精馏塔温度控制系统设计

合集下载

精馏塔塔底温度控制方案

精馏塔塔底温度控制方案

精馏塔塔底温度控制方案精馏塔是化工生产中常用的一种分离设备,主要用于将混合物中的各组分按照其沸点的不同进行分离。

在精馏过程中,塔底温度的控制是非常重要的,因为它直接影响到产品的纯度和收率。

本文将对精馏塔塔底温度控制方案进行详细的介绍。

一、精馏塔塔底温度控制的重要性1. 保证产品质量:精馏塔塔底温度的稳定与否直接关系到产品的质量。

如果塔底温度过高,会导致产品中轻组分的损失,降低产品的纯度;反之,如果塔底温度过低,会导致产品中重组分的残留,影响产品的性能。

2. 提高生产效率:合理的塔底温度控制可以提高精馏过程的效率,减少能源消耗,降低生产成本。

3. 保证生产安全:精馏塔塔底温度的波动可能导致操作不稳定,甚至引发安全事故。

因此,对塔底温度进行有效的控制是非常必要的。

二、精馏塔塔底温度控制方案1. 串级控制方案串级控制是一种常见的温度控制方案,它通过将主控制器的输出作为副控制器的设定值,实现对温度的精确控制。

具体实施步骤如下:(1)选择主控制器和副控制器:根据精馏塔的特点和工艺要求,选择合适的控制器类型,如PID控制器、模糊控制器等。

(2)设定主控制器的参数:根据工艺要求和实际操作经验,设定主控制器的比例、积分和微分参数。

(3)设定副控制器的参数:根据主控制器的输出和塔底温度的变化趋势,设定副控制器的比例、积分和微分参数。

(4)实施串级控制:将主控制器的输出作为副控制器的设定值,实现对塔底温度的精确控制。

2. 前馈控制方案前馈控制是一种基于模型的控制方案,它通过预测塔底温度的变化趋势,提前调整控制参数,以实现对塔底温度的快速响应。

具体实施步骤如下:(1)建立精馏塔的温度模型:根据精馏塔的工作原理和操作条件,建立精馏塔的温度模型。

(2)设计前馈控制器:根据温度模型,设计前馈控制器,实现对塔底温度的预测和控制。

(3)实施前馈控制:将前馈控制器的输出与主控制器的输出相结合,实现对塔底温度的快速响应和精确控制。

精馏塔的温度控制

精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。

采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。

将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。

所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。

由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。

采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。

使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

关键词:提馏段;温度;串级控制;超驰控制目录第1章绪论 .................................................................................... 错误!未定义书签。

第2章课程设计的方案 ................................................................ 错误!未定义书签。

概述......................................................................................... 错误!未定义书签。

物料平衡关系 ................................................................. 错误!未定义书签。

化工精馏塔的PLC温度控制系统设计

化工精馏塔的PLC温度控制系统设计
Ab t a t Ai d a h i i a in t w rt mp r t r i a g ea lr e ie t i n i c l t o t l t i a e sr c : me tt e d s l t o e e e a u e w t a lr e d ly, g n ri t tl o h a a me a d d f u t o c n r ,h s p p r i o
0 引言
化工精馏塔是化工 过程装置的核 心组成部 分 , 而对于精 馏
塔控制来说温度 的控制 是重中之重 , 温度 的剧烈变化 会导致 分
离组分纯度降低 , 精馏 的效率 影 响极大 , 至导 致精 馏塔 无 对 甚 法正常运行 J 。而 P C的可靠性高 , L 编程简单 , 易于维护 , 以 可
d sg e mp r t r o t ls se b s d o L o h mia a t r . a c d o to s u e n te d si ain c lmn e in d a t e e au e c nr y tm a e n P C f ra c e c lfc o y C s a e c n rlwa s d i h it l t o u o l o tmp r t r o t ls se , tg a e a ai n P D wa s d i h i o t l r I i r v d t e d n mi c a a trsis o h e e au e c n r y tm i e r ls p r t I s u e n t e man c n r l . t mp o e h y a c h ce it ft e o n o oe r c p o e s te a a tb l y o e l a h n ewa lo s o g I a h e e tb e c n r l e o ma c n p a t e r c s ,h d pa i t ft o d c a g s as t n . t c iv d a s l o to r r n e i r ci . i h r a pf c Ke r s: L c s a e c n r l P D; i C y wo d P C; a c d o t ; I W n C o

精馏塔控制系统设计

精馏塔控制系统设计

精馏塔控制系统设计精馏塔控制系统是指用于控制精馏装置运行的自动化系统。

精馏塔是化工过程中常用的一种分离设备,用于将混合物按照不同组分进行分离,并获得精馏产品。

精馏塔控制系统设计的目标是实现对塔内温度、压力、流量等参数的自动调节,以保持塔的稳定运行和达到设定的产品品质和产量要求。

1.系统的安全性:由于精馏塔操作涉及到高温高压的条件,系统的安全性是首要考虑因素。

安全系统应该能及时发现并处理可能的危险情况,如超压、超温等,确保塔内的操作条件始终处于安全范围内。

2.过程控制策略:根据塔的物料性质和操作要求,设计合理的控制策略。

常见的控制策略包括温度控制、压力控制、流量控制等。

需要根据塔内的反应动力学特性和传热传质特性来优化控制策略,比如采用多变量控制或者模型预测控制等。

3.仪表设备选型:根据控制策略选择合适的仪表设备,如温度传感器、压力传感器、流量计等。

仪表设备应具有高精度、稳定性好和耐高温高压等特点,以满足精馏塔操作的要求。

4.控制系统架构设计:根据控制策略和仪表设备的选择,设计控制系统的架构。

控制系统通常包括传感器、执行器、控制器和通信网络等部分。

传感器用于测量塔内的物理参数,执行器用于调节塔内的操作条件,控制器用于处理传感器的测量信号并确定下一步的控制策略,通信网络用于传输和共享数据。

5.监控系统设计:精馏塔的操作过程需要实时监控,及时发现和处理异常情况。

监控系统应能对塔内各项参数进行实时显示和记录,并提供报警、故障诊断和数据分析等功能。

监控系统可以采用人机界面、数据采集系统、故障诊断系统等多种形式。

在精馏塔控制系统的设计中,需要充分考虑各种可能的操作变量、工艺的稳定性、产量和能耗等方面的要求。

通过合理的控制系统设计,可以实现对精馏塔的准确控制,提高产品质量和产量,降低能耗和运行成本。

乙醇和水的精馏塔设计

乙醇和水的精馏塔设计

乙醇和水的精馏塔设计精馏是一种分离液体混合物中组分的常用方法,可通过蒸馏分离甲醇和水的混合物。

对于乙醇和水的精馏塔设计,需要考虑一系列参数和流程,包括进料组成、操作压力、图形塔塔板、冷凝器设计、降低能量消耗等。

以下是一个基本的乙醇和水的精馏塔设计方案。

1.塔板设计在乙醇和水的精馏塔设计中,决定了塔板数的重要参数是所需的乙醇纯度。

一般来说,纯度要求越高,所需的塔板数就越多。

可使用的常用塔板设计方法有McCabe-Thiele方法和Ponchon-Savarit方法。

2.冷凝器设计冷凝器用于冷凝乙醇蒸汽,使其凝结成液体后下降到下部分的收集器中。

冷凝器设计需要考虑的重要参数包括进料温度、出料温度、乙醇和水的蒸汽压力和流量等。

一般来说,选择多管冷凝器比单管冷凝器更适合于高效的冷凝过程。

3.降低能量消耗乙醇和水的精馏过程中,能量消耗是一个重要的考虑因素。

为了降低能量消耗,可以引入热回收系统,如热交换器,将高温的废气中的热能回收使用。

此外,也可以考虑采用较低的操作压力,通过降低汽化温度来减少所需的加热能量。

4.控制塔板温度在乙醇和水的精馏塔设计中,控制各个塔板的温度非常重要,以确保塔板能够正常工作。

一种常见的温度控制方法是在塔板上设置温度传感器,并通过自动化控制系统调节冷凝器的冷却剂流量来控制塔板温度。

5.回流比的选择回流比是决定乙醇和水精馏塔效率的重要因素。

回流比的选择应根据塔板的数量、损失和乙醇纯度等因素来合理决定。

一般来说,较高的回流比可以提高纯度,但同时也会增加能源消耗。

6.热平衡以上是一个基本的乙醇和水的精馏塔设计方案。

根据实际情况和具体需求,还需要根据实际的进料组成、产量、纯度和环境要求等因素进行调整。

乙烯—丙烷-丁烷精馏塔的设计方案

乙烯—丙烷-丁烷精馏塔的设计方案

乙烯—丙烷-丁烷精馏塔的设计方案背景乙烯、丙烷和丁烷是一些常用的烃类化学物质。

为了分离和纯化这些化合物,需要设计和构建一个乙烯—丙烷-丁烷精馏塔。

设计要求根据乙烯、丙烷和丁烷的物理性质和沸点,我们需要设计一个精馏塔来实现以下目标:1. 高效地分离乙烯、丙烷和丁烷;2. 优化能源消耗;3. 保证操作的安全性。

设计方案基于上述的设计要求,我们可以采用以下方案来设计乙烯—丙烷-丁烷精馏塔:1. 塔的结构:选择一个合适的精馏塔结构,例如传统的板式塔或者填料塔。

确保塔内有足够的接触面积促进物质之间的传质传热。

2. 馏分进出口:在塔的合适位置设置乙烯、丙烷和丁烷的进出口。

这样可以确保物质在塔内有效地分离和集中。

3. 冷却系统:设置合适的冷却系统来冷却可能形成的蒸汽,以便进行液体回流和塔顶馏分的收集。

4. 温度控制:通过在塔内设置合适的温度探测器和控制装置,保持塔内的温度在适当的范围内,以实现高效分离。

5. 压力控制:确保塔内的压力稳定,并根据需要进行调节,以保证操作的安全性。

操作注意事项在设计的同时,需要注意以下操作事项:1. 定期进行塔内的清洗和维护,以确保塔的效率和持久性。

2. 严格按照操作规程进行操作,保证操作的安全性和稳定性。

3. 根据实际需要,调整操作参数,以达到最佳的分离效果和能源消耗。

结论通过合理的设计和操作,可以构建一个高效、节能且安全的乙烯—丙烷-丁烷精馏塔,以实现乙烯、丙烷和丁烷的分离和纯化。

这将有助于满足工业和化工领域对这些化合物的需求,同时也提高生产效率和成本效益。

参考文献{在这里列出参考文献}。

精馏塔温度控制系统设计

精馏塔温度控制系统设计

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计院(系):电气工程学院专业班级:自动化093学号: *********学生姓名:***指导教师:(签字)起止时间:课程设计(论文)任务及评语院(系):电气工程学院教研室:自动化注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。

采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。

将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。

所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。

由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

精馏塔的大多数前馈信号采用进料量。

当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。

前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。

如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。

前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。

但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。

所以仅用前馈并不能达到良好的控制品质。

这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。

解决前馈不能控制的不可测干扰。

前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度关键词:提馏段温度前馈-反馈串级控制目录第1章绪论........................................................................................... 错误!未定义书签。

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制
精馏塔通过灵敏板进行温度控制的方法大致有以下几种。

(1)精馏段温控灵敏板取在精馏段的某层塔板处,称为精馏段温控。

适用于对塔顶产品质量要求高或是气相进料的场合。

调节手段是根据灵敏板温度,适当调节回流比。

例如,灵敏板温度升高时,则反映塔顶产品组成zn下降,故此时发出信号适当增大回流比,使XD上升至合格值时,灵敏板温度降至规定值。

(2)提馏段温控灵敏板取在提馏段的某层塔板处,称为提馏段温控。

适用于对塔底产品要求高的场合或是液相进料时,其采用的调节手段是根据灵敏板温度,适当调节再沸器加热量。

例如,当灵敏板温度下降时,则反映釜底液相组成Xw变大,釜底产品不合格,故发出信号适当增大再沸器的加热量,使釜温上升,以便保持工w的规定值。

(3)温差控制当原料液中各组成的沸点相近,而对产品的纯度要求又较高时不宜采用一般的温控方法,而应采用温差控制方法。

温差控制是根据两板的温度变化总是比单一板上的温度变化范围要相对大得多的原理来设计的,采用此法易于保证产品纯度,又利于仪表的选择和使用。

过程控制课程设计-精馏塔温度控制系统

过程控制课程设计-精馏塔温度控制系统

过程控制课程设计-精馏塔温度控制系统(总34页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除过程控制系统与仪表课程设计目录一、研究对象........................................................................................... 错误!未定义书签。

二、研究任务........................................................................................... 错误!未定义书签。

三、仿真研究要求 (4)四、传递函数计算 (5)五、控制方案........................................................................................... 错误!未定义书签。

1. 单回路反馈控制系统 (6)1) 控制方案的系统框图和工艺控制流程图............................... 错误!未定义书签。

2) PID参数整定 (7)3) 系统仿真................................................................................... 错误!未定义书签。

4) 对象特性变化后仿真 (12)2. Smith预估补偿控制系统 ................................................................ 错误!未定义书签。

1) 控制方案的系统框图和工艺控制流程图............................... 错误!未定义书签。

2) 控制系统方框图....................................................................... 错误!未定义书签。

精馏塔温度控制

精馏塔温度控制

精馏塔温度控制
精馏塔是指在酒精通过以上两塔蒸馏后,酒精浓度还需要进一步的提高,杂质还需进一步的排除,精馏塔的目的就是通过加热蒸发、冷凝、回流这些程序后,起到上除头级杂质,中提杂醇油,下排尾级杂质的作用,最终获得符合质量标准的成品——酒精。

蒸馏塔的作用并不只局限于提纯酒精。

蒸馏塔主要是为了分离混合液体,利用不同液体在不同条件下,如温度不同,挥发性(沸点)不同的特性,对液体进行分离,从而达到液体提纯效果。

对精馏塔的塔顶温度一般应控制在79℃,塔底温度一般控制在105—107℃,塔中温度在取酒正常的情况下一般取在88—92℃之间。

精馏塔上的1*冷凝器水温应在60—65℃,2*冷凝器应在35—40℃,最后一个冷凝器温度应不低于25℃。

精馏塔控制系统课程设计

精馏塔控制系统课程设计

精馏塔控制系统课程设计精馏塔控制系统课程设计一、概述精馏塔是化学工业中重要的分离设备之一,广泛应用于化工、石油、食品等领域。

精馏塔的主要功能是将混合液进行分离,得到高纯度的产品。

在生产过程中,精馏塔的控制系统对于保证产品质量、降低能耗、提高生产效率等方面具有重要作用。

因此,本课程设计旨在设计一个精馏塔的控制系统,以实现对混合液的分离过程进行精确控制。

二、设计要求1.了解精馏塔的工作原理及流程;2.分析精馏塔的工艺参数和控制要求;3.设计精馏塔的控制系统方案;4.选择合适的控制仪表和设备;5.完成控制系统的硬件和软件设计;6.进行系统调试和性能评估。

三、工作原理及流程精馏塔是一种基于蒸馏原理的分离设备。

在蒸馏过程中,混合液在精馏塔内被加热和冷却,使得不同成分的液体在特定温度下达到气液平衡状态。

通过这种方式,高纯度的产品可以从混合液中分离出来。

精馏塔的主要组成部分包括:原料液进料口、蒸汽加热器、分离器、冷凝器、产品收集器等。

四、工艺参数和控制要求精馏塔的主要工艺参数包括:进料流量、蒸汽流量、回流比、塔顶温度、塔底温度等。

控制要求包括:1.稳定进料流量,以保证原料液的供应;2.控制蒸汽流量,以维持所需的加热温度;3.调节回流比,以改变产品的纯度和产量;4.控制塔顶和塔底温度,以保证产品的质量和分离效果。

五、控制系统方案设计根据工艺参数和控制要求,可以采用以下控制系统方案:1.进料流量控制:采用流量计测量进料流量,通过调节阀控制进料流量;2.蒸汽流量控制:采用蒸汽压力传感器测量蒸汽压力,通过调节阀控制蒸汽流量;3.回流比控制:采用流量计测量回流比,通过调节阀控制回流比;4.塔顶温度控制:采用温度传感器测量塔顶温度,通过调节阀控制蒸汽流量,以维持温度稳定;5.塔底温度控制:采用温度传感器测量塔底温度,通过调节阀控制加热器的加热功率,以维持温度稳定。

六、控制仪表和设备选择根据控制系统方案,可以选择以下控制仪表和设备:1.流量计:用于测量进料流量和回流比;2.压力传感器:用于测量蒸汽压力;3.温度传感器:用于测量塔顶和塔底温度;4.调节阀:用于控制进料流量、蒸汽流量和回流比;5.加热器:用于加热原料液;6.PLC控制器:用于实现控制逻辑和数据处理。

精馏塔压力热旁路控制系统的设计

精馏塔压力热旁路控制系统的设计

关闭时,也可导致阀下游的热旁路气体快速冷凝而引起“水锤”现象发生。

式(1)进行整理:
根据此假定,可近似地求出热旁路调节阀气体的流量。

由热量平衡可得:
3、增设冷凝液调节阀
4、增设自冷凝器至回流罐的不凝气线
周期性地开启设在该不凝气线上的遥控阀.将积聚于冷凝器壳程上部的不凝气排送到回流罐,并将热旁路调节阀与回流罐不凝气线上的调节阀分程控制(如图4所示),可有效地解决压力控制不稳的问题。

三、结语
(1)热旁路控制塔压实质上是通过控制冷凝器的液位进而改变气体冷凝的面积来实现的。

其优点:投资低,回流罐置于冷凝器之上可提供给回流泵较高的净正吸人压头,需要频繁清洗时冷凝器可置于地面。

(2)冷凝液不应与热旁路气相混合后再进入回流罐,应单独从罐底进料,即使从罐顶进料,进料管线也应伸人到回流罐底部,以减少对回流罐液位的扰动。

(3)当塔顶馏出物为高纯度产品时,在冷凝液管线上增设一台调节阀可更加快速、有效地控制塔压。

(4)在忽略摩擦损失的情况下,热旁路调节阀设计最小压差可取值为回流罐液位与冷凝器完全浸没时的液位之间的静压差。

热旁路调节阀的正常流量值可按塔顶气体总量的15%-25%设计。

(5)塔顶气相馏出物中不凝气积聚于冷凝器壳程的上部,会造成冷凝器传热系数的降低和热旁路控制不稳定,增设一条自冷凝器壳程出口至回流罐的不凝气放空线是十分必要的。

精馏塔温度-流量控制

精馏塔温度-流量控制
0.1~25分(×10)
微分时间(D):断;0.04~10分
⑧负载阻抗:250Ω~750Ω
⑨手动切换特性:自动↔手动1↔手动2
⑩供电电压:24V±0.5%,DC
消耗功率:光柱不大于10W
表头不大于5W
工作条件:周围环境温度5~400C
空气相对湿度10~75%
无腐蚀气体
重量:约6.5公斤
接线端子图(见图2-5)
引言
精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。
主控制器的作用方向
主调节器的作用方向,应在副调节器的作用确定以后,再根据工艺要求来确定。因为副调节器直接控制执行器,要保证执行器正确动作。在主调节器输入偏差增大(或减小)时,要求主调节的输出信号增大(或减小),因此主调节的作用为正向作用。
3.3本精馏塔选择正作用主副调节器
要用到两个调节器,这两个调节器都选用DDZ—Ⅲ型电动调节器,具体型号为DTZ—2100
影响产品质量指标和平稳生产的主要干扰因素有:①进料流量( F)的波动;②进料成分( ZF)的变化;③进料温度( TF)和进料热焓值( QF)的变化;④再沸器加热剂输入热量的变化;⑤冷却剂在冷凝器内吸收热量的变化;⑥环境温度的变化。

精馏塔提馏段的温度控制设计

精馏塔提馏段的温度控制设计

、成绩过程控制仪表课程设计设计题目精馏塔提馏段的温度控制系统学生姓名 XX ,专业班级自动化X X X X班学号 XXXXXXXXXXX指导老师 XXX2019年XX月XX日{《过程控制仪表》课程设计评分标准表姓名:XX 学号:XXXXXXXXX课程设计的最终成绩采取“优秀”、“良好”、“中等”、“及格”和“不及格”五级记分。

100-90分(优秀)、89-80(良好)、79-70(中等)、69-60(及格)、低于60(不及格)《过程控制仪表课程设计》任务书目录1.设计任务与要求 (1)设计任务 (1)设计要求 (1)2.系统简介 (1)3.设计方案及仪表选型 (2)控制方案的确定 (2)系统原理及方框图 (3)仪表选型 (4)4.系统仿真分析 (10)5.控制系统仪表配接图及说明 (13)6.仪表型号清单 (13)7.总结 (13)参考文献 (14)1.设计任务与要求设计任务过程控制仪表课程设计,是《自动化仪表与装置》课程中的后续课程,实践教学环节,也是一次全面的专业知识的运用和实践。

⑴巩固和深化所学课程的知识:通过课程设计,要求学生初步学会运用本门课程和其它相关课程的基本知识和方法,来解决工程实际中的具体的设计问题,检验学生对本门课程及相关课程内容的掌握的程度,以进一步巩固和深化所学课程的知识。

⑵培养学生的设计、实践能力:通过课程设计,从方案选择、设计计算到绘制图纸、编写设计说明书,可以培养学生对工程设计的独立工作能力,树立正确的设计思想,掌握自动控制系统中各环节使用仪表的基本方法和步骤,为以后从事工程设计打下良好的基础。

⑶使学生能熟悉和运用设计资料,学会查阅相关文献,如有关国家标准、手册、图册等,以完成作为工程技术人员在工程设计方面所必须的基本训练。

设计要求(1)编写过程控制仪表设计说明书。

内容包括:控制系统的简单介绍,工艺流程分析;各环节仪表的选型、仪表的工作原理及性能指标;控制系统的仿真分析;仪表间的配接说明。

精馏塔提馏段温度控制方案

精馏塔提馏段温度控制方案

精馏塔提馏段温度控制方案
精馏塔的提馏段温度控制方案可以通过以下几个步骤实施:
1. 设置目标温度:根据产品的蒸汽化温度和沸点等物理性质,确定塔顶的目标温度。

这个温度应该足够高,使得目标组分能够从原料中蒸发出来。

2. 监测温度:在塔顶和其他关键位置安装温度传感器,监测塔内各个位置的温度变化,并将数据传输给温度控制系统。

3. 确定控制策略:根据温度传感器的监测数据,控制系统分析和计算,确定合适的控制策略。

常见的策略包括比例控制、比例积分控制和比例积分微分控制等。

4. 调节操作:根据控制策略的结果,控制系统会输出相应的控制信号,调节塔顶的加热或降温装置,以达到目标温度。

5. 反馈调整:监测实际温度和目标温度之间的偏差,并根据调整的结果进行反馈调整,进一步优化控制策略。

需要注意的是,精馏塔提馏段温度控制方案还需要考虑其他因素,如进料流量、冷却介质温度等。

此外,不同的塔设计和操作条件可能需要不同的控制策略,因此具体的温度控制方案应根据具体情况进行定制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精馏塔温度控制系统设计
精馏塔是一种常见的化工设备,用于分离液体混合物中的成分。

精馏
塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量
的关键。

下面将详细介绍精馏塔温度控制系统的设计原理和步骤。

精馏塔温度控制系统的设计原理是根据精馏塔内部的物料性质和工艺
要求,通过控制介质的流量和温度来实现温度的稳定控制。

精馏塔内部通
常分为多个段落,每个段落都有一个特定的温度要求。

温度的控制涉及到
对塔釜的加热和冷却以及介质的流量调节。

1.确定控制目标:根据工艺要求和产品规格,确定需要控制的温度范
围和偏差,以及控制精度要求。

2.确定控制方法:根据工艺特点和实际情况,选择适合的控制方法。

常见的控制方法包括比例控制、比例积分控制、比例积分微分控制等。

3.确定传感器:选择合适的温度传感器,用于测量精馏塔内部的温度。

常见的温度传感器包括热电偶、热敏电阻等。

4.确定执行器:根据控制目标和方法,选择合适的执行器。

常见的执
行器包括电动调节阀、蒸汽控制阀等。

5.设计控制回路:根据控制方法和控制器的性能,设计控制回路。


制回路包括传感器、控制器和执行器。

6.参数整定:根据实际情况和反馈调整,优化控制回路的参数。

参数
整定通常包括比例增益、积分时间和微分时间等。

7.验证和优化:通过实际运行验证控制系统的性能,并根据实际情况
进行反馈调整和优化。

总之,精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。

设计步骤包括确定控制目标、控制方法、传感器和执行器的选择、设计控制回路、参数整定以及验证和优化。

合理的设计能够使温度控制更加稳定和可靠。

相关文档
最新文档