2014年杭州市各类高中招生文化考试上城区一模试卷数学
2014年上城区一模数学试卷(含答案)
2014年杭州市各类高中招生文化考试上城区一模试卷数 学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,请在答题卷密封区内写明校名、姓名和准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1. 下列图形中,是轴对称图形但不是中心对称图形的是( )2. 下列各式计算正确的是( )A .632x x x =⋅B .2532x x x =+C .632)(x x =D .326x x x =÷ 3. 为了证明命题“任何偶数都是8的整数倍”是假命题,下列各数中可以作为反例的是( ) A .32B .16C .8D .44. 如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DOAO 等于()A .21B .31C .32D .3525.已知(-1,1y ),(-0.5,2y ),(1.7, 3y )是直线y =-9x +b (b 为常数)上的三个点,则1y ,2y ,3y 的大小关系是( )(第4题)(第5题)A .B .C .D .A . 1y >2y >3yB . 3y >2y >1yC . 1y >3y >2yD . 3y >1y >2y 6. 将一个有45°角的三角板的直角顶点C 放在一张宽为5cm 的纸带边沿上.另一个顶点B 在纸带的另一边沿上,测得∠DBC =30°,则三角板的最大边的长为( ) A .5cm B .10cm C .102 cm D .25 cm 7.近四年杭州经济发展驶入快车道,某公司近四年的销售也取得较大突破,如图1反映 的是该公司2010—2013年每年的投资额统计图,图2反映的是该公司2010—2013年每年的利润统计图(%100投资额利润利润率⨯=).观察图1、图2提供的信息,下列说法:①该公司2013年获得的利润最多;②该公司2011年获得的利润率最高;③从2010年到2013年四年的投资总额为730万元;④该公司计划2014年获得的利润与2013年持平,利润率等于近四年的最高值,那么该公司2014年投资额为172万元,其中正确的结论有( ) A .①② B .②③ C .③④ D .①④8.关于x 的二次函数2()1y x m =--的图象与x 轴交于A ,B 两点,与y 轴交于点C .下列说法正确的是( )A .点C 的坐标是(0,-1)B .点(1, -m 2 )在该二次函数的图象上C .线段AB 的长为2mD .若当x ≤l 时,y 随x 的增大而减小,则m ≥l 9. 如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠 为△BFE ,点F 落在AD 上.若sin ∠DFE=32,则tan ∠EBF 的 值为 ( )A .35 B .55 C .552 D .5 10.如图,抛物线2+(0)y ax bx c a =+≠过点(1,0)和点(0,-4),且顶点在第三象限,设P =c b a +-,则P 的取值范围是( ) A .-8<P <0B .-8<P <-4C .-4<P <0D .-2<P <0(第9题)(第10题)年份2010 2011 20132012 2024 28 32 3634 图2年份利润(万元)2010 2011 2012 2013170 180 190 160200 图1 投资额(万元)(第16题)二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11. 1021()(3)(2)2π--+-+-= .12.一组数据2,3,4,x 中,如果众数为2,则中位数是 . 13.如图所示是一个直三棱柱及其主视图和俯视图,在△EFG 中, ∠FEG =90°,EF =6cm ,EG =8cm ,该三棱柱的高是7cm ,则它的侧面积为 .14.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,若OM =21,则∠CBD 的度数为 . 15.已知矩形ABCD 的对角线AC ,BD 的长度是关于x 的方程032=++-p px x 的两个实数根,则此矩形面积的最大值是 .16. 如图,点A ,B 在直线MN 上,AB =20厘米,⊙A ,⊙B 的半径均为2厘米.⊙B 以每秒4厘米的速度自右向左运动,与此同时,⊙A 的半径也在不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =2+t (t ≥0).若点B 出发t 秒后两圆相切,则时间t 的值是 .三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以. 17.(本小题满分6分)化简:1)1212(222-÷+----x xx x x x x x ,并回答:原代数式的值能等于1吗?为什么?(第13题)(第14题)18. (本小题满分8分) 已知方程组⎩⎨⎧=+=-+20230y x a y x 的解满足x >0,y >0,求整数a 的值.19.(本小题满分8分)如图,已知Rt △ABC 中,∠C =90º.(1)作∠BAC 的角平分线AD 交BC 边于D ,以AB 边上一 点O 为圆心,过A ,D 两点作⊙O (不写作法,保留作图 痕迹)(2)设(1)中⊙O 的半径为r ,若AB =4,∠B =30°,求r 的值.20.(本小题满分10分)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等但面积相等的三角形是 (只需要填一个三角形)(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表格求解).21.(本小题满分10分)如图,在□ABCD 中,E 为BC 边上一点,且 ∠AEB =∠ADC . (1)求证:△ABC ≌△EAD . (2)若AE 平分∠DAB ,∠EAC =200,求∠AED 的度数.(第19题)(第20题)(第21题)22.(本小题满分12分)我们知道,x y =的图象向右平移1个单位得到1-=x y 的图象.类似的,xky = )0(≠k 的图象向左平移2个单位得到)0(2≠+=k x ky 的图象.请运用这一知识解决问题. 如图,xy 2=的图象C 与y =ax (a ≠0)的图象L 相交于点A (1,m )和点B . (1)写出点B 的坐标,并求a 的值; (2)将函数xy 2=的图象和直线AB 同时向右平移n (n >0)个单位,得到的图象分别记为C 1和L 1, 已知图象C 1经过点M (3,2).①分别写出平移后的两个图象C 1和L 1对应的函数 关系式;②直接写出不等式 ax x ≤+-422的解集.23.(本小题满分12分)如图,在平面直角坐标系中,直线2+-=x y 与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMON 的面积为定值1. (1)求∠OAB 的度数; (2)求证:△AOF ∽△BEO ;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF , BF 组成一个三角形,记此三角形的外接圆面积为S 1, △OEF 的面积为S 2.试探究:S 1+S 2是否存在最小值?若 存在,请求出该最小值;若不存在,请说明理由.(第22题)(第23题)2014年上城区中考一模数学参考答案及评分标准一、填空题(每小题3分,共30分)1.A 2.C 3.D 4.A5.A 6.C 7.B 8.D 9.B 10.A 二、选择题(每小题4分,共24分)11.1 12. 2.513. 168 14. 30° 15.2916.516=t或8,或320或4===ttt,三、解答题:(共66分)17.(满分6分)解:原式=[xxxxxxxx)1)(1()1()1(122-+⨯----]=xxxxx)1)(1(.1-+-=x+1……3分若原式的值为1,即x+1=1,x=0,但当x=0时,原式中除数为0,分式无意义,所以原代数式的值不可能为1.…………3分18. (满分8分)解:①×3-②得,y =3a-20 ③,把③代入①得,x =20-2a ………3分∵x>0,y>0∴⎩⎨⎧>->-2020203aa解得10320<<a………3分∴整数a为7,8,9. …………2分19.(满分8分)(1)作∠BAC的角平分线AD交BC边于点D,再作AD的垂直平分线交AB于点O,O为圆心,OA为半径作圆. …………4分(2)连结OD. ∵AD 平分∠BAC ∴∠DAC=∠DAB ∵OA=OD ∴∠ODA=∠DAB ∴∠DAC=∠ODA∴OD ∥AC ∴∠ODB=∠C ∵∠C=90º ∴∠ODB=90º 即:OD ⊥BC ∵OD 是⊙O 的半径 ∴ BC 是⊙O 的切线. …………2分 设⊙O 的半径为r.在Rt △OBD 中,∵∠B=30°,∴OD=21OB, 即r=21 (4-r) , ∴r=34 …………2分20. (满分10分)(1)△DFG 或△DHF …………3分 (2)画树状图得出:…………4分由树状图可知共有6种可能的结果,其中与△ABC 面积相等的有3种,即△DHF ,△DGF ,△EGF ,故所画三角形与△ABC 面积相等的概率P== . …………3分21.(满分10分)(1)∵四边形ABCD 是平行四边形,∴AD=BC ,∠ADC=∠B,∠DAE=∠AEB ∵∠AEB=∠ADC ∴∠B=∠AEB =∠DAE ∴AB=AE 在△ABC 和△EAD 中,AB=AE ,∠B=∠DAE ,BC=AD ∴△ABC ≌△EAD …………6分(2)∵∠DAE=∠BAE ,∠DAE=∠AEB , ∴∠BAE=∠AEB=∠B ∴△ABE 为等边三角形 …………2分∴∠BAE=600,∵∠EAC=20 ∴∠BAC=800…………1分∵△ABC ≌△EAD , ∴∠AED=∠BAC=800…………1分22. (满分12分) 解:(1)B (-1,-2) …………2分 ∴m =2 ∴a =2 …………2分 (2)由2=n-32可得n=2 …………1分 C 1 :y=22-x …………2分 L 1: y=2x-4 …………2分(3)1≤x <2或x ≥3 …………3分23. (满分12分)解:(1)直线2+-=x y A (2,0)B (0,2) ∴Rt △OAB 中,OA=OB=2 即∠OAB=45. …………………2分 (2)∵AF=2b ,BE=2a ,OA=2 ,OB=2 ∴OBAFBE OA =,又∵∠OAB=∠OBA=45° ∴△AOF ∽△BEO …………5分 (3)∵AE=2(2- a ),BF=2(2-b ), EF=AF- AE==2(a+b-2).∵)()()(b a b a b a BF AE +-+=-+-=+24222222222222+8,[]=-+=2222)(b a EF )(b a b a+-+242222+8, 222EF BF AE =+,∴AE,EF,BF 三条段组成的三角形是直角三角形.∴S 1 =22⎪⎭⎫ ⎝⎛EF π=π[22(a+b-2)]2=π21(a+b-2)2…………1分 S 2=21EF. 2sin45°=22(a+b-2) …………1分∴S 1+S 2=π21(a+b-2)2+22(a+b-2)=11222)(22-++--+πb a πb a π))((=111222)1(22-++--+πaa πa a π))(( =222)1(2⎥⎦⎤⎢⎣⎡+-a a π-12112222-+⎥⎦⎤⎢⎣⎡+--πa a π))( 当01=-aa ,即a =1时S 1+S 2有最小值,是1)12(2-2-+-πππ =1222-3-+ππ………3分。
2014年杭州市杭州中考一模试卷汇编
2014-2015杭州市中考一模试卷汇编2014年杭州市西湖区中考数学一模试卷 (2)2014年杭州市上城区中考数学一模试卷 (11)2014年杭州市下城区一模测试卷 (16)2014杭州市拱墅区中考数学一模试卷 (23)2014年杭州市滨江区一模测试卷 (29)2014年杭州市西湖区中考数学一模试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的4个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑,注意可以用多种不同的方法来选取正确答案。
1、)3(2)3(12-⨯--÷结果为( )A.18B.-10C.2D.18 2、如图,⊙O 是△ABC 的外接圆,∠OBC=40°,则∠A 的度数为( )A.40°B.50°C.80°D.100°3、已知a+1<b,且c 为非零实数,则可得( )A.bc ac <B.22bc ac < C.bc ac > D.22bc ac >4、将一个半径为6,圆心角为120°的扇形围城圆锥的侧面(无重叠),则圆锥的侧面积为( )A.6B.12C.6πD.12π 5、要使抛物线1632+-=x x y 平移后经过点(1,4),则可以将此抛物线( )A.向下平移2个单位B.向上平移6个单位C.向右平移1个单位D.向左平移2个单位6、同一平面内,若两圆圆心距是1与1,则两圆的位置关系是( )A.内含B.外离C.相交D.内切7、一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6,投两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为P0,P1,P2,P3,则P0,P1,P2,P3中最大的是()A. P0B. P1C. P2D. P38、某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“……”,设实际每天铺设管道x米,则可得方程300030001510x x-=-,根据此情景,题中用“……”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成9、二次函数2y ax bx c=++的图象开口向上,对称轴为直线x=-2,图象经过(1,0),则下列结论中,正确的一项是()A.c>0B.4ac-b2>0C.9a+c>3bD.5a>b10、如图,Rt△OAB的顶点O与坐标原点重合,角AOB=90°,AO=3BO,当AO=3BO,当A点在反比例函数y=9/x(x>0)的图象上移动时,B点坐标满足的函数解析式为()A.y=-1/x(x<0)B.y=-3/x(x<0)C.y=-1/3x (x<0)D.y=-1/9x(x<0)二.认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11、如图,CD 是⊙O 的直径,弦AB CD ⊥于点H ,若30D ∠=︒,1CH cm =,则AB =_____________.12、如图,在ABC ∆中,D ,E 分别是AB 和AC 的中点,F 是延长线BC 上一点,1CF =,DF 交CE 于点G ,且EG CG =,则BC =__________.13、如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,开始时B 到墙C 的距离为0.7米,若梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离相等,则下滑的距离是__________米.14、设直线27y x k =-++与直线43y x k =+-的交点为M ,若点M 在第一象限或第二象限,则k 的取值范围是__________.15、如图,是一个无盖玻璃容器的三视图,其中俯视图是一个正六边形,A 、B 两点均在容器顶部.现有一只小甲虫在容器外A 点正下方距离顶部5cm 处,要爬到容器内B 点正下方距离底部5cm 处,则这只小甲虫最短爬行距离是__________cm .16、如图,将二次函数2y x m =-(其中0m >)的图像在x 轴下方的部分沿x 轴翻转,图像的其余部分保持不变,形成新的图像记为1y ,另有一次函数y x b =+的图像记为2y ,则以下说法:①当1m =,且1y 与2y 恰有三个交点时b 有唯一值为1;②当2b =,且1y 与2y 恰有两个交点时,4m >或704m <<; ③当m b =时,1y 与2y 至少有2个交点,且其中一个为(0,)m ;④当m b =-时,1y 与2y 一定有交点. 其中正确说法的序号为__________.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤。
杭州市2014年各类高中招生文化模拟考试数学试题及答案
bc主视图左视图2a俯视图2014年各类高中招生文化考试(模拟卷)数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分) 1.已知31=-a b a ,则a b 的值为( )A .2B .21C .23D .322.某校九年级有12个班,一次数学测试后,分别求得各个班级的平均成绩,它们不完全相同。
下列说法正确的是( )A .将12个平均成绩之和除以12,就得到全年级学生的平均成绩;B .这12个平均成绩的中位数就是全年级学生的平均成绩;C .这12个平均成绩的众数不可能是全年级学生的平均成绩;D .全年级学生的平均成绩一定在这12个班平均成绩的最小值与最大值之间. 3.如图,是某几何体的三视图及相关数据,则下面判断正确的是( )A .a c >B .b c >C .2224a b c +=D .222a b c +=4.两圆的半径分别为,a b ,圆心距为8.若24840a a b -+-+=,则两圆的位置关系为( )A .内含B .相交C .外切D .外离5.若关于x 的不等式组3()12513x a x ax ->⎧⎪+⎨-<⎪⎩的其中一个整数解为2x =,则a 的值可能为( ) A .0 B .1- C .2- D .3-6. △ABC 有一边是另一边的2倍,又有一个内角等于30°,则下列正确的是( )A . △ABC 不是直角三角形B .△ABC 不是锐角三角形 C . △ABC 不是钝角三角形D .以上答案都不对.7.在一次函数5y x =-+的图象上取一点P ,作P A ⊥x 轴,垂足为A ,PB ⊥y 轴,垂足为B ,BCD AONM L M NL x xxxyyyyOOOO且矩形OAPB 的面积为4,则这样的点P 共有( )A . 4个B .3个C .2个D . 1个 8.如图,AB 是⊙O 的直径,CD ⊥AB 于点D ,设∠COD =2α ,则 2sin ABAD α∙的值是( ) 。
2014杭州各区一模考试分析.doc
一模考试硝烟散尽,同学们斩获几何?一定又是几家欢乐几家愁,还有一个多月中考了,我们要做的事情还很多,在这里和你一起给中考把把脉。
本文将做三件事情:1.分析2012、2013年模拟考试和中考的联系有多大,各区模拟题和中考题相似度多大。
2.分析2014年模拟题的知识点、难度分布,预测2014年中考题型和难度。
3.综合分析各区一模考试特点,整理出一套中考模拟题,共同学们参考。
【2012、2013模拟中考对比分析】整体分析分析结果:以上分析可以大致判断各区模拟题和中考题的相似程度,以及考查的知识点。
考查比重明显偏大的有化学实验、能量的转化与守恒两部分。
其余模块分值分布比较平均。
各区在模拟考试中比重略有偏差,但整体趋势是符合中考趋势的,分别将各区模拟题和中考题进行对比发现,2013年,江干、拱墅区模拟试题各知识点分值分布与中考最接近,西湖区电与磁、生命的延续和进化考查比例和中考差距较大,上城区生命的延续和进化考查比例和中考差距较大,江干区能量转化与守恒考查比例和中考差距较大,下城区、拱墅区电与磁考查比例和中考差距较大。
需要明确一点,上述分析对比只体现出分值比重,并不是难度对比,即:分值高的模块需要注意,但分值高不一定难度大。
例如化学实验中,只有探究实验部分是难度较大的,综合实验难度中等、基础实验难度较小。
复习过程中一定要选好方向,方向正确比努力学习更重要!!难度分析分析结果:各区模拟题和中考题试题难度以及各难度的比例相似,易:中:难=2:6:2。
其中江干、拱墅联考的一模试卷中等难度题目比重较大。
中考题难度分布和下城区最接近(几乎重合)。
如何正确对待题目难度呢?不同水平的同学接下来的努力方向应该不同:to目标前三的同学,你们的难题都会做了,下一阶段的任务是,回归基础,做容易题,保证不失分,保证零失误;to目标前八的同学,你们的知识都已经学会了,但见的题目还比较少,所以下一阶段的任务是,突破难题,提高做题速度,争取在考场上拿下更多难题,to目标普高的同学,你们的知识还有些漏洞,中等题目由于不熟悉,会出现一些马虎,所以下一阶段的任务是,多练习中等题目,这类题目分值最大,一旦突破,进步最快。
2014年杭州市各类高中招生模拟考试 数学
2014年杭州市各类高中招生模拟考试数 学考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4. 考试结束后, 试题卷和答题纸一并上交.试题卷一、仔细选一选(本题共10小题,每小题3分,共30分) 1. 下列图形中,属于对称图形的有A.1个B.2个C.3个D.4个 2. 已知21=a b ,并且4=a ,若222b a c +=,则c 的算术平方根为 A.-6 B.6和-6 C.6 D.6和6-3. 孙杨正在为备战第15届游泳世锦赛而刻苦训练. 为判断他的成绩是否稳定,教练要对他 10次训练的成绩进行统计分析,则教练需了解 10次成绩的 A .众数 B .方差 C .平均数 D .频数4. 在ABC Rt ∆中,︒=∠90C ,若135sin =A ,则A cos 的值为 A.138 B.125 C.1312 D.325. 如图,点P 是反比例函数xy 6=的图象上的任意一点,过点P 分别作两坐标轴的垂线,与坐标轴构成矩形OAPB ,点D 是矩形OAPB 内任意一点,连接DA 、DB 、DP 、DO ,则图中阴影部分的面积是A .1B . 2C .3D . 4(第5题)6. 已知一次函数k kx y -=,若y 随x 的增大而减小,则该函数的图象经过 A.一、二、三象限 B.一、二、四象限C.二、三、四象限 C.一、三、四象限7. 如图,在△ABC 中,∠ACB =100°,∠B =60°.在同一平面内,将△ABC 绕点C 旋转到△A ′B ′C 的位置,设旋转角为α(0°<α<180°).若C B '∥AB ,则旋转角α的度数为A . 60°B . 100°C . 60° 或 100°D . 60°或120°8.如图,点A 、B 、C 顺次在直线l 上,点M 是线段AC 的中点,点N 是线段BC 的中点. 要求出MN 的长度,那么只需条件A .AB =12 B .BC =4 C .AM =5D . CN =29. 已知曲线xk y 22+=,其中k 为变值,k 的取值范围为40≤≤k ,若此曲线的范围为04<x ≤-,那么在此曲线上可取到的最大值为A.18B.29C.29-D.21-10. 若实数c b a ,,满足c b a ≥≥,024=++c b a 且0≠a ,抛物线c bx ax y ++=2与x 轴交于)0,(1x A ,)0,(2x B ,则线段AB 的最大值是A.2B.3C.4D.5二、认真填一填(本题共6个小题,每小题4分,共24分)11. 2013年杭州中考体育考试共分三大类,考生可以自行选择每一大类的一个项目.耐力类测试项目包括:1000米跑步(男生)、800米跑步(女生)、游泳(100米).若选择每个项目的机会均等,那么一名男生、一名女生同时选择游泳项目的概率为 ▲ .12.已知函数k k y 2922+=,若此函数有意义,则k 的取值范围是 ▲ ,若当219=y ,则k 的值为 ▲ .(第8题)N M CB Al13.图中圆心角∠AOB=30°,弦CA∥OB,延长CO 与圆交于点D ,则∠BOD= ▲14.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =450,将△ADC 绕点A 顺时针旋转900后,得到△AFB ,连接EF ,下列结论:(1)△AED ≌△AEF ;(2)△ABE ∽△ACD ;(3)BE +DC =DE ;(4)2BE +2DC =2DE .其中正确的是 ▲ .15. 如图,AB 是⊙O 的直径,弦BC=4cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以1cm/s 的速度从A 点出发在AB 上沿着A→B→A 运动,设运动时间为t (s )(0≤t<16),连接EF ,当△BEF 是直角三角形时,t (s )的值为 ▲ .16.已知直角梯形ABCD 中,∠DAB =∠B =90°,AD =4,DC =BC =8,将四边形ABCD 折叠,使A 与C 重合,HK 为折痕, 则CH = ▲ ,AK = ▲ .三、全面答一答(本题7个小题,共66分)17.(本小题满分6分)已知一个函数的图象为抛物线,并且图象分别经过)16,3(),9,2(),0,1(C B A 三点,试求出此函数的解析式以及此函数的最值.18.(本小题满分8分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示. 圆O 与纸盒交于E 、F 、G 三点,已知EF =CD =16cm .(1)利用直尺和圆规作出圆心O ;(2)求出球的半径.19.(本小题满分8分)已知:如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°.(1)求∠EBC 的度数; (2)求证:BD=CD .20.(本小题满分10分)已知双曲线C :xy 4=和直线l :b kx y += (1)如果直线l 经过)3,1(和)5,2(两点,求证:直线l 与双曲线C 有交点;(2)若直线l 与坐标轴的y 轴交点为)2,0(,并且与双曲线C 有且只有一个交点。
杭州市上城区中考数学一模试题含答案
杭州市初中毕业升学文化考试上城区一模试卷数 学考生须知1.本科目试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2.答题前,考生务必用黑色水笔或签字笔填写学校、班级、姓名、座位号、考号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结求后,上交试题卷和答题卷.试题卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合趣目要求的 1.-5的相反数是( )A.5B.51 C.5 D.512.浙江省陆域面积为101800平方千米。
数据101800用科学记数法表示为( ) A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×1063.下列运算正确的是( ) A.(a 4)3=a 7 B.a 6÷a 3=a 2 C.(3ab )3=9a 3b 3 D.-a 5·a 5=-a 104. 四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。
现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( ) A. 43 B.1 C.21 D.415. 若代数式832+=x M ,x x N 422+=,则M 与N 的大小关系是( ) A. N M ≥ B.N M ≤ C.N M > D.N M <6.下表是某校合唱团成员的年龄分布,对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) A.平均数、中位数 B.众数、方差 C.平均数、方差 D .众数、中位数年龄/岁13 14 15 16 频数5 15 x 10- x7.如图,⊙O 的半径OC 与弦AB 交于点D ,连结OA ,AC ,CB ,BO ,则下列条件中,无法判断四边形OACB 为菱形的是( ) A. ∠DAC=∠DBC=30。
2014年杭州市各类高中招生文化考试数学模拟试卷及答案
杭州市2014年各类高中招生文化考试数学模拟试卷一、选择题(本题有10个小题, 每小题3分, 共30分)⒈下列运算正确的是 ( )A .2325a a a += B.632a a a =⋅ C .()()22a b a b a b +-=- D .()222a b a b +=+⒉某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数是( )A .9.4×10-7 mB .9.4×107mC .9.4×10-8mD .9.4×108m ⒊若55x x -=-,下列不等式成立的是( )A .x-5>0B .x-5<0 C. x-5≥0 D .x-5≤0则m 与v 之间的关系最接近于下列各关系式中的( )A .v =2m 一2B . v =m 2一1 C. v =3m 一3 D . v =m 十1 ⒌2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35 ,31 ,33,30 ,33 ,31,则下列表述错误的是( )A .众数是31B .中位数是30C .平均数是32D .极差是5 ⒍下列关于分式的判断,正确的是( )A .当x=2时,12x x +-的值为零B .当x ≠3时,3x x-有意义 C .无论x为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数⒎如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=75°,∠C=45°,那么sin ∠AEB 的值为( ) A.12⒏如果不等式组 213(1)x x x m ->-⎧⎨<⎩的解集是x <2,那么m 的取值范围是( )A .m=2B .m >2C .m <2D .m ≥2⒐如图,ABC ∆中,BC AB ⊥,4==BC AB ,D 为BC 的中点,在AC 边上存在一点E,连结EBED ,,则BDE ∆周长的最小值为( ) A .52 B .32 C .252+ D .232+C⒑ 如图,ABC △和的DEF △是等腰直角三角形,90C F ∠=∠=,24AB DE ==,.点B 与点D 重合,点A B D E ,(),在同一条直线上,将ABC △沿D E →方向平移,至点A 与点E 重合时停止.设点B D ,之间的距离为x ,ABC △与DEF △重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )二、填空题 (本题有6个小题, 每小题4分, 共24分)⒒因式分解23xy x -=______________.⒓将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为______________. ⒔同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为______________.⒕如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx-2的解集是______________.⒖如图,在△ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .若AC=6,AB=10,则⊙O 的半径为______________.⒗如图,已知等边ABC △,D 是边BC 的中点,过D 作DE ∥AB 于E , 连结BE 交AD 于D 1;过D 1作D 1E 1∥AB 于E 1,连结BE 1交AD 于D 2; 过D 2作D 2E 2∥AB 于E 2,…,如此继续,若记BDE S △为S 1,记11B D E S △为S 2,记22B D E S △为S 3…,若ABC S △面积为Scm 2,则Sn=______________cm 2.(用含n 与S 的代数式表示)三、解答题(本大题共7小题,共66分)17.(本小题满分6分)解下列方程(1)01422=-+x x (2)123)45(cos 0+=︒x x 18. (本小题满分8分)如图,已知E 、F 分别是平行四边形ABCD 的边BC 、AD 上的点,且BE=DF .(1)求证:四边形AECF 是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF 是菱形,求DF 的长.19.(本小题满分8分)在某市房交会期间,某房地产公司对参加本次房交会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.根据调查问卷,将消费者打算购买住房面积的情况整理后,作出部分频数分布直方图和扇形统计图.根据以上信息回答下列问题:(1)根据表格可得a= ,被调查的1000名消费者的平均年收入为 万元; (2)补全频数分布直方图和扇形统计图; (3)若该市现有购房打算的约有40000人,请估计购房面积在80至120平方米的大约有多少人?20.(本小题满分10分)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元. (1)每台电脑机箱、液晶显示器的进价各是多少元? (2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少? 21.(本小题满分10分) 如图,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =x6(x >0)图象上的任意一点,以P 为圆心,PO 为半径的圆与x 、y 轴分别交于点A 、B .(1)判断P 是否在线段AB 上,并说明理由; (2)求△AOB 的面积;(3)Q 是反比例函数y =x6(x >0)图象上异于点P 的另一点,请以Q 为圆心,QO 半径画圆与x 、y 轴分别交于点M 、N ,连接AN 、MB .求证:AN ∥MB .22.(本小题满分12分)已知△ABC 是等腰直角三角形,∠A=90°,D 是腰AC 上的一个动点,过C 作CE 垂直于BD 或BD 的延长线,垂足为E ,如图.(1)若BD 是AC 边上的中线,求CEBD的值; (2)若BD 是∠ABC 的角平分线,求 CE BD的值;(3)结合(1)、(2),试推断 CEBD的取值范围(直接写出结论,不必证明),并探究CE BD 的值能等于 34吗?若能,求出满足条件的D 点的位置;若不能,说明理由.23.(本小题满分12分)如图1所示,抛物线y=x 2+bx+c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若tan ∠OAC=2. (1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l 上是否存在点P ,使∠APC=90°?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点,过点M 作直线l′∥l ,交抛物线于点N ,连接CN 、BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?答案一、选择题(本题有10个小题, 每小题3分, 共30分)二、填空题 (本题有6个小题, 每小题4分, 共24分)⒒x(x+y)(x-y) ⒓ 28° ⒔16 ⒕ 1<x <2 ⒖154 ⒗()21s n +三、解答题(本大题共7小题,共66分)17.(1)2611+-=x ,2612--=x …………………..3分 (2)1=x …………………….2分 检验根1分18.(1)判定合理……………………4分 (2)DF=5…………………….4分19.(1)a=200……1分;2.39万元…….2分 (2)补全1个各1分 (3)24000人…….2分20.(1)解:设电脑机箱x 元,液晶显示器y 元4120527000810=+=+y x y x …………2分解之得:80060==y x ………………….1分答:电脑机箱60元,液晶显示器800元…………………..1分(2)解:设购进机箱x 台,则购进液晶显示器(50-x)台,根据题意得:4100)50(1601022240)50(80060≥-+≤-+x x x x 263224≤≤∴x …………………………..4分x 取整数,所以25=x 、26………………….1分有两种进货方案①购进机箱和液晶显示器均25台②购进机箱26台,液晶显示器24台 利润8000150+-=x w 因为w 随着x 的增大而减小,所以当x=25时,利润最大,最大利润是:4250元………………………1分21.解:(1)点P 在线段AB 上,理由如下: ∵点O 在⊙P 上,且∠AOB =90°∴AB 是⊙P 的直径∴点P 在线段AB 上.………………….3分(2)过点P 作PP 1⊥x 轴,PP 2⊥y 轴,由题意可知PP 1、PP 2是△AOB 的中位线,故S △AOB =21OA×OB =21×2 PP 1×PP 2 ∵P 是反比例函数y =x6(x >0)图象上的任意一点 ∴S △AOB =21OA ×OB =21×2 PP 1×2PP 2=2 PP 1×PP 2=12.………………….3分(3)如图,连接MN ,则MN 过点Q ,且S △MON =S △AOB =12.∴OA ·OB =OM ·ON ∴OBON OM OA =∵∠AON =∠MOB ∴△AON ∽△MOB ∴∠OAN =∠OMB ∴AN ∥MB .……………………………4分22.此题方法不唯一,可以用代数方法,也可以用几何方法 方法1:设AB=AC=1,CD=x ,由△ABD ∽△ECD 得到22-+==xx CE BD y (1) BD 是AC 边上的中线25=CE BD ………………4分 (2) BD 是角平分线,AB BC AD CD =,得到2=CEBD…………………4分 (3)1≥CEBD,可以, D 从A 向C 移动时,BD 逐渐增大,CE 的值逐渐增大. 617-=DC AD………………………4分 方法2:(1)利用相似和勾股定理计算,得出25=CE BD (2)如图:利用△ABD ≌△ACF,得BD=CF,所以2=CEBD(3)同上23.(1)232+-=x x y ………………4分(2)存在)21,23(1P ,)23,23(2P …………………4分(3)1=t 时,面积最大,最大面积为1……………………4分。
2014年浙江省杭州市各类高中招生文化考试数学试卷
2014 年浙江省杭州市各种高中招生文化考试数学试卷一、认真选一选(此题有10 个小题,每题 3 分,共 30 分)1. 3a?(﹣ 2a)2=()A .﹣ 12a3B.﹣ 6a2 C.12a3 D. 6a3考点:单项式乘单项式;幂的乘方与积的乘方.分析:第一利用积的乘方将括号睁开,从而利用单项式乘以单项式求出即可.3a?(﹣ 2a)2=3a ×4a2 =12a3.答案: C2.已知一个圆锥体的三视图以下图,则这个圆锥的侧面积为()2222A . 12π cm B.15π cm C. 24π cm D . 30π cm考点:圆锥的计算分析:俯视图为圆的只有圆锥,圆柱,球,依据主视图和左视图都是三角形可获得此几何体为圆锥,那么侧面积 =底面周长×母线长÷2.∵底面半径为3,高为 4,∴圆锥母线长为5,2∴侧面积 =2πrR÷2=15πcm.答案: B3.在直角三角形ABC 中,已知∠ C=90°,∠ A=40°, BC=3 ,则 AC= ()A . 3sin40 ° B.3sin50 ° C. 3tan40 ° D . 3tan50 °考点:解直角三角形分析:利用直角三角形两锐角互余求得∠ B 的度数,而后依据正切函数的定义即可求解.∠B=90°﹣∠ A=90°﹣ 40°=50°,又∵ tanB=,∴AC=BC?tanB=3tan50°.答案: D4.已知边长为 a 的正方形的面积为8,则以下说法中,错误的选项是()A . a 是无理数B. a 是方程 x2﹣ 8=0 的解C.a 是 8 的算术平方根D. a 知足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.分析:第一依据正方形的面积公式求得 a 的值,而后依据算术平方根以及方程的解的定义即可作出判断.a= =2,则 a 是 a 是无理数, a 是方程 x2﹣ 8=0 的解,是8 的算术平方根都正确;解不等式组,得: 3< a< 4,而 2< 3,故错误.答案: D5.以下命题中,正确的选项是()A .梯形的对角线相等B .菱形的对角线不相等C.矩形的对角线不可以相互垂直D.平行四边形的对角线能够相互垂直考点:命题与定理.分析:依据等腰梯形的判断与性质对 A 进行判断;依据菱形的性质对 B 进行判断;根据矩形的性质对 C 进行判断;依据平行四边形的性质对 D 进行判断.A 、等腰梯形的对角线相等,因此 A 选项错误;B、菱形的对角线不必定相等,若相等,则菱形变为正方形,因此 B 选项错误;C、矩形的对角线不必定相互垂直,若相互垂直,则矩形变为正方形,因此C选项错误;D、平行四边形的对角线能够相互垂直,此时平行四边形变为菱形,因此 D 选项正确.答案: D6.函数的自变量x 知足≤ x≤2时,函数值y 知足≤ y≤1,则这个函数能够是()A . y=B.y=C.y=D. y=考点:反比率函数的性质.分析:把 x=代入四个选项中的分析式可得y 的值,再把x=2 代入分析式可得y 的值,而后可得答案.A 、把 x=代入y=可得y=1,把x=2代入y=可得y=,故此选项正确;B、把 x=代入y=可得y=4,把x=2代入y=可得y=1,故此选项错误;C、把 x=代入y=可得y=,把x=2代入y=可得y=,故此选项错误;D、把 x=代入y=可得y=16,把x=2代入y=可得y=4,故此选项错误;7.若(+)?w=1,则w=()A . a+2( a≠﹣ 2) B.﹣ a+2( a≠2) C. a﹣ 2( a≠2)D.﹣ a﹣ 2(a≠﹣ 2)考点:分式的混淆运算分析:原式变形后,计算即可确立出W .依据题意得:W===﹣( a+2) =﹣ a﹣ 2.答案: D8.已知 2001 年至 2012 年杭州市小学学校数目(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出以下四个结论:①学校数目2007 年~ 2012 年比 2001~ 2006 年更稳固;②在校学生人数有两次连续降落,两次连续增加的变化过程;③ 2009 年的大于 1000;④ 2009~ 2012年,相邻两年的学校数目增加和在校学生人数增加最快的都是2011 ~2012 年.此中,正确的结论是()A .①②③④B .①②③C.①② D .③④考点:折线统计图;条形统计图.分析:①依据条形统计图可知,学校数目2001~ 2006 年降落幅度较大,最多1354 所,最少 605 所,而 2007 年~ 2012 年学校数目都是在400 因此上, 440 因此下,故结论正确;②由折线统计图可知,在校学生人数有 2001 年~ 2003 年、 2006 年~ 2009 年两次连续降落,2004 年~ 2006 年、 2009 年~ 2012 年两次连续增加的变化过程,故结论正确;③由统计图可知,2009 年的在校学生445192 人,学校数目417 所,因此 2009 年的==1067>1000,故结论正确;④∵ 2009~ 2010 年学校数目增加率为≈﹣ 2.16%,2010~2011年学校数目增加率为≈ 0.245%,2011~2012年学校数目增加率为≈ 1.47%,1.47%> 0.245%>﹣2.16%,∴ 2009~ 2012年,相邻两年的学校数目增加最快的是2011~ 2012 年;∵ 2009~ 2010年在校学生人数增加率为≈1.96%,2010~2011年在校学生人数增加率为≈ 2.510%,2011~2012年在校学生人数增加率为≈ 1.574%,2.510%>1.96%> 1.574%,∴ 2009~ 2012 年,相邻两年的在校学生人数增加最快的是2010~ 2011 年,故结论错误.综上所述,正确的结论是:①②③.答案: B9.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的地区,则两个数的和是 2 的倍数或 3 的倍数的概率等于()A.B.C.D.考点:列表法与树状图法.分析:列表得出全部等可能的状况数,找出两个数的和是 2 的倍数或 3 的倍数状况,即可求出所求概率.列表以下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)( 4,4)全部等可能的状况有 16种,此中两个数的和是 2 的倍数或 3 的倍数状况有 10 种,则P= =.答案: C10.已知 AD ∥ BC , AB ⊥ AD ,点B对于 AC 对称,点 E与点 F对于 BDE,点 F 分别在射线AD ,射线 BC 上.若点 E 与点对称, AC 与 BD 订交于点G,则()A . 1+tan∠ ADB=B .2BC=5CFC .∠ AEB+22°=∠ DEF D. 4cos∠ AGB=考点:轴对称的性质;解直角三角形.分析:连结CE,设 EF 与 BD 订交于点O,依据轴对称性可得AB=AE ,并设为1,利用勾股定理列式求出BE,再依据翻折的性质可得DE=BF=BE ,再求出BC=1 ,而后对各选项剖析判断利用清除法求解.如图,连结CE,设 EF 与 BD 订交于点 O,由轴对称性得,AB=AE ,设为 1,则BE==,∵点 E与点 F对于 BD 对称,∴ DE=BF=BE=,∴ AD=1+,∵AD ∥ BC, AB ⊥ AD ,AB=AE ,∴四边形 ABCE 是正方形,∴ BC=AB=1 ,1+tan∠ ADB=1+=1+﹣1=,故A选项结论正确;CF=BF ﹣ BC=﹣1,∴2BC=2× 1=2 ,5CF=5 (﹣1),∴2BC≠5CF,故 B 选项结论错误;∠ AEB+22° =45°+22°=67°,在 Rt△ABD 中, BD===,sin∠ DEF===,∴∠ DEF≠67°,故 C 选项结论错误;由勾股定理得,OE2 =()2﹣()2=,∴OE=,∵∠ EBG+ ∠ AGB=90°,∠EGB+ ∠ BEF=90°,∴∠ AGB= ∠BEF ,又∵∠ BEF= ∠ DEF ,∴ 4cos∠ AGB===,故D选项结论错误.答案: A二、认真填一填(此题共 6 个小题,每题 4 分,共 24 分)11. 2012 年终统计,杭州市常住人口是880.2 万人,用科学记数法表示为×106人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,此中 1≤|a|< 10,n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.880.2 万6 10×,答案: 8.802 ×106.12.已知直线a∥b,若∠ 1=40 ° 50,′则∠ 2=139 ° 10′.考点:平行线的性质;度分秒的换算.分析:依据对顶角相等可得∠3=∠1,再依据两直线平行,同旁内角互补列式计算即可得解.∠3=∠1=40°50,′∵ a∥ b,∴∠ 2=180°﹣∠ 3=180°﹣ 40°50′=139°.10′答案: 139°10.′13.设实数x、 y 知足方程组,则x+y=8.考点:解二元一次方程组.分析:方程组利用加减消元法求出解获得x 与 y 的值,即可确立出x+y 的值.,①+②得: x=6,即 x=9;①﹣②得:﹣ 2y=2,即 y= ﹣ 1,∴方程组的解为,则 x+y=9 ﹣ 1=8 .答案: 814.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 15.6 ℃.考点:折线统计图;中位数.分析:依据中位数的定义解答.将这组数据从小到大从头摆列,求出最中间两个数的平均数即可.把这些数从小到大摆列为:,,,,,,最中间的两个数的均匀数是()÷2=15.6 (℃),则这六个整点时气温的中位数是℃;答案:.15.设抛物线 y=ax 2+bx+c ( a≠0)过 A ( 0, 2), B( 4, 3), C 三点,此中点 C 在直线 x=2 上,且点 C 到抛物线的对称轴的距离等于1,则抛物线的函数分析式为y= x2﹣x+2或 y= ﹣x2+ x+2.考点:二次函数图象上点的坐标特点;待定系数法求二次函数分析式.分析:依据点 C 的地点分状况确立出对称轴分析式,而后设出抛物线分析式,再把点A、B 的坐标代入求解即可.∵点 C 在直线 x=2 上,且到抛物线的对称轴的距离等于1,∴抛物线的对称轴为直线 x=1 或 x=3,当对称轴为直线 x=1 时,设抛物线分析式为2y=a( x﹣1) +k ,则,解得,因此, y=(x﹣1)2+= x2﹣x+2,当对称轴为直线x=3 时,设抛物线分析式为y=a( x﹣3)2+k ,则,解得,因此, y=﹣( x﹣ 3)2+ =﹣ x2+x+2 ,综上所述,抛物线的函数分析式为y=x2﹣x+2 或 y= ﹣ x2+ x+2 .答案: y= x2﹣ x+2 或 y= ﹣ x2+x+2 .16.点 A , B , C 都在半径为 r 的圆上,直线AD ⊥直线 BC,垂足为 D,直线 BE⊥直线 AC ,垂足为 E,直线 AD 与 BE 订交于点 H.若 BH=AC ,则∠ ABC 所对的弧长等于πr或r (长度单位).考点:弧长的计算;圆周角定理;相像三角形的判断与性质;特别角的三角函数值.分析:作出图形,依据同角的余角相等求出∠H= ∠ C,再依据两角对应相等,两三角形相像求出△ ACD 和△ BHD 相像,依据相像三角形对应边成比率列式求出,再利用锐角三角函数求出∠ ABC ,而后依据在同圆或等圆中,同弧所对的圆心角等于圆周角的 2 倍求出∠ABC 所对的弧长所对的圆心角,而后利用弧长公式列式计算即可得解.如图 1,∵ AD ⊥BC , BE⊥ AC ,∴∠ H+∠ DBH=90°,∠C+∠DBH=90°,∴∠ H=∠ C,又∵∠ BDH= ∠ADC=90°,∴△ ACD ∽△ BHD ,∴ = ,∵ BH=AC ,∴ =,∴∠ ABC=30°,∴∠ ABC 所对的弧长所对的圆心角为30°×2=60°,∴∠ ABC 所对的弧长 ==πr.如图 2,∠ ABC 所对的弧长所对的圆心角为300°,∴∠ ABC 所对的弧长 ==πr.答案:πr或r.三、全面答一答(此题共7 小题,共66 分)解答应写出文字说明,证明过程或演算步骤,假如感觉有的题目有点困难,那么把自己能写出的解答写出一部分也能够.17.一个布袋中装有只有颜色不一样的 a( a> 12)个球,分别是 2 个白球, 4 个黑球, 6 个红球和 b 个黄球,从中随意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完好).请补全该统计图并求出的值.考点:条形统计图;概率公式.分析:第一依据黑球数÷总数 =摸出黑球的频次,再计算出摸出白球,黑球,红球的概率可得答案.球的总数: 4÷0.2=20 (个),2+4+6+b=20 ,解得: b=8 ,摸出白球频次:2÷,摸出红球的概率:6÷,=.18.在△ ABC 中, AB=AC ,点 E,F 分别在 AB ,AC 上, AE=AF ,BF 与 CE 订交于点P.求证: PB=PC ,并直接写出图中其余相等的线段.考点:全等三角形的判断与性质;等腰三角形的性质.分析:可证明△ ABF ≌△ ACE ,则 BF=CE ,再证明△ BEP≌△ CFP,则 PB=PC,从而可得出 PE=PF, BE=CF .在△ ABF 和△ ACE 中,,∴△ ABF ≌△ ACE ( SAS),∴∠ ABF= ∠ ACE (全等三角形的对应角相等),∴BF=CE (全等三角形的对应边相等),∵ AB=AC , AE=AF ,∴BE=BF ,在△ BEP 和△ CFP 中,,∴△ BEP≌△ CFP( AAS ),∴ PB=PC,∵ BF=CE ,∴ PE=PF,∴图中相等的线段为PE=PF, BE=CF .19.设 y=kx ,能否存在实数k,使得代数式( x2﹣ y2)( 4x2﹣ y2)+3x 2(4x2﹣ y2)能化简为 x4?若能,恳求出全部知足条件的k 的值;若不可以,请说明原因.考点:因式分解的应用.分析:先利用因式分解获得原式=(4x2﹣ y2)( x2﹣ y2+3x 2)=( 4x2﹣ y2)2,再把当 y=kx代入获得原式 =( 4x 222224,因此当2知足条件,而后解对于k 的方﹣ k x) =(4﹣ k) x4﹣ k =1程即可.能.(x2﹣ y2)( 4x2﹣ y2) +3x 2( 4x2﹣y2)22222)=( 4x ﹣ y )( x ﹣ y +3x=( 4x 2﹣ y2)2,当 y=kx ,原式 =( 4x2﹣ k2x2)2=( 4﹣ k2)2 x4,令( 4﹣ k2)2=1,解得 k= ±或±,即当 k=±或±时,原代数式可化简为 x4.20.把一条12 个单位长度的线段分红三条线段,此中一条线段成为 4 个单位长度,另两条线段长都是单位长度的整数倍.(1)不一样分段获得的三条线段能构成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保存作图印迹);(2)求出( 1)中所作三角形外接圆的周长.考点:作图—应用与设计作图.分析:( 1)由题意得:三角形的三边长分别为:4,4, 4; 3,4, 5;即不一样分段获得的三条线段能构成 2 个不全等的三角形,以下图:( 2)以下图:当三边的单位长度分别为3,4,5,可知三角形为直角三角形,此时外接圆的半径为;当三边的单位长度分别为4, 4, 4.三角形为等边三角形,此时外接圆的半径为,∴当三条线段分别为3,4, 5 时其外接圆周长为:2π× 2.5=5;π当三条线段分别为4, 4,4 时其外接圆周长为:2π×=π.21.在直角坐标系中,设x 轴为直线l ,函数 y=﹣x,y=x 的图象分别是直线l 1,l 2,圆 P(以点P 为圆心, 1 为半径)与直线l, l1, l 2中的两条相切.比如(,1)是其中一个圆 P 的圆心坐标.( 1)写出其余知足条件的圆P 的圆心坐标;( 2)在图中标出全部圆心,并用线段挨次连结各圆心,求所得几何图形的周长.考点:圆的综合题;切线长定理;轴对称图形;特别角的三角函数值.分析:( 1)①若圆P 与直线 l 和 l 2都相切,当点 P 在第四象限时,过点 P 作 PH⊥ x 轴,垂足为H ,连结 OP,如图 1 所示.设 y=x 的图象与x 轴的夹角为α.当 x=1 时, y=.∴tan α= .∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴ tan∠ POH===.∴OH=.∴点 P 的坐标为(,﹣ 1).同理可得:当点 P 在第二象限时,点P 的坐标为(﹣, 1);当点 P 在第三象限时,点P 的坐标为(﹣,﹣ 1);②若圆 P 与直线 l 和 l 1都相切,如图 2 所示.同理可得:当点 P 在第一象限时,点P 的坐标为(, 1);当点 P 在第二象限时,点P 的坐标为(﹣, 1);当点 P 在第三象限时,点P 的坐标为(﹣,﹣ 1);当点 P 在第四象限时,点P 的坐标为(,﹣ 1).③若圆 P 与直线 l 1和 l 2都相切,如图 3 所示.同理可得:当点 P 在 x 轴的正半轴上时,点P 的坐标为(,0);当点 P 在 x 轴的负半轴上时,点P 的坐标为(﹣, 0);当点 P 在 y 轴的正半轴上时,点P 的坐标为(0,2);当点 P 在 y 轴的负半轴上时,点P 的坐标为(0,﹣ 2).综上所述:其余知足条件的圆P 的圆心坐标有:(,﹣ 1)、(﹣, 1)、(﹣,﹣ 1)、(, 1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(, 0)、(﹣,0)、(0,2)、(0,﹣2).( 2)用线段挨次连结各圆心,所得几何图形,如图 4 所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的全部的边都相等.∴该图形的周长=12×(﹣)=8.22.菱形 ABCD 的对角线AC , BD 订交于点O,AC=4,BD=4,动点P在线段BD 上从点 B 向点 D 运动, PF⊥ AB 于点 F,四边形PFBG 对于 BD 对称,四边形QEDH 与四边形 PEBG 对于 AC 对称.设菱形ABCD 被这两个四边形遮住部分的面积为S1,未被遮住部分的面积为S2, BP=x .( 1)用含 x 的代数式分别表示S1,S2;( 2)若 S1=S2,求 x 的值.考点:四边形综合题;菱形的性质;轴对称的性质;轴对称图形;特别角的三角函数值.分析:( 1)①当点P 在 BO 上时,如图 1 所示.∵四边形 ABCD 是菱形, AC=4,BD=4,∴ AC ⊥BD , BO= BD=2 , AO= AC=2,且 S 菱形ABCD = BD?AC=8.∴tan∠ ABO= = .∴∠ABO=60° .在 Rt△BFP 中,∵∠ BFP=90°,∠ FBP=60°, BP=x ,∴ sin∠ FBP===sin60 °=.∴FP= x.∴BF= .∵四边形 PFBG 对于 BD 对称,四边形 QEDH 与四边形PEBG 对于 AC 对称,∴S△BFP=S △ BGP=S △ DEQ=S △ DHQ .∴S1=4S△ BFP=4× ×x?=.∴S2=8﹣.②当点 P 在 OD 上时,如图 2 所示.∵AB=4 ,BF= ,∴AF=AB ﹣ BF=4﹣.在 Rt△AFM 中,∵∠ AFM=90°,∠ FAM=30°, AF=4 ﹣.∴ tan∠ FAM==tan30 °=.∴FM=(4﹣).∴S△AFM = AF?FM=(4﹣)? (4﹣)=(4﹣)2.∵四边形 PFBG 对于 BD 对称,四边形 QEDH 与四边形PEBG 对于 AC 对称,∴S△AFM=S △ AEM=S △CHN=S △ CGN .∴S2=4S△ AFM=4×(4﹣)2=( x﹣ 8) 2.∴ S1=8﹣S2=8﹣(x﹣8)2.综上所述:当点 P 在 BO 上时, S1=,S2=8﹣;当点 P 在 OD 上时, S1=8﹣(x﹣8)2,S2=(x﹣8)2.( 2)①当点P 在 BO 上时, 0< x≤2.∵ S1=S2, S1+S2=8,∴S1=4 .∴ S1==4.解得: x1=2, x2=﹣2 .∵2 >2,﹣ 2<0,∴当点 P 在 BO 上时, S1=S2的状况不存在.②当点 P 在 OD 上时, 2< x≤4.∵ S1=S2, S1+S2=8,∴S2=4 .∴S2= ( x﹣ 8)2=4 .解得: x1=8+2, x2=8﹣ 2 .∵ 8+2 > 4,2< 8﹣ 2< 4,∴x=8 ﹣2 .综上所述:若S1 =S2,则 x 的值为 8﹣2.23.复习课中,教师给出对于x 的函数 y=2kx 2﹣( 4kx+1 ) x﹣ k+1 (k 是实数).教师:请独立思虑,并把探究发现的与该函数相关的结论(性质)写到黑板上.学生思虑后,黑板上出现了一些结论.教师作为活动一员,又增补一些结论,并从中选出以下四条:①存在函数,其图象经过(1, 0)点;②函数图象与坐标轴总有三个不一样的交点;③当 x> 1 时,不是 y 随 x 的增大而增大就是 y 随 x 的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出原因.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题.分析:①真,将(1, 0)代入可得: 2k﹣( 4k+1 )﹣ k+1=0 ,解得: k=0 .运用方程思想;②假,反例:k=0 时,只有两个交点.运用举反例的方法;③假,如 k=1 ,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当 k=0 时,函数无最大、最小值;k≠0时, y 最 ==﹣,∴当 k> 0 时,有最小值,最小值为负;当 k<0 时,有最大值,最大值为正.运用分类议论思想.。
初中数学杭州市各类高中招生文化考试上城区一模数学考试卷
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列判断中,你认为正确的是()A.0的倒数是0 B.是分数 C.大于1 D.的值是±2试题2:2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币. 将51 800 000 000用科学记数法表示正确的是()A. 5.18×1010B. 51.8×109C. 0.518×1011D. 518×108试题3:下面四个几何体中,左视图是四边形的几何体共有()A. 1个B. 2个C. 3个 D. 4个试题4:下列函数的图象,经过原点的是()评卷人得分A. B. C. D.试题5:为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨) 4 5 6 9户数 3 4 2 1则关于这10户家庭的月用水量,下列说法错误的是()A.中位数是5吨B.众数是5吨C.极差是3吨 D.平均数是5.3吨试题6:如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD,若BD=6,DF=4,则菱形ABCD的边长为()A.4B.3C.5D.7试题7:Rt△ABC中,∠C=90°,、、分别是∠A、∠B、∠C的对边,那么等于()A. B.C. D.试题8:已知下列命题:①若,则;②若,则;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是()A. ①③④B. ①②④C. ③④⑤D.②③⑤试题9:甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少( )A.12天B.14天C.16天D.18天试题10:梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3 ,且S1 +S3 =4S2,则CD=()A. 2.5ABB. 3ABC. 3.5ABD. 4AB试题11:分解因式:.试题12:如图,△OPQ是边长为2的等边三角形,若反比例函数的图象过点P,则它的解析式是 .试题13:如图是与杨辉三角有类似性质的三角形数垒,是相邻两行的前四个数(如图所示),那么当a=8时,,.试题14:如图所示,圆锥的母线长OA=8,底面的半径r=2,若一只小虫从A点出发,绕圆锥的侧面爬行一周后又回到A点,则小虫爬行的最短路线的长是.试题15:将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.试题16:如图,已知△OP1A1、△A1P2A2、△A2P3A3、……均为等腰直角三角形,直角顶点P1、P2、P3、……在函数(x>0)图象上,点A1、A2、A3、……在x轴的正半轴上,则点P2010的横坐标为 .试题17:计算:+;试题18:已知x2-5x=3,求的值.试题19:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.试题20:在如图的方格纸中,每个小正方形的边长都为l.(1)画出将△A1B1C1,沿直线DE方向向上平移5格得到的△A2B2C2;(2)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(直接写出答案)试题21:有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=上的概率.试题22:由于电力紧张,某地决定对工厂实行“峰谷”用电.规定:在每天的8:00至22:00为“峰电”期,电价为a元/度;每天22:00至8:00为为“谷电”期,电价为b元/度.下表为某厂4、5月份的用电量和电费的情况统计表:月份用电量(万度)电费(万元)4 12 6.45 16 8.8(1)若4月份“谷电”的用电量占当月总电量的,5月份“谷电”的用电量占当月总用电量的,求a、b的值.(2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在“谷电”的用电量占当月用电量的比例应在什么范围?试题23:观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图),则sinB=,sinC=,即AD=c sin B,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC中,∠B=450,∠C=750,BC=60,则∠A= ;AC= ;(2)如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.试题24:已知四边形ABCD,E是CD上的一点,连接AE、BE.(1)给出四个条件: ①AE平分∠BAD,②BE平分∠ABC,③AE⊥EB,④AB=AD+BC.请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以证明;(2)请你判断命题“AE平分∠BAD,BE平分∠ABC,E是CD的中点,则AD∥BC”是否正确,并说明理由.试题25:如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D.(1)求抛物线的解析式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动. 设S=PQ2(cm2) ①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标. 中试题1答案:C试题2答案:A试题3答案:B试题4答案:A试题5答案:C试题6答案:D试题7答案:B试题8答案:C试题9答案:D试题10答案:B试题11答案:试题12答案:y=试题13答案:9,37 (每空2分)试题14答案:8试题15答案:4 ,(答对1个得2分,答错不扣分)试题16答案:2(+)试题17答案:原式 = 4 – 2 – 1 + 1 ……………2分=x2 ……………1分试题18答案:原式=x2-5x+1 ……………2分= 3+1 = 4 ……………1分试题19答案:(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,……1分又∵BD=CD,∴AD是BC的垂直平分线,……………1分∴AB=AC ……………1分(2)连接OD,∵点O、D分别是AB、BC的中点,∴OD∥AC又DE⊥AC,∴OD⊥DE ……………2分∴DE为⊙O的切线.……………1分试题20答案:解:(1)图形正确……………2分结论……………1分(2)至少旋转90.…………3分试题21答案:(1)(2)落在直线y=上的点Q有:(1,-3);(2,-4) ……………2分∴P==……………2分试题22答案:(1) 由题意,得×12a+×12b=6.4 8a+4b=6.4×16a+×16b=8.8 12a+4b=8.8 ……………2分(列对1个得1分)解得a=0.6 b=0.4 ……………2分(每个1分)(2)设6月份“谷电”的用电量占当月总电量的比例为k.由题意,得10<20(1-k)×0.6+20k×0.4<10.6 ……………1分解得0.35<k<0.5 ……………2分答:该厂6月份在平稳期的用电量占当月用电量的比例在35%到50%之间(不含35%和50%).试题23答案:解:(1)∠A=600,AC=……………2分(2)如图,依题意:BC=60×0.5=30(海里)……………1分∵CD∥BE ,∴∠DCB+∠CBE=1800∵∠DCB=300,∴∠CBE=1500∵∠ABE=750。
2014杭州中考数学卷(PDF版,有答案)
6
23.(本小题满分 12 分) 复习课中,教师给出关于 x 的函数 y 2kx2 (4k 1) x k 1 (k 为实数) 。 教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写在黑板上。 学生独立思考后,黑板上出现了一些结论,教师作为活动一员,又补充一些结论,并从 中选择如下四条: ①存在函数,其图像经过点(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当 x>1 时,不是 y 随 x 的增大而增大就是 y 随 x 的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 教师:请你分别判断四条结论的真假,并给出理由。最后简单写出解决问题时所用的数 学方法。
考点:解直角三角形
4、D a 2 8, a 2 2 A. 2为无理数, a为无理数 B.2 2是方程x 2 8 0的一个根 C.8的算术平方根是2 2 D.不等式的解为3 a 4,2 2 2.82 3
考点:实数、平方根及算术平方根,不等式组 5、D
A.只有等腰梯形的对角线相等,所以A错 B.菱形的对角线垂直平分,但不相等,所以B错 C.特殊矩形 — 正方形的对角线垂直,所以C错 D.特殊平行四边形 — 菱形或矩形的对角线垂直,所以D对
2. 已 知 某 几 何 体 的 三 视 图 ( 单 位 : cm ) ,则该几何体的侧面积等于(
A.12 cm 2
B。15 cm 2
C.24 cm 2
D.30 cm 2 )
3.在直角三角形 ABC 中,已经 C 90 0 , A 40 0 ,BC=3,则 AC=( A. 3sin 40 0 B. 3sin50 0 C. 3tan40 0 D。 3tan50 0
2014年浙江省杭州市中考数学试卷(附答案与解析)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前浙江省杭州市2014年各类高中招生文化考试数 学本试卷满分120分,考试时间100分钟.参考公式:圆锥的侧面积公式πS rl =(其中S 是侧面积,r 是底面半径,l 是母线长)弧长公式π180n rl =(其中l 是弧长,n 是圆心角的度数,r 是圆半径)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.23(2)a a -=( ) A .312a -B .26a -C .312aD .26a2.已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )A .212πcm B .215πcm C .224πcmD .230πcm3.在直角三角形ABC 中,已知90C ∠=,40A ∠=,3BC =,则AC =( )A .3sin40B .3sin50C .3tan40D .3tan504.已知边长为a 的正方形面积为8,则下列说法中,错误的是 ( )A .a 是无理数B .a 是方程280x -=的解C .a 是8的算术平方根D .a 满足不等式组30,40a a -⎧⎨-⎩><5.下列命题中,正确的是( )A .梯形的对角线相等B .菱形的对角线不相等C .矩形的对角线不能互相垂直D .平行四边形的对角线可以互相垂直6.函数的自变量x 满足122x ≤≤时,函数值y 满足114y ≤≤,则这个函数可以是 ( )A .12y x =B .2y x =C .18y x =D .8y x=7.若241()142w a a+=--,则w =( ) A .2(2)a a +≠± B .2(2)a a -+≠± C .2(2)a a -≠±D .2(2)a a --≠±8.已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007~2012年比2001~2006年更稳定; ②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的在校学生人数学校数量大于1 000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是( )A .①②③④B .①②③C .①②D .③④9.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )A .316B .38C .58D .1316毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)10.已知AD BC ∥,AB AD ⊥,点E ,点F 分别在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( )A .1tan2ADB +∠= B .25BC CF =C .22AEB DEF ∠+=∠D .4cos 6AGB ∠=第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 11.2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为 人. 12.已知直线a b ∥,若14050'∠=,则2∠= .13.设实数x ,y 满足方程组14,312,3x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩则x y += .14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 ℃.15.设抛物线2(0)y ax bx c a =++≠过(0,2)A ,(4,3)B ,C 三点,其中点C 在直线2x =上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为 . 16.点A ,B ,C 都在半径为r 的圆上,直线AD ⊥直线BC ,垂足为D ,直线BE ⊥直线AC ,垂足为E ,直线AD 与BE 相交于点H .若3BH AC =,则ABC ∠所对的弧长等于 (长度单位).三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)一个布袋中装有只有颜色不同的(12)a a >个球,分别是2个白球,4个黑球,6个红球和b 个黄球,从中任意摸出一个球.把摸出白球、黑球、红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出ba的值.18.(本小题满分8分)在ABC △中,AB AC =,点E ,F 分别在AB ,AC 上,AE AF =,BF 与CE 相交于点P .求证:PB PC =,并请直接写出图中其他相等的线段.19.(本小题满分8分)设y kx =,是否存在实数k ,使得代数式2222222()(4)3(4)x y x y x x y --+-能化简为4x ?若能,请求出所有满足条件的k 的值;若不能,请说明理由.20.(本小题满分10分)把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分法得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹); (2)求出(1)中所作三角形外接圆的周长.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)21.(本小题满分10分)在直角坐标系中,设x 轴为直线l ,函数y =,y =的图象分别是1l ,2l ,圆P (以点P 为圆心,1为半径)与直线l ,1l ,2l 中的两条相切.例如是其中一个圆P 的圆心坐标.(1)写出其余满足条件的圆P 的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22.(本小题满分12分)菱形ABCD 的对角线AC ,BD 相交于点O,AC =4BD =.动点P 在线段BD 上从点B 向点D 运动,PF AB ⊥于点F ,四边形PFBG 关于BD 对称.四边形QEDH 与四边形PFBG 关于AC 对称.设菱形ABCD 被这两个四边形盖住部分的面积为1S ,未被盖住部分的面积为2S ,BP x =. (1)用含x 代数式分别表示1S ,2S ; (2)若12S S =,求x 的值.23.(本小题满分12分)复习课中,教师给出关于x 的函数22(41)1y kx k x k =-+-+(k 是实数). 教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上. 学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当1x >时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数. 教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页)数学试卷 第8页(共24页)223(2)3412-==a a a a a ,故选【考点】整式的乘法运算. B【解析】由三视图可判断该几何体为圆锥,圆锥底面圆的直径为图为扇形,扇形的半径为5,弧长为,3BC =,tan 3tan50BC B =,22是无理数,的算术平方根,也是方程5 / 12)1ω=,)1ω=(,)1ω=(,14ω=,2)±,故选【解析】1=4050∠︒,//a b ,∴∠数学试卷 第11页(共24页)数学试卷 第12页(共24页)【解析】抛物线,点,AD BC ⊥3BH =ABC ∴∠=1803BD r π5rπ绘制统计图如图b【解析】解:在AFB△与AEC△中,7/ 12数学试卷 第15页(共24页)数学试卷 第16页(共24页)4)2x20.【答案】(1)不全等的三角形有两种,其三边分别为 ①3,4,5;②4,4,4当三边为3,4,5时,作图如图1 当三边为4,4,4时,作图如图2.9/ 12数学试卷 第19页(共24页)数学试卷 第20页(共24页)832AC BD =2211/ 12数学试卷第23页(共24页)数学试卷第24页(共24页)。
2014杭州数学中考试卷+答案
2014年杭州市各类高中招生文化考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.3a·(-2a)2=( )A.-12a3B.-6a2C.12a3D.6a22.已知某几何体的三视图(单位:cm),则该几何体的侧面积等于( )A.12π cm2B.15π cm2C.24π cm2D.30π cm23.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=( )A.3sin 40°B.3sin 50°C.3tan 40°D.3tan 50°4.已知边长为a的正方形的面积为8,则下列说法中,错误..的是( )A.a是无理数B.a是方程x2-8=0的解C.a是8的算术平方根D.a满足不等式组-30 -405.下列命题中,正确的是( )A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直6.函数的自变量x满足12≤x≤2时,函数值y满足14≤y≤1,则这个函数可以是( )A.y=12B.y=2C.y=1D.y=7.若42-412-·ω=1,则ω=()A.a+2(a≠-2)B.-a+2(a≠2)C.a-2(a≠2)D.-a-2(a≠-2)8.已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:图1图2①学校数量2007~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的在校学生人数学校数量大于1 000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年. 其中,正确的结论是( )A.①②③④B.①②③C.①②D.③④9.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )A.31 B.3 C.5 D.13110.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则( )A.1+tan∠ADB=2B.2BC=5CFC.∠AEB+22°=∠DEFD.4cos∠AGB=第Ⅱ卷(非选择题,共90分)二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为人.12.已知直线a∥b,若∠1=40°50',则∠2=.13.设实数x,y满足方程组13x-y4,13x y2,则x+y= .14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是℃.15.设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为.16.点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=3AC,则∠ABC所对的弧长等于(长度单位). 三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球.把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.18.(本小题满分8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC.并直接写出图中其他相等的线段.19.(本小题满分8分)设y=kx,是否存在实数k,使得代数式(x2-y2)(4x2-y2)+3x2(4x2-y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.20.(本小题满分10分)把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分法得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.21.(本小题满分10分)在直角坐标系中,设x轴为直线l,函数y=-3x,y=3x的图象分别是直线l1,l2,圆P(以点P 为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(3,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连结各圆心,求所得几何图形的周长.22.(本小题满分12分)菱形ABCD的对角线AC,BD相交于点O,AC=43,BD=4.动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PFBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.23.(本小题满分12分)复习课中,教师给出关于x的函数y=2kx2-(4k+1)x-k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.答案全解全析:一、仔细选一选1.C ∵3a·(-2a)2=3a·4a 2=12a 3,故选C.2.B 由三视图可知这个几何体是圆锥,高是4,底面半径是3,所以母线长是 42 32=5,∴侧面积=3×5×π=15π cm 2,故选B.3.D ∵∠C=90°,∠A=40°,∴∠B=50°,tan B=,∴AC=BCtan B=3tan 50°,故选D.4.D ∵a 2=8,且a>0,∴a=2 2<3,而 -3 0,-4 0的解集是3<a<4,∴D 选项错误,故选D.5.D 当平行四边形是菱形时,对角线互相垂直,故选D.6.A 对于A 选项,当x=12时,y=12 =1,当x=2时,y=12 =14,并且函数y=12在x>0时,y 随x 的增大而减小,符合题意,故选A.评析 此题考查反比例函数的性质,有一定的难度. 7.D ∵42-4+12- =4-(2) 2-4=--2( 2)( -2)=-12,∴-12·ω=1,∴ω=-a-2(a≠-2),故选D. 8.B 由题图1可知①正确,由题图2可知②正确,2009年的在校学生人数学校数量=445 13241 ≈1 0 >1000,③正确,2011~2012年在校学生人数的增长不如前几年快,④错误,故选B.9.C 共有16种等可能情况,这两个数的和是2的倍数或是3的倍数的有:1+1=2,1+2=3,1+3=4,2+1=3,2+2=4,2+4=6,3+1=4,3+3=6,4+2=6,4+4=8,共10种, 其概率为101 =5,故选C.10.A 由点E 与点B 关于AC 对称可设AB=AE=x, 因为AB⊥AD,所以BE= 2x,由点E 与点F 关于BD 对称,可得∠EBD=∠FBD,又∠EDB=∠FBD,所以∠EBD=∠EDB,所以DE=BE= 2x,所以AD=x+ 2x,tan∠ADB==2x = 2-1,所以1+tan∠ADB= 2,故选A. 二、认真填一填11.答案 . 02×106解析 880.2万= 0.2×10 000= . 02×106. 12.答案 139°10'解析 ∠2=1 0°-40°50'=139°10'. 13.答案 8解析 解方程组得x=9,y=-1,所以x+y=8. 14.答案 15.6解析 数据为偶数个,则中位数应该是按大小顺序排列后中间两个数据的平均数.∵12(15.3+15.9)=15. ,∴所求中位数是15. ℃.评析 此题看似简单,但是很容易出错,很多同学会忘记把数据重新排列,得出错误的结果. 15.答案 y=1x 2-14x+2或y=-1x 2+34x+2解析 把A(0,2),B(4,3)两点的坐标代入y=ax 2+bx+c(a≠0),解得c=2,16a+4b=1,由点C 到抛物线对称轴的距离等于1,可知抛物线的对称轴是直线x=1或x=3,即- 2 =1或-2 =3,由1 4 1,- 21得 1 , -14,由 1 4 1,- 23得 -1, 34,故所求解析式为y=1 x 2-14x+2或y=-1 x 2+34x+2. 16.答案π 3或5π 3 解析 由题意可画出两种图形,易证△BHD∽△ACD,所以 = = 3,所以∠ABD=30°,则图1中∠ABC=150°,图2中∠ABC=30°,所对的弧的度数分别是300°, 0°.由弧长公式l=π 1 0求得所求弧长等于13πr 或53πr.评析此题是圆与相似三角形、三角函数的综合题目,很容易丢掉一种情况,是难度比较大的综合题.三、全面答一答17.解析因为4=0.2,所以2=0.1,=0.3.绘制统计图如图.=1-0.1-0.2-0.3=0.4.18.解析在△AFB和△AEC中,AF=AE,∠A为公共角,AB=AC,所以△AFB≌△AEC,所以∠ABF=∠ACE.因为AB=AC,所以∠ABC=∠ACB,所以∠PBC=∠PCB,所以PB=PC.其余相等的线段有:BF=CE;PE=PF;BE=CF.19.解析能.(x2-y2)(4x2-y2)+3x2(4x2-y2)=(4x2-y2)(x2-y2+3x2)=(4x2-y2)2=(4x2-k2x2)2=(4-k2)2·x4.要满足题意,只需要(4-k2)2=1,即4-k2=1或4-k2=-1,解得k=±3或k=±5.20.解析(1)12-4=8,不全等的三角形有两种,其三边分别为:①3,4,5;②4,4,4.当三边为3,4,5时,作图如图1.图1图2当三边为4,4,4时,作图如图2.(2)因为32+42=52,所以三角形O 1P 1A 1是直角三角形, 所以外接圆直径等于斜边长5, 所以外接圆的周长等于5π. 因为三角形O 2P 2A 2是等边三角形, 所以外接圆的直径等于2×23×4cos 30°= 33, 所以外接圆的周长等于33π. 21.解析 (1)圆心坐标分别为:圆P 与直线l 1,l 2相切,P 在y 轴正半轴上时, 圆心P 1(0,2);圆P 与直线l 1,l 相切,P 在第一象限时, 圆心P 233,1 ;圆P 与直线l 2,l 相切,P 在第一象限时, 圆心P 3( 3,1)(已知);圆P 与直线l 1,l 2相切,P 在x 轴正半轴上时, 圆心P 42 33,0 . 根据图形的对称性,得其余圆心坐标分别为: (0,-2), 33,-1 , - 33,-1 , -33,1 ,( 3,-1),(- 3,-1),(- 3,1), -2 33,0 . (2)标出所有圆心如图,依次连结各圆心得一个十二边形. 因为P 1P 2=2 33,P 2P 3=2 33,P 3P 4=2 33, 所以根据对称性知,该多边形的周长为:2 33 2 33 2 33×4= 3.22.解析 (1)在Rt△ABO 中,由tan∠ABO== 3,得∠ABO= 0°, 因为BP=x,所以BF=2,FP=3x2.菱形ABCD 的面积等于12AC·BD= 3.①当0<x≤2时,S 1=3 22,S 2=8 3- 3 22.②当2<x≤4时,四边形PFBG 的面积等于 3 24.又因为PO=x-2,MN= 3, 所以△PMN的面积等于2 3,所以五边形BGNMF 的面积等于 3 24-23,所以S 1=2× 3 2423=- 3(x - )2+8 3,S 2= 3(x - )2.(2)当0<x≤2时, 由S 1=S 2,即3 22=8 3-3 22,解得x=±2 2(舍去);当2<x≤4时, 由S 1=S 2,即-223+8 3=223,解得x=8-2 或x=8+2 (舍去). 所以当x=8-2 时,S 1=S 2. 23.解析 ①正确.当x=1时,y=-3k,取k=0,得y=0,即存在函数y=-x+1,其图象经过(1,0)点. ②错误.取k=1,函数y=2x 2-5x 的图象与坐标轴的交点仅有(0,0)和 52,0 两个. 或取k=0,函数y=-x+1的图象与坐标轴的交点仅有(0,1)和(1,0)两个. 所以结论②错误. ③错误.当k>0时,抛物线开口向上,且对称轴是直线x=1+14.因为1+14 >1,所以当1<x<1+14 时,y 随x 的增大而减小,当x>1+14 时,y 随x 的增大而增大.所以结论③错误.④正确.当k≠0时,函数有最大或最小值,此时y=2k-1142-31.若k>0,则抛物线开口向上,当x=1+14时,y最小值=-31.因为-31<0,所以y最小值<0.若k<0,则抛物线开口向下,当x=1+14时,y最大值=-31.因为-31>0,所以y最大值>0.解决问题时所用的数学方法:举反例,综合法,配方法,数形结合,转化的方法,分类讨论等. 评析主要考查了函数的性质与过定点问题,属于较难题.11。
杭州市各类高中招生文化考试上城区一模试卷要点
2014 年杭州市各样高中招生文化考试一模试卷科学考生须知1.本试卷满分为180 分,考试时间为120 分钟。
2.答题前,在答题纸上写学校、姓名、座位号、准考证号。
3.必定在答题纸的对应地址上答题,写在其他地方无效,答题方式详见答题纸上的说明。
4.考试结束后,只上交答题纸。
试题卷一、选择题(每题 4 分,共 24 分,每题只有一个选项符合题意)1.分析以下实验操作正确的选项是A.稀释浓硫酸B.称量氢氧化钠固体C.测定溶液的pH D. a 处进气收集H 22.某家庭式空气净化器在工作时会释放出臭氧(O3),利用其强氧化性杀菌消毒并转变成无污染的氧气。
以下分析合理的是A . O3的强氧化性是由O3构造决定的B .等质量的O3与 O2所含的原子个数不同样C.O3转变成 O2是分解反响D. O3与 O2的化学性质完满同样3.以下对人体出现异样情况所作的分析或办理正确的选项是A.吃海鲜时出现皮肤奇痒等过敏反响,过敏原在医学上称为抗体B.吞噬细胞对病菌的吞噬作用,属于捍卫人体的第一道防线C.异型血输血时主要考虑受血者血清可否会使供血者红细胞发生凝聚D.当人体大腿体表大血管破碎出血时,要按住破碎血管的近心端止血4.泡菜的制作需要使用乳酸菌进行发酵,制作泡菜的坛子需加水密封,使用的清水必定进行高温煮沸、冷却、加盐等步骤。
以下对于泡菜制作过程的分析正确的选项是A.乳酸菌是一种单细胞真菌,它的细胞内没有成形的细胞核B.坛子加水密封的目的是使乳酸菌进行无氧呼吸产生酒精C.清水高温煮沸 ,加盐等步骤是为了杀死原有的杂菌及控制其生长D.泡菜发酵中乳酸菌会控制其他微生物生长的现象属于种内斗争5. 海边滩涂上正在举办一场别出心裁的“骑泥马”比赛。
比赛的人们双手握住泥立刻的横档,一只脚跪在泥立刻,另一只脚在滩涂上蹬,泥马就在滩涂上疾行如飞。
以下说法正确的选项是A.使用泥马,增大了人与滩涂的接触面积,增大了压强B.使用泥马,增大了人对滩涂的压力,增大了压强C.若将泥马与滩涂的接触面积增大,则泥马下陷的深度更深D.在泥马与滩涂的接触面积不变的情况下,选择轻质泥马更有利于比赛6. 小吴与小徐用如图装置研究光的反射定律,有关实验操作与目的不合理的是A .沿 ON 前后转动板 F 或 E,可研究反射光芒与入射光芒可否在同一平面B .改变 OB 与法线的夹角,可研究反射角与入射角大小关系C.察看每一次入射光芒与反射光芒的地址,可说明它们分居法线两侧D.若光沿 BO 入射,反射光芒沿 OA 射出,可说明光路可逆二、选择题(每题 3 分,共 48 分,每题只有一个选项符合题意)7.在沼气、石油、医用酒精、钢、干冰、熟石灰中属于含有碳元素的混淆物有几种A.3种B.4种C.5 种D.6 种8.近来几年来,城郊农民利用海拔500 米以上巅峰进行蔬菜栽种,向城市居民供应安全放心的巅峰蔬菜,深受市民喜欢,以下对于巅峰蔬菜的说法错误的选项是A .巅峰上温度低,不利于蔬菜光合作用B.巅峰上氧气少,不利于蔬菜呼吸作用C.巅峰上污染少,蔬菜内含有害物质少D.巅峰上温差大,蔬菜积累有机物很多9. 转基因水稻是利用转基因技术把水稻中本来没有的基因转入到水稻中,使水稻拥有抗虫、抗除草剂、抗病害等新的性状。
江干2014中考数学模拟卷试题卷(定稿)
2014年杭州市各类高中招生文化模拟考试数 学考生须知:1. 本试卷满分120分, 考试时间100分钟.2. 答题前, 在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.4. 考试结束后, 试题卷和答题纸一并上交.试题卷一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.下列各数中,倒数为– 2的数是( )A. 2B. – 2C. 21D.21- 2.下列各式中,错误..的是( ) A. 3)3(2=-B.3=-C. 3)3(2=D. 3=-3. 下列计算正确的是( )4. 图象经过点(2,1)的反比例函数是( )A. 2y x =-B. 2y x =C. 12y x= D. 2y x =5.将一块含60°角的三角板与一无刻度的直尺按如图所示摆放,如果三角板的斜边与直尺的长边平行,则图中1∠等于( )A .30°B .35°C .45°D .60°6. 心率即心脏在一定时间内跳动的次数. 某次九年级体检对5名同(第5题)学的心率测试结果如下(次/分):76,72,74,76,77. 则下列说法错误..的是( ) A .这组测试结果的众数是76 B. 这组测试结果的平均数75 C. 这组测试结果的中位数是74 D. 这组测试结果的方差是2.3 7. 如图是某几何体的三视图,则该几何体的表面积为( )A. 31224+B. 31216+C. 3624+D. 3616+8. 不等式组⎪⎩⎪⎨⎧>+<--x x a x x 324)3(2无解,则a 的取值范围是( )A.2<aB.a ≤2C. 2>a D. a ≥2 9. 已知⊙O半径为3cm ,下列与⊙O 不是..等圆的是( ) A. ⊙1O 中,120°圆心角所对弦长为B. ⊙2O 中,45°圆周角所对弦长为C. ⊙3O 中,90°圆周角所对弧长为32πcm D. ⊙4O 中,圆心角为60°的扇形面积为32π2cm10.如图,射线AM 、BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE 、BN 于点F 、C ,过点C 作AM 的垂线CD ,垂足为D . 若CD =CF ,则=ADAE( ) A. 215- B. 412+ C. 21D.413+二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.(第7题)(第10题)11.当3=x 时,分式bx ax +-没有意义,则=b . 12.如图,铁管CD 固定在墙角,BC =5米,∠BCD =55°,则顶端D 的高度为 . 13. 函数b ax y +=的图象如图,则方程0=+b ax 的解为 ;不等式0<b ax +≤2的解集为_______.14. 函数y = 2x 与函数y =x2的图象相交于A ,C 两点,AB 垂直于x 轴于点B ,则△ABC 的面积为 .15. 矩形纸片ABCD 中,AD =15cm ,AB =10cm ,点P 、Q 分别为AB 、CD 的中点. 如图,将这张纸片沿AE 折叠,使点B 与点G 重合,则AGE ∆的外接圆的面积为 . 16. 如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B )2,4(,一次函数1-=kx y 的图象平分它的面积. 若关于x 的函数k m x k m mx y +++-=2)3(2的图象与坐标轴只有两个交点,则m 的值为 .三. 全面答一答 (本题有7个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17. (本小题满分6分)梯形ABCD 中,AD ∥BC ,请用尺规作图并解决问题.(第15题)(第13题)(第12题)(第16题)(1)作AB 中点E ,连接DE 并延长交射线CB 于点F ,在DF 的下方作FDG ∠=ADE ∠,边DG 交BC 于点G ,连接EG ;(2)试判断EG 与DF 的位置关系,并说明理由.18.(本小题满分8分)一个数的算术平方根为62-m ,此数的平方根为)2(-±m ,求这个数.19. (本小题满分8分)甲、乙两人每次都从五个数–2,–1,0,1,2中任取一个,分别记作x 、y .在平面直角坐标系中有一圆心在原点、半径为2的圆.(1) 能得到多少个不同的数组(y x ,)?(2) 若把(1)中得到的数组作为点P 的坐标 (y x ,), 则点P 落在圆内的概率是多少?20. (本小题满分10分)如图,点A 的坐标为)0,1(-,点B 在直线42-=x y 上运动. (1)若点B 的坐标是)2,1(-,把直线AB 向上平移m 个单位后,与直线42-=x y 的交点在第一象限,求m 的取值范围;(2)当线段AB 最短时,求点B 的坐标.21. (本小题满分10分)如图,AB =AC ,AE 是△ABC 中BC 边上的高线,点D 在直线AE 上一点(不与A 、E 重合).(1) 证明:△ADB ≌△ADC ;(2) 当△AEB ∽△BED 时,若cos ∠DBE =32,BC = 8,求线段AE 的长度.(第17题)(第20题)(第21题)22. (本小题满分12分)如图,抛物线与x 轴相交于B 、C 两点,与y 轴相交于点A ,P (a ,m a a ++-272)(a 为任意实数)在抛物线上,直线b kx y +=经过A 、B 两点,平行于y 轴的直线2=x 交直线AB 于点D ,交抛物线于点E .(1)若2=m ,①求直线AB 的解析式;②直线t x =0(≤t ≤)4与直线AB 相交于点F ,与抛物线相交于点G . 若FG :DE =3:4,求t 的值;(2)当EO 平分AED ∠时,求m 的值.23. (本小题满分12分)如图,已知正方形ABCD 的边长为4,点E 、F 分别从C 、A 两点同时出发,以相同的速度作直线运动. 已知点E 沿射线CB 运动,点F 沿边BA 的延长线运动,连结DF 、DE 、EF ,EF 与对角线AC 所在的直线交于点M ,DE 交AC 于点N .(1)求证:DE ⊥DF ;(2)设CE =x ,AMF ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量的取值范围;(3)随着点E 在射线CB 上运动,NA ·MC 的值是否会发生变化?若不变,请求出NA ·MC 的值;若变化,请说明理由.(第22题)(第23题)(备用图)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年杭州市各类高中招生文化考试上城区一模试卷
数 学
考生须知:
1.本试卷满分为120分,考试时间为100分钟。
2.答题前,请在答题卷密封区内写明校名、姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
一.仔细选一选(本题有10小题,每小题3分,共30分)
每小题只有一个选项是正确的,不选、多选、错选,均不给分。
注意可以用多种不同的方法来选取答案。
1.下列图形中,是轴对称图形但不是中心对称图形的是( ) A. B. C. D.
2.下列各式计算正确的是( )
A.236x x x ⋅=
B.2235x x x +=
C.()326x x =
D.623x x x ÷=
3.为了证明命题“任何偶数都是8的整数倍”是假命题,下列各数中可以作为反例的是( )
A.32
B.16
C.8
D.4
4.如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O ,则AO DO
等于( ) A.12 B.13 C.23 D.253
5.已知(-1,y 1),(-0.5,y 2),(1.7,y 3)是直线y=-9x+b (b 为常数)上的三个点,则y 1、y 2、y 3的大小关系是( )
A .y 1>y 2>y 3
B .y 3>y 2>y 1
C .y 1>y 3>y 2
D .y 3>y 1>y 2
6.将一个有45°角的三角板的直角顶点C 放在一张宽为5㎝的纸带边沿
上。
另一个顶点B 在纸带的另一边沿上,测得∠DBC=30°,则三角板的
最大边的长为( )
A.5㎝
B.10㎝
C.102㎝
D.52㎝
7.近四年杭州经济发展驶入快车道,某公司近四年的销售也取得较大突破,如图1反映的是该公司2006-2009年每年的投资额统计图,图2反映的是该公司2006-2009年每年的利润率统计图(利润率=利润投资额
×100%),观察图1、图2提供的信息.下列说法:①该公司2009年获得的利润最多;②该公司2007年获得的利润率最高;③从2006年到2009年四年的投资总额为730万元;④该公司计划2010年获得的利润与2009年持平,利润率不低于近四年的最高值,那么该公司2010年投资额约为172万元,其中正确的结论有( )
A .①②
B .②③
C .③④
D .①④
8.关于x 的二次函数()2
1y x m =--的图象与x 轴交于A ,B 两点,与y 轴交于点C 。
下列说法正确的是( )
A .点C 的坐标是(0,-1)
B .点(1,-2m )在该二次函数的图象上
C .线段AB 的长为2m
D .若当1x ≤时,y 随x 的增大而减小,则1m ≥
9.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠
为△BFE ,点F 落在AD 上,若sin ∠DFE=
23,则tan ∠EBF 的值为( ) A.53 B.55 C.255 D.5
10.如图,抛物线()20y ax bx c a =++≠过点(1,0)和点(0,-2),
且顶点在第三象限,设P a b c =-+,则P 的取值范围是( )
A.-4<P <0 B .-4<P <-2
C .-2<P <0
D .-1<P <0
二.认真填一填(本题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
11.()()1021322π-⎛⎫-+-+-= ⎪⎝⎭ 。
12.一组数据2,3,4,x 中,如果众数为2,则中位数是 。
13.如图所示是一个直三棱柱及其主视图和俯视图,在△EFG
中,∠FEG=90°,EF=6㎝,EG=8㎝,该三棱柱的高是7㎝,则
它的侧面积为 。
14.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点,OM ⊥AB
于点M ,若OM=12
,则∠CBD 的度数为 . 15.已知矩形ABCD 的对角线AC ,BD 的长度是关于x 的方程x 2
-px+p+3=0的两个实数根,则此矩形面积的最大值是 。
16.如图,点A ,B 在直线MN 上,AB=20厘米,⊙A ,⊙B 的半径均为2厘米。
⊙B 以每秒4厘米的速度自右向左运动,与此同时,⊙A 的半径也不断增大,其半径
r (厘米)与时间t (秒)之间的关系式为
r=2+t (t ≥0).若点B 出发t 秒后两圆相
切,则时间t 的值是 。
三.全面答一答(本题有7小题,共66分)
解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
17.(本小题满分6分) 化简:22221211
x x x x x x x x ⎛⎫--÷ ⎪--+-⎝⎭,并回答:原代数式的值能等于1吗?为什么?
18.(本小题满分8分)
已知方程组03220x y a x y +-=⎧⎨+=⎩
的解满足0x >,0y >,求整数a 的值。
如图,已知Rt△ABC中,∠C=90°。
(1)作∠BAC的角平分线AD交BC边于D,以AB边上一点O为圆
心,过A,D两点作⊙O(不写作法,保留作图痕迹)
(2)设(1)中⊙O的半径为r,若AB=4,∠B=30°,求r的值。
20.(本小题满分10分)
如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上。
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).
21.(本小题满分10分)
如图,在□ABCD中,E为BC边上一点,且∠AEB=∠ADC。
(1)求证:△ABC≌△EAD
(2)若AE平分∠DAB,∠EAB=20°,求∠AED的度数。
我们知道,y x =的图象向右平移1个单位得到1y x =-的图象,类似的,()0k y k x =≠的图象向左平移2个单位得到()02
k y k x =≠+的图象。
请运用这一知识解决问题。
如图,已知反比例函数2y x =
的图象C 与正比例函数y=ax (a ≠0)的图象l 相交
于点A (1,m )和点B .
(1)写出点B 的坐标,并求a 的值;
(2)将函数2y x
=的图象和直线AB 同时向右平移n (n >0)个单位长度,得到的图象分别记为C 1和l 1,已知图象C 1经过点M
(3,2).
①分别写出平移后的两个图象C 1和l 1对应的函数关系式;
②直接写出不等式
242ax x +≤-的解集
23.(本小题满分12分)
如图,在平面直角坐标系中,直线2y x =-+与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,有点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别于直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMIN 的面积为定值1.
(1)求∠OAB 的度数;
(2)求证:△AOF ∽△BEO ;
(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF
组成一个三角形,记此三角形的外接圆面积为S 1,△OEF 的面
积为S 2.试探究:S 1+S 2是否存在最小值?若存在,请求出该
最小值;若不存在,请说明理由.。