传热学3非稳态导热
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必须用无穷级数描述。
第二阶段
正常情况阶段(右侧参与换热 ) 当右侧面参与换热以后,物
体中温度分布不受初始温度的
影响,主要取决于边界条件及 物性,此时非稳态导热过程进 入到正规状况阶段。 环境的热影响已经扩展到整
t
0
t
H
1
G
F A B E C D
个物体内部,即物体(或系统
)不再受到初始温度分布影响 的阶段。可以用初等函数描述
4 几个同的阶段
t
H
1
G
F E C D
t
0
A
B
百度文库
依据温度变化的特点,可将加热或冷却过程分为 三个阶段。
第一阶段
不规则情况阶段(右侧
面不参与换热 ):温度
分布显现出部分为非稳 t
态导热规律控制区和部 分为初始温度区的混合
H
1
G
F A B E C D
分布,即:在此阶段物 t 体温度分布受初始温度
0
分布的影响较大。
1、重点内容: ① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用; ③ 一维非稳态导热问题。 2 、掌握内容: ① 确定瞬时温度场的方法; ② 确定在一时间间隔内物体传导热量计算
方法。
3.1 非稳态导热的基本概念
1定义 物体的温度随时间而变化的导热过程为非稳态导热。
自然界和工程上许多导热过程为非稳态,t= f()
3.2
零维问题的分析法-集总参数法
定义:忽略物体内部导热热阻、认为物体温度均 匀一致的分析方法。
Bi
h 1h
此时,Bi 0 ,温度分布只与时间有关,
即
t f ( ) ,与空间位置无关。
因此,也称为零维问题。
工程上把Bi﹤0.1作为该情况的判据
集总参数法的简化分析
h 如果物体的导热系数很大, Bi 1h 或几何尺寸很小,
正常情况阶段: Φ1逐渐减小,Φ2逐渐增大。
非稳态导热问题的求解实质
在规定的初始条件及边界条件下求解导热微分方
程式,是本章主要任务。 三个不同坐标系下导热微分方程式,用矢量形 式统一表示为:
t 2 c t+qv
温度的拉普拉斯算子
qv t 2 a t+ c
初始条件的一般形式
h Bi 1h
(1) 1/ h /
表面对流换热热阻几乎 可以忽略,因而过程一开 始平板的表面温度就被冷 却到t∞ 随着时间的推移,整体 地下降,逐渐趋近于一致
1/ h
t
Bi
1 h
(2) / 1/ h
平板内部导热热阻 / 几乎可以忽略,因而任一 时刻平板中各点的温度接 近均匀, 随着时间的推移,整体 地下降,逐渐趋近于t∞
物体的温度随时间的推移逐渐趋近于恒定的值
着重讨论瞬态非稳态导热。
非稳态导热过程中在热量传递方向上不
同位置处的导热量是不同的;
不同位置间导热量的差别用于(或来自)
该两个位置间内能随时间的变化,这是 区别与稳态导热的一个特点。
对非稳态导热一般不能用热阻的方法来
作问题的定量分析。
3 温度分布
h Bi 1h
(3) / 与 1/ h 的数值比较接近
平板中不同时刻的温度分布
介于上述两种极端情况之间。 两个热阻的相对大小对于物体
中非稳态导热的温度场的变化 具有重要影响。 引入表征这两个热阻比值的无 量纲数毕渥数。 Bi h
1h
近似分析法
第三阶段 建立新的稳态阶段, 理论上需要无限长
t
H
1
时间
物体各处的温度达
t
0
G
F A B E C D
到新的稳态
两类非稳态导热的区别:瞬态导热存在着有区别的 三个不同阶段,而周期性导热不存在。
5 热量变化
Φ 1--板左侧导入的热流量 Φ 2--板右侧导出的热流量
各阶段热流量的特征: 不规则情况阶段段:Φ1急剧减小,Φ2保持不变;
普拉斯变换
近似分析法:
集总参数法、积分法
数值解法:有限差分法、蒙特卡洛法、有
限元法、分子动力学模拟
无量纲特征数(准则数) -毕渥数
hl lh / 物体内部导热热阻 Bi 1)定义: Bi 1/ h 物体表面换热热阻 1h
V
2)Bi 物理意义: 物体内部单位导热面积上的导 热热阻与单位表面积上的对流换热热阻之比。 Bi的大小反映了物体在非稳态条件下内部温度场 的分布规律。 3)特征数(准则数):表征某一物理现象或过 程特征的无量纲数。 4)特征长度:是指特征数定义式中的几何尺度。
第三类边界条件下Bi数对平板中温度分布的影响
t ( ) w h(tw t f ) n
在第三类边界条件下,确定非稳态导热物体中 的温度变化特征与边界条件参数的关系。 已知:平板厚2、初温t0、表面传热系数h、平板导 热系数,将其突然置于温度为t∞的流体中冷却。
平板中温度场的变化会出现以下三种情形:
t ( x, y, z,0) f ( x, y, z)
简单特例 f(x,y,z)=t0
边界条件:着重讨论第三类边界条件
t ( ) w h(tw t f ) n
学习非稳态导热的目的:
(1) 温度分布和热流量分布随时间和空间的变 化规律
t f ( x, y, z, ) ;
Φ f( )
或表面换热系数极低, 其导热问题都可能属于这一类型的非稳态导
热问题。
3.2.1
集总参数法温度场的分析解
A
φc
冶金、热处理与热加工中工件被加热或冷却;
锅炉、内燃机等装置起动、停机、变工况;
自然环境温度;
供暖或停暖过程中墙内与室内空气温度。
2
非稳态导热的分类
周期性非稳态导热:物体的温度随时间而作周期 性的变化 非周期性非稳态导热(瞬态导热):物体的温度随 时间不断地升高(加热过程)或降低(冷却过程), 在经历相当长时间后,物体温度逐渐趋近于周围介 质温度,最终达到热平衡。
(2) 非稳态导热的导热微分方程式:
t t t t c ( ) ( ) ( ) qv x x y y z z
qv t 2 a t+ c
(3) 求解方法:
分析解法、近似分析法、数值解法 分析解法:分离变量法、积分变换、拉