三角形的五心及性质

合集下载

三角形的重心、垂心、内心、外心

三角形的重心、垂心、内心、外心

三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!四、三角形内心定理三角形内切圆的圆心,叫做三角形的内心。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

之二胡藕藤创作一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

中考数学之三角形五心定律

中考数学之三角形五心定律

三角形五心定律三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称.重心定理:三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理:三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等垂心定理:三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))(除正三角形)3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB证明:连接DE∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE又∵∠ODC=∠OEC=90度∴O、D、C、E四点共圆∴∠ACF=∠ADE=∠ABE又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此,垂心定理成立!内心定理:三角形内切圆的圆心,叫做三角形的内心。

三角形五心及其性质延伸

三角形五心及其性质延伸

三角形五心及其性质延伸1.内心:三角形三条内角平分线的交点,也是三角形内切圆的圆心。

角平分线性质:到角两边距离相等. 内心性质:到三角形三边距离相等。

延伸:①内角平分线定理如图,AD 为△ABC证明过程如下:作BE//AC 交其延长线于E,又∵BE//AC,易证△ADC ∽ △EDB, 得证。

②外角平分线定理如图,AD 为△ABC 的外角平分线,交BC延长线于D证明过程如下:作CE//AB 交AD 于E,ABDCEcbcABCDEF又∵CE//AB,易证△ADB ∽ △EDC,得证。

③三角形内角平分线长公式如图,AD 为△ABC证明过程如下:作BE//AC 交其延长线于交其于F 。

由前文的内角平分线定理可知,△ADC∽ △EDB,而△ABE 为等腰三角形,④内心到三边距离r(三角形内切圆半径)设三角形面积为S ,则有cb cAFBDCEBC证明过程如下:连接OA,OB,OC.S△AOBS△AOC =S△BOC =又∵S=S△AOB + S△AOC+ S△BOC ,即2.重心:三角形三条中线交点中线性质:将三角形面积等分成两部分.重心性质:分三角形的中线两段长比例为2:1(长:短)如图:AD,BE,CF为△ABC三条中线,G为其重心,则有证明过程如下:作BH//FC交AD延长线于H,易证△GDC ≌△HDB又∵BH//FG,F为AB中点,∴G也为AH.延伸:三角形中线长公式AGFECB DHAFBDC如图,AD 为△ABC 的中线,则有证明过程如下:作BE//AC 交AD 延长线于E,易证△ADC ≌ △EDB ,∵BE//AC交其 延长线于F 。

又AB=c ,∴故3.外心:三角形三边垂直平分线的交点,三角形外接圆圆心。

垂直平分线性质:到线段两端点距离相等。

外心性质:到三角形三个顶点距离相等。

内心到三顶点距离R(三角形外接圆半径)某边除以它对角正弦的2倍) 证明过程于下:连接AO 并延长交圆O 于D,则AD 为圆直径,AD=2R.AD同弧AB 所对的圆周角相等),∴即延伸①:正弦定理由于变形得到正弦定理每边除以它所对角的正弦为2R) 延伸②:余弦定理证明过程如下:作交其于D4.旁心:三角形一个内角平分线与另外两个外角的平分线的交点。

三角形五心定理

三角形五心定理

三角形五心定理三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

一、三角形重心定理(中线的交点)重心原是物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

(证明)2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

(证明)3、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理(垂直平分线的交点)三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

外心到三顶点的距离相等2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

三、三角形垂心定理(高的交点)三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

(证明,有何作用)2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

三角形五心定律

三角形五心定律
∵∠EAO=∠DAC ∠AEO=∠ADC∴ΔAEO∽ΔADC
∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度 ∴∠ACF+∠BAC=90度∴CF⊥AB
因此,垂心定理成立!
内心定理
三角形内切圆的圆心,叫做三角形的内心。
内心的性质:
1、三角形的三条内角平分线交于一点。该点即为三角形的内心。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三ቤተ መጻሕፍቲ ባይዱ形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。5PCzVD7HxA
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3>/2c,(c1+c3>/2c,(c1+c2>/2c >。jLBHrnAILg
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
有关诗歌
三角形五心歌<重外垂内旁)
三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.
重心
三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.
由于任何n边的多边形都可以分割成<n-2)个三角形,所以海伦公式可以用作求多边形面积的公式,但需要先知道分割用的对角线的长度。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。6ewMyirQFL

三角形的五“心”及其性质

三角形的五“心”及其性质

三角形的五“心”及其性质
三角形的五心是指三角形内部的五个特殊点,包括重心、外心、内心、垂心和旁心。

1. 重心:三角形三个顶点与其对边的中点连接所交于一点,这个点被
称为重心。

重心到三角形三边的距离相等,重心将三角形划分为三个
面积相等的小三角形。

2. 外心:三角形三个顶点的垂直平分线相交于一点,这个点被称为外心。

外心是三角形外接圆圆心,即三角形三个顶点与外心的连线的长
度相等。

3. 内心:三角形三个顶点的角平分线相交于一点,这个点被称为内心。

内心是三角形内切圆圆心,即三角形三条边与内心的连线的垂直距离
相等。

4. 垂心:三角形三个顶点的高的延长线相交于一点,这个点被称为垂心。

垂心是三角形三条高的交点,即垂心到三角形三个顶点所在的直
线距离相等。

5. 旁心:三角形的旁心有三个,分别对应三条边。

旁心是指三角形的
外切圆圆心,即三角形的一条边外边的一条角的角平分线与另外两条
边延长线的交点。

这些五心有一些重要的性质:
- 重心是三角形的重要重心之一,它将三角形分成三个面积相等的小三
角形。

- 外心是三角形外接圆圆心,外接圆的直径是三角形的边长,外心到三
个顶点的距离相等。

- 内心是三角形内切圆圆心,内接圆与三个边相切,内心到三个边的距
离相等。

- 垂心是三角形三条高的交点,垂心到三个顶点所在的直线距离相等。

- 旁心是三角形外切圆圆心,外切圆与三条边相切,旁心到相对应的边
的距离相等。

三角形的五心定理

三角形的五心定理

三角形五心定理三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

编辑本段一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

编辑本段二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A 为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等编辑本段三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

三角形五心及其性质

三角形五心及其性质

三角形的三条高的交‎点叫做三角形的垂心。

‎三角形垂心的性质‎设△ABC的三条‎高为AD、BE、CF‎,其中D、E、F为垂‎足,垂心为H,角A、‎B、C‎的对边分别为a、b、‎c,p=(a+b+c‎)/2.1‎、锐角三角形的垂心在‎三角形内;直角三角形‎的垂心在直角顶点上;‎钝角三角形的‎垂心在三角形外. ‎2、三角形的垂‎心是它垂足三角形的内‎心;或者说,三角形的‎内心是它旁心三角形的‎垂心;‎3、垂心H关于‎三边的对称点,均在△‎A BC的外接圆上。

‎4、△AB‎C中,有六组四点共圆‎,有三组(每组四个)‎相似的直角三角形,且‎A H•HD=BH•H‎E=CH•HF。

‎5、 H、A、‎B、C四点中任一点是‎其余三点为顶点的三角‎形的垂心(并称这样的‎四点为一—垂心组)。

‎6、△A‎B C,△ABH,△B‎C H,△ACH的外接‎圆是等圆。

‎7、在非直角三角形‎中,过H的直线交AB‎、AC所在直线分别于‎P、Q,则 AB/A‎P•tanB+AC/‎A Q•tanC=ta‎n A+tanB+ta‎n C。

8、‎三角形任一顶点到垂‎心的距离,等于外心到‎对边的距离的2倍。

‎9、设O,‎H分别为△ABC的外‎心和垂心,则∠BAO‎=∠HAC,∠ABH‎=∠OBC,∠BCO‎=∠HCA。

‎10、锐角三角形‎的垂心到三顶点的距离‎之和等于其内切圆与外‎接圆半径之和的2倍。

‎11、锐‎角三角形的垂心是垂足‎三角形的内心;锐角三‎角形的内接三角形(顶‎点在原三角形的边上)‎中,以垂足三角形的周‎长最短。

1‎2、西姆松定理(西姆‎松线):从一点向三角‎形的三边所引垂线的垂‎足共线的充要条件是该‎点落在三角形的外接圆‎上。

13、‎设锐角△ABC内有‎一点T,那么T是垂心‎的充分必要条件是PB‎*PC*BC+PB*‎P A*AB+PA*P‎C*AC=AB*BC‎*CA。

垂心的向‎径定义设点H‎为锐角三角形ABC的‎垂心,向量OH=h,‎向量OA=a,向量O‎B=b,向量OC=c‎,则h=(t‎a nA a +tan‎B b +tanC ‎c)/(tanA+t‎a nB+tanC).‎垂心坐标的解‎析解:设三个‎顶点的坐标分别为(a‎1,b1)(a2,b‎2)(a3,b3),‎那么垂心坐标x=Δx‎/2/Δ,y=-Δy‎/2/Δ。

中考数学之三角形五心定律

中考数学之三角形五心定律

三角形五心定律三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称.重心定理:三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理:三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、外心到三顶点的距离相等垂心定理:三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。

(此直线称为三角形的欧拉线(Euler line))(除正三角形)3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。

4、垂心分每条高线的两部分乘积相等。

定理证明已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB证明:连接DE∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE又∵∠ODC=∠OEC=90度∴O、D、C、E四点共圆∴∠ACF=∠ADE=∠ABE又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB因此,垂心定理成立!内心定理:三角形内切圆的圆心,叫做三角形的内心。

三角形五心相关结论与应用汇总

三角形五心相关结论与应用汇总

三角形五心相关结论与应用汇总三角形的五心分别是外心、内心、重心、旁心和垂心。

这五个点在三角形中各具特点,具有丰富的性质与应用。

1.外心是三角形外接圆的圆心,外心到三角形三个顶点的距离相等。

外心是三条中垂线的交点,同时也是三角形上各个边的垂直平分线的交点。

利用外心可以得到三角形的外接圆,进而可以确定三角形的形状。

2.内心是三角形内切圆的圆心,内心到三角形三条边的距离相等。

内心是三条角平分线的交点,同时也是三角形上各个边的角平分线的交点。

利用内心可以得到三角形的内切圆,进而可以确定三角形的形状。

3.重心是三角形三条中线(连接一个顶点和中点)的交点,重心离三角形三个顶点的距离都相等。

重心被认为是一个三角形的质心,可以将三角形视为一个平面上均匀分布的质点系统,重心就是该系统的质心。

在构造平衡结构等问题中,重心具有重要的作用。

4.旁心是指三角形的三个旁切圆的圆心,旁心到三角形对边的距离相等。

旁心到三角形两直角边的距离也相等。

旁心所在的直线与对边垂直,旁心是三角形上各个边的外角平分线的交点。

旁心在三角形的定位中有重要的用途,可以确定一些特殊的旁切圆。

5.垂心是指三角形三个顶点至对边的垂足所在的交点。

垂心到三角形各顶点的线段长度分别相等。

垂心所在的直线与对边垂直。

垂心具有一些特殊的性质,如垂心与外心、内心和重心共线等。

应用方面:1.构造外接圆和内切圆:利用外心和内心,可以分别构造三角形的外接圆和内切圆,确定三角形的形状。

2.求解三角形的位置:通过五心中的旁心,可以确定一些特殊的旁切圆和重心,用于求解三角形的位置。

3.确定三角形的特殊性质:通过五心可以确定一些特殊的线段和角度,进而推导出三角形的一些特殊性质。

4.建立平衡结构:利用重心作为质心,可以构建平衡结构,在建筑、工程等领域具有重要的应用。

5.解决几何问题:五心的性质可以应用于解决各种三角形相关的几何问题,如求解距离、角度、线段的长度等。

总之,三角形的五心具有丰富的性质和应用,可以用于解决三角形相关的几何问题,同时也可以应用于建筑、工程等领域。

三角形重心垂心外心内心相关性质介绍

三角形重心垂心外心内心相关性质介绍

三 角 形 的“五 心”所谓三角形的“五心”是指三角形的重心、垂心、外心、旁心及内心。

当三角形是正三角形时,重心、垂心、外心及内心重合为一点,统称为三角形的中心。

一、三角形的外心(1个)定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。

ABC ∆的外心一般用字母O 表示。

性 质:1.外心到三顶点等距,即OC OB OA ==。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21 4.直角三角形的外心在斜边中点。

二、三角形的内心(1个)定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。

ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。

2. CE CD BD BF AF AE ===,,3. 三角形的面积=⨯21三角形的周长⨯内切圆的半w 径.; =++CD BF AE 三角形的周长的一半。

4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。

三、三角形的旁心(3个) 定 义:三角形的一条内角平分线与其他两个角的外角平分线交于一点,即三角形的旁心。

性 质:1. 旁心到三角形一边及其他两边延长线的距离相等。

即,到三边距离相等。

2. 三角形有三个旁心。

这三个旁心到三角形三条边的延长线的距离相等3. 与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫旁心。

四、三角形的垂心定 义:三角形三条高的交点叫垂心。

ABC ∆的垂心一般用字母H 表示。

直角三角形的垂心在直角顶点上。

性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。

2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。

三角形的五心性质

三角形的五心性质

三角形的五心性质内心是三条角平分线的交点,它到三边的距离相等。

外心是三条边垂直平分线的交点,它到三个顶点的距离相等。

重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。

垂心是三条高的交点,它能构成很多直角三角形相似。

旁心是一个内角平分线与其不相邻的两个外角平分线的交点,它到三边的距离相等。

(1)重心和三顶点的连线所构成的三个三角形面积相等;(2)外心到三顶点的距离相等;(3)垂心与三顶点这四点中,任一点是其余三点构成的三角形的垂心;(4)内心、旁心到三边距离相等;(5)垂心是三垂足构成的三角形的内心;(6)外心是中点三角形的垂心;(7)中心也是中点三角形的重心;(8)三角形的中点三角形的外心也是其垂足三角形的外心。

三角形的五心定理重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍,该点叫做三角形的重心。

外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。

垂心定理:三角形的三条高交于一点,该点叫做三角形的垂心。

内心定理:三角形的三内角平分线交于一点,该点叫做三角形的内心。

旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点叫做三角形的旁心。

三角形有三个旁心。

重心的几条性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/35、三角形内到三边距离之积最大的点。

线段的重心线段的重心就是线段的中点平行四边形的重心平行四边形的重心就是它两条对角线的交点三角形的重心、外心、垂心、内心、旁心称为三角形的五心,它们都是三角形的重要相关点。

中考数学点睛三角形五心及其性质延伸

中考数学点睛三角形五心及其性质延伸

中考数学点睛三角形五心及其性质延伸1.内心:三角形三条内角平分线的交点,也是三角形内切圆的圆心。

角平分线性质:到角两边距离相等.
内心性质:到三角形三边距离相等
4.旁心:三角形一个内角平分线与另外两个外角的平分线的交点。

旁心性质:三角形的四心(内心、重心、垂心、外心)只有一个,但旁心有三个,旁心到三角形三边所在直线距离相等。

4、三角形的垂心
三角形的三条高交于一点,这点称为三角形的垂心.
斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”.。

三角形的五心及性质

三角形的五心及性质

三角形的五心及性质重心三角形三条中线的交点叫做三角形重心。

定理:设三角形重心为O,BC边中点为D,则有AO = 2 ODAO = 2 OD。

重心坐标为三顶点坐标平均值。

外心三角形三边的垂直平分线的交点,称为三角形外心。

外心到三顶点距离相等。

过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心即三角形外心,这个三角形叫做这个圆的内接三角形。

三角形有且只有一个外接圆。

内心三角形内心为三角形三条内角平分线的交点。

与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心即是三角形内心,内心到三角形三边距离相等。

这个三角形叫做圆的外切三角形。

三角形有且只有一个内切圆。

垂心三角形三边上的三条高线的交点,称为三角形垂心。

锐角三角形的垂心在三角形内;直角三角形的垂心在直角的顶点;钝角三角形的垂心在三角形外.。

三角形只有一个垂心。

旁心与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。

三角形的一条内角平分线与其他两个角的外角平分线交于一点,即三角形的旁心。

旁心到三角形一边及其他两边延长线的距离相等。

三角形有三个旁切圆,三个旁心。

这三个旁心到三角形三条边的延长线的距离相等。

五心的性质三角形的五心有许多重要性质,它们之间也有很密切的联系,如:1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;2)三角形的外心到三顶点的距离相等;3)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;4)三角形的内心、旁心到三边距离相等;5)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;6)三角形的外心是它的中点三角形的垂心;7)三角形的重心也是它的中点三角形的重心;8)三角形的中点三角形的外心也是其垂足三角形的外心.9)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.垂心 三角形三边上的高的交点称为三角形的垂心。

三角形垂心有下列有趣的性质:设△ABC 的三条高为AD AD、、BE BE、、CF CF,其中,其中D 、E 、F 为垂足,垂心为H 。

完整版初中几何三角形五心及定理性质

完整版初中几何三角形五心及定理性质

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。

三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。

2、重心和三角形任意两个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。

5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理页6 共页1 第三角形外接圆的圆心,叫做三角形的外心。

外心的性质:、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。

1为锐角或直角)或A是△ABC的外心,则∠BOC=2∠(∠A2、若O ∠为钝角)。

A(∠A∠BOC=360°-2当三角形为钝角三角形时,外心在三角形内部;、当三角形为锐角三角形时,3外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

、外心到三顶点的距离相等5垂心定理2图图1三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

页6 共页2 第垂心的性质:6个四点圆。

1、三角形三个顶点,三个垂足,垂心这7个点可以得到。

(此直︰2三点共线,且OG︰GH=1、重心2、三角形外心OG和垂心H Euler line))线称为三角形的欧拉线(倍。

、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的32 、垂心分每条高线的两部分乘积相等。

4推论:)。

(图1ABC 三边的高的垂足,则∠1 = ∠2 、1. 若 D 、 E F 分别是△(图1)2. 三角形的垂心是其垂足三角形的内心。

三角形五心性质[]

三角形五心性质[]

三角形的五心定理一、三角形五心定义内心是二角形的二内角平分线交点.也是二角形内切圆的圆心.重心是三角形的三条中线的交点.(重心原是一个物理概念,对于等厚度的质量均匀的 三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)文档来自于网络搜索 外心是三角形的三边的垂直平分线的交点.三角形外接圆的圆心. 垂心是三角形的三条高的交点旁心是三角形一内角平分线和另外两顶点处的外角平分线的交点.三角形的旁切圆 (与三角形的一边和其他两边的延长线相切的圆)的圆心 文档来自于网络搜索二、三角形五心性质 内心:1、直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一2、P 为AABC 所在平面上任意一点,点 0是A ABC 内心的充要条件是:向量— (ax PA + bx PB +c x PC)a +b +c3、O 为三角形的内心, A 、B 、C 分别为三角形的三个顶点,延长AO 交BC 边于 N ,则有 AO : ON = AB : BN =AC :CN =(AB + AC): BC . 重心:1、重心到顶点的距离与重心到对边中点的距离之比为 2、重心和三角形3个顶点组成的3个三角形面积相等.即重心到三条边的距离与三 条边的长成反比.3、重心到三角形3个顶点距离的平方和最小4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为 (X 1 + X 2 + X 3 y 1 + y 2 + y 3)3 3外心:1、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心 在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合 档来自于网络搜索2、若0是 MBC 的外心,则N BOC=2NA (N A 为锐角或直角)或N BOC =360°-2N A (N A 为钝角).向另外两个顶点向量的点乘。

c^ d 2d 3, c^d 1d 3, c^ = d 1d 2 ;c = ci +c 2+c 3. 重心坐标:(°十°3 c '十c3 G + c2).文档来自于网络搜索2c ' 2c ' 2c2 : 1.3、计算外心的坐标应先计算下列临时变量:d i , d 2 , d 3分别是三角形三个顶点连4、外心到三顶点的距离相等垂心:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆.2、三角形外心0、重心G和垂心H三点共线,且OG:GH =1:2.(此直线称为三角形的欧拉线(Eulerline ))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的4、垂心分每条高线的两部分乘积相等.OA OB =OB OC =OC OA旁心:1、每个三角形都有三个旁心2、旁心到三边的距离相等注:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的五心及性质
重心三角形三条中线的交点叫做三角形重心。
定理:设三角形重心为O,BC边中点为D,则有AO = 2 OD。
重心坐标为三顶点坐标平均值。
外心三角形三边的垂直平分线的交点,称为三角形外心。
外心到三顶点距离相等。
过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心即三角形外心,这个三角形叫做这个圆的内接三角形。
内心三角形的内切圆的圆心简称为三角形的内心,即三角形三个角平分线的交点。内心有下列优美的性质:
性质1设I为△ABC的内心,则I为其内心的充要条件是:到△ABC三边的距离相等。
性质2设I为△ABC的内心,则∠BIC=90°+1/2∠A,类似地还有两式;反之亦然。
性质3设I为△ABC内一点,AI所在直线交△ABC的外接圆于D。I为△ABC内心的充要条件是ID=DB=DC。
性质5三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若I为△ABC的∠A平分线AD(D在△ABC的外接圆上)上的点,且DI=DB,则I为△ABC的内心。
性质6设I为△ABC的内心,BC=a,AC=b,AB=c,∠A的平分线交BC于K,交△ABC的外接圆于D,则AI/KI =AD/DI =DI/DK = (b+c)/a。
外心三角形的外接圆的圆心简称三角形的外心.即三角形三边中垂线的交点。外心有如下一系列优美性质:
性质1三角形的外心到三顶点的距离相等,反之亦然。
性质2设O为△ABC的外心,则∠BOC=2∠A,或∠BOC=360°-2∠A(还有两式)。
性质3设三角形的三条边长,外接圆的半径、面积分别为a、b、c,R、S△,则R=abc/4S△。
三角形只有一个垂心。
旁心与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形旁心。
三角形的一条内角平分线与其他两个角的外角平分线交于一点,即三角形的旁心。旁心到三角形一边及其他两边延长线的距离相等。
三角形有三个旁切圆,三个旁心。这三个旁心到三角形三条边的延长线的距离相等。
性质6三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
性质7设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
性质8锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
性质9锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。
三角形有且只有一个外接圆。
内心三角形内心为三角形三条内角平分线的交点。
与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心即是三角形内心,内心到三角形三边距离相等。这个三角形叫做圆的外切三角形。
三角形有且只有一个内切圆。
垂心三角形三边上的三条高线的交点,称为三角形垂心。
锐角三角形的垂心在三角形内;直角三角形的垂心在直角的顶点;钝角三角形的垂心在三角形外.。
垂心三角形三边上的高的交点称为三角形的垂心。三角形垂心有下列有趣的性质:设△ABC的三条高为AD、BE、CF,其中D、E、F为C的外接圆上。
性质2 △ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。
性质3 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)。
性质4 △ABC,△ABH,△BCH,△ACH的外接圆是等圆。
性质5在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。
性质2设G为△ABC的重心,AG、BG、CG的延长线交△ABC的三边于D、E、F,则S△AGF=S△BGD=S△CGE;反之亦然。
性质3设G为△ABC的重心,则S△ABG=S△BCG=S△ACG= (1/3)S△ABC;反之亦然。
性质4若A点坐标为(a,b,c),B点坐标为(x,y,z),C点坐标为(o,p,q),则重心坐标为(1/3(a+x+o),1/3(b+y+p) , 1/3(c+z+q) )
旁心1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。
2、每个三角形都有三个旁心。
3、旁心到三边的距离相等。
性质4设I为△ABC的内心,BC=a,AC=b,AB=c,I在BC、AC、AB上的射影分别为D、E、F;内切圆半径为r,令p= (1/2)(a+b+c),则(1)S△ABC=pr;(2)r=2S△ABC/a+b+c;(3)AE=AF=p-a,BD=BF=p-b,CE=CD=p-c;(4)abcr=p·AI·BI·CI。
性质4过△ABC的外心O任作一直线与边AB、AC(或延长线)分别相交于P、Q两点,则AB/AP ·sin2B+ AC/AQ·sin2C=sin2A+sin2B+sin2C。
性质5锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和。
重心性质1设G为△ABC的重心,△ABC内的点Q在边BC、CA、AB边上的射影分别为D、E、F,则当Q与G重合时QD·QE·QF最大;反之亦然。
五心的性质
三角形的五心有许多重要性质,它们之间也有很密切的联系,如:
1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;2)三角形的外心到三顶点的距离相等;3)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;4)三角形的内心、旁心到三边距离相等;5)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;6)三角形的外心是它的中点三角形的垂心;7)三角形的重心也是它的中点三角形的重心;8)三角形的中点三角形的外心也是其垂足三角形的外心.9)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.
相关文档
最新文档