小升初奥数公式大全
小升初奥数知识点奥数必考30个知识点大全
小升初奥数知识点—奥数必考30个知识点大全1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数公式大全
小学奥数公式大全一、基本运算符号:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a二、数的性质:1.奇数与奇数相加等于偶数:奇数+奇数=偶数2.奇数与偶数相加等于奇数:奇数+偶数=奇数3.偶数与偶数相加等于偶数:偶数+偶数=偶数4.0与任何数相乘等于0:0×a=05.1与任何数相乘等于原数:1×a=a6. 除零是不存在的:a ÷ 0 = undefined三、算术运算公式:1.两个数相加:a+b=c2.两个数相减:a-b=c3.两个数相乘:a×b=c4.两个数相除:a÷b=c四、公约数与最大公约数:1.求两个数的公约数:a、b的公约数有d2.求两个数的最大公约数:a、b的最大公约数为d五、倍数与最小公倍数:1.求一个数的倍数:a的倍数有b2.求两个数的最小公倍数:a、b的最小公倍数为c六、平方与平方根:1.一个数的平方:a的平方是b,即a²=b2.开平方:一个数的平方根:√a=b,b²=a七、百分数与比例:1.百分数转换为小数:百分数÷100=小数2.小数转换为百分数:小数×100=百分数3.比例换算:a:b=c:d八、平均数:1.n个数的平均数:(a₁+a₂+...+aₙ)÷n=平均数九、等差数列:1.等差数列的通项公式:第n个数aₙ=a₁+(n-1)×d2.求等差数列前n项和:前n项和Sn=(a₁+aₙ)×n÷2十、等比数列:1.等比数列的通项公式:第n个数aₙ=a₁×q^(n-1)2.求等比数列前n项和:前n项和Sn=a₁(1-q^n)÷(1-q),(q≠1)十一、三角形:1.三角形的周长:周长=边1+边2+边32.直角三角形勾股定理:c²=a²+b²(c为斜边,a、b为直角边)3. 正弦定理:a/sinA = b/sinB = c/sinC4. 余弦定理:a² = b² + c² - 2bc × cosA。
小升初奥数公式大全
小升初奥数公式大全1.整数乘法公式-a×b=b×a(交换律)-a×(b×c)=(a×b)×c(结合律)-a×(b+c)=a×b+a×c(分配律)-a×(b-c)=a×b-a×c(分配律)2.整数除法公式-a÷b=c(a=b×c)(整除定义)-a÷b=c余r(a=b×c+r)(带余除法)3.分数运算公式-分数加法公式:- a/b + c/d = (ad + bc)/(bd)- a/b + a/c = (ac + bc)/(bc)-分数减法公式:- a/b - c/d = (ad - bc)/(bd)- a/b - a/c = (ac - bc)/(bc)-分数乘法公式:- a/b × c/d = (ac)/(bd)- a/b × a/c = (a²)/(bc)-分数除法公式:- (a/b) ÷ (c/d) = (ad)/(bc) -(a/b)÷(a/c)=(c)/(b)4.小数运算公式-小数加法公式:-a+b=c-小数减法公式:-a-b=c-小数乘法公式:-a×b=c-小数除法公式:-a÷b=c5.幂的运算公式-a^n×a^m=a^(n+m)(乘幂法则) -(a^n)^m=a^(n×m)(乘幂法则) -a^n÷a^m=a^(n-m)(除幂法则) -(a×b)^n=a^n×b^n(乘方法则) 6.根号运算公式-√(a×b)=√a×√b(乘法法则)-√(a÷b)=√a÷√b(除法法则) -√(a^n)=a^(n/2)(次方法则) -√(a+b)≠√a+√b(开方法则) 7.三角函数公式-正弦定理:- a/sinA = b/sinB = c/sinC -余弦定理:- c^2 = a^2 + b^2 - 2abcosC -正切定理:- tanA = sinA/cosA-直角三角形的勾股定理:-c^2=a^2+b^2- sinA = a/c- cosA = b/c- tanA = a/b8.计算几何公式-长方形的面积公式:-A=l×w-正方形的面积公式:-A=a^2-三角形的面积公式:-A=1/2×b×h- A = √(s(s-a)(s-b)(s-c)) (Heron公式)-圆的面积公式:-A=πr^2-C=2πr以上是小升初奥数公式的一些常见例子,希望对你的学习有所帮助。
小升初奥数公式大全PDF.pdf
34个小学奥数必考公式1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
奥数常用公式大全
奥数常用公式大全在奥数学习中,熟悉和掌握常用公式是至关重要的。
本文将为大家整理一份奥数常用公式大全,帮助大家更好地应对各种奥数题目。
1. 圆的常用公式- 圆的周长公式:C=2πr- 圆的面积公式:A=πr²- 弧长公式:S=θr(θ为圆心角的弧度值)2. 三角形的常用公式- 三角形的周长公式:C=a+b+c(a、b、c为三边的长度)- 海伦公式(用于计算三角形面积):A=√[s(s-a)(s-b)(s-c)](s为半周长,s=(a+b+c)/2)- 正弦定理:a/sinA=b/sinB=c/sinC(a、b、c为三角形的边长,A、B、C为对应的角度)- 余弦定理:c²=a²+b²-2abcosC- 正切定理:tan(A/2)=r/(s-a)(r为内切圆半径)3. 直角三角形的常用公式- 勾股定理:c²=a²+b²(a、b为直角边长,c为斜边长)- 30°-60°-90°三角形边长比:1:√3:2- 45°-45°-90°三角形边长比:1:1:√24. 平方差公式- (a+b)²=a²+2ab+b²- (a-b)²=a²-2ab+b²- a²-b²=(a+b)(a-b)5. 等差数列的通项公式和前n项和公式- 通项公式:an=a₁+(n-1)d(an为第n项,a₁为首项,d为公差)- 前n项和公式:Sn=(a₁+an)n/26. 等比数列的通项公式和前n项和公式- 通项公式:an=a₁*q^(n-1)(an为第n项,a₁为首项,q为公比)- 前n项和公式(当|q|<1时):Sn=a₁*(1-q^n)/(1-q)7. 可整除规则- 2的倍数:个位为0、2、4、6、8- 3的倍数:各位数字之和能够整除3- 4的倍数:末两位能够整除4- 5的倍数:个位为0或5- 9的倍数:各位数字之和能够整除98. 排列组合公式- 排列公式:An=n!/(n-r)!(从n个元素中取r个元素的排列数)- 组合公式:Cn=n!/[r!(n-r)!](从n个元素中取r个元素的组合数)以上是奥数常用公式的大全。
小升初奥数知识点奥数必考30个知识点大全
6 / 24
优选精品
欢迎下载
12. 数列求和
等差数列:在一列数中,任意相邻两个数的差是一定的,这
样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用
a1 表示 ;
项数:等差数列的所有数的个数,一般用 n 表示 ;
公差:数列中任意相邻两个数的差,一般用
d 表示 ;
通项:表示数列中每一个数的公式,一般用
5 / 24
优选精品
欢迎下载
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1 观察上面四种放物体的方式,我们会发现一个共同特点:总 有那么一个抽屉里有 2 个或多于 2 个物体,也就是说必有一 个抽屉中至少放有 2 个物体。 抽屉原则二:如果把 n 个物体放在 m个抽屉里,其中 nm,那 么必有一个抽屉至少有 : ①k=[n/m ]+1 个物体:当 n 不能被 m整除时。 ②k=n/m 个物体:当 n 能被 m整除时。 理解知识点: [X] 表示不超过 X 的最大整数。 例 [4.351]=4;[0.321]=0;[2.9999]=2; 关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的 量,而后依据抽屉原则进行运算。 11. 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含 有多种基本 ( 混合 ) 运算。 基本思路:严格按照新定义的运算规则,把已知的数代入, 转化为加减乘除的运算,然后按照基本运算过程、规律进行 运算。 关键问题:正确理解定义的运算符号的意义。 注意事项:①新的运算不一定符合运算规律,特别注意运算 顺序。 ②每个新定义的运算符号只能在本题中使用。
把假设错的那部分置换出来 ;
小升初奥数学习公式大全(精选)
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数(1-2不必涉及,不用讲也不提,让孩子自悟就可以了)3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率(3-5功夫放在理解量的概念和感念间的关系上,不必背公式) 6、正方形C周长,S面积,a边长周长=边长×4,C=4a面积=边长×边长,S=a×a7、正方体V:体积,a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a8、长方形C周长,S面积,a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab9、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh10、三角形s面积,a底,h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高述题,抓住最后的两三分。
11、平行四边形s面积,a底,h高面积=底×高s=ah12、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷213、圆形S面积,C周长,∏(pai),d=直径,r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏14、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径15、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数16、扇形圆心角n度,半径r弧长L=n/180×∏×r面积S=n/360×∏×r×r=1/2×L×r圆锥侧面积S侧=∏×r×l圆锥表面积S=∏×r×l+∏×r×r(6-16,周长让孩子们自悟,面积统一为平均累线乘累高,理解了面积是线段的积累,OK,至于说体积,用平均累面乘累高即可)17、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数18、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)19、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)20、植树问题(A)非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)(B)封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数21、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数(17、18、19、21不记公式,领悟各个量之间的关系就OK了,提前学方程,在四年级上学期就学,20参照手指头就行了)22、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间23、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间24、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2(相遇问题,追及问题,流水问题,工程问题,牛吃草问题,水龙头问题,等是一个问题)25、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量(浓度问题其实是个平均问题,理解了就迎刃而解了,何必背公式)26、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)税后利息=本金×利率×时间×(1-利息税)(利润问题重在理解概念,弄清关系,不需记公式。
34个数学奥数公式
34个数学奥数公式1.二次方程:ax+bx+c=0,其中a≠0,x=(-b±√(b-4ac))/2a。
2. 相似三角形:两个三角形对应角度相等,对应边比例相等。
3. 向量加法:两个向量相加,顺次连接起点和终点得到第三个向量。
4. 余弦定理:在任意三角形中,c=a+b-2abcosC。
5. 正弦定理:在任意三角形中,a/sinA=b/sinB=c/sinC。
6. 面积公式:三角形面积S=1/2×底边×高,梯形面积S=1/2×(上底+下底)×高,圆面积S=πr。
7. 对数性质:loga(mn)=logam+logan,loga(m/n)=logam-logan,loga(m^k)=klogam。
8. 逆三角函数:sinx表示siny=x,y∈[-π/2,π/2],cosx、tanx同理。
9. 极坐标:点P(r,θ)表示距离原点r,与极轴正方向夹角为θ的点。
10. 二项式定理:(a+b)=C(n,0)a+b+C(n,1)ab++C(n,n)ab。
11. 勾股定理:在直角三角形中,a+b=c。
12. 求和公式:等差数列前n项和Sn=n(a+an)/2,等比数列前n 项和Sn=a(1-q)/(1-q)。
13. 余弦双倍角:cos2θ=cosθ-sinθ。
14. 正切双倍角:tan2θ=(2tanθ)/(1-tanθ)。
15. 平方差公式:a-b=(a+b)(a-b)。
16. 随机事件:P(A∪B)=P(A)+P(B)-P(A∩B)。
17. 代数因式分解:a-b=(a+b)(a-b),a-b=(a-b)(a+ab+b)。
18. 等差数列通项公式:an=a+(n-1)d。
19. 等比数列通项公式:an=aq。
20. 数列求和公式:等差数列前n项和Sn=n(2a+(n-1)d)/2,等比数列前n项和Sn=a(1-q)/(1-q)。
21. 立方和公式:1+2+3++n=(n(n+1)/2)。
小升初奥数学习公式
小升初奥数学习公式奥数,全称为奥林匹克数学,是指参加奥林匹克数学竞赛的数学学科内容。
奥数的学习对于小学升初中的学生来说,有着重要的意义。
下面是小升初奥数学习中常用的一些公式。
1.逆元和幂运算公式:-逆元:对于任意非零数a,其逆元为1/a。
-幂运算:-a^0=1-a^m×a^n=a^(m+n)-(a^m)^n=a^(m×n)-(a×b)^n=a^n×b^n2.因式分解公式:- 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2-差平方公式:a^2-b^2=(a+b)(a-b)- 完全立方公式:a^3 + 3a^2b + 3ab^2 + b^3 = (a + b)^3- 差立方公式:a^3 - b^3 = (a - b)(a^2 + ab + b^2)3.三角函数公式:- 正弦和余弦关系:sin^2θ + cos^2θ = 1-同角三角函数关系:- tanθ = sinθ/cosθ- cotθ = cosθ/sinθ- secθ = 1/cosθ- cscθ = 1/sinθ-三角函数的和差公式:- sin(α ± β) = sinαcosβ ± cosαsinβ- cos(α ± β) = cosαcosβ ∓ sinαsinβ- tan(α ± β) = (tanα ± tanβ)/(1 ∓ tanαtanβ)4.平方根公式:- 二次方程公式:对于二次方程 ax^2 + bx + c = 0,其解为 x = (-b ± √(b^2 - 4ac))/(2a)5.数列和数列分布公式:-等差数列公式:对于等差数列 an = a1 + (n-1)d,其中an为数列第n项,a1为首项,d为公差,前n项和Sn = (n/2)(a1 + an) -等比数列公式:对于等比数列an = a1 × r^(n-1),其中an为数列第n项,a1为首项,r为公比,前n项和Sn = a1 × (1 - r^n)/(1 - r)6.组合与排列公式:-排列公式:对于n个元素选取r个排列的方式数为A(n,r)=n×(n-1)×...×(n-r+1)=n!/(n-r)!-组合公式:对于n个元素选取r个组合的方式数为C(n,r)=n!/(r!(n-r)!)7.概率公式:-事件发生的概率:对于随机试验中的事件A,其概率为P(A)=n(A)/n(S),其中n(A)为事件A可能的结果数,n(S)为样本空间可能的结果数。
奥数计算公式大全
奥数计算公式大全代数公式:1. 平方差公式:$(a+b)^2=a^2+2ab+b^2$2. 平方和公式:$(a-b)^2=a^2-2ab+b^2$3.公式$a^2-b^2=(a+b)(a-b)$4. 一次三项式相乘规则:$(ax+by)(cx+dy)=acx^2+(ad+bc)xy+bdy^2$5. 比例公式:$\frac{a}{b}=\frac{c}{d}$, 则 $ad=bc$6. 二次公式求根公式:对于 $ax^2+bx+c=0$,二次公式按如下公式求根:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$7. 因式分解公式:$ax^2+bx+c$ 可以因式分解为 $(px+q)(rx+s)$的形式,其中 $pr=a$,$qs=c$,$ps+qr=b$几何公式:1. 两点之间的距离公式:对于坐标平面上的两点 $A(x_1,y_1)$,$B(x_2,y_2)$,两点之间的距离为 $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$2.线段分割公式:对于线段$AB$上的一点$C$,$AC:CB=(x-x_a):(x_b-x)$,其中$A(x_a,y_a)$,$B(x_b,y_b)$3.矩形的周长公式:矩形的周长为$2(a+b)$,其中$a$和$b$分别为矩形的长和宽4. 矩形的面积公式:矩形的面积为 $ab$,其中 $a$ 和 $b$ 分别为矩形的长和宽5.三角形的周长公式:三角形的周长为$a+b+c$,其中$a$,$b$和$c$分别为三角形的三条边的长度6. 三角形的面积公式:对于已知三角形的三边长 $a$,$b$ 和 $c$,可以使用海伦公式求解面积:$A=\sqrt{s(s-a)(s-b)(s-c)}$,其中$s=\frac{a+b+c}{2}$7.直角三角形勾股定理:对于直角三角形,较长的边称为斜边,较短的两条边称为直角边。
根据勾股定理,斜边的平方等于直角边的平方和:$c^2=a^2+b^2$概率公式:1. 事件发生的概率:事件 $A$ 的概率为 $P(A)=\frac{事件A发生的次数}{总的实验次数}$2. 互斥事件的概率:对于互斥事件 $A$ 和 $B$,它们不会同时发生,因此它们的概率可以直接相加:$P(A\cup B) = P(A) + P(B)$3.独立事件的概率:对于独立事件$A$和$B$4. 条件概率:对于事件 $A$ 和 $B$,当已知条件 $B$ 发生时,事件 $A$ 发生的概率为 $P(A,B)=\frac{P(A\cap B)}{P(B)}$5. 全概率公式:对于事件 $A$ 和互斥事件 $B_i$,全概率公式可以表示为 $P(A) = \sum_{i}P(A,B_i)\cdot P(B_i)$6. 贝叶斯公式:根据条件概率和全概率公式,可以得到贝叶斯公式:$P(B_i,A) = \frac{P(A,B_i)\cdot P(B_i)}{P(A)}$。
奥数34个常用公式
34个小学奥数必考公式1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数公式大全
小学奥数公式大全1.两数之和:a+b=c例如:5+3=82.两数之差:a-b=c例如:7-2=53.两数之积:a×b=c例如:4×3=124.两数之商:a÷b=c例如:9÷3=35.平方:a²=b例如:3²=96.开方:√a=b例如:√9=37.百分数:a%=b例如:25%=0.258.两个数的平均数:(a+b)÷2=c例如:(3+5)÷2=49.相邻角和:a+b=180°例如:80°+100°=180°10.对角线的关系:正方形对角线相等,长方形对角线不相等,且满足勾股定理。
例如:正方形ABCD,对角线AC=BD;长方形ABCD,对角线AC≠BD。
11.垂直线的斜率乘积为-1例如:两条互相垂直的线的斜率之积为-112.正整数相邻数之积减1的平方根之和等于整数本身。
例如:3×4-1=√11+√1113.等边三角形三个内角都是60°。
14.三角形周长:a+b+c=p其中,a、b、c分别是三角形的三边的长度,p是三角形的周长。
例如:三角形ABC,AB = 3cm,BC = 4cm,CA = 5cm,则周长p = 3 + 4 + 5 = 12cm15.相似三角形对应边的比例相等:若三角形A与三角形B相似,则AB/DE=AC/DF=BC/EF。
16.平行线的性质:平行线之间的对应角相等,对顶角互补,内错角相等。
17.枚举法:通过列举所有可能的情况来解题。
18.因数分解:将一个数拆分成几个素数的乘积。
19.最大公约数(最小公倍数)的性质:若a能被b整除,且a能被c整除,那么a也能被b与c的最大公约数整除。
20.偶数与奇数相加的结果是奇数。
奥数需要掌握的十大公式
奥数需要掌握的十大公式奥数是指奥林匹克数学竞赛,是一个注重逻辑思维和数学运算能力的竞赛项目。
在奥数竞赛中,学生们需要熟练掌握各种数学公式,以解决复杂的数学问题。
在这篇文章中,我将介绍奥数竞赛中需要掌握的十大公式,并附上相关的例题来帮助读者更好地理解和应用这些公式。
公式一:二项式定理二项式定理是奥数竞赛中非常重要的公式之一,它可以用来展开任意一个二次多项式的幂。
二项式定理的数学表达式为:(a + b)ⁿ = C(n, 0)aⁿb⁰ + C(n, 1)aⁿ⁻¹b¹ + C(n, 2)aⁿ⁻²b² + ... + C(n, n-1)abⁿ⁻¹ + C(n, n)a⁰bⁿ其中,C(n, k)表示从n个元素中选取k个元素的组合数。
例题一:展开(a + b)⁵,并计算其结果。
解析:根据二项式定理,展开(a + b)⁵可得:(a + b)⁵ = C(5, 0)a⁵b⁰ + C(5, 1)a⁴b¹ + C(5, 2)a³b² + C(5, 3)a²b³ + C(5,4)ab⁴ + C(5, 5)a⁰b⁵计算出每一项的系数并整理可得展开结果:(a + b)⁵ = a⁵ + 5a⁴b + 10a³b² + 10a²b³ + 5ab⁴ + b⁵公式二:勾股定理勾股定理是一条关于直角三角形的定理,它可以用于求解直角三角形的任意边长、角度和面积。
根据勾股定理,直角三角形中两条较短的边的平方和等于斜边的平方。
数学表达式为:a² + b² = c²其中,a和b为直角三角形的两条较短的边,c为斜边的长度。
例题二:已知直角三角形的两条直角边分别为4cm和5cm,求斜边的长度。
解析:根据勾股定理,可得:4² + 5² = c²16 + 25 = c²41 = c²c ≈ 6.4因此,直角三角形的斜边长度为约6.4cm。
小升初奥数公式整理
小升初奥数公式整理小升初奥数公式大全整理集合1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)2=较小数较小数+差=较大数和-较小数=较大数②(和+差)2=较大数较大数-差=较小数和-较大数=较小数和(倍数+1)=小数小数倍数=大数和-小数=大数差(倍数-1)=小数小数倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个单一量,题目一般用照这样的速度等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距段数=总长棵数=段数-1棵距段数=总长棵数=段数棵距段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数总头数)(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题:基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
34个小学奥数必考公式1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题:基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7、牛吃草问题:基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8、周期循环与数表规律:周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9、平均数:基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10、抽屉原理:抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
11、定义新运算:基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
12、数列求和:等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an=a1+(n-1)d;通项=首项+(项数一1)×公差;数列和公式:sn,=(a1+an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n=(an+a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d=(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13、二进制及其应用:十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
(2)=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1。
十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。
14、加法乘法原理和几何计数:加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。
这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数15、质数与合数:质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。
</a2<a3<……<an。
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
16、约数与倍数:约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。