2010年中考模拟数学卷参考答案
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 4 。
12. X=5 。
13. x(xy+2)(xy-2) 。
14. x <-1或x >3 。
15. 232-+或。
16. 517 。
三. 解答题(8小题共66分) 17. (本题6分) 解:(1)15x =,215x =; ·························································································· 2分(2)21a a+(或1a a+); ··························································································· 2分(3)二次项系数化为1,得22615x x -=-,得2222613131555x x ⎛⎫⎛⎫-+-=-+- ⎪ ⎪⎝⎭⎝⎭,213144525x ⎛⎫-= ⎪⎝⎭. 开方,得131255x -=±.解得15x =,215x =. ···························································································· 2分18. (本题6分)(1)作A E ⊥BC 于点E BE=BC-AD=4-1=332tan ==∠BEAE ABC ∴AE=DC=2 ……………(1分)设),1(1y A -),4(2y B -∴k y -=1,42k y -= 221==-CD y y ∴2)4(=---k k∴38-=k ……………(3分)(2) 38-=k ∴xy 38-=E∴当4-=x 时32)4(38=-⨯-=y ∴32=BH ……………(5分)∴BHOC ABCD ABHODS S S 矩形梯形五边形=+32424121⨯+⨯+⨯)(=323385==+… (6分)19. (本题6分)(1)连接BC 由作图可知:AC=BC=DC 易证:︒=∠90ABD …………… (3分)(2)略 …………… (3分) 20. (本题8分) 解:解:(1)12············································································································ 1分(2)13························································································································ 3分(3)根据题意,画树状图: ························································································· 6分由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44. 所以,P (4的倍数)41164==. ··············································································· 8分或根据题意,画表格:·································································································· 6分第一次第二次1 2 3 4 1 11 12 13 14 2 21 22 23 24 3 31 32 33 34 441424344由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P (4的倍数)41164==.·························································································· 8分21. (本题8分)(1)200;……………………………………2分(2)a = 0.45, b = 70 ……………………4分(每空1分) (3)126;……………………………………6分 (4)900. ……………………………………8分 22. (本题10分)1 2 3 4 1第一次第二次 1 2 3 4 21 2 3 4 31 2 3 44开始解:(1)在R t AEB △中,A C B C = ,12C E A B ∴=,C B C E ∴=,C E B C B E ∴∠=∠. 90CEF CBF ∠=∠=,BEF EBF ∴∠=∠,EF BF ∴=.90BEF FED ∠+∠= ,90EBD EDB ∠+∠=,FED ED F ∴∠=∠.EF FD = .BF FD ∴=. ······································································································· (3分) (2)由(1)BF FD =,而B C C A =,C F A D ∴∥,即AE C F ∥.若A C E F ∥,则A C E F =,BC B F ∴=.BA BD ∴=,45A ∠= .∴当045A <∠< 或4590A <∠<时,四边形A C F E 为梯形. ························ (6分) (3)作G H B D ⊥,垂足为H ,则G H A B ∥.14D G D A =,14D H D B ∴=.又F 为B D 中点,H ∴为D F 的中点.G H ∴为D F 的中垂线.G D F G F D ∴∠=∠. 点G 在E D h 上,E F D G F D ∴∠∠≥.180EFD FDE DEF ∠+∠+∠=,180GFD FDE DEF ∴∠+∠+∠≤. 3180EDF ∴∠≤.60EDF ∴∠≤.又90A EDF ∠+∠=,3090A ∴∠<≤.∴当3090A ∠<≤时,D E 上存在点G ,满足条件14D G D A =. ···················(10分)23. (本题10分)解:(1)购进C 种玩具套数为:50-x -y (或47-54x -1011y )……2分(2)由题意得405550()2350x y x y ++-= 整理得230y x =-……5分 (3)①利润=销售收入-进价-其它费用(5040)(8055)(6550)(50)200p x y x y =-+-+----又∵230y x =- ∴整理得15250p x =+……7分②购进C 种电动玩具的套数为:5050(230)803x y x x x --=---=-据题意列不等式组102301080310x x x ≥⎧⎪-≥⎨⎪-≥⎩,解得70203x ≤≤ ∴x 的范围为70203x ≤≤,且x 为整数 x 的最大值是23 ……9分∵在15250p x =+中,15k =>0 ∴P 随x 的增大而增大∴当x 取最大值23时,P 有最大值,最大值为595元.此时购进A 、B 、C 种玩具分别为23套、16套、11套.……10分AB CD F EMGH24. (本题12分) 解:(1)21(8180)18y x x =--,令0y =得281800x x --=,()()18100x x -+= ∴18x =或10x =-∴(18,0)A ;………………………1分 在21410189y x x =--中,令0x =得10y =即(0,10)B -;………………2分由于B C ∥OA ,故点C 的纵坐标为-10,由2141010189x x -=--得8x =或0x =即(8,10)C -且易求出顶点坐标为98(4,)9-……………………………………3分于是,(18,0),(0,10),(8,10)A B C --,顶点坐标为98(4,)9-。
2010年中考模拟数学卷参考答案
2010年中考模拟试卷 数学参考答案及评分标准三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题10分,第24题12分,共66分) 17、(本题满分6分) 解:∵方程2233x mx x -=--无解∴方程2233x mx x -=--有增根x=3------------2分∴方程两边同乘以(x-3),得:26x m -=------------2分∴当x=3时,m =分 18、(本题满分6分)解:过C 点作BA 的延长线交于点E ,------------1分∵AB =AC =10,∠B =022.5 ∴∠EAC =045∴△EAC 为等腰直角三角形------------1分设AE =EC =X,则AB =AC =10∴x =∴111022S A B E C ∆=⋅=⨯⨯=≈35.42m ------------2分又∵53.610⨯2cm =362m >35.42m ------------1分 ∴预订草皮够用------------1分19、(本题满分6分)解:答案不唯一,酌情给分。
20、(本题满分8分)解:(1)18 0.55------------各1分(2)图略--------------共4分(虚设组不设各扣1分)(3)0.55±0.1均为正确------------2分 21、(本题满分8分) 解:(1)正确的结论:①②③------------2分(2)错误理由:当a >0时,只有1x >2x >0或2x <1x <0时,1y <2y 而2x <0<1x 时,1y >2y ------------4分 改正:当a >0时,在同一象限内,函数a y x=,y 随x 增大而减小-----2分22、(本题满分10分)解:(1)如右图------------共6分(030,045角,线段a 各1分,余酌情给分)(2)设AB =x,则R t △ABC 中,OB =x ,由题意得:6+ x ------------1分得,1)x =≈8米------------2分 答:旗杆高度约为8米。
2010年中考模拟数学试卷和答案
2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。
2010年中考模拟卷 数学卷
2010年中考模拟卷 数学参考答案及评分标准题号 选择填空1718192021222324总分得分一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)二.认真填一填(本题有6个小题, 每小题4分, 共24分)11. 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.12. (1,3) 13. =3 14. 215. 3 16. 0或3或4或8 三.全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分) 解:由题意得120k -≠ 12k ≠..........................................(2) 10k +≥ 1k ≥- (2)△2(21)4(12)(1)k k =-+-⨯-⨯->0k <2 ∴0k ≤<2且12k ≠ (2)18.(本小题满分6分)过点B 作直线BF ∥CD (1)135°105°A BC DFE∵CD ∥AE∴BF ∥CD ∥AE (1)题号 1 2 3 4 5 6 7 8 9 10 答案DBCDDCCBCD∴∠A=∠ABF=105°……………………………………(1) ∴∠CBF=∠ABC-∠ABF=30°………………………….(1) 又BF ∥CD∴∠CBF+∠C=180°..........................................(1) ∴∠C=150° (1)19.(本小题满分6分)(1)5+8+11+16+6=46(人) 一共分成5组。
组距是:65-55=10(分) (2)(2)分布两端虚设的频数为0的是:40─50和100─110两组。
它们的组中值分别是:45分和105分…………(2) (3)80─90一组人数最多。
它的频率是:1684623=…………………………(1) (4)5558651175168569546⨯+⨯+⨯+⨯+⨯77.2≈分 (1)20.(本小题满分8分)作出△ABC 的内心............(3) 作出△ABC 的外心................(3) 作处线段DO2 (1)∴如图所示,线段DO2的长就是△ABC 的内心、外心分别到点A 的距离之差。
2010年中考模拟卷数学参考答案
2010年中考模拟卷数学参考答案二.认真填一填(本题有6个小题,每小题4分,共24分) 11.4(x+3)(x-3) 12.10≠≥x x 且 13.15414.6)1(2+--=x y 15. ︒20 16.)12,1222(22++++n nn n n n P n 三.全面答一答(本题有8个小题,共66分) 17.(本小题满分6分) 解:11)1()1)(1(1----+⨯+=a a a a a a a 原式…………………………………………………2分 =12111--=--a a a …………………………………………………2分 当a=-2时,原式=34…………………………………………………2分18.(本题满分6分) 解:可以做2)1(-n n 条直线…………………………………………………3分 理由如下:平面上有n 个点,两点确定一条直线。
取第一个点A 有n 种取法,取第二个点B(n-1)种取法,所以一共可连成n(n-1)条直线,但AB 和BA 是同一条直线,所以应除以2,得2)1(-n n 条直线 …………………………………………………3分 19.(本题满分6分)解:过点A 作BC 的垂线段,垂足为D ,则由题可知,∠BAD=30°,∠DAC=60° ∵∠BAD=30°,△ABD 为直角三角形, ∴BD=3223663==AD …………………………………………………2分同理可得3663==AD CD …………………………………………………2分∴楼高AB=2.152388≈…………………………………………………2分 20.(本小题6分)(1)21人 …………………………………………………1分(2)众数 90 中位数80…………………………………………………2分(3)从平均数和中位数的角度来比较,一班的成绩比二班好;从平均数和众数的角度来比较,一班的成绩不如二班;从B 级以上(包括B 级)的人数的角度来比较,一班的成绩比二班好。
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分) 11. -- 2 ,例如 12.6,2.5 13.231a14. -2<a ≤ -1 15.3 16.),(24245--P ,),(2010201020P ,2512三、解答题(6+6+6+8+8+10+10+12=66分)17(本题6分)解:(1).原式233133--+=-1 ················································ (3分) (2)原式=()()21222---+a a a a ··················································································· (1分) =()()()2222-++-a a a a =()()222-+-a a a ························································································· (1分) =21+a ····················································································································· (1分) 18(本题6分)解:(1)S=πrl=50×20π=1000π ……..……………………….(2分)(2)θ=0001443605020360.=⨯=lr…………………………………………………(2分) 剪去的扇形纸片的圆心角=360°-2×144°=72°………………………………………(2分)19(本题6分)解:(1)当射线BA 绕点B 按顺时针方向旋转45度时与⊙O 相切……(1分) 理由如下:如图,设切点为F ,连OF.则OF ⊥BF ,在直角三角形OBF 中,︒=∠=∠∴==45,4,22BOF OBF OB OF ∴∠ABF=45°..(2分)(2)(2)过O 画OH ⊥MN 于H ,易知∠AOB=30°,∴OH=21OB=2 在直角三角形OMH 中,OM ︒=∠︒=∠∴=90,45,22MON MOH …………………(1分)()()422221224122-=⨯-⨯=-=∴∆ππMON MON S S S 扇形弓形∴线段MN 与⌒MN 所围成图形的面积为2π-4………………………………………………(2分) 20. (本题8分)(1)用直尺和圆规作△ABC ………………… (4分) (2)① 作ACB ∠的平分线交AB 于D ; ……………………(1分)② 过D 点作DE ⊥BC ,垂足为E .……………................(1分)(3)△ ADC ≌△ EDC ;△ ACD ∽△ ABC .(每写对一对得1分)21.(本题8分)(1)80 ,25%、40%、30%································· 4分(2)补全条形图(如右图)………2分(3)520…………………………….2分22.(本题10分)(1) 1 , 2 。
2010年中考数学模拟试题(含答案)
D BAOC 第8题2010年中考数学模拟试题(二)(新人教版)(考试时间:120分钟 满分120分)一、填空:(每小题2分,共20分) 1.计算:(-1) ×(-2) = . 2.如图,已知AB ∥CD ,则∠A = 度. 3.分解因式 x 3-xy 2= 。
4.在函数y =x 的取值范围是 。
5.截至2009年6月5日止,全球感染H1N1流感病毒有21240人,感染人数用科学计数法表示为 人.6.方程2 x 2-18=0的解是 .7.若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是 .8.某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知 AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m .9.一个扇形所在圆的半径为3cm ,扇形的圆心角为120°,则扇形的面积是 cm 2. (结果保留π)10.如图,是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = . (用n 的代数式表示s )二、选择题(每小题3分,共24分)11.-8的相反数是( )CDB第2题.80A第10题 ……n =1 n =2n =3A .8B .-8C .18 D .18- 12.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ).A.外离B. 相交C.外切D.内切13.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是( )A .①②③B .①②C .①③D .②③14.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,9.1,6.5,7.7,则这四人中,射击成绩最稳定的是( ) A .甲B .乙C .丙D .丁15、tan 30°的值等于( )A. 21B. 22C.23 D.33 16图1中几何体的主视图是( )17.若分式 x 2-1x +1的值为零,则x 的值是( )A .1B .0C .-1D .±118.如图,抛物线y =ax 2+bx +c 的对称轴是x = 13,小亮通过观察得出了下面四条信息:①c <0,②abc <0,③a -b +c >0,④2a -3b =0. 你认为其中正确的有( )A .1个B .2个C .3个D .4 三、解答题:(共76分)19、(本题7分)计算:112sin 602-⎛⎫- ⎪⎝⎭ACBDx第18题20、(本题7分)解方程: 0)3(2)3(2=-+-x x x21.(本题8分)如图,E 是正方形ABCD 的边DC 上的一点,过A 作A F ⊥AE ,交CB 延长线于点F ,求证:△ADE ≌△ABF .22.(本题10分)已知ABC △在平面直角坐标系中的位置如图10所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点C 按顺时针方向旋转90A B C '''°后的△; (3)求点A 旋转到点A '所经过的路线长(结果保留π)._F _E _ C _ D _ B _A 第21题 第22题23、(本题10分)右边下面两图是根据某校初三(1)班同学的上学方式情况调查所制作的条形和扇形统计图,请你根据图中提供的信息,解答以下问题: (1) 求该班学生骑自行车的人数有(2)求该班学生人数 人.并将条形统计图补充完整; (3)若该校初三年有600名学生, 试估计该年级乘车上学的人数.24.(本题10分)某冰箱厂为响应国家“家电下乡”号召,计划生产A 、B 两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 47500元,不高于48000元,两种型号的冰箱生产成本和售价如下表:(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?骑自行车20%乘车步行50%第23题25、(本题12分)如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N .(1)求证MN 是O ⊙的切线;(2)若1202B A C A B ∠==°,,求以直径AB ,弦BC 和⌒AM 围成图形的面积(结果保留π).、第25题26.(本题12分)如图,抛物线21222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标; (2)证明ABC △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使ABP △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.参考答案一、1.2 2.120 3.x (x +y )(x -y )4.x≥12 5.2.124×104 6.3和-3 7.1208.4 9.3π 10.2n(n+1)二.11. A 12.C 13.B 14. C 15. D 16.D 17.A18.B19.20.X 1=3,X 2=121.证明:∵ABCD 是正方形 ∴AB AD = ︒=∠=∠=∠90DAB ABF D ∵A F ⊥AE ∴DAE EAB BAF ∠=∠-︒=∠90.在ADE ∆和ABF ∆中∵AE AD BAF DAE ABF D =∠=∠∠=∠,, ∴△ADE ≌△ABF 22.解:(1)()04A ,、()31C ,(2)图略(3)AC =⌒AA' π= 23.解:(1)8 (2)该班学生人数为40%5020=(人) 图画对(略) (3)该年级乘车上学的人数约为1806004012=⨯ 24..解:(1)设生产A 型冰箱x 台,则B 型冰箱为()100x -台,由题意得:47500(28002200)(30002600)(100x x -+-⨯-≤≤解得:37.540x ≤≤ x 是正整 ∴x 取38,39或40.(2)设投入成本为y 元,由题意有: 22002600(100)400260000y x x x =+-=-+4000-< ∴y 随x 的增大而减小∴当40x =时,y 有最小值.即生产A 型冰箱40台,B 型冰箱50台,该厂投入成本最少此时,政府需补贴给农民(280040300060)13%37960()⨯+⨯⨯=元 25.(1)证明:连接OM .∵OM OB =,∴B OMB ∠=∠,∵AB AC =,∴B C ∠=∠. ∴OMB C ∠=∠,∴OM AC ∥.又MN AC ⊥,∴OM MN ⊥,点M 在O ⊙上,∴MN 是O ⊙的切线(2)S =164π+26.解:(1)抛物线21222y x x =-++与x 轴交于A B 、两点,21202x x ∴-++=.即240x -=.解之得:12x x ==∴点A B 、的坐标为(A B ) ,将0x =代入21222y x x =-++, 得C 点的坐标为(0,2)(2)6AC BC AB ===,222AB AC BC ∴=+,则90ACB ∠=°,ABC ∴△是直角三角形.(3)将2y =代入21222y x x =-++,得212222x x -++=,120x x ∴==,P ∴点坐标为.。
2010年初中数学中考模拟试题答案
在 R t △ADE 中, EA =r, DE=6-r, AD=x,
∴ x 2 6 r 2 r 2 ,r= 1 x 2 +3,
∵ EF= EA, ∴AF=2DE,
即 y =2(6-r)=- 1 x 2 +6, (6 分) 6
D
E
C
∵AB∥CD,
∴∠AFE=∠CEF,
G
∴∠AEF=∠AFE, ∴AE=AF, ∵AE=EF,
A
B
F
( 图3 )
∴AE=AF=CE=CF, ∴△AEF 和△CEF 都是正三角形,
∴四边形 AECF 是菱形,且∠CEF=60°,
∴∠BCF=30°,
1
∴BF=
1
CF=
AF= 1 AB=2,
BC= 2 3 .(12 分)
223
②点 F 是 AB 的中点时, y =3,
图 D
E
C
H
G
A
( 图 1)
D
E
B F
C
G
A
B F
( 图2 )
1
即-
x 2 +6=3,∴ x = 3
2 .(8 分)
6
(3)(如图 3).
当x=2
3 时,
︵图 F 是AC的中点。此时,四边形 AECF 菱形.(9 分)
理由如下:
︵ ∵点 F 是AC的中点,∴∠AEF=∠CEF, AF=CF,
2.85×20+2.85×1.5×10+2.85×2×(x-30)=128.25,x=35(5 分)
∴调整后水费是:3.3×20+3.3×1.5×10+3.3×2×5=148.5(元)(6 分)
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11、36b a 12、 2.5 13、a=0或a=2 14、1:5 15、(3,2);(55,358) 16、①②④三. 全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分)212(2212010))(-+-----π=221211+--+…………………分=227-……………………………2分18.(本小题满分6分)解:原式=x-1 …………………………………4分(从33x -<<的范围内选取一个合适的整数x 代入求值。
其中x ≠±1,0)……2分 19.(本小题满分6分)解:(1)如图所示:……………………………………4分(注:每正确画出1个图且痕迹清晰得2分,)(2)规律:若三角形为锐角三角形,则其最小覆盖圆为该三角形的 外接圆;……………1分 若三角形为直角或钝角三角形, 则其最小覆盖圆是以三角形 最长边(直角或钝角所对的边) 为直径的圆.……………1分20.(本小题满分8分)(1)如图(1).连结AC ,由∠1=∠2,∠APC =∠DPE∴△ACP ∽△DEP .…………………………………2分DEAC DP =∴P A 又AP 25=,∴DE=25221÷⨯=52………………2分(2)如图(2).当Rt Rt ADP QCP △∽△时有得:1QC =.∴Q 与B 重合,0BQ ∴=……………2分 如图(3),当Rt Rt ADP PCQ △∽△时,有QCPD PCAD =,得=QC 41,即43=BQ ………………………2分∴当0BQ =或43=BQ 时,三角形AD P 与以点Q C P ,,为顶点的三角形相似.21.(本小题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ······································ 1分初一学生总数:2010%200÷=(人). ······················································ 1分 (2)活动时间为5天的学生数:20025%50⨯=(人).活动时间为7天的学生数:2005%10⨯=(人). ········································· 2分频数分布直方图(如图)······················ 1分(3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ························· 1分(4)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ························································ 2分(第21题图)人数22.(本小题满分10分) (1)27……………..2分(2)△ABC 如图②所示 ……………2分S △ABC=2a ·4a-21a ·2a-21a ·4a-21×2a ·2a=23a……………….2分(3)构造△ABC 如图③所示(图没有但面积算对不扣分) S △ABC=3m ·4n-21m ·4n-213m ·2n-21×2m ·2n=5mn …………….2分23.(本小题满分10分)⑴ 图略。
2010年中考摸拟试卷数学参考答案及评分标准
2010年中考摸拟试卷数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二.认真填一填(本题有6个小题,每小题4分,共24分) 11. (a-1)(a+1) , x 2+y 2 12. 20 和560 13.52 14.3315.3421或、 16. (3,3);;(3,-2) ;(11,-26)三、解答题(本题有8小题,共66分) 17、(本题6分) (以下给出三种选择方案,其他方案从略) 解答一: Y + Z =(3a 2+3ab )+ (a 2+ab ) =4a 2+4ab ……3分 =4a (a +b ).…………3分 解答二: X- Z = (2a 2+3ab +b 2)-(a 2+ab ) =a 2+2ab +b 2…………3分=(a +b )2 ………3分解答三:Y- X =(3a 2+3ab )- (2a 2+3ab +b 2)=a 2- b 2 …………3分=(a +b )(a -b )……………3分说明:整式计算正确得3分,因式分解正确得3分. 18. (本题6分) 解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.(2分)解得0.4x = 或 2.4x =-(不合题意,舍去)(2分). 所以,A 市投资“改水工程”年平均增长率为40%. (2)600+600×1.4+1176=2616(万元). A 市三年共投资“改水工程”2616万元.(2分)19. (本题6分) 解: 如图:(1)画出△A 1B 1C 1…………..2分 (2)画出△A 2B 2C 2………………………………..2分连结OA ,OA 2,OA =.点A 旋转到A 2所经过的路线长为l=1802……2………….2分20. (本题8分)(1)作图如右---------------------- 4分(2)证明:根据作图知,PQ 是A C的垂直平分线, 所以AO C O =,且E F A C ⊥.因为A B C D是平行四边形,所以O A E O C F ∠=∠ 所以O A E O C F △≌△. 所以A E C F =---------------------- 4分21.(本小题满分8分)解:在R t AD B △中,30A B =米 60ABC ∠=°sin 30sin 6025.9826.0AD AB ABC =∠=⨯=≈≈·°(米) ……2分15D B =米连接BE ,过E 作EN BC ⊥于NAE BC∵∥ ∴四边形AEN D是矩形26N E AD =≈米 ……2分在R t EN B △中,由已知45EBN ∠°≤, 当45EBN ∠=°时26.0BN EN ==米 ……2分26.01511AE AD BN BD ==-=-=∴米 ……1分 答:AE 至少是11米. ……………… 1分22.(本小题满分10分)(1)60306060=-FC,30=FC ;……3分(2)在EF 上任取一点Q ,分别过点Q 作BC ,AB 的垂线,垂足分别是M ,N ,则 CN x +=606030,602-=x CN ,则x BN 2120-=。
2010年中考模拟试卷 数学
2010年中考模拟试卷 数学卷数学参考答案及评分标准一、仔细选一选(每小题3分,共30分)说明:第1和10小题为原创题,其中2;3;5;7;8为课本习题的延伸;4;6;9为借鉴题。
(突出数学的时效性和大众化及生活中的应用) 二. 认真填一填(本题有6个小题,每小题4分,共24分)11、R=52 12.7313、b= -11 147 15、0360)2(⨯-=n S 16、20112010说明:14,16题自编题 ;11,12,13,15属于借鉴。
三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)解:(1)m=2-2---------------------------------2分(2 ︳2-2-1︱+(2-2+6)0=︱1-2︳+1=2-----------------4分 说明:此题想增加数学计算的趣味性而设置了本题。
从一般的计算演变而来。
属于改编。
18、(本题6分)解: 四边形BCFD 为平行四边形-------------1分首先△ADE 绕点E 旋转180︒得到△CFE 可得△AD E ≌△CFE----------1分 ∴DE=EF------------1分又∵D.E 分别为中点∴D E ∥BC 且DE=21BC-------1分 ∴DF=∥BC ----------1分∴四边形BCFD 为平行四边形---------1分说明:旨在考查学生能运用旋转的不变性来证明三角形全等,和应用三角形的中位线的性质来证明一个四边形是平行四边形的性质应用(属于改编)。
19、(本题6分)解: (1)512,51==X X ------------------2分 (2)aa 12+-----------------------------------2分(3)5x 2-26x=-5x 2-526x=-1 x 2-526x+25169=-1+25169(x-513)2=25144(x-513)=±512∴512,51==X X ------------------2分说明:通过观察,归纳,猜想得到第1和第2小题的结论。
2010年中考模拟试卷 数学参考答案及评分标准
2)12(21-x2010考模拟试卷 数学参考答案及评分标准一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11. 12.___12 或16或20_ 13.14.___26或28或34 15 16.三、解答题(6+6+6+8+8+10+10+12=66分)17.解:(1)若axy b 与-5xy 为同类项,∴b=1∵和为单项式 ∴⎩⎨⎧==15b a ……………………………………3分(2) 若 4xy 2与axy b 为同类项∴b=2 ∵axy b +4xy 2=0 ∴a=-4 ∴⎩⎨⎧=-=24b a ……………………………………3分18.解:2221121x x x x x x --⋅+-+=2)1()1)(1(1)1(--+∙+-x x x x x x ……………………………………2分=x ……………………………………1分解2320x x -+=得x 1=1,x 2=2 ……………………………………1分∵当x=1时原方程分母为零,无意义,∴x=2 ……………………………………1分 ∴原式=x=2 ……………………………………1分 19.(1)14、15、4.3(从左至右)(2) 图略;A 稳定,B 型受季节影响大。
建议略21.(8分)正确,半菱形ABCD ,它的对角线互相平分,而AB=AD,CB=CD ,两个等边 △ABD, △BCD 所以AC 垂直平分BD 。
假设AC 交BD 与O ,半菱形的面积=S △ABD+S △BCD=1/2AO*BD+1/2CO*BD=1/2BD*(AO+CO)=1/2BD*AC. 所以 半菱形的面积等于两条对角线乘积的一半 22.(10分)1223-∙n解:(1)将194t m =⎧⎨=⎩,和390t m =⎧⎨=⎩,代入一次函数m kt b =+中,有94903k b k b =+⎧⎨=+⎩,.296k b =-⎧∴⎨=⎩,.296m t ∴=-+. 经检验,其它点的坐标均适合以上解析式, 故所求函数解析式为296m t =-+.(2)设前20天日销售利润为1p 元,后20天日销售利润为2p 元. 由221111(296)514480(14)578422p t t t t t ⎛⎫=-++=-++=--+ ⎪⎝⎭, 120t ≤≤,∴当14t =时,1p 有最大值578(元).由2221(296)20881920(44)162p t t t t t ⎛⎫=-+-+=-+=-- ⎪⎝⎭.2140t ≤≤且对称轴为44t =,∴函数2p 在2140t ≤≤上随t 的增大而减小.∴当21t =时,2p 有最大值为2(2144)1652916513--=-=(元).578513> ,故第14天时,销售利润最大,为578元.(3)2111(296)5(142)4809642p t t a t a t a ⎛⎫=-++-=-+++- ⎪⎝⎭对称轴为(142)142122a t a -+==+⎛⎫⨯- ⎪⎝⎭.120t ≤≤,∴当14220a +≥即3a ≥时,1p 随t 的增大而增大.又4a < ,34a ∴<≤. 23.(10分)解:阅读理解:m= 1 (填1m不扣分),最小值为 2 ; 思考验证:∵AB 是的直径,∴AC ⊥BC,又∵CD ⊥AB,∴∠CAD=∠BCD=90°-∠B, ∴Rt △CAD ∽Rt △BCD, CD 2=AD·DB, ∴若点D 与O 不重合,连OC ,在Rt △OCD 中,∵OC>CD,∴2a b +若点D 与O 重合时,OC=CD,∴2a b+=综上所述,2a ba b ++≥即,当CD 等于半径时,等号成立.探索应用:设12(,)P x x , 则12(,0),(0,)C x D x ,123,4CA x DB x∴=+=+, 1112(3)(4)22ABCD S CA DB x x∴=⨯=+⨯+四边形,化简得:92()12,S x x =++990,06x x x x >>∴+≥ ,只有当9,3x x x==即时,等号成立.∴S ≥2×6+12=24,∴S 四边形ABCD 有最小值24.此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形ABCD 是菱形.24.(12分)(1)①2AB = ……………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………4分 (2) 存在 ………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分萧山区南阳初中 刘东旭 金 凯。
2010年中考数学模拟试卷答案
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 6 . 12. 67 . 13. 2π14. 50 ,40 15. y=31x-4或y=-31x-3 16. 2548 , n2543⎪⎭⎫ ⎝⎛⨯三. 解答题(8小题共66分) 17. (本题满分6分) 解:(1)223. …………………………………………2分 (2)n a = 214-n . …………………………………………4分 (3)∵71=4×18-1 ,∴271=21184-⨯, ∴271为数列当中第18个数. …………………………………………6分 18. (本题满分6分) 解:① 2532,1±=x (利用公式法解决) ②512,1±=x (利用开平方法) ③3,021==x x (利用因式分解法) ④512,1±=x (利用配方法或者公式法等) (说明:没有说明具体解题思路,只有答案得3分) 19. (本题满分6分)解:在Rt △ADC 中,∠DAC=45°,CD=15 m ,∴AD=CD=15 m , …………………………………………2分在Rt △NDC 中,∠DNC=30°,CD=15 m ,∴DN=315 m , ……………………………………………4分∴AN=DN-DA=315-15=)13(15- m.≈11m答:所求AN 之间的距离约为11 m. ………………………………………6分 20. (本题满分8分)解: (1)31.6%; ……………………………………………2分(2)补全统计图; ……………………………………………6分 (说明:①补全“上网”给2分;②补全“健身游戏”给2分.)(3)答案不惟一,如:适当减少看电视的时间,多做运动,有益健康.(合理即给分)……………………………………………8分21. (本题满分8分)解: (1)5; ……………………2分(2)如图:……………………6分 (3)32(a 2+b 2) ………………8分22.(本题满分10分)解:⑴ 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°. …………………………1分∵∠D =30°,∴∠COD =60°. …………………2分 ∵OA=OC ,∴∠A=∠ACO=30°. ………………4分 ⑵ ∵CF ⊥直径AB , CF =34,∴CE=5分 ∴在Rt △OCE 中,OE =2,OC =4. ……………………6分∴2BOC 60483603S ππ⨯扇形==,EOC122S ⨯⨯=……………………8分∴EOCBOC S S Sπ阴影扇形8=-=-3……………………………………………10分 23.(本题满分10分)解:(1)由图象知:当x =10时,y =10;当x =15时,y =5.设y =kx+b ,根据题意得:⎩⎨⎧=+=+5151010b k b k ,解得⎩⎨⎧=-=201b k ,∴y =-x +20. ……………………………………………2分 (2)当y =4时,得x =16,即A 零售价为16元. ………………………………3分 设这次批发A 种文具a 件,则B 文具是(100-a )件,由题意,得⎩⎨⎧≥-+≤-+296)100(241000)100(812a a a a ,解得48≤a ≤50 ……………………………………………5分 ∴有三种进货方案,分别是①进A 种48件,B 种52件;②进A 种49件,B 种51件;③进A 种50件,B 种50件. ……………………………………………8分 (3)W =(x -12)(-x +20)+(x -10)(-x +22),整理,得W =-2x 2+64x -460.当x =-b2a =16,W 有最大值,即每天销售的利润最大. …………………………10分24. (本题满分12分)解:(1)由已知得:C (0,-3),A (-1,0)将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a解得:⎪⎩⎪⎨⎧-=-==321c b a所以这个二次函数的表达式为:322--=x x y ……………………………2分 (2)存在,F 点的坐标为(2,-3)易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0)∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3) ………………………………………………4分 (3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ),代入抛物线的表达式,解得2171+=R ②当直线MN 在x 轴下方时,设圆的半径为r (r>0)则N (r+1,-r ),代入抛物线的表达式,解得2171+-=r∴圆的半径为2171+或2171+-. ……………………8分(4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为1--=x y .设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG 当21=x 时,△APG 的面积最大 此时P 点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆. ……………12分。
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 1.58×1011 12. 5 13. (-1,1) 14. 7 15. X=-1 16. 6三. 解答题(8小题共66分) 17. (本题6分)计算:0(1)π--⋅sin 60°+321(2)()4-⋅解:原式=()⎪⎭⎫⎝⎛⋅-+⋅-16182331……………………………………… 3分 =21231--………………………………………………………… 2分=1-………………………………………………………………… 1分18. (本题6分)每个图2分19. (本题6分)解:(1)把(4,2)代入kx y =,得21=k ,所以x y 21=……………… 2分把(4,2)代入xm y =,得8=m ,所以xy 8=…………………2分(2) x y 21= 解得: 4=x 或 4-=x (1)xy 8=分 2=y 2-=y所以,还有一个交点为 (2,4--) …………………………… 1分20. (本题8分)(1)见表格 …………………………… 2分 (2)见图表 …………………………… 2分(3)视力在4.55~4.85内的学生最多。
……………………………… 2分 (4)2000500050416=⨯+答:约有2000名学生的视力不需要矫正。
……………………………… 2分21. (本题8分) 解:(1)2108686=++⨯=r ……………………………… 2分(2)dc b a s r +++=2 ……………………………… 3分证明:四边形ABCD 的周长为l ,内切圆O 的半径为r,连结OA 、OB 、OC 、OD , 四边形ABCD 被划分为四个小三角形,用S 四边形ABCD 表示四边形ABCD 的面积 ……………………………… 1分∵ S 四边形ABCD =S △OAB +S △OBC +S △OCD +S △ODA 又∵S △OAB =r AB ⋅21,S △OBC =r BC ⋅21,S △OCD =r CD ⋅21, S △OAD =r AD ⋅21∴S 四边形ABCD =r AB ⋅21+r BC ⋅21+r CD ⋅21+r AD ⋅21=r l ⋅21∴dc b a s r +++=2 ……………………………… 6分(3)na a a sr +++=212 ……………………………… 8分O22. (本题8分)解: 解:(1)在抛物线y =215222x x -+-上,令y =0时,即215222x x -+-=0,得x 1=1,x 2=4令x =0时,y =-2∴ A (1,0),B (4,0),C (0,-2) ………………………2分 ∴OA =1,OB =4,OC =2 ∴12O A O C=,2142O C O B==∴O A O C O CO B=………………………1分又∵∠AOC =∠BOC ∴△AOC ∽△COB .………………………1分(2)设经过t 秒后,PQ =AC .由题意得:AP =DQ = t , ……………1分∵A (1,0)、B (4,0) ∴AB =3∴BP =3-t…………………………………1分∵CD ∥x 轴,点C (0,-2) ∴点D 的纵坐标为-2 ∵点D 在抛物线y =215222x x -+-上∴D (5,-2) ∴CD =5………………………2分23. (本题12分)解:(1)报销数额为4500×65%+(5600-5000)×75%=3375(元),所以刘老汉可以报销3375元.·············································································· 4分 (2)由题意,得y=(5000-500)×65%+(20000-5000)×75%+(x-20000)×65%=0.65x+1175 ∴所求函数关系式为y=0.65x+1175.(x >20000) ················································ 4分 (注:不写x 的取值范围不扣分) (3)由题意,得14825=0.65x+1175. 解得x=21000(元).所以刘老汉这次住院花去医疗费21000元. ··························································· 4分24. (本题12分)解:(1)在Rt △AOB 中,可求得AB =332 ………………………………1分∵∠OAB =∠BAC ,∠AOB =∠ABC=Rt ∠ ,∴△ABO ∽△ABC ……………………………2分∴ACAB ABAO=,由此可求得:AC =34………………………………3分(2)当B 不与O 重合时,延长CB 交y 轴于点D ,过C 作CH ⊥x 轴,交x 轴于点H ,则可证得AC =AD ,BD =BC …………………4分 ∵AO ⊥OB ,AB ⊥BD ,∴△ABO ∽△BDO ,则OB2=AO ×OD----6′,即yx -⨯=⎪⎭⎫ ⎝⎛122化简得:y=42x,当O 、B 、C 三点重合时,y=x=0,∴y 与x 的函数关系式为:y=42x………………………………7分(3)设直线的解析式为y=kx+b ,则由题意可得:⎪⎩⎪⎨⎧=+=241x y b kx y ,消去y 得:x 2-4kx-4b=0,则有⎩⎨⎧-=⨯=+bx x kx x 442121, ……………………………… 8分由题设知:x 12+x 22-6(x 1+x 2)=8,即(4k)2+8b-24k=8,且b=-1,则16k 2-24k -16=0,解之得:k 1=2,k 2=21-,……………………………… 10分当k 1=2、b=-1时,△=16k2+16b=64-16>0,符合题意 当k 2=21-,b=-1时,△=16k2+16b=4-16<0,不合题意(舍去),∴所求的直线l 的解析式为:y=2x-1 ……………………………… 12分。
2010中考模拟试卷 数学试题卷参考答案
2010年中考模拟试卷参考答案一、选择题 (每题3分共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DBBCBDBBAB二、填空题(每题4分,共24分)11. X(X+3)(X-3) 12. 3+3 13. 414. 25 15.(21 ,23)(0,33 )(2,3 )(3-1,1 )16.2365a三、解答题(满分66分)17、 (本小题满分6分) 解:作PC ⊥AB设PC=x ,∵060=∠PBC 则CB=,33X ……………… 2分X AC PAC 330=∴=∠……………… 2分32333=∴=-∴X X X ……………… 2分18、 (本小题满分6分)(1)过F 作FH ∥AB,交AD 于H,连结EH,EF,G 为DC 上一点,连结GH,GF, 则四边形EFGH 就是所求四边形.(3分)①(2)作MN ∥AB,交AD 于N,P 为AB 上一点,连结PN,过M 作MQ ∥PN,交CD 于Q,连结PM,NQ,则梯形PMQN 就是所求四边形.(3分)PAB CA B C D HFG E MA BCD N P Q②(工具不限,画得有理就给满分,画图正确但无画法每个扣一分) 19、(本小题满分8分) (1)A (2,2);B(-2,-2);C (23,23)-.………………3分(2)作AD ⊥x 轴于D ,连结AC 、BD 和OC 。
∵A 的坐标为(2,2), ∴∠AOD=45°,AO=22………………1分∵C 在O 的东南45°方向上, ∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC , 又∵∠BAC=60°,∴△ABC 为正三角形………………2分∴AC=BC=AB=2AO=42. ∴OC=3·42262=………………1分由条件设:教练船的速度为3m,A 、B 两船的速度均为4m.则教练船所用的时间为: 263m ,A 、B 两船所用的时间均为:424m =2m .∵263m =243m ,2m =183m ,∴263m >2m ,所以教练船不是最先赶到。
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准仔细选一选(本题有10个小题,每小题3分,共30分)。
二.认真填一填(本题有6个小题,每小题4分,共24分)11. 36 12 . x(xy+2)(xy-2) 13 . 6 14.3215 .54 16 .20092010三.全面答一答(本题有8个小题,共66分)解答应写出文字说明,证明过程或推演步骤。
17. (本小题满分6分)解 :原式=42+x 。
2分解不等式组得:23≤<-x , 。
2分若2=x 时,原式=8(x 为23≤<-x 中不为0、1、-1的任意数)。
2分 18.(本小题满分6分)略(1)由已知得Rt ⊿ABC ≌Rt ⊿DEF ∴∠A=∠D ∵AC ⊥BD ∴∠ACD=900又∠DNC=∠ANP ∴∠APN=900∴AB ⊥ED 。
3分 (2)⊿ABC ≌⊿DBP证明:由(1)得∠A=∠D ,∠BPD=∠ACB=900, 又PB=BC∴⊿ABC ≌⊿DBP 。
3分19(6分).解: ∵l ∥BC ∴∠ACB=α=8在Rt ⊿ABC 中,tan α=A B B C,∴BC=A B tan α≈617=42。
3分根据题意得h 2+422=(h+6)2,∴h=144。
3分20.(本小题满分8分)解:(1)5 。
2分(2)10% 。
2分40人 。
2分 (3) 设参加训练前的人均进球数为x 个,则x (1+25%)=5,所以x =4,即参加训练之前的人均进球数是4个.。
2分21.(本小题满分8) 解.(1)∵x,y 都是整数且6y x=,∴x=1,2,3,6,∴P 1(1,6), P 2(2,3),P 3(3,2),P 4(6,1);。
3分 (2)以P 1 ,P 2,,P 3,P 4中任取两点的直线有121314232434,,,,,pp p p p p p p p p p p共六条;。
2分 (3)∵只有直线2434,p p p p与抛物线有公共点,∴P=2163=。
2010年中考数学模拟卷参考答案(新街初中王国文)
九年级数学中考模拟卷参考答案三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题10分,第24题12分,共66分)17、(本题满分6分)解不等式组:2532342x x x x +≤+⎧⎪⎨-<⎪⎩解:由(1)得 3≥x ------------2分由(2)得 x <4-------------2分 ∴3≤x <4-------------------2分 18、(本题满分6分) (每个图画对3分,对称轴是直线)19、(本题满分6分)解:(1)502;(2)23.71;(3)图略,值为150(图、值各1分);(4)80—99.(每小题各2分)20、(本题满分8分)(1)0.5. -------------2分 (2)用树状图表示是:或用列表法表示是:断开通电通电断开通电P 、Q 之间电流通过的概率是4.-------------4分 (3)87. -------------2分 21、(本题满分8分) 解:根据题意得: (1)48—a -------------4分 (2)48—a >62—a a >20 -------------6分22、(本题满分10分)(1)1(10)y a x =- (1≤x ≤200,x 为正整数) ········································ 2分22100.05y x x =- (1≤x ≤120,x 为正整数) ······································· 4分(2)①∵3<a <8, ∴10-a >0,即1y 随x 的增大而增大 ,∴当x =200时,1y 最大值=(10-a )×200=2000-200a (万美元) ··············· 5分②220.05(100)500y x =--+ ···················································· 6分∵-0.05<0, ∴x =100时, 2y 最大值=500(万美元) ··························· 7分(3)由2000-200a >500,得a <7.5,∴当3<a <7.5时,选择方案一; ························································ 8分 由2000200500a -=,得 7.5a =,∴当a =7.5时,选择方案一或方案二均可; ············································· 9分 由2000200500a -<,得 7.5a >, ∴当7.5<a <8时,选择方案二. ······················································ 10分23、(本题满分10分) (1)设y kx b =+,由题意得10002050,8001650k b k b +=⎧⎧⎨⎨+=⎩⎩k=2解得b=50250(0)y x x ∴=+>--------------------------------(3分)H-1PDCBAOxy (2)AD=1250米,B 到C 的价格为1250元,-----------(3分) (3)8004501250AC CD AD +=+==A C D ∴、、三个城市在同一条直线上。
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一、仔细选一选二、认真填一填11.x ≤7/2 12.10/3 13.不能14.6或3 15.0≤s ≤1/2 16. 3411-⎪⎭⎫⎝⎛n17.解: (2) 三.全面答一答18.(1)由题意,q=3k-12……………………1分因为正比例函数,所以3k-12=0k=4……………………1分(2)因为抛物线与x 轴的交点为A1(-2m/3,0),A2(4,0),与y 轴的交点为B (0,-8m )……………………1分 若S △OBA1 =4,则;4=mm 8.3221--,m=6……………………1分若S △OB A2=4,则;4=m 8.421- ,m=41所以当时,满足题设条件,抛物线的解析式为与坐标轴的交点为A(362-,0),B(0,-86)或A(2,0),B(0,-4)图象过A,B 两点的一次函数的特征数为(-12, -86)或(2,-4)………1分19. 作法:(1)作∠MAN=∠α. ……………………2分 (2)作∠MAN 的平分线AE ……………………1分(3)在AM 上截取AB=c ,在AE 上截取AD=b. …………………… 1分 (4)连结BD ,并延长交AN 于点C. ……………………1分 △ABC 就是所画的三角形.(如图) ……………………1分20.解: (1)丙同学提出的方案最为合理 ……………………2分 (2)如图……………………4分(每图各2分,涂"基本不参加",阴影只要是两个扇形均可) (3) 220人 ……………………2分21.解(1)A ………………………………………………………………2分(2)① 相似比 ………………………………………… 1 分② 相似比的平方 …………………………………………1分 ③ 相似比的立方 …………………………………………1分(3)设他的体重是xkg ,则根据题意得32.170.119⎪⎭⎫ ⎝⎛=x……………………………………2分 得x =54.02 (kg )……………………………………1分22. 解:(1)根据题意得:解得:205022003205025003x x x x ⎧+⨯≥⎪⎪⎨⎪⨯≤⎪⎩解得:2606811x ≤≤∵x 为正整数∴x 可取60,61,62,63,64,65,66,67,68 ∵13x也必需是整数∴13x可取20,21,22∴有三种购买方案:方案一:成人票60张,儿童票20张:方案二:成人票63张,儿童票21张:方案一:成人票66张,儿童票22张:……………………………………3分 (2)在(1)中,方案一购买的总数量最少,所以总费用最少最少费用为:60×20+20×50=220……………………………………3分 (3)设用(2)中的最少费用最多还可以多买儿童票数量为y ,2090%(603)5080%(20)2200y y ⨯++⨯+≤解得:19347y ≤∵y 为正整数∴满足19347y ≤的最大正整数为3∴多买的儿童票为:39y =(根)………………3分答:用(2)中的最少费用最多还可以多买9张成人票和3张儿童票…………………1分23. ∵△DCB 为等腰三角形,PE ⊥AB ,PF ⊥CD ,AC ⊥BD ,∴PE+PF=AC 。
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)1、A2、B3、C4、D5、A6、C7、D8、B9、C 10、C 二. 填空题(每小题4分, 共24分) 11. x ≥-3且x ≠-2 12. 4 13. 2/3 14. 17 15. xy 3-=16. 12或13或14或15三. 解答题(8小题共66分) 17. (本题6分)解:∵1-a>1-b ∴a<b ---------------------------------------------------------2’学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n m m +<+. 若m 、n 是任意正实数,且m >n ,则11n n m m +<+.若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n r m m r+<+.若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n , 则n n r m m r+<+. ------------------------------------------------------------ 4’18. (本题6分)解:(1)由图象可知,函数m y x=(0x >)的图象经过点(16)A ,,可得6m =. ------------------------------1’ 设直线A B 的解析式为y kx b =+.∵(16)A ,,(61)B ,两点在函数y kx b =+的图象上,∴66 1.k b k b +=⎧⎨+=⎩, 解得17.k b =⎧⎨=⎩,∴直线A B 的解析式为7y x =-+.(2)图中阴影部分(不包括边界)所含格点的个数是 3 .-----------------6’解:先作一正三角形,再延长一边至2 倍,连结第三个顶点,即可得结论:(略)-------------------------------------------------6’20. (本题8分) 解:(1)AE ∥BD∴∠E=∠BDC ∵BD 平分∠ADC ∴∠ADC=2∠BDC=2∠E∵∠C=2∠E ∴∠ADC=∠C∴梯形ABCD 是等腰梯形 --------------------------4’ (2)∵∠BDC=30°,∠ADC=2∠BDC ∴∠ADC=60° ∴∠C=60° ∴∠DBC=90° ∵BC=AD=5∴CD=2BC=10 -----------------------------------8’21. (本题8分)解:(1)900.3m n ==,;--------------------2’(2)图略.----------------------------------4’ (3)比赛成绩的中位数落在:70分~80分.-------6’(4)获奖率为:6020100200+⨯%=40%(或0.3+0.1=0.4)----8’_ D_ C_ B_ AE解:(1)延长B A 交E F 于点G . 在R t AG E △中,23E ∠=°,∴67G A E ∠=°.-------------------------------------------------------2’ 又∵38B A C ∠=°,∴180673875C A E ∠=--=°°°°.------------------------------3’ (2)作A H C D ⊥于H 点,作C G ⊥AE 于G 点. 在A D H △中,604A D C A D ∠==°,,cos D H A D C A D ∠=,∴2D H =.------------------------------------4’ sin A H A D C A D∠=,∴AH =------------------------------5’在R t A C H △中,180756045C ∠=--=°°°°,-------------6’∴C H AH ==--------------------------------------------------7’∴232+=+=CH DH CD -----------------------------------------------------------8’ 在Rt △CDG ,∠CDG=60°,中CDCG CDG =∠sin ,∴)(533米≈+=CG答:折点C 距离坡面AE 约为5米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年中考模拟试卷 数学参考答案及评分标准
三、解答题(本题有8小题,第17~19题每题6分,第20~21题8分,第22~23题每题
10分,第24题12分,共66分) 17、(本题满分6分)
解:∵方程2
233
x m x x -=--无解 ∴方程2233
x m x x -=--有增根x=3------------2分 ∴方程两边同乘以(x-3),得:2
6x m -=------------2分
∴当x=3时,m =分
18、(本题满分6分)
解:过C 点作BA 的延长线交于点E ,------------1分
∵AB =AC =10,∠B =0
22.5 ∴∠EAC =0
45
∴△EAC 为等腰直角三角形------------1分
设AE =EC =X,则AB =AC =10
∴x =
∴11
1022
S AB EC ∆=
⋅=⨯⨯=35.42m ------------2分 又∵5
3.610⨯2
cm =362m >35.42
m ------------1分
∴预订草皮够用------------1分
19、(本题满分6分) 解:答案不唯一,酌情给分。
20、(本题满分8分)
解:(1)18 0.55------------各1分
(2)图略--------------共4分(虚设组不设各扣1分)
(3)0.55±0.1均为正确------------2分 21、(本题满分8分) 解:(1)正确的结论:①②③------------2分
(2)错误理由:当a >0时,只有1x >2x >0或2x <1x <0时,1y <2y 而2x <0<1x 时,1y >2y ------------4分 改正:当a >0时,在同一象限内,函数a
y x
=,y 随x 增大而减小-----2分
22、(本题满分10分)
解:(1)如右图------------共6分(0
30,0
45角,线段a 各1分,余酌情给分)
(2)设AB =x,则Rt △ABC 中,OB =x ,由题意得:
6+ x ------------1分
得,1)x =≈8米------------2分 答:旗杆高度约为8米。
------------1分 23、(本题满分10分) 解:本题答案不唯一,下列解法供参考。
解法一:
问题:山路和平路各有多少千米?
设山路长为xKm ,平路长为yKm ------------3分
根据题意,得2,2.2610x y
x y =⎧⎧⎪
⎨⎨
+=⎩⎪⎩
x=6解得y=12------------5分 答:山路长6千米,平路长12千米。
------------2分
解法二:
问题:队伍在山路和平路上各行进多少小时? 设队伍在山路上行进了x h ,平路上行进yh
根据题意,得 2.2,6210x y x y +=⎧⎧⎨
⎨
⨯=⎩⎩x=1
解得y=1.2
答:队伍在山路上行进1h ,在平路上行进1.2h 。
24、(本题满分12分) 解:(1)抛物线解析式为213
22
y x x =
+,------------1分 点B 坐标为(1,2)------------1分 (2) 可证∠AOB =0
90,∴∠AOC+∠BOD =0
90
若∠BDO =0
90,则△AC O ~△ODB ,此时D (1,0)------------2分 若∠OBD =090,则△AC O ∽△OBD ,
∴
OD =
,得OD =5 ∴D (5,0)------------2分
(3)当线段''A B 的中点落在第二象限时,设''A B 与直线OA 的交点为M ∵∠''A OB =0
90 ∴'A M OM =
∴∠'MOA =∠'A =∠A ∴AB ∥'OA ∵AB ∥x 轴'OA ∴'OA 与x 轴重合
此时'A
(-0
),B 则直线''A B
的函数1
2
y x =
+分 P
坐标为(4-------------2分
当线段''A B 的中点落在第四象限时,同理P
坐标为(4+------------2
分 万向初中:管雅萍 钱国慧。