单曲线的极坐标方程
最新人教版高中数学选修4-4《曲线的参数方程》目标导引
一曲线的参数方程
一览众山小
三维目标
1.了解曲线的参数方程的实际意义及其必要性.
2.掌握曲线的参数方程与普通方程的互化及其意义.
3.理解曲线的参数方程的特点,提高数学思维能力.
学法指导
参数法在求曲线的轨迹方程,以及研究某些最值问题时是一种常用的甚至是简捷的解题方法.化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法.化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系x=f(t)〔或y=φ(t)〕,再代入普通方程F(x,y)=0,求得另一关系y=φ(t)〔或x=f(t)〕.一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标).
诱学导入
材料:第二次世界大战期间,由于空袭兵器命中目标的精度不高,因而不得不采取大面积轰炸的方式.现代高技术常规空袭,使用激光、红外、电磁制导的炸弹、导弹,平均命中偏差仅几米,打击精度大幅度提高,命中概率高达95%以上.海湾战争中,为炸毁伊拉克的水电站而不毁坏水坝本身,多国部队首先用一枚“斯拉姆”导弹在电站水泥墙上炸开一个缺口,然后用另一枚导弹从缺口穿过,准确击中电站设备,水坝安然无恙.
问题:如何判断是否能击中目标呢?
导入:在军事上,在一定高度下作水平飞行的飞机将炸弹投向目标,要知道炸弹离开飞机后的各个时刻所处的位置,像这样的实际问题显然炸弹所处的位置与离开飞机的时间密切相关,通过时间就可以将炸弹各个时刻所处横、纵位置给确定,从而可知其所处位置,是否能击中目标就可以及时得知,这时显然通过建立相应的参数方程比建立普通方程容易,这也更有利于实际需要.这样的例子还不止这些.。
高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
新人教选修4-4教案参数方程的概念曲线的参数方程
曲线的参数方程教学目标1.通过圆及弹道曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路.2.通过弹道曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力.3.从弹道曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点.教学重点与难点曲线参数方程的探求及其有关概念是本节课的重点;难点是弹道曲线参数方程的建立.教学过程师:满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线?生:1.必须同时满足两个条件:(1)曲线上任一点的坐标都是这个方程的解;(2)同时以这个方程的第一组解作为坐标的点都在曲线上.那么,这个方程就称作曲线的方程,而这条曲线就称作这个方程的曲线.师:请写出圆心在原点,半径为r的圆O的方程,并说明求解方法.(师板书——⊙O:)师:求圆的方程事实上是探求圆上任一点M(x,y)的横、纵坐标之间的关系式.能用别的方法来探x、y之间的关系吗?生:……师:(诱导一下)不用刚才的方法给我们直接求x、y的关系带来了困难,能否考虑用间接的方法来求?即在x、y之间是否能建立一座桥梁,使之联系起来?(计算机演示动画,如图3-1)师:驱使M运动的因素是什么?生:旋转角θ.师:当我们把x轴作为θ角始边,并使OM绕O点逆时针旋转,请考虑θ在什么范围内取值就可以形成整个圆了?生:师:至此x、y之间的关系已通过θ联系起来了,谁能具体地说说它们之间的关系?生3:(c∈[0,2π],θ为变量,r为常数)(生3叙述,师板书)师:①式是⊙O的方程吗?生4:①式是⊙O的方程.师:请说明理由.生4:(生4叙述,师板书)(1)任取⊙O上一点,总存在,由三角函数定义知,显然满足方程①;(2)任取,由①得即M().所以.所以M在⊙O上.由(1)、(2)知①是⊙O的方程.师:既然①是⊙O的方程,那么它应该和是一致的,两者能统一起来吗?生:能,消去θ即可.师:这里,我们从另一个角度重新审视了圆,通过第三个变量θ把圆上任意一点的横、纵坐标x、y联系了起来,获得了圆的方程的另一种形式.通过间接的方法把某两个变量联系起来的例子不仅几何中有,在生产实践、军事技术、工程建设中也有.特别在两个变量之间的直接关系不易建立时,常用间接的方法将它们联系起来.请同学们再看一个例子.炮兵在射击目标时,需要考虑炮弹的飞行轨迹、射程等等.现在,我们假设一个炮兵射击目标,炮弹的发射角为α,发射的初速度为ν0.请同学们帮他求出弹道曲线的方程。
人教课标版高中数学选修4-4《曲线的参数方程》教案-新版
第二讲 参数方程 2.1 曲线的参数方程一、教学目标 (一)核心素养通过这节课学习,了解参数方程的概念、体会参数的意义,会进行参数方程和普通方程的互化,在直观想象、数学抽象中感受不同参数方程的特点. (二)学习目标1.通过实例,了解参数方程的含义,体会参数的意义.2.能求解圆的参数方程并用圆的参数解决有关问题,了解圆的参数方程中参数的意义. 3.掌握基本的参数方程与普通方程的互化,,感受集合语言的意义和作用. (三)学习重点 1.参数方程的概念. 2.圆的参数方程及其应用. 3.参数方程与普通方程的互化. (四)学习难点1.参数方程与普通方程的互化的等价转化.2.根据几何性质选取恰当的参数,建立曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第21页至第26页,填空:一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.(2)想一想:参数方程与普通方程如何转化?一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.(3)写一写:圆的一般参数方程是什么?①圆心在原点,半径为r 的圆的参数方程为(θ为参数);②圆心在),(b a ,半径为r 的圆的参数方程为(θ为参数).2.预习自测(1)方程⎩⎨⎧x =1+sin θy =sin 2θ(θ是参数)所表示曲线经过下列点中的( )A.(1,1)B.)21,23( C.)23,23(D.)21,232(-+ 【知识点】参数方程的定义【解题过程】将选项中的点一一代入曲线的参数方程中,显然选项C 满足题意 【思路点拨】根据参数方程的定义求解 【答案】C .(2)下列方程:①⎩⎨⎧ x =m ,y =m .(m 为参数) ②⎩⎨⎧ x =m ,y =n .(m ,n 为参数) ③⎩⎨⎧x =1,y =2.④x +y =0中,参数方程的个数为( )A .1B .2C .3D .4 【知识点】参数方程的定义【解题过程】根据参数方程的定义,只有①是参数方程 【思路点拨】由参数方程的定义求解 【答案】A(3)参数方程⎩⎨⎧x =cos α,y =1+sin α(α为参数)化成普通方程为_______________.【知识点】参数方程与普通方程互化【解题过程】由⎩⎨⎧x =cos α,y =1+sin α变形整理得1sin ,cos -==y x αα,两式分别平方相加得1)1(22=-+y x【思路点拨】利用三角恒等变换消去参数 【答案】1)1(22=-+y x .(4)P (x ,y )是曲线⎩⎨⎧x =2+cos αy =sin α(α为参数)上任意一点,则P 到直线x -y +4=0的距离的最小值是________.【知识点】参数方程的应用【解题过程】由P 在曲线⎩⎨⎧x =2+cos αy =sin α上可得P 的坐标为(2+cos α,sin α),由点到直线的距离公式得d =|cos α-sin α+6|2=⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π4+62,当cos ⎝ ⎛⎭⎪⎫α+π4=-1时,d 最小,d min =-2+62=-1+3 2.【思路点拨】根据参数方程的应用得到点设置,再转化为三角函数的最值问题求解 【答案】-1+3 2 (二)课堂设计 1.问题探究探究一 结合实例,认识参数方程★ ●活动① 归纳提炼概念在过去的学习中,我们已经掌握了一些求曲线方程的方法,但在求某些曲线方程时,直接确定曲线上点的坐标y x ,的关系并不容易,我们先看下来的例子:一架救援飞机在离灾区底面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物质准确落于灾区指定的地面飞行员应如何确定投放时机?(不计空气阻力,重力加速度2/8.9s m g =)设飞机在点A 将物质投出机舱,在过飞机航线且垂直于底面的平面上建立如右图的平面直角坐标系,其中x 轴为该平面与地面的交线,y 轴经过A 点.记物质从被投出到落地这段时间内的运动曲线为C ,)(y x M ,为C 上任意点,设t 时刻时,x 表示物质的水平位移,y 表示物质距地面的高度.由物理知识,物资投出机舱后,沿Ox 方向以s m /100的速度作匀速直线运动,沿Oy 反方向作自由落体运动,即:221500100gt y t x ⎪⎩⎪⎨⎧-== 令s t y 10.10,0≈=,代入t x 100=,解得m x 1010≈.所以,飞行员在离救援点的水平距离约为m 1010时投放物资,,可以使其准确落在指定地点.由上可知:在t 的取值范围内,给定t 的一个值,就可以惟一确定y x ,的值,反之也成立. 一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.参数是联系变数y x ,的桥梁,可以是一个有物理意义或几何意义,也可以没有明显实际意义的变数.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. ●活动② 巩固基础,检查反馈例1 已知曲线C 的参数方程是⎩⎨⎧+==)(1232为参数t t y tx(1)判断点)4,5(),1,0(21M M 与曲线C 的位置关系; (2)已知点),6(a M 在曲线C 上,求a 的值. 【知识点】参数方程.【解题过程】(1)把点1M 的坐标)1,0(代入方程组,解得0=t ,所以1M 在曲线C .把点2M 的坐标)4,5(代入方程组,得⎩⎨⎧+==124352t t ,无解,所以2M 不在曲线C . (2)因为点),6(a M 在曲线C 上,所以⎩⎨⎧+==12362t a t,解得9,2==a t 【思路点拨】根据参数方程与曲线的关系来求解.【答案】(1) 1M 在曲线C ,2M 不在曲线C ; (2) 9=a .同类训练 已知某条曲线C 的参数方程为⎩⎨⎧∈=+=),(212R a t at y tx 为参数且点)4,3(-M 在该曲线上. (1)求常数a 的值;(2)判断点P (1,0),Q (3,-1)是否在曲线C 上?【知识点】参数方程.【解题过程】(1)将M (-3,4)的坐标代入曲线C 的参数方程⎩⎨⎧ x =1+2t ,y =at 2,得⎩⎨⎧-3=1+2t ,4=at 2,消去参数t ,得a =1.(2)由上述可得,曲线C 的参数方程是⎩⎨⎧x =1+2t ,y =t 2,把点P 的坐标(1,0)代入方程组,解得t =0,因此P 在曲线C 上,把点Q 的坐标(3,-1)代入方程组,得到⎩⎨⎧3=1+2t ,-1=t 2,这个方程组无解,因此点Q 不在曲线C 上. 【思路点拨】根据参数方程和曲线的关系来求解.【答案】(1)1=a ; (2) P 在曲线C 上,点Q 不在曲线C 上. 【设计意图】巩固基础,加深理解与应用. 探究二 探究圆的参数方程 ●活动① 互动交流、初步实践结合以上参数方程的定义,你能的得到圆的参数方程吗?先看下面例子当物体绕定轴作匀速转动时,物体中各个点都作匀速圆周运动(如右图).那么,怎样刻画运动中点的位置呢?如图1,设圆O 的半径是r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,点M 绕点O 转动的角速度为ω.以圆心O 为原点,OM 0所在的直线为x 轴,建立直角坐标系.显然,点M 的位置由时刻t 惟一确定,因此可以取t 为参数.【设计意图】通过现实问题的求解,加深对参数方程中参数的意义的理解.●活动② 建立模型,加深认识如果在时刻t ,点M 转过的角度是θ,坐标是M (x ,y ),那么θ=ωt .设|OM |=r ,如何用r 和θ表示x ,y 呢?由三角函数定义,有cos ωt =x r ,sin ωt =yr , 即⎩⎨⎧x =r cos ωt ,y =r sin ωt .(t 为参数) 考虑到θ=ωt ,也可以取θ为参数,于是有 ⎩⎨⎧x =r cos θ,y =r sin θ.(θ为参数) 这就得到了以原点为圆心,半径为r 的圆参数方程.其中θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.【设计意图】通过对问题的求解,得出圆的参数方程,同时为求圆的标准方程的参数方程作铺垫.●活动③ 归纳梳理、灵活应用若圆的圆心坐标为),(b a ,半径为r 的圆的参数方程是什么呢?此时圆的标准方程为:222)()(r b y a x =-+-,由1cos sin 22=+αα,故令θθsin ,cos =-=-rby r a x ,整理得:图2-1-2)(sin cos 为参数θθθ⎩⎨⎧+=+=r b y r a x 一般地,同一条曲线,可以选取不同的变数为参数,另外,要注明参数及参数的取值范围. 【设计意图】由特殊到一般,体会培养学生数学抽象、归类整理意识. 探究三 探究参数方程和普通方程的互化★▲ ●活动① 归纳梳理、体会内在联系我们除了用普通方程表示曲线外,还可以用参数方程表示曲线,它们是同一曲线的两种不同的表达形式.但由参数方程直接判断曲线的类型不太容易,例如⎩⎨⎧=+=θθsin 3cos y x 为何曲线?这就需要我们转化为普通再判断,那么两者如何转化?由⎩⎨⎧=+=θθsin 3cos y x 得⎩⎨⎧=-=yx θθsin 3cos , 所以1)3(22=+-y x ,表示以)0,3(为圆心,半径为1的圆. 一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.在参数方程与普通方程的互化中,必须使y x ,的取值范围保持一致,即等价转化.【设计意图】通过实例体会参数方程与普通方程的互化,培养学生数学抽象意识. ●活动② 巩固基础,检查反馈例2 如图,已知点P 是圆x 2+y 2=16上的一个动点,定点A (12,0),当点P 在圆上运动时,求线段P A 的中点M 的轨迹.【知识点】圆的参数方程、点的轨迹方程. 【数学思想】数形结合 【解题过程】设动点M (x ,y ),∵圆x 2+y 2=16的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ,(θ为参数),∴设点P (4cos θ,4sin θ), 由线段的中点坐标公式,得x =4cos θ+122,且y =4sin θ2,∴点M 的轨迹方程为⎩⎨⎧x =2cos θ+6,y =2sin θ,转化为普通方程得4)6(22=--y x因此点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.【思路点拨】借助于圆的参数方程来得到点的轨迹方程,即代入法. 【答案】点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.同类训练 将例1中的定点A 的坐标改为)0,4(,其它条件不变,求线段P A 的中点M 的轨迹 【知识点】圆的参数方程、点的轨迹方程. 【解题过程】设动点M (x ,y ),∵圆x 2+y 2=16的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ,(θ为参数),∴设点P (4cos θ,4sin θ), 由线段的中点坐标公式,得24cos 4+=θx ,且y =4sin θ2, ∴点M 的轨迹方程为2cos 22sin x y θθ=+⎧⎨=⎩,转化为普通方程得4)2(22=--y x因此点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.【思路点拨】借助于圆的参数方程来得到点的轨迹方程,即代入法. 【答案】点M 的轨迹是以点(2,0)为圆心,以2为半径的圆. 【设计意图】巩固检查参数方程与曲线的关系.例3 把下列参数方程化为普通方程,并说明它们各表示什么曲线?(1)⎩⎨⎧-=+=)(211为参数t ty t x (2)⎩⎨⎧+=+=)(2sin 1cos sin 为参数θθθθy x 【知识点】参数方程化为普通方程.【解题过程】(1)由11≥+=t x ,有1-=x t ,代入t y 21-=,得到32+-=x y .又因为11≥+=t x ,所以与参数方程等价的普通方程是)1(32≥+-=x x y ,即以)1,1(为端点的一条射线(包括端点).(2)把θθcos sin +=x 平方后减去θ2sin 1+=y ,得到 y x =2,又因为)4sin(2cos sin πθθθ+=+=x ,所以]2,2[-∈x ,即与参数方程等价的普通方程是y x =2,]2,2[-∈x ,即开口向上的抛物线的一部分.【思路点拨】先由一个方程求出参数的表达式,再代入另一个方程,或者利用三角恒等变换消去参数.【答案】(1))1(32≥+-=x x y ;(2)y x =2,]2,2[-∈x . 同类训练 化下列曲线的参数方程为普通方程,并指出它是什么曲线. (1)⎩⎨⎧x =1+2t ,y =3-4t (t 为参数);(2)⎩⎨⎧x =cos θ+sin θ,y =sin θcos θ(θ为参数).【知识点】参数方程化为普通方程. 【解题过程】(1)∵x =1+2t ,∴2t =x -1. ∵-4t =-2x +2,∴y =3-4t =3-2x +2. 即y =-2x +5(x ≥1),它表示一条射线. (2)∵x =cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4,∴x ∈[-2,2]. x 2=1+2sin θcos θ,将sin θcos θ=y 代入,得x 2=1+2y .∴普通方程为y =12x 2-12()-2≤x ≤2,它是抛物线的一部分.【思路点拨】先由一个方程求出参数的表达式,再代入另一个方程,或者利用三角恒等变换消去参数.【设计意图】巩固检查参数方程与普通方程的互化. ●活动③ 强化提升、灵活应用例4 若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值. 【知识点】参数方程的应用、三角函数.【数学思想】转化与化归思想.【解题过程】令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2, 故2x +y =4cos θ+2+2sin θ-2=4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.【思路点拨】考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题. 【答案】2x +y 的最大值为25,最小值为-2 5.同类训练 已知点M (x ,y )是圆x 2+y 2+2x =0上的动点,若4x +3y -a ≤0恒成立,求实数a 的取值范围.【知识点】参数方程的应用、三角函数.. 【数学思想】转化化归思想.【解题过程】由x 2+y 2+2x =0,得(x +1)2+y 2=1,又点M 在圆上, ∴x =-1+cos θ,且y =sin θ, 因此4x +3y =4(-1+cos θ)+3sin θ=-4+5sin(θ+φ)≤-4+5=1.(φ由tan φ=43确定) ∴4x +3y 的最大值为1.若4x +3y -a ≤0恒成立,则a ≥(4x +3y )max , 故实数a 的取值范围是[1,+∞).【思路点拨】考虑利用圆的参数方程将恒成立问题转化为最值,在利用求三角函数最值问题. 【答案】[1,+∞).【设计意图】熟练利用参数方程求解某些最值问题. 3.课堂总结 知识梳理(1)一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.(2)一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.(3)①圆心在原点,半径为r 的圆的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ.)(为参数θ; ②圆心在),(b a ,半径为r 的圆的参数方程为)(sin cos 为参数θθθ⎩⎨⎧+=+=r b y r a x . 重难点归纳(1)参数t (也可用其它小写字母表示)是联系变数y x ,的桥梁,它可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数;参数方程和普通方程都是在直角坐标系之下同一曲线的两种不同表的形式.(2)参数方程和普通方程互化时,一定使y x ,的取值范围保持一致,即等价转化.(三)课后作业基础型 自主突破1.下列方程中能表示曲线参数方程的是( )A.032=-+t y xB.⎩⎨⎧+==t x y ty x 232C.⎩⎨⎧+=-=2342u y t xD.⎩⎨⎧+=+=ky k x 2335 【知识点】参数方程的含义.【解题过程】A 是含参数的方程,B 中的y x ,并不都由参数t 确定,C 中的y x ,不是由同一个参数确定,D 正确.【思路点拨】根据参数方程的含义进行判断.【答案】D2.曲线⎩⎨⎧x =1+t 2y =t -1)(为参数t 与x 轴交点的直角坐标是( ) A .(0,1) B .(1,2) C .(2,0) D .(±2,0)【知识点】曲线与参数方程.【解题过程】设与x 轴交点的直角坐标为(x ,y ),令y =0得t =1,代入x =1+t 2,得x =2, ∴曲线与x 轴的交点的直角坐标为(2,0).【思路点拨】根据曲线与参数方程的关系判断.【答案】C3.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A.在直线y =2x 上 B.在直线y =-2x 上 C.在直线y =x -1上 D.在直线y =x +1上【知识点】圆的参数方程.【解题过程】由⎩⎨⎧x =-1+cos θ,y =2+sin θ,得⎩⎨⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.故选B .【思路点拨】将圆的参数方程化为圆的标准方程.【答案】B4.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( )A .1B .2C .3D .4【知识点】参数方程的应用.【解题过程】由于圆x 2+y 2=1的参数方程为⎩⎨⎧x =cos θ,y =sin θ(θ为参数),则x +3y =3sin θ+cos θ=2sin )6(πθ+,故x +3y 的最大值为2.故选B. 【思路点拨】利用三角代换求解.【答案】B .5.圆心在点(-1,2),半径为5的圆的参数方程为________.【知识点】普通方程化为参数方程.【解题过程】因为是圆心在点(-1,2),半径为5的圆,所以参数方程为)(sin 52cos 51为参数θθθ⎩⎨⎧+=+-=y x . 【思路点拨】根据三角代换公式来求解.【答案】)(sin 52cos 51为参数θθθ⎩⎨⎧+=+-=y x .6.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是_________.【知识点】普通方程与参数方程互化.【解题过程】把y =tx 代入x 2+y 2-4y =0得x =4t 1+t 2,y =4t 21+t 2, ∴参数方程为⎩⎪⎨⎪⎧ x =4t 1+t 2,y =4t 21+t 2(t 为参数).【思路点拨】利用代入法求解.【答案】⎩⎪⎨⎪⎧ x =4t 1+t 2,y =4t 21+t 2(t 为参数) 能力型 师生共研7.将参数方程⎩⎨⎧x =2+sin 2θy =sin 2θ(θ为参数)化为普通方程为( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)【知识点】参数方程化为普通方程.【解题过程】消去sin 2θ,得x =2+y ,又0≤sin 2θ≤1,∴2≤x ≤3.【思路点拨】注意三角函数的有界性,参数方程的等价转化.【答案】C8.已知曲线C 的参数方程为⎩⎨⎧x =2cos θy =3sin θ(θ为参数,0≤θ<2π). 判断点A (2,0),B )23,3(-是否在曲线C 上?若在曲线上,求出点对应的参数的值. 【知识点】曲线与参数方程.【解题过程】把点A (2,0)的坐标代入⎩⎨⎧x =2cos θ,y =3sin θ,得cos θ=1且sin θ=0,由于0≤θ<2π,解之得θ=0,因此点A (2,0)在曲线C 上,对应参数θ=0.同理,把B )23,3(-代入参数方程,得 ⎩⎪⎨⎪⎧ 3=2cos θ,32=3sin θ,∴⎩⎪⎨⎪⎧ cos θ=-32,sin θ=12.又0≤θ<2π,∴θ=56π,所以点B )23,3(-在曲线C 上,对应θ=56π. 【思路点拨】利用曲线与参数方程的关系求解.【答案】A ,B 是在曲线C 上,A ,B 对应的参数的值分别为θ=0、θ=56π.探究型 多维突破9.在平面直角坐标系xOy 中,动圆x 2+y 2-8x cos θ-6y sin θ+7cos 2θ+8=0(θ∈R )的圆心为P (x ,y ),求2x -y 的取值范围.【知识点】参数方程的应用.【解题过程】由题设得⎩⎨⎧ x =4cos θ,y =3sin θ,(θ为参数,θ∈R ). 于是2x -y =8cos θ-3sin θ=73sin(θ+φ),⎝ ⎛⎭⎪⎫φ由tan φ=-83确定所以-73≤2x -y ≤73. 所以2x -y 的取值范围是[-73,73].【思路点拨】利用参数方程,转化为三角函数的最值来求解.【答案】[-73,73].10.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =4cos θy =4sin θ(θ为参数,且0≤θ<2π),点M 是曲线C 1上的动点.(1)求线段OM 的中点P 的轨迹的直角坐标方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P 到直线l 距离的最大值.【知识点】参数方程、极坐标、点到直线的距离.【解题过程】(1)曲线C 1上的动点M 的坐标为(4cos θ,4sin θ),坐标原点O (0,0),设P 的坐标为(x ,y ),则由中点坐标公式得x =12(0+4cos θ)=2cos θ,y =12(0+4sin θ)=2sin θ,所以点P 的坐标为(2cos θ,2sin θ),因此点P 的轨迹的参数方程为⎩⎨⎧ x =2cos θy =2sin θ(θ为参数,且0≤θ<2π), 消去参数θ,得点P 轨迹的直角坐标方程为x 2+y 2=4.(2)由直角坐标与极坐标关系得直线l 的直角坐标方程为x -y +1=0.又由(1)知,点P 的轨迹为圆心在原点,半径为2的圆,因为原点(0,0)到直线x -y +1=0的距离为|0-0+1|12+(-1)2=12=22, 所以点P 到直线l 距离的最大值为2+22.【思路点拨】普通方程侧重于判断曲线的形状,参数方程侧重于表示曲线上的点.【答案】(1)P 轨迹的直角坐标方程为x 2+y 2=4;(2)2+22. 自助餐1.下列点在方程)(2cos sin 2为参数θθθ⎩⎨⎧==y x 所表示的曲线上的是( ) A.)7,2( B.)32,31( C.)21,21( D.)1,1(- 【知识点】曲线与参数方程.【解题过程】选D.由方程(θ为参数),令1sin 2==θx ,得Z k k ∈+=,2ππθ12cos -==θy .【思路点拨】利用曲线点的与参数方程的关系求解.【答案】D2.把方程xy =1化为以t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧ x =t 12y =t -12B.⎩⎪⎨⎪⎧ x =sin t y =1sin tC.⎩⎪⎨⎪⎧ x =cos t ,y =1cos tD.⎩⎪⎨⎪⎧ x =tan t ,y =1tan t【知识点】普通方程与参数方程互化.【解题过程】A 显然代入不成立,B,C 选项中1≤x ,不成立,D 选项满足要求.【思路点拨】把选项的参数方程转化为普通方程,注意等价转化.【答案】D3.圆的参数方程为⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),若圆上一点P 对应参数θ=43π,则P 点的坐标是________.【知识点】曲线与参数方程.【解题过程】将θ=43π代入参数方程中,解得33,0-==y x ,所以)33,0(-P .【思路点拨】利用曲线上的点与参数方程的关系.【答案】(0,-33).4.点(x ,y )是曲线C :⎩⎨⎧ x =-2+cos θ,y =sin θ(θ为参数,0≤θ<2π)上任意一点,则y x 的取值范围是________.【知识点】圆的参数方程、直线斜率.【数学思想】数形结合思想【解题过程】曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ是以(-2,0)为圆心,1为半径的圆,即(x +2)2+y 2=1.设y x =k ,∴y =kx .当直线y =kx 与圆相切时,k 取得最小值与最大值, ∴|-2k |k 2+1=1,k 2=13,∴y x 的范围为⎣⎢⎡⎦⎥⎤-33,33. 【思路点拨】利用数形结合的思想求解.【答案】 ⎣⎢⎡⎦⎥⎤-33,33. 5.根据所给条件,把曲线的普通方程化为参数方程:(1)012=---y x y ,设t t y ,1-=为参数;(2)14922=+y x ,设θθ,cos 3=x 为参数. 【知识点】普通方程与参数方程互化.【解题过程】(1)将,1-=t y 代入方程012=---y x y ,解得132+-=t t x ,所以参数方程为⎩⎨⎧-=+-=)(1132为参数t t y t t x (2)将,cos 3θ=x 代入方程14922=+y x θsin 2±=y ,由于参数θ的任意性,可取θsin 2=y ,所以参数方程为)(sin 2cos 3为参数θθθ⎩⎨⎧==y x .【思路点拨】普通方程化为参数方程,注意等价转化.【答案】(1)⎩⎨⎧-=+-=)(1132为参数t t y t t x ;(2))(sin 2cos 3为参数θθθ⎩⎨⎧==y x 6.在方程⎩⎨⎧ x =a +t cos θ,y =b +t sin θ(a ,b 为正常数)中, (1)当t 为参数,θ为常数时,方程表示何种曲线?(2)当t 为常数,θ为参数时,方程表示何种曲线?【知识点】参数方程的含义.【数学思想】分类讨论的思想.【解题过程】(1)方程⎩⎨⎧ x =a +t cos θ, ①y =b +t sin θ, ②(a ,b 是正常数), (1)①×sin θ-②×cos θ得 x sin θ-y cos θ-a sin θ+b cos θ=0.∵cos θ、sin θ不同时为零,∴方程表示一条直线.(2)(ⅰ)当t 为非零常数时,原方程组为⎩⎪⎨⎪⎧ x -a t =cos θ,③y -b t =sin θ. ④③2+④2得x -a 2t 2+y -b2t 2=1,即(x -a )2+(y -b )2=t 2,它表示一个圆.(ⅱ)当t =0时,表示点(a ,b ).【思路点拨】(1)运用加减消元法,消t ;(2)当t =0时,方程表示一个点,当t 为非零常数时,利用平方关系消参数θ,化成普通方程,进而判定曲线形状.【答案】(1)方程表示一条直线;(2)(ⅰ)当t为非零常数时,它表示一个圆,(ⅱ)当t=0时,表示点(a,b).。
高中数学 第二章 参数方程 第2节 第2课时 双曲线、抛物线的参数方程教学案 新人教A版选修4-4-
第2课时 双曲线、抛物线的参数方程[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值X 围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程 (1)抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,那么焦点在x 轴上; 如果y 对应的参数形式是a sec φ,那么焦点在y 轴上.3.假设抛物线的参数方程表示为⎩⎪⎨⎪⎧x =2p tan 2α,y =2ptan α.那么参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 此题考查双曲线的参数方程的应用,解答此题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).——————————————————参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),那么B ′(-a sec α,a tan α).∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 此题考查抛物线的参数方程的求法及其应用.解答此题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2, 变形为y 0=14x 20,即x 2=4y .表示的为抛物线.——————————————————在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 此题考查椭圆及双曲线的参数方程,解答此题需要先将双曲线化为普通方程并求得渐近线方程,然后根据条件求出椭圆的参数方程求解即可.∵x 216-y 29=1,∴右焦点(5,0),右顶点(4,0).设椭圆x 2a 2+y 2b2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin 〔θ-φ〕|5(tan φ=54).∴d max =3415.——————————————————对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(某某高考)两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得x =54y 2.联立方程可得⎩⎪⎨⎪⎧x 25+y 2=1,x =54y2那么5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),那么x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.某某高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](某某高考)抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .假设|EF |=|MF |,点M 的横坐标是3,那么p =________.[命题立意] 此题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用. [解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EFA 中,|EF |=2|FA |,即3+p2=2p ,得p =2.答案:2一、选择题1.以下参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数X 围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.以下双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3〔sin 2θ+cos 2θ〕cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t 2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t-2-t,y =2t +2-t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得:x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4,即y 2-x 2=4.又注意到2t>0,2t+2-t≥22t ·2-t=2,即y ≥2. 可见与以上参数方程等价的普通方程为:y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支.二、填空题5.(某某高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,那么焦点坐标为(1,0). 答案:(1,0)6.抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t(t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O 不重合),P (x ,y )是线段OM 的中点,那么点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),那么x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(某某高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),那么曲线C 1与C 2的交点坐标为________.解析:由⎩⎨⎧x =t ,y = t ,得y =x ,又由⎩⎨⎧x =2cos θ,y =2sin θ,得x 2+y 2=2. 由⎩⎨⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1) 三、解答题9.双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),那么中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β)=-a 〔sec α-sec β〕b 〔tan α-tan β〕[x -a2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a(sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2.∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2), 那么k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2. 又设MN 的中点为P (x ,y ),那么⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴kAP=4〔t 1+t 2〕4〔t 21+t 22〕-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4〔t 21+t 22〕,y =4〔t 1+t 2〕, 那么y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1).∴所求轨迹方程为y 2=4(x -1).11.圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
高二数学之人教版高中数学选修4-4课件:第二讲一第2课时圆的参数方程
y=1+2tt2,
1 所以 y=(1-x2)2,y2=1-x2,
所以 x2+y2=1.
答案:D
4.已知圆的普通方程 x2+y2+2x-6y+9=0,则它 的参数方程为__________________.
解析:由 x2+y2+2x-6y+9=0,
得(x+1)2+(y-3)2=1.
令 x+1=cos θ,y-3=sin θ,
θ, θ
θ∈0,π2都表示同一圆.(
)
(4)圆的参数方程为xy==2-si2n+θ2cos
θ, (θ
为参数),则
圆心坐标为(-2,0).( )
x=5sin 解析:(1)参数方程
θ, 消参后得到
x2+y2=
y=5cos θ
25 , 可 以 表 示 圆 , 不 过 此 时 参 数 θ 的 几 何 意 义 与
审题指导:(1)先将圆的参数方程化为普通方程,然 后和直线方程联立方程组,解得交点的直角坐标,再化为 直角坐标.
(2)利用点到直线的距离公式求出距离,然后利用三 角函数知识求最值或结合圆的性质求最值.
[规范解答] (1)直线 l:y=x+4,圆 C:x2+(y-2)2
=4,(1 分)
y=x+4,
4
x=4cos 的圆,而
y=4sin
θθ,θ∈0,π2表示以原点为圆心,半径
为 4 的圆的一部分,故不正确.
(4)由圆的参数方程知圆心为(-2,0),故正确. 答案:(1)√ (2)× (3)× (4)√
2.圆(x-1)2+y2=4 上的点可以表示为( ) A.(-1+cos θ,sin θ) B.(1+sin θ,cos θ) C.(-1+2cos θ,2sin θ) D.(1+2cos θ,2sin θ) 解析:由圆的方程知圆心为(1,0),半径为 2,故由
人教新课标版数学高二A版选修4-4课件 第二讲 第1节 第3课时 参数方程和普通方程的互化
(1)将参数方程转化为我们所熟悉的普通方程是解决 问题的关键.
(2)将所求的问题用恰当的参数表示,是解决此类问题 的转折点.
3.已知方程 y2-6ysin θ-2x-9cos2θ+8cos θ +9=0,(0≤θ<2π).
(1)试证:不论 θ 如何变化,方程都表示顶点在同一 椭圆上的抛物线;
(2)θ 为何值时,该抛物线在直线 x=14 上截得的弦 最长,并求出此弦长.
(1)(x-31)2+(y-52)2=1,x= 3cos θ+1.(θ 为参数)
(2)x2-y+x-1=0,x=t+1.(t 为参数)
[精讲详析] 本题考查化普通方程为参数方程的方 法,解答本题只需将已知的变量 x 代入方程,求出 y 即可.
(1)将
x=
3cos
θ+1
代
入(x-3 1)2
+
(y-2)2 5
所以 x2+y2 的最小值为 9.
答案:9
8.点(x,y)是曲线 C:xy==s-in2+θcos
θ,
(θ 为参数,0≤
θ<2π)上任意一点,则xy的取值范围是________.
解析:曲线 C:xy==s-in2+θcos
θ,
是以(-2,0)为圆心,
1 为半径的圆,即(x+2)2+y2=1.
设xy=k,∴y=kx. 当直线 y=kx 与圆相切时,k 取得最小值与最大值. ∴ |-k22+k|1=1,k2=13.
(1)求常数 a; (2)求曲线 C 的普通方程.
解:(1)由题意可知有1a+t2=2t1=3,故ta==11,,∴a=1. (2)由已知及(1)可得,曲线 C 的方程为xy==t12+. 2t, 由第一个方程得 t=x-2 1代入第二个方程得 y=(x-2 1)2,即 (x-1)2=4y 为所求.
高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 2.1.2 曲线的参数方程》
曲线的参数方程一、教学目标知识与技能:了解参数方程的概念,了解参数的意义会将直角坐标方程化成参数方程的形式过程与方法:从物理学的平抛运动知识出发,运用向量工具,得到物体平抛运动的参数方程;通过对现实原型的分析、概括与抽象,建立曲线的参数方程概念。
再用数学方法对曲线的参数方程进行研究,最后应用到解析几何中去解决问题情感、态度与价值观:使学生对参数的方程有一个初步认识,感受生活中处处有数学,数学维过程;掌握未知转化为已知的数学方法;理解特殊与一般的辩证关系二、新设计1.为了便于学生接受新知识,调动学生学习兴趣。
本节课引入时,我借助物理知识中,学生较为理解的小球的平抛运动的几张图片说明小球不同时刻的运动情况,水平方向和竖直方向运动方式不同,分别计算它们的位移,得到物体的平抛运动的参数方程,引出本节新知2为了学生易于理解曲线的参数方程的概念。
在讲解本节例题时,利用圆的参数方程的几何画板课件,帮助同学理解曲线的参数方程的概念3为了便于学生更好的学习本节知识,利用微课对必修二中直线的相关知识进行了快速复习三、学情分析同学们在数学2中学习了解析几何的基本知识,在选修课中学习了圆锥曲线的性质及表示该曲线的直角坐标方程,对解析几何有了一定的认知,本节曲线的参数方程是以参变量为中介来表示曲线上点的坐标的方程,它是曲线在同一坐标系下的又一种表示形式本班学生虽然基础不是很好,但是借助直观图片、课件和微课回顾相关知识,对本节学习应该收获颇丰四、教学重、难点教学重点:曲线的参数方程概念的理解和参数方程与普通方程的互化教学难点:曲线的参数方程概念的理解,已学解析几何知识的熟练应用突破手段:借助于圆的参数方程的几何画板课件,理解参数方程的概念及一般参数方程中参数的物理、数学意义。
利用微课对已学解析几何本节能用到的知识进行快速复习五、教学活动1问题引入借助物理知识中,学生较为理解的小球的平抛运动的两张图片说明小球不同时刻的运动情况,水平方向和竖直方向运动方式不同,分别计算它们的位移,得到物体的平抛运动的参数方程观察图片引出问题 得到结论2探求新知参数方程:设在平面上取定了一个直角坐标系xoy ,把坐标,x y 表示为第三个变量t 的函数()()x f t y g t =⎧⎨=⎩a tb ≤≤,如果对于t 的每一个值(a t b ≤≤),上式所确定的点(,)M x y 都在一条曲线上;而这条曲线上的任一点(,)M x y ,都可由t 的某个值得到,则称上式为该曲线的参数方程,其中变量t 称为参数提出问题:(1)概念中的关键词有哪些?(2)分别说明了什么?教师指出参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与普通方程同等地描述了曲线,的横坐标和纵坐标3应用范例例1设质点沿以原点为圆心,半径为2的圆作匀角速运动,角速度为/60rad s π试以时间t 为参数,建立质点运动轨迹的参数方程设计意图:通过分析,学生容易得到参数方程;反之,通过教师利用几何画板课件,学生理解参数方程的概念同时,理解参数的物理,数学意义例2 选取适当参数,把直线方程23y x =+化为参数方程设计意图:通过分析,学生容易通过普通方程得到参数方程; 理解如何引入适当的参数得到参数方程 例3 设曲线的参数方程为32,14x t y t =-⎧⎨=--⎩把它化为普通方程,说明它表示什么曲线 设计意图:让学生体会参数方程化普通方程的方法。
高二数学选修4-4:第二讲 一 曲线的参数方程 1.参数方程的概念
首页
上一页
下一页
末页
结束
求曲线参数方程的主要步骤 (1)画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画 图时要注意根据几何条件选择点的位置,以利于发现变量之 间的关系. (2)选择适当的参数.参数的选择要考虑以下两点:一是 曲线上每一点的坐标 x,y 与参数的关系比较明显,容易列出 方程;二是 x,y 的值可以由参数唯一确定.例如,在研究运 动问题时,通常选时间为参数;在研究旋转问题时,通常选 旋转角为参数.此外,离某一定点的“有向距离”、直线的 倾斜角、斜率、截距等也常常被选为参数. (3)根据已知条件、图形的几何性质、问题的物理意义等, 建立点的坐标与参数的函数关系式,证明可以省略.
首页
上一页
下一页
末页
结束
求曲线的参数方程
[例 2] 如图,△ABP 是等腰直角三角形, ∠B 是直角,腰长为 a,顶点 B,A 分别在 x 轴、y 轴上滑动,求点 P 在第一象限的轨迹的 参数方程.
[思路点拨] 解决此类问题关键是参数的选取.本例中由 于 A,B 的滑动而引起点 P 的运动,故可以 OB 的长为参数, 或以角为参数,此时不妨取 BP 与 x 轴正向夹角为参数来求解.
则其对应的参数 t 的值为________.
解析:由 t+1t=2,解得 t=1. 答案:1
首页
上一页
下一页
末页
结束
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a. 解:∵点 M(5,4)在曲线 C 上,∴45==a1+ t2,2t, 解得ta==21,. ∴a 的值为 1.
首页Biblioteka 上一页下一页末页结束
第2讲-1-曲线的参数方程第2课时
当 堂 双 基 达 标
y+2 3+sin θ ∴k= = . x+1 1+cos θ
课 堂 互 动 探 究
∴sin θ-kcos θ=k-3 即 1+k2sin(θ+φ)=k-3.(φ 由 tan φ=-k 确定) k-3 ∴sin(θ+φ)= 2. 1+k
菜 单
课 时 作 业
新课标 ·数学 选修4-4
当 堂 双 基 达 标
课 堂 互 动 探 究
2 1 - k 2 要,如 sin2α+cos2α =1 ,(ex+e-x)2-(ex- e-x)2 =4, ( ) 1+k2
课 时 作 业
2k 2 +( 2) =1 等. 1+k
菜 单
新课标 ·数学 选修4-4
课 前 自 主 导 学
2. 把参数方程化为普通方程时, 要注意哪一个量是参数, 并且要注意参数的取值对普通方程中 x 及 y 的取值范围的影 响.本题启示我们,形式相同的方程,由于选择参数的不同,
新课标 ·数学 选修4-4
第 2 课时
课 前 自 主 导 学
参数方程和普通方程的互化
当 堂 双 基 达 标
课 堂 互 动 探 究
1.了解参数方程化为普通方程的 意义. 课标 2.理解参数方程与普通方程的 解读 互相转化与应用. 3.掌握参数方程化为普通方程 的方法.
课 时 作 业
菜
单
新课标 ·数学 选修4-4
当 堂 双 基 达 标
课 堂 互 动 探 究
可表示不同的曲线.
课 时 作 业
菜
单
新课标 ·数学 选修4-4
将下列参数方程分别化为普通方程,并判断方程所表示
课 前 自 主 导 学
曲线的形状:
x=2cos θ (1) y=2sin θ
最新人教版高中数学选修4-4《参数方程》本章概览
第二章 参数方程本章概览内容提要1.设在平面上取定了一个直角坐标系xOy,把坐标x 、y 表示为第三个变量t 的函数:⎩⎨⎧==)(),(t g y x f x (a≤t≤b),若对于t 的每一个值(a≤t≤b),所确定的点M(x 、y)都在一条曲线上;而曲线上的任一点M(x 、y)都可通过t 的某个值而得到.则上式即称为该曲线的参数方程. 2.直线的参数方程:⎩⎨⎧+=+=.sin ,cos 00ααt y y t x x 3.圆的参数方程:⎩⎨⎧==θθsin ,cos R y R x (0≤θ≤2π). 若圆心在M 0(x 0,y 0),则圆的参数方程为⎩⎨⎧+=+=θθsin ,cos 00R y y R x x (0≤θ≤2π). 4.椭圆的参数方程:①当中心在(0,0),方程为⎩⎨⎧==t b y t a x sin ,cos (0≤t≤2π). ②椭圆的参数方程,当中心在M 0(x 0,y 0),为⎩⎨⎧+=+=tb y y t a x x sin ,cos 00(0≤t≤2π).5.抛物线的参数方程:⎩⎨⎧==.2,22pt y pt x 6.双曲线的参数方程:⎩⎨⎧==.tan ,sec θθb y a x 7.摆线与圆的渐开线的参数方程:①摆线⎩⎨⎧-=-=).cos 1(),sin (t a y t t a x ②圆的渐开线:⎩⎨⎧-=+=).cos (sin ),sin (cos t t t a y t t t a x 学法指导1掌握直线和圆的参数方程,学会参数方程和普通方程的互化.2掌握圆锥曲线的参数方程,通过具体问题的分析,会用参数方程解决某些问题.3分析建立曲线的参数方程的步骤,总结用向量方法建立参数方程.4体会从实践中抽象出数学问题的过程及数学在实践中的应用价值.。
【人教版】数学(理)一轮复习:选修4-4《坐标系与参数方程》(第2节)ppt课件 公开课一等奖课件PPT
选修4-4 坐标系与参数方程
2.(2013·陕
西
高考
)圆
锥曲线
x=t2, y=2t
(t 为参数)的焦点坐标是
________.
解析 代入法消参,得到圆锥曲线的方程为 y2=4x,
则焦点坐标为(1,0).
答案 (1,0)
选修4-4 坐标系与参数方程
3.(2012·湖北高考)在直角坐标系 xOy 中,以原点 O 为极点,x 轴
选修4-4 坐标系与参数方程
直线的参数方程 [典题导入]
(2014·东北三省三校第二次联考)在直角坐标系 xOy 中,已
知点 P(0, 3),曲线 C 的参数方程为xy= =
5cos φ, 15sin φ
(φ 为参数).以
原点为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标
方程为 ρ=2cosθ3-π6.
解析 直线方程可化为 x-y+1=0,圆的方程可化为(x-1)2+y2 =1.由点到直线的距离公式可得,圆心 C(1,0)到直线 l 的距离为
12+|2|-12= 2. 答案 2
选修4-4 坐标系与参数方程
5.(2013·广东高考)已知曲线 C 的极坐标方程为 ρ=2cos θ.以极点
为原点,极轴为 x 轴的正半轴建立直角坐标系,则曲线 C 的参
(t 为参数).若 A,B 为直线 l 上两点,其对应的
参数分别为 t1,t2.线段 AB 的中点为 M,点 M 所对应的参数为 t0. 注意以下几个常用的结论:
(1)t0=t1+2 t2;(2)|PM|=|t0|=|t1+2 t2|;(3)|AB|=|t2-t1|;(4)|PA|·|PB|
=|t1t2|.
选修4-4 坐标系与参数方程
人教版数学高二A版选修4-4学案第二讲二双曲线的参数方程抛物线的参数方程
2.~3.双曲线的参数方程 抛物线的参数方程[对应学生用书P25]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎨⎧x =a sec φ,y =b tan φ规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2. (2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎨⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程(1)抛物线y 2=2px 的参数方程为⎩⎨⎧x =2pt 2,y =2ptt ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[对应学生用书P25]双曲线、抛物线参数方程的基本问题[例1] (1)双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的焦点坐标是________.(2)将方程⎩⎨⎧x =tan t ,y =1-cos 2t1+cos 2t化为普通方程是________.[思路点拨] (1)可先将方程化为普通方程求解; (2)利用代入法消去t .[解析] (1)将⎩⎨⎧x =23tan α,y =6sec α化为y 236-x 212=1,可知双曲线焦点在y 轴,且c =36+12=43, 故焦点坐标是(0,±43). (2)由y =1-cos 2t 1+cos 2t=2sin 2t 2cos 2t =tan 2t ,将tan t =x 代入上式,得y =x 2,即为所求方程. [答案] (1)(0,±43);(2)y =x 2.(1)解决此类问题要熟练掌握双曲线与抛物线的参数方程,特别是将参数方程化为普通方程,还要明确参数的意义.(2)对双曲线的参数方程,如果x 对应的参数形式是sec φ,则焦点在x 轴上;如果y 对应的参数形式是sec φ,则焦点在y 轴上.1.如果双曲线⎩⎨⎧x =sec θ,y =6tan θ(θ为参数)上一点P 到它的右焦点的距离是8,那么P 到它的左焦点距离是________.解析:由双曲线参数方程可知a =1, 故P 到它左焦点的距离|PF |=10或|PF |=6. 答案:10或62.过抛物线⎩⎨⎧y =2t ,x =t 2(t 为参数)的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 2+x 2=6.则|AB |=________.解析:化为普通方程是:x =y 24即y 2=4x ,∴p =2. ∴|AB |=x 1+x 2+p =8.答案:8双曲线、抛物线参数方程的应用[例2] 连结原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[思路点拨] 由条件可知,M 点是线段OP 的中点,利用中点坐标公式,求出点P 的轨迹方程,再判断曲线类型.[解] 设M (x 、y )为抛物线上的动点,P (x 0,y 0)在OM 的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎨⎧ x =2t ,y =2t 2用中点公式得⎩⎨⎧x 0=4t ,y 0=4t 2.变形为y 0=14x 20,即P 点的轨迹方程为x 2=4y . 表示抛物线.在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标.3.设P 为等轴双曲线x 2-y 2=1上的一点,F 1和F 2为两个焦点,证明:|F 1P |·|F 2P |=|OP |2.证明:如图,设双曲线上的动点为P (x ,y ),焦点F 1(-2,0),F 2(2,0),双曲线的参数方程为⎩⎨⎧x =sec θ,y =tan θ.则:(|F 1P |·|F 2P |)2=[(sec θ+2)2+tan 2θ]·[(sec θ-2)2+tan 2θ]=(sec 2 θ+22sec θ+2+tan 2θ)(sec 2 θ-22sec θ+2+tan 2θ) =(2sec θ+1)2(2sec θ-1)2 =(2sec 2 θ-1)2.又|OP|2=sec2θ+tan2θ=2sec2θ-1,由此得|F1P|·|F2P|=|OP|2.[对应学生用书P26]一、选择题1.曲线⎩⎨⎧x=t2-1,y=2t+1(t为参数)的焦点坐标是()A.(1,0)B.(0,1)C.(-1,0) D.(0,-1)解析:将参数方程化为普通方程(y-1)2=4(x+1),该曲线为抛物线y2=4x 向左、向上各平移一个单位得到,所以焦点为(0,1).答案:B2.已知某条曲线的参数方程为⎩⎪⎨⎪⎧x=12⎝ ⎛⎭⎪⎫a+1a,y=12⎝⎛⎭⎪⎫a-1a(其中a是参数),则该曲线是()A.线段B.圆C.双曲线D.圆的一部分解析:将所给参数方程的两式平方后相减,得x2-y2=1.并且由|x|=12|a+1a|≥1,得x≥1或x≤-1,从而易知结果.答案:C3.方程⎩⎨⎧x=e t+e-t,y=e t-e-t(t为参数)的图形是()A.双曲线左支B.双曲线右支C.双曲线上支D.双曲线下支解析:∵x 2-y 2=e 2t +2+e -2t -(e 2t -2+e -2t )=4.且x =e t +e -t ≥2e t ·e -t =2. ∴表示双曲线的右支. 答案:B4.P 为双曲线⎩⎨⎧x =4sec θ,y =3tan θ(θ为参数)上任意一点,F 1,F 2为其两个焦点,则△F 1PF 2重心的轨迹方程是( )A .9x 2-16y 2=16(y ≠0)B .9x 2+16y 2=16(y ≠0)C .9x 2-16y 2=1(y ≠0)D .9x 2+16y 2=1(y ≠0)解析:由题意知a =4,b =3,可得c =5, 故F 1(-5,0),F 2(5,0),设P (4sec θ,3tan θ),重心M (x ,y ),则x =-5+5+4sec θ3=43sec θ,y =0+0+3tan θ3=tan θ.从而有9x 2-16y 2=16(y ≠0). 答案:A 二、填空题5.已知动圆方程x 2+y 2-x sin 2θ+22·y sin(θ+π4)=0(θ为参数).则圆心的轨迹方程是________.解析:圆心轨迹的参数方程为⎩⎪⎨⎪⎧x =12sin 2θ,y =-2sin (θ+π4).即⎩⎨⎧x =sin θcos θ,y =-(sin θ+cos θ).消去参数得: y 2=1+2x (-12≤x ≤12). 答案:y 2=1+2x (-12≤x ≤12)6.双曲线⎩⎨⎧x =3tan θ,y =sec θ(θ为参数)的两条渐近线的倾斜角为________.解析:将参数方程化为y 2-x 23=1,此时a =1,b =3,设渐近线倾斜角为α,则tan α=±13=33. ∴α=30°或150°. 答案:30°或150°7.已知抛物线的参数方程为⎩⎨⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l ,过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.解析:⎩⎨⎧x =2pt 2,y =2pt⇒y 2=2px ,焦点F ⎝ ⎛⎭⎪⎫p 2,0,过点M 作x 轴的垂线,垂足为N ,由题意可知,△MEF 是正三角形,所以∠MFN =60°,在Rt △MFN 中,|FN |=|MF |cos 60°=12⎝ ⎛⎭⎪⎫3+p 2, 所以3-p 2=12⎝ ⎛⎭⎪⎫3+p 2⇒p =2.答案:2 三、解答题8.已知抛物线⎩⎨⎧x =2pt 2,y =2pt (t 为参数,p >0)上的点M ,N 对应的参数值为t 1,t 2,且t 1+t 2=0,t 1t 2=-p 2,求M ,N 两点间的距离.解:由题知M ,N 两点的坐标分别为(2pt 21,2pt 1),(2pt 22,2pt 2), ∴|MN |=(2pt 21-2pt 22)2+(2pt 1-2pt 2)2=(2pt 1-2pt 2)2=2p |t 1-t 2| =2p (t 1+t 2)2-4t 1t 2=4p 2. 故M ,N 两点间的距离为4p 2.9.已知圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P ,Q 两点距离的最小值.解:设Q (sec θ,tan θ),在△O 1QP 中,|O 1P |=1,|O 1P |+|PQ |≥|O 1Q |. 又|O 1Q |2=sec 2 θ+(tan θ-2)2 =(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3, 此时有|O 1Q |min = 3. ∴|PQ |min =3-1.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:法一:设抛物线的参数方程为⎩⎨⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2),则k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2.又设MN 的中点为P (x ,y ),则⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴k AP =4(t 1+t 2)4(t 21+t 22)-1,由k MN =k AP 知t 1·t 2=-18,又⎩⎨⎧x =4(t 21+t 22),y =4(t 1+t 2),则y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1). ∴所求轨迹方程为y 2=4(x -1). 法二:设M (x 1,y 1),N (x 2,y 2),由M 、N 在抛物线y 2=8x 上知⎩⎨⎧y 21=8x 1,y 22=8x 2,两式相减得y 21-y 22=8(x 1-x 2),即(y 1-y 2)(y 1+y 2)=8(x 1-x 2), ∴y 1-y 2x 1-x 2=8y 1+y 2. 设线段MN 的中点为P (x ,y ),∴y 1+y 2=2y . 由k PA =y x -1,又k MN =y 1-y 2x 1-x 2=8y 1+y 2=4y , ∴y x -1=4y .∴y 2=4(x -1). ∴线段MN 的中点P 的轨迹方程为y 2=4(x -1).。