神经网络学习算法matlab仿真(借鉴参照)

合集下载

在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。

在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。

而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。

本文将介绍在Matlab中实现神经网络的方法与实例。

首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。

一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。

每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。

这样,神经网络就能够模拟复杂的非线性关系。

常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。

前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。

神经网络的训练是通过最小化损失函数来优化模型的参数。

常用的训练算法包括梯度下降法和反向传播算法。

其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。

二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。

首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。

例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。

matlab神经网络工具箱简介和函数及示例

matlab神经网络工具箱简介和函数及示例

目前,神经网络工具箱中提供的神经网络模型主 要应用于:
函数逼近和模型拟合 信息处理和预测 神经网络控制 故障诊断
神经网络实现的具体操作过程:
• 确定信息表达方式; • 网络模型的确定; • 网络参数的选择; • 训练模式的确定; • 网络测试
• 确定信息表达方式:
将领域问题抽象为适合于网络求解所能接受的 某种数据形式。
函数类型 输入函数
其它
函数名 称
netsum netprcd concur dotprod
函数用途
输入求和函数 输入求积函数 使权值向量和阈值向量的结构一致 权值求积函数
BP网络的神经网络工具箱函数
函数类型
函数名称 函数用途
前向网络创建 函数
传递函数
学习函数
函数类型 性能函数 显示函数
函数名 函数用途 称
三、BP网络学习函数
learngd 该函数为梯度下降权值/阈值学习函数,通过神经 元的输入和误差,以及权值和阈值的学习速率, 来计算权值或阈值的变化率。
调用格式; [dW,ls]=learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
二、神经元上的传递函数
传递函数是BP网络的重要组成部分,必须是连续可 微的,BP网络常采用S型的对数或正切函数和线性函数。
• Logsig 传递函数为S型的对数函数。 调用格式为: • A=logsig(N)
N:Q个S维的输入列向量; A:函数返回值,位于区间(0,1) 中
② info=logsig(code)
问题形式的种类:
数据样本已知; 数据样本之间相互关系不明确; 输入/输出模式为连续的或者离散的; 输入数据按照模式进行分类,模式可能会 具有平移、旋转或者伸缩等变化形式; 数据样本的预处理; 将数据样本分为训练样本和测试样本

如何进行MATLAB神经网络的训练和预测

如何进行MATLAB神经网络的训练和预测

如何进行MATLAB神经网络的训练和预测【第一章】MATLAB神经网络的基础知识神经网络是一种模拟人类神经系统运行方式的计算模型,它通过模拟人类的感知、学习和决策过程,可以对复杂的问题进行处理和求解。

在实际应用中,MATLAB是一个常用的工具来进行神经网络的训练和预测。

本章将介绍MATLAB 神经网络的基础知识,包括神经网络的原理、MATLAB的神经网络工具箱以及神经网络训练和预测的一般步骤。

1.1 神经网络的原理神经网络由神经元(neuron)组成,每个神经元接收多个输入并产生一个输出。

神经网络的基本单元是感知器(perceptron),它由权重、偏置和激活函数组成。

权重决定了输入对输出的影响程度,偏置用于调整输出的偏移量,激活函数用于处理神经元的输出。

通过调整权重和偏置,神经网络可以学习和适应不同的输入输出模式。

常见的神经网络包括前馈神经网络(feedforward neural network)、循环神经网络(recurrent neural network)和卷积神经网络(convolutional neural network)。

前馈神经网络是最基本的神经网络类型,信息只能在网络中的一个方向流动,即从输入层到输出层。

循环神经网络具有反馈连接,可以记忆之前的状态信息,适用于序列数据的处理。

卷积神经网络则主要用于图像和语音等二维数据的处理。

1.2 MATLAB神经网络工具箱MATLAB提供了一个神经网络工具箱(Neural Network Toolbox),用于设计、训练和模拟神经网络。

该工具箱包括多种神经网络类型、各种激活函数、训练算法和性能函数等各种功能模块。

使用MATLAB神经网络工具箱可以方便地进行神经网络的建模和仿真。

在MATLAB神经网络工具箱中,神经网络被表示为一个网络对象(network object)。

网络对象由一系列图层(layer)组成,每个图层由若干个神经元组成。

网络对象还包括连接权重矩阵、偏置向量和训练参数等属性。

Matlab中的神经网络预测方法

Matlab中的神经网络预测方法

Matlab中的神经网络预测方法引言神经网络是一种模拟人脑神经元的计算模型,通过构建输入层、隐藏层和输出层之间的连接,可以对复杂的非线性问题进行建模和预测。

在Matlab中,有丰富的神经网络工具箱,提供了多种神经网络预测方法和算法。

本文将介绍一些常用的神经网络预测方法,并说明其在Matlab中的实现原理和应用场景。

一、前馈神经网络(Feedforward Neural Network)前馈神经网络是最常见的神经网络模型,也是最基本的一种。

其模型结构包括输入层、隐藏层和输出层,信号在网络中只能向前传播,不会回流。

前馈神经网络使用反向传播算法进行训练,通过不断调整连接权值和阈值来提高网络的预测能力。

在Matlab中,可以使用feedforwardnet函数创建前馈神经网络模型。

该函数的输入参数包括隐藏层节点数、训练算法和激活函数等。

例如,以下代码创建一个具有10个隐藏层节点的前馈神经网络模型:```matlabnet = feedforwardnet(10);```创建好的神经网络模型可以通过train函数进行训练,如下所示:```matlabnet = train(net, X, Y);```其中X和Y为训练数据的输入和输出。

训练完成后,可以使用sim函数对新的数据进行预测,如下所示:```matlabY_pred = sim(net, X_pred);```Y_pred为预测结果,X_pred为待预测的输入数据。

二、递归神经网络(Recurrent Neural Network)递归神经网络是另一种常见的神经网络模型,不同于前馈神经网络,递归神经网络允许信号在网络中进行循环传播,使得模型可以处理序列数据和时间序列数据。

递归神经网络拥有记忆功能,可以通过上一时刻的输出来影响当前时刻的输出。

在Matlab中,可以使用narnet函数创建递归神经网络模型。

该函数的输入参数包括隐藏层节点数、训练算法和激活函数等。

神经网络及深度学习(包含matlab代码)

神经网络及深度学习(包含matlab代码)

f ( x)
1 1 e Qx
(2.3)
它反映了神经元的饱和特性。 上式中, Q 为表示神经元非线性的参数, 称增益值(Gain), 也称调节参数。 Q 值越大, S 形曲线越陡峭; 反之, Q 值越小, S 形曲线越平坦; 一般取 Q=1。 (b)双曲正切激励函数,一般取为(-1,1)内连续取值:
神经网络及深度学习
(包含 MATLAB 仿真) 人工神经网络(Artificial Neural Network,即 ANN ) ,作为对人脑最简单的一种抽象和 模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是 20 世纪 80 年代 以来人工智能领域兴起的研究热点。 人工神经网络以数学和物理方法以及信息处理的角度对 人脑神经网络进行抽象, 并建立某种简化模型, 旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从 20 世纪 40 年代人工神经 网络萌芽开始, 历经两个高潮期及一个反思期至 1991 年后进入再认识与应用研究期, 涌现 出无数的相关研究理论及成果, 包括理论研究及应用研究。 最富有成果的研究工作是多层网 络 BP 算法,Hopfield 网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价 值, 该研究呈愈演愈烈的趋势, 学者们在多领域中应用人工神经网络模型对问题进行研究优 化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工 神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。 一、人工神经元及神经网络 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的 仿生模拟,用来模拟人工神经网络。人们提出的神经元模型有很多,其中最早提出并且影响 较大的是 1943 年心理学家 McCulloch 和数学家 W. Pitts 在分析总结神经元基本特性的基础上 首先提出的 MP 模型。该模型经过不断改进后,形成现在广泛应用的 BP 神经元模型。人工 神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑 的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1) 具有一组突触或连接,常用 wij 表示神经元 i 和神经元 j 之间的连接强度。 (2) 具有反映生物神经元时空整合功能的输入信号累加器 。 (3) 具有一个激励函数 f 用于限制神经元输出。激励函数将输出信号限制在一个允许 范围内。 一个典型的人工神经元模型如图 1-11-1 所示。

MATLAB神经网络训练参数解释

MATLAB神经网络训练参数解释

MATLAB神经网络训练参数解释神经网络是一种以模仿人脑结构和功能的方式进行模式识别和学习的算法。

在神经网络中,训练参数是指用于调整神经网络的权重和偏置的值。

这些参数会影响神经网络的学习能力、收敛速度和准确性。

在MATLAB中,提供了几种不同方法和函数来进行神经网络的训练和调整参数。

1. 学习率(Learning rate):学习率是指每次迭代中用于调整权重和偏置的步长。

学习率越大,网络调整的幅度越大,可能会导致训练不稳定和无法收敛的问题;学习率越小,网络调整的幅度越小,可能会导致收敛速度过慢。

在MATLAB中,可以使用“learnRate”参数来设置学习率的值。

2. 动量(Momentum):动量是指在网络参数更新中保留先前的更新方向,并利用当前的梯度进行更新。

这可以加速网络的收敛,并且有助于避免局部极小点陷阱。

在MATLAB中,可以使用“Momentum”参数来设置动量的值。

3. 正则化(Regularization):正则化是通过添加惩罚项来控制网络的复杂性,以避免过拟合。

正则化可以限制权重和偏置的值,从而防止网络过于复杂。

在MATLAB中,可以使用“Regularization”参数来设置正则化的类型和强度。

4. 剪切梯度(Gradient clipping):剪切梯度是在网络训练期间对梯度进行限制,以防止梯度爆炸或梯度消失的问题。

剪切梯度可以确保网络参数的更新幅度在可接受的范围内。

在MATLAB中,可以使用“GradientThreshold”参数来设置梯度的阈值。

5. 批量大小(Batch size):批量大小是指每次迭代使用的训练样本数。

较小的批量大小可以提高网络学习的稳定性和收敛速度,但可能会导致计算效率降低;较大的批量大小可以更高效地进行计算,但可能会导致网络学习过程的不稳定性。

在MATLAB中,可以使用“MiniBatchSize”参数来设置批量大小的值。

6. 迭代次数(Number of iterations):迭代次数是指进行网络训练和参数调整的总次数。

神经网络及深度学习(包含matlab代码).pdf

神经网络及深度学习(包含matlab代码).pdf

神经网络及深度学习(包含matlab代码).pdf
神经网络可以使用中间层构建出多层抽象,正如在布尔电路中所做的那样。

如果进行视觉模式识别,那么第1 层的神经元可能学会识别边;第2 层的神经元可以在此基础上学会识别更加复杂的形状,例如三角形或矩形;第3 层将能够识别更加复杂的形状,以此类推。

有了这些多层抽象,深度神经网络似乎可以学习解决复杂的模式识别问题。

正如电路示例所体现的那样,理论研究表明深度神经网络本质上比浅层神经网络更强大。

《深入浅出神经网络与深度学习》PDF+代码分析
《深入浅出神经网络与深度学习》PDF中文,249页;PDF英文,292页;配套代码。

提取码: 6sgh
以技术原理为导向,辅以MNIST 手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。

学完后,将能够通过编写Python 代码来解决复杂的模式识别问题。

Matlab技术在神经网络中的应用案例

Matlab技术在神经网络中的应用案例

Matlab技术在神经网络中的应用案例引言神经网络作为一种模拟大脑神经元连接方式的计算模型,已经在各个领域展现出强大的应用潜力。

而Matlab作为一种强大的科学计算软件,为神经网络的研究和应用提供了便捷的工具和平台。

本文将以几个实际案例为例,介绍Matlab技术在神经网络中的应用。

案例一:手写数字识别手写数字识别是机器学习领域的一个经典问题。

以MNIST数据集为例,可以用神经网络来训练一个模型,实现对手写数字的识别。

首先,我们可以使用Matlab内置的函数将数据集导入,并对数据进行预处理,如图像大小的调整、归一化等。

然后,利用Matlab中的神经网络工具箱,可以快速构建、训练和优化神经网络,得到一个准确率较高的模型。

最后,对于一个新的手写数字样本,我们可以使用已经训练好的模型进行分类预测。

案例二:金融市场预测神经网络在金融市场预测方面也有广泛的应用。

以股票市场为例,我们可以使用Matlab将历史股票数据输入神经网络中,训练一个能够预测未来股价的模型。

通过对输入数据的特征工程和神经网络的超参数调整,我们可以提高模型的预测准确性。

此外,Matlab还提供了丰富的数据可视化工具,可以帮助我们对预测结果进行可视化分析,为投资决策提供支持。

案例三:医学影像分析神经网络在医学影像分析中也有很多应用。

以肺部CT图像分析为例,我们可以使用Matlab将图像数据转换成神经网络可识别的格式,并进行预处理,如图像增强、噪声去除等。

然后,我们可以基于已有的标注数据,训练一个神经网络模型,用于肺癌的自动诊断。

Matlab提供了强大的图像处理和模型训练工具,可以帮助我们高效地完成这一任务。

案例四:自然语言处理自然语言处理是人工智能领域的一个重要方向。

以情感分类为例,我们可以使用Matlab构建一个神经网络模型,对文本进行情感分类。

首先,我们需要将文本数据进行分词处理,并将其转换成神经网络可接受的向量表示。

然后,利用Matlab提供的文本预处理工具和神经网络工具箱,可以方便地构建和训练一个情感分类模型。

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南

Matlab中的神经网络算法实现指南1. 引言神经网络是一种基于生物神经系统的模型,旨在模拟人脑的学习和决策过程。

在现代机器学习领域,神经网络被广泛应用于图像识别、语言处理、预测分析等各种任务中。

而Matlab作为一种功能强大的数值计算和可视化软件,提供了丰富的神经网络工具箱,可以帮助开发人员快速实现和调试各种神经网络算法。

本文将介绍Matlab中的神经网络工具箱,并提供一些实现神经网络算法的指南。

2. Matlab中的神经网络工具箱Matlab提供了一个名为"Neural Network Toolbox"的工具箱,包含了大量的函数和工具,用于构建、训练和评估神经网络模型。

该工具箱支持多种类型的神经网络结构,包括前馈神经网络、递归神经网络、卷积神经网络等。

此外,Matlab还提供了各种用于优化神经网络的算法,如反向传播算法、遗传算法等。

3. 构建神经网络模型在Matlab中,我们可以使用"feedforwardnet"函数来构建一个前馈神经网络模型。

该函数接受一个包含神经网络层结构的向量作为输入参数,并返回一个神经网络对象。

我们可以通过修改这个向量的元素来调整神经网络的结构和参数。

例如,下面的代码展示了如何构建一个包含两个隐藏层的前馈神经网络模型:```matlabnet = feedforwardnet([10, 5]);```4. 导入和预处理数据导入和预处理数据对于构建和训练神经网络模型至关重要。

Matlab提供了各种用于数据导入和预处理的函数和工具。

例如,可以使用"csvread"函数来导入CSV 格式的数据文件;可以使用"mapminmax"函数来对数据进行归一化处理;可以使用"splittingData"函数将数据划分为训练集、验证集和测试集等。

5. 为神经网络模型训练数据在Matlab中,我们可以通过调用"train"函数来训练神经网络模型。

MATLAB中的神经网络算法详解

MATLAB中的神经网络算法详解

MATLAB中的神经网络算法详解一、引言神经网络是一种模拟生物神经元工作原理的计算模型,具有模式识别、分类、优化等各种应用。

在日常生活和工业生产中,我们经常会遇到需要处理大量数据并进行复杂计算的问题。

而神经网络算法正是为了解决这些问题而设计的。

MATLAB作为一种功能强大的数值计算软件,提供了丰富的神经网络算法库。

本文将通过对MATLAB中神经网络算法的详细解释,展示其在数据处理和分析方面的广泛应用。

二、神经网络基础1. 神经网络结构神经网络由神经元(或称为节点)和连接这些神经元的权重组成。

一般而言,神经网络通过层与层之间的连接来进行信息传递。

常见的神经网络结构包括前馈神经网络和循环神经网络。

前馈神经网络是最常见的神经网络结构之一。

它的信息传递是单向的,不会存在回路。

循环神经网络则允许信息在网络中进行循环传递,这使得它能够处理具有时序特点的数据。

2. 权重与偏置在神经网络中,每个连接都有一个权重,用来表示两个神经元之间的关系强度。

权重值可以是正、负,以及接近于零的任意值。

权重值越大,表示两个神经元之间的相关性越强。

除了权重,神经网络中还存在一个偏置值,用来表示神经元的激活阈值。

3. 激活函数激活函数决定了神经元的输出结果。

常见的激活函数包括Sigmoid函数、ReLU函数等。

激活函数的引入可以使神经网络模型拟合非线性问题。

三、MATLAB中的神经网络算法1. 建立神经网络模型在MATLAB中,可以利用神经网络工具箱来建立神经网络模型。

首先,我们需要确定网络的架构,包括输入层的节点数、隐藏层的节点数、输出层的节点数等。

然后,我们可以使用MATLAB提供的函数创建一个神经网络对象,设定各层的节点数以及激活函数类型。

2. 训练神经网络神经网络的训练过程是一个优化问题。

训练过程中,我们需要定义一个损失函数来衡量模型在训练数据上的拟合程度。

MATLAB提供了多种优化算法,如反向传播算法、遗传算法等,用于调整网络中的权重和偏置,从而最小化损失函数。

(完整版)BP神经网络matlab实例(简单而经典)

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。

S S SNl:各层的神经元个数。

[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。

BTF:训练用函数的名称。

(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

如何使用MATLAB进行神经网络建模

如何使用MATLAB进行神经网络建模

如何使用MATLAB进行神经网络建模使用MATLAB进行神经网络建模神经网络是一种模拟人脑神经系统运作的数学模型,它能够模拟人类的感知、学习和决策过程。

在现代科学和工程领域,神经网络被广泛应用于诸如模式识别、图像处理、时间序列预测等问题的解决中。

而MATLAB作为科学计算和数据分析的常用工具,也提供了一系列强大的神经网络建模工具。

接下来,我们将介绍如何使用MATLAB进行神经网络建模。

一、准备工作在使用MATLAB进行神经网络建模之前,我们需要准备一些必要的工作。

首先,需要安装MATLAB软件,并确保安装的是最新版本。

其次,需要了解MATLAB中神经网络建模的基本原理和概念。

二、数据准备与预处理在进行神经网络建模之前,我们首先需要准备好用于训练和测试的数据集。

通常情况下,我们需要将数据集分为训练集和测试集两部分。

训练集用于神经网络的训练,而测试集则用于评估神经网络的性能。

在准备好数据集后,我们还需要对数据进行一些预处理操作,例如数据归一化、数据标准化等。

这些操作有助于提高神经网络的性能和收敛速度。

三、神经网络建模使用MATLAB进行神经网络建模的核心步骤包括网络设计、网络训练和网络评估。

首先,我们需要确定神经网络的结构,包括输入层、隐藏层和输出层的神经元数量。

这需要根据具体问题的需求和特点进行调整。

然后,我们可以使用MATLAB提供的神经网络工具箱来建立神经网络模型。

根据问题的不同,有多种神经网络模型可供选择,例如前馈神经网络、递归神经网络、自适应神经网络等。

在建立好神经网络模型后,我们还需要选择合适的训练算法对网络进行训练。

常用的训练算法包括误差逆传播算法(Backpropagation)、Levenberg-Marquardt算法等。

最后,我们使用测试集对训练好的神经网络进行评估,得到模型的性能指标,如准确率、误差等。

四、模型调优与改进神经网络建模是一个不断调优与改进的过程。

在建立好初始模型后,我们可以通过修改网络结构、调整训练参数等方式来改进模型的性能。

神经网络与深度学习——基于MATLAB的仿真与实现

神经网络与深度学习——基于MATLAB的仿真与实现

第8章 SOM神经网络
8.1 SOM神经网络的基本结构与算法基础 8.2 SOM神经网络的MATLAB实现 8.3关于SOM神经网络的几点讨论
第9章概率神经网络
9.1概率神经网络的基本结构与算法基础 9.2概率神经网络的MATLAB实现
1
第10章深度信 念网络
2
第11章自编码 器
3ቤተ መጻሕፍቲ ባይዱ
第12章卷积神 经网络
4
第13章生成对 抗网络(GAN)
5
第14章循环神 经网络
第10章深度信念网络
10.1玻耳兹曼机基本结构及学习 10.2深度信念网络的基本结构 10.3深度信念网络的MATLAB实现
第11章自编码器
11.1自编码器的基本结构与算法基础 11.2自编码器的MATLAB实现
第12章卷积神经网络
12.1卷积神经网络的基本结构与算法基础 12.2卷积神经网络的实现
第13章生成对抗网络(GAN)
13.1 GAN的起源与发展 13.2 GAN的结构与原理 13.3 GAN的MATLAB实现
第14章循环神经网络
14.1循环神经网络的结构与算法基础 14.2 LSTM网络的MATLAB实现
作者介绍
同名作者介绍
这是《神经网络与深度学习——基于MATLAB的仿真与实现》的读书笔记模板,暂无该书作者的介绍。
本书阐述经典神经网络及典型的深度学习(神经网络)方法的基本架构、算法原理及相关问题。在此基础上, 介绍MATLAB中神经网络工具箱在神经网络、深度学习中的应用,并给出相应的应用实例。本书可作为高等院校相 关专业的本科生、研究生及从事神经网络及深度学习方面学习及研究工作的专业人员的参考书。
目录分析
第1章神经网络概 述

MATLAB中的神经网络与遗传算法联合优化实例分析

MATLAB中的神经网络与遗传算法联合优化实例分析

MATLAB中的神经网络与遗传算法联合优化实例分析神经网络和遗传算法是两种常用的智能优化方法,它们在不同领域的问题求解中发挥了重要作用。

而将这两种方法结合起来,可以进一步提升算法的性能和效果。

本文将介绍MATLAB中如何使用神经网络和遗传算法联合优化,并通过一个实例进行分析和验证。

首先,我们先来了解一下神经网络和遗传算法的基本原理。

神经网络是一种模拟生物神经系统的计算模型,它由多个神经元组成,通过学习调整神经元之间的连接权重,从而实现对输入数据的非线性映射和分类。

而遗传算法则是一种模拟生物进化过程的优化方法,通过不断迭代和交叉变异的方式搜索最优解。

在MATLAB中,可以使用Neural Network Toolbox和Global Optimization Toolbox分别实现神经网络和遗传算法的优化。

下面我们将以一个分类问题为例,演示如何使用这两种方法联合优化。

假设我们需要构建一个神经网络模型,对一个包含多个特征的数据集进行分类。

首先,我们可以使用Neural Network Toolbox搭建一个基本的神经网络结构。

通过设定输入层、隐层和输出层的神经元个数,以及选择合适的激活函数和损失函数,我们可以训练得到一个初步的神经网络模型。

然而,这个初步模型可能并不是最优的,它可能存在欠拟合或过拟合的问题。

为了进一步提升模型的性能,我们可以引入遗传算法进行优化。

具体做法是将神经网络的连接权重作为遗传算法的优化变量,通过遗传算法的搜索过程来调整权重,以寻找最优解。

在全局优化问题中,遗传算法能够避免陷入局部最优解,并且具有较好的鲁棒性。

在MATLAB中,Global Optimization Toolbox提供了ga函数来实现遗传算法的优化。

我们可以将神经网络的连接权重作为输入变量,定义一个适应度函数来评估神经网络模型的性能,然后通过调用ga函数进行优化求解。

在每次迭代中,遗传算法将根据适应度函数的评估结果来调整权重,直至找到最优解。

MATLAB中的卷积神经网络算法实现

MATLAB中的卷积神经网络算法实现

MATLAB中的卷积神经网络算法实现引言卷积神经网络(Convolutional Neural Network,简称CNN)是一种重要的深度学习模型,广泛应用于图像识别、物体检测、自然语言处理等领域。

而MATLAB作为一种强大的科学计算软件,也提供了丰富的工具和函数来支持卷积神经网络的实现。

本文将介绍MATLAB中卷积神经网络的基本概念和实现方法,以及对应的代码示例。

一、卷积神经网络简介卷积神经网络由多层神经元组成,每一层都具有权重和偏置,通过学习数据的特征,使网络能够自动提取特征。

卷积神经网络的核心思想是卷积运算和池化操作。

卷积运算通过滑动的卷积核对输入的图像进行特征提取,从而减少输入数据的维度。

池化操作则通过对特征图进行降采样操作,进一步减少模型的参数量。

二、MATLAB中的卷积神经网络工具箱MATLAB提供了Deep Learning Toolbox,其中包含了丰富的卷积神经网络相关函数和工具。

通过该工具箱,我们可以轻松构建、训练和评估卷积神经网络模型。

下面是使用MATLAB进行卷积神经网络算法实现的一般步骤:1. 导入数据首先,我们需要导入训练数据和测试数据。

可以使用MATLAB中的数据存储格式,如ImageDatastore或标准的图像文件夹格式。

通过ImageDatastore,我们可以方便地读取和预处理图像数据。

2. 构建网络模型不同的层类型,如卷积层、池化层、全连接层等,来构建自己的模型结构。

可以设置不同层的超参数,如卷积核大小、池化窗口大小等,来调整模型的性能和准确度。

3. 配置训练选项在构建网络模型后,我们需要配置训练的选项。

可以选择不同的优化器、学习率、迭代次数等参数来优化模型的训练过程。

同时,还可以设置数据增强、批次大小等参数来增加模型的泛化能力。

4. 训练网络模型通过调用trainNetwork函数,我们可以对构建好的网络模型进行训练。

训练过程将自动进行前向传播、反向传播、参数更新等操作。

Matlab深度学习神经网络训练优化方法

Matlab深度学习神经网络训练优化方法

Matlab深度学习神经网络训练优化方法引言:深度学习神经网络已经在各个领域展示出了强大的能力,如图像识别、语音识别和自然语言处理。

然而,深度神经网络的训练过程中存在着一些挑战和困难,比如梯度消失和梯度爆炸等问题,以及训练时间的长和资源的消耗。

为了解决这些问题,研究人员提出了各种各样的优化方法。

在本文中,我们将讨论几种常用的Matlab 深度学习神经网络训练优化方法。

一、参数初始化在深度学习神经网络的训练中,参数初始化是一个重要的步骤。

恰当的参数初始化可以加速网络的收敛速度并提高网络的性能。

在 Matlab 中,可以使用一些常见的参数初始化方法,如随机初始化、零初始化和Xavier初始化。

随机初始化是指将参数设置为一个[-ε,ε]之间的随机数,其中ε是一个小的正数。

零初始化是指将参数全部设置为零。

Xavier初始化则是根据参数与上一层输入的维度来计算合适的初始化范围,从而避免梯度消失和梯度爆炸问题。

二、激活函数的选择激活函数在神经网络中起到了非常重要的作用,它能够引入非线性并帮助神经网络处理非线性的输入数据。

在 Matlab 中,常用的激活函数有 sigmoid 函数、ReLU 函数和 tanh 函数等。

sigmoid 函数可以将输入值映射到一个(0,1)之间的范围内,具有平滑的曲线。

ReLU 函数在输入为负数时取值为零,在输入为正数时取值为输入值本身,具有线性的特点。

tanh 函数是在sigmoid 函数的基础上进行的变形,将输入值映射到一个(-1,1)之间的范围内。

三、梯度下降优化算法梯度下降是深度学习中最常用的优化算法之一,它通过迭代的方式不断调整神经网络的权值和偏置,使之逼近最优解。

在 Matlab 中,可以使用一些经典的梯度下降算法,如批量梯度下降(batch gradient descent)、随机梯度下降(stochastic gradient descent)和小批量梯度下降(mini-batch gradient descent)等。

matlab神经网络43个案例分析

matlab神经网络43个案例分析

matlab神经网络43个案例分析MATLAB神经网络是一种广泛使用的机器学习工具,可以应用于多种问题的解决。

下面为大家介绍43个用MATLAB神经网络解决的案例分析。

1. 基于神经网络的股票市场预测通过分析历史数据,建立神经网络模型,预测未来股票市场走势。

2. 神经网络分类器建模分析通过建立分类模型,对不同类型数据进行分类处理。

3. 基于神经网络的信用评估模型通过收集客户的基本信息和信用历史,建立神经网络模型,对客户的信用进行评估。

4. 神经网络医学图像分析通过医学图像数据,建立神经网络模型,进行疾病诊断与分析。

5. 基于神经网络的机器人动作控制通过神经网络,训练机器人进行动作控制,提高机器人的智能化水平。

6. 神经网络预测库存需求通过分析历史销售数据,建立神经网络模型,预测未来库存需求,提高企业的运作效率。

7. 基于神经网络的人脸识别通过收集人脸数据,建立神经网络模型,实现人脸识别功能。

8. 神经网络垃圾邮件过滤通过建立神经网络模型,对邮件进行分类,筛选出垃圾邮件。

9. 基于神经网络的语音识别通过收集语音数据,建立神经网络模型,实现语音识别功能。

10. 神经网络飞机失速预测通过分析飞机数据和空气动力学知识,建立神经网络模型,预测飞机发生失速的概率。

11. 基于神经网络的目标识别通过收集目标数据,建立神经网络模型,实现目标识别功能。

12. 神经网络电力负荷预测通过历史电力数据,建立神经网络模型,预测未来电力负荷。

13. 基于神经网络的网络入侵检测通过建立神经网络模型,检测网络攻击行为。

14. 神经网络手写数字识别通过收集手写数字数据,建立神经网络模型,实现手写数字识别功能。

15. 基于神经网络的情感分析通过对情感文本数据进行分析,建立神经网络模型,实现情感分析功能。

16. 神经网络自然语言处理通过对自然语言文本数据进行处理和分析,建立神经网络模型,实现自然语言处理功能。

17. 基于神经网络的物体识别通过收集物体数据,建立神经网络模型,实现物体识别功能。

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
44
BP网络应用实例
x=imread(m,’bmp’); bw=im2bw(x,0.5); 为二值图像 [i,j]=find(bw==0); )的行号和列号 imin=min(i); )的最小行号 imax=max(i); )的最大行号 %读人训练样本图像丈件 %将读人的训练样本图像转换 %寻找二值图像中像素值为0(黑
4
BP网络学习算法
图5.5具有多个极小点的误差曲面
5
BP网络学习算法
另外一种情况是学习过程发生振荡,如图5.6所示 。 误差曲线在m点和n点的梯度大小相同,但方向相反 ,如果第k次学习使误差落在m点,而第k十1次学习 又恰好使误差落在n点。 那么按式(5.2)进行的权值和阈值调整,将在m 点和n点重复进行,从而形成振荡。
图 5.16
待分类模式
20
BP网络应用实例
解(1)问题分析 据图5.16所示两类模式可以看出,分类为简单的非 线性分类。有1个输入向量,包含2个输入元素;两 类模式,1个输出元素即可表示;可以以图5.17所 示两层BP网络来实现分类。
图 5.17
两层BP网络
21
BP网络应用实例
(2)构造训练样本集
6
BP网络学习算法
图5.6学习过程出现振荡的情况
7
BP网络的基本设计方法
BP网络的设计主要包括输人层、隐层、输出层及各 层之间的传输函数几个方面。 1.网络层数 大多数通用的神经网络都预先确定了网络的层数,而 BP网络可以包含不同的隐层。
8
BP网络的基本设计方法
但理论上已经证明,在不限制隐层节点数的情况下 ,两层(只有一个隐层)的BP网络可以实现任意非 线性映射。 在模式样本相对较少的情况下,较少的隐层节点, 可以实现模式样本空间的超平面划分,此时,选择 两层BP网络就可以了;当模式样本数很多时,减小 网络规模,增加一个隐层是必要的,但BP网络隐层 数一般不超过两层。

matlab神经网络实例(超级简单)

matlab神经网络实例(超级简单)

介绍神经网络算法在机械结构优化中的应用的例子(大家要学习的时候只需要把输入输出变量更改为你自己的数据既可以了,如果看完了还有问题的话可以加我微博“极南师兄”给我留言,与大家共同进步)。

把一个结构的8个尺寸参数设计为变量,如上图所示,对应的质量,温差,面积作为输出。

用神经网络拟合变量与输出的数学模型,首相必须要有数据来源,这里我用复合中心设计法则构造设计点,根据规则,八个变量将构造出81个设计点。

然后在ansys workbench中进行81次仿真(先在proe建模并设置变量,将模型导入wokbench中进行相应的设置,那么就会自动的完成81次仿真,将结果导出来exceel文件)Matlab程序如下P=[20 2.5 6 14.9 16.5 6 14.9 16.515 2.5 6 14.9 16.5 6 14.9 16.525 2.5 6 14.9 16.5 6 14.9 16.520 1 6 14.9 16.5 6 14.9 16.520 4 6 14.9 16.5 6 14.9 16.520 2.5 2 14.9 16.5 6 14.9 16.520 2.5 10 14.9 16.5 6 14.9 16.520 2.5 6 10 16.5 6 14.9 16.520 2.5 6 19.8 16.5 6 14.9 16.520 2.5 6 14.9 10 6 14.9 16.520 2.5 6 14.9 23 6 14.9 16.520 2.5 6 14.9 16.5 2 14.9 16.520 2.5 6 14.9 16.5 10 14.9 16.520 2.5 6 14.9 16.5 6 10 16.520 2.5 6 14.9 16.5 6 19.8 16.520 2.5 6 14.9 16.5 6 14.9 1020 2.5 6 14.9 16.5 6 14.9 2317.51238947 1.75371684 4.009911573 12.46214168 13.26610631 4.00991157312.46214168 19.7338936922.48761053 1.75371684 4.009911573 12.46214168 13.26610631 4.00991157312.46214168 13.2661063117.51238947 3.24628316 4.009911573 12.46214168 13.26610631 4.00991157322.48761053 3.24628316 4.009911573 12.46214168 13.26610631 4.00991157317.33785832 13.2661063117.51238947 1.75371684 7.990088427 12.46214168 13.26610631 4.00991157317.33785832 19.7338936922.48761053 1.75371684 7.990088427 12.46214168 13.26610631 4.00991157317.33785832 13.2661063117.51238947 3.24628316 7.990088427 12.46214168 13.26610631 4.00991157312.46214168 19.7338936922.48761053 3.24628316 7.990088427 12.46214168 13.26610631 4.00991157312.46214168 13.2661063117.51238947 1.75371684 4.009911573 17.33785832 13.26610631 4.00991157317.33785832 13.2661063122.48761053 1.75371684 4.009911573 17.33785832 13.26610631 4.00991157317.33785832 19.7338936917.51238947 3.24628316 4.009911573 17.33785832 13.26610631 4.00991157312.46214168 13.2661063122.48761053 3.24628316 4.009911573 17.33785832 13.26610631 4.00991157312.46214168 19.7338936917.51238947 1.75371684 7.990088427 17.33785832 13.26610631 4.00991157312.46214168 13.2661063122.48761053 1.75371684 7.990088427 17.33785832 13.26610631 4.00991157312.46214168 19.7338936917.51238947 3.24628316 7.990088427 17.33785832 13.26610631 4.00991157317.33785832 13.2661063122.48761053 3.24628316 7.990088427 17.33785832 13.26610631 4.00991157317.33785832 19.7338936917.51238947 1.75371684 4.009911573 12.46214168 19.73389369 4.00991157317.33785832 13.2661063122.48761053 1.75371684 4.009911573 12.46214168 19.73389369 4.00991157317.33785832 19.7338936917.51238947 3.24628316 4.009911573 12.46214168 19.73389369 4.00991157312.46214168 13.2661063122.48761053 3.24628316 4.009911573 12.46214168 19.73389369 4.00991157312.46214168 19.7338936917.51238947 1.75371684 7.990088427 12.46214168 19.73389369 4.00991157312.46214168 13.2661063122.48761053 1.75371684 7.990088427 12.46214168 19.73389369 4.00991157312.46214168 19.7338936917.51238947 3.24628316 7.990088427 12.46214168 19.73389369 4.00991157317.33785832 13.2661063122.48761053 3.24628316 7.990088427 12.46214168 19.73389369 4.00991157317.33785832 19.7338936917.51238947 1.75371684 4.009911573 17.33785832 19.73389369 4.00991157322.48761053 1.75371684 4.009911573 17.33785832 19.73389369 4.00991157312.46214168 13.2661063117.51238947 3.24628316 4.009911573 17.33785832 19.73389369 4.00991157317.33785832 19.7338936922.48761053 3.24628316 4.009911573 17.33785832 19.73389369 4.00991157317.33785832 13.2661063117.51238947 1.75371684 7.990088427 17.33785832 19.73389369 4.00991157317.33785832 19.7338936922.48761053 1.75371684 7.990088427 17.33785832 19.73389369 4.00991157317.33785832 13.2661063117.51238947 3.24628316 7.990088427 17.33785832 19.73389369 4.00991157312.46214168 19.7338936922.48761053 3.24628316 7.990088427 17.33785832 19.73389369 4.00991157312.46214168 13.2661063117.51238947 1.75371684 4.009911573 12.46214168 13.26610631 7.99008842717.33785832 13.2661063122.48761053 1.75371684 4.009911573 12.46214168 13.26610631 7.99008842717.33785832 19.7338936917.51238947 3.24628316 4.009911573 12.46214168 13.26610631 7.99008842712.46214168 13.2661063122.48761053 3.24628316 4.009911573 12.46214168 13.26610631 7.99008842712.46214168 19.7338936917.51238947 1.75371684 7.990088427 12.46214168 13.26610631 7.99008842712.46214168 13.2661063122.48761053 1.75371684 7.990088427 12.46214168 13.26610631 7.99008842712.46214168 19.7338936917.51238947 3.24628316 7.990088427 12.46214168 13.26610631 7.99008842717.33785832 13.2661063122.48761053 3.24628316 7.990088427 12.46214168 13.26610631 7.99008842717.33785832 19.7338936917.51238947 1.75371684 4.009911573 17.33785832 13.26610631 7.99008842712.46214168 19.7338936922.48761053 1.75371684 4.009911573 17.33785832 13.26610631 7.99008842712.46214168 13.2661063117.51238947 3.24628316 4.009911573 17.33785832 13.26610631 7.99008842717.33785832 19.7338936922.48761053 3.24628316 4.009911573 17.33785832 13.26610631 7.99008842717.33785832 13.2661063117.51238947 1.75371684 7.990088427 17.33785832 13.26610631 7.99008842717.33785832 19.7338936922.48761053 1.75371684 7.990088427 17.33785832 13.26610631 7.99008842717.33785832 13.2661063117.51238947 3.24628316 7.990088427 17.33785832 13.26610631 7.99008842722.48761053 3.24628316 7.990088427 17.33785832 13.26610631 7.99008842712.46214168 13.2661063117.51238947 1.75371684 4.009911573 12.46214168 19.73389369 7.99008842712.46214168 19.7338936922.48761053 1.75371684 4.009911573 12.46214168 19.73389369 7.99008842712.46214168 13.2661063117.51238947 3.24628316 4.009911573 12.46214168 19.73389369 7.99008842717.33785832 19.7338936922.48761053 3.24628316 4.009911573 12.46214168 19.73389369 7.99008842717.33785832 13.2661063117.51238947 1.75371684 7.990088427 12.46214168 19.73389369 7.99008842717.33785832 19.7338936922.48761053 1.75371684 7.990088427 12.46214168 19.73389369 7.99008842717.33785832 13.2661063117.51238947 3.24628316 7.990088427 12.46214168 19.73389369 7.99008842712.46214168 19.7338936922.48761053 3.24628316 7.990088427 12.46214168 19.73389369 7.99008842712.46214168 13.2661063117.51238947 1.75371684 4.009911573 17.33785832 19.73389369 7.99008842717.33785832 13.2661063122.48761053 1.75371684 4.009911573 17.33785832 19.73389369 7.99008842717.33785832 19.7338936917.51238947 3.24628316 4.009911573 17.33785832 19.73389369 7.99008842712.46214168 13.2661063122.48761053 3.24628316 4.009911573 17.33785832 19.73389369 7.99008842712.46214168 19.7338936917.51238947 1.75371684 7.990088427 17.33785832 19.73389369 7.99008842712.46214168 13.2661063122.48761053 1.75371684 7.990088427 17.33785832 19.73389369 7.99008842712.46214168 19.7338936917.51238947 3.24628316 7.990088427 17.33785832 19.73389369 7.99008842717.33785832 13.2661063122.48761053 3.24628316 7.990088427 17.33785832 19.73389369 7.99008842717.33785832 19.73389369]';%注意因为本人做了81组仿真试验,这里的矩阵后面有转置符号,在神经网络模型中,输入P的是8X81的矩阵(把程序复制过来之后格式没对齐,大家自己调整一下啦),对应的下面的输出T的是3x81的矩阵。

MATLAB神经网络算法实例讲解【附源代码】

MATLAB神经网络算法实例讲解【附源代码】

MA TLAB神经网络算法实例讲解【附源代码】例1 采用动量梯度下降算法训练BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MA TLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputW eights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerW eights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学自动化学院
智能控制概论
神经网络学习算法研究
学院:
姓名:
学号:
日期:
目录
1 任务要求叙述 ..................................................... 错误!未定义书签。

2 系统分析及设计原理 ......................................... 错误!未定义书签。

3 设计实现.............................................................. 错误!未定义书签。

4仿真验证.. (6)
5 讨论与分析.......................................................... 错误!未定义书签。

一.任务要求叙述
(1)任务
(a) 运行算法,观察和分析现有学习算法的性能;
clear all;close all;
nu=20;pi=3.1415926;
for i=1:nu
p(i)=2*pi*i/nu;
t(i)=0.5*(1+cos(p(i)));
end
minmax=[min(p(:)) max(p(:))]
net = newff([ 0 7],[6 1],{'logsig' 'purelin'},'traingd');% traingd traingdm trainlm
net.trainParam.epochs = 10000;
net.trainParam.goal = 0.0001;
net.trainParam.show=200;
net.trainParam.lr=0.1;
net.trainParam.mc=0.6; %0.9 default value; available for momentum
net = train(net,p,t);
y1 = sim(net,p);
figure(2);
plot(p,t,'*-',p,y1,'r--')
%************** test data ******************
nu2=nu*3/2;
for i=1:(nu2)
p2(i)=2*pi*i/(nu2);
t2(i)=0.5*(1+cos(p2(i)));
end
y2 = sim(net,p2);
figure(3);
plot(t2,'*-');hold on; plot(y2,'r');
xlabel('times');ylabel('outputs');
figure(4);
plot(t2-y2);
xlabel('times');ylabel('error');
(b) 为了进一步提高学习逼近效果,可以采取那些措施,调节规律如何?根据所提的每种措施,修改算法程序,给出仿真效果验证、过程以及相应的曲线图,给出适当的评述;(c) 联系、结合前向神经网络的算法样本学习、测试等过程,谈谈本人对神经网络系统的一些认识和看法。

(2)要求
提交完整的报告,包括:封面(题目、个人学号姓名等信息)、目录、任务要求叙述、系统分析及设计原理(包括神经网络学习过程的原理图及文字分析)、完整的设计实现过程(包括神经网络结构、参数等选择与实现、计算、原理过程等)、仿真验证(算法流程图、实现手段介绍、系统参数选择、曲线图、结合调参对响应曲线的影响给出必要的分析)、讨论与分析,总字数要求在2000以上。

二.系统分析及设计原理
(1)神经网络的学习算法
学习过程实质上是针对一组给定的输入),2,1(N p x p =使网络产生相应的期望输出的过程。

总的来说,神经网络的学习算法分为两大类: 有导师学习和无导师学习。

图 1:有导师指导神经网络学习方式 图 2无导师指导神经网络学习方式 由上图可见,所谓有导师学习就是在训练过程中,始终存在一个期望的网络输出。

期望输出和实际输出之间的距离作为误差度量并用于调整权值。

而无导师学习指的是网络不存在一个期望的输出,因而没有直接的误差信息,因此,为实现对网络的训练,徐建立一个简洁的评价函数,以对网络的某种行为取向做出评价。

(2)多层传播网络的学习算法
给定N 组样本);,;,;,(2211p p T X T X T X 。

这里i X 为i n 维输入矢量,i T 为o n 维期望的输出矢量,P i 2,1=,.假设矢量y 和o 分别表示网络的输出层和隐含层的输出矢量。

则训练过程为:
(1) 选0>η,m ax E 作为最大容许误差,并将权系数,,2,1,,L l W l
l =θ初始化成某
一小的随机权矩阵。

0,1←←E p
(2) 训练开始
p p p T T X O ←←,)1(。

相关文档
最新文档