九年级数学一模试题(含答案)
中考一模检测 数学试题 含答案解析
一、选择题(每小题3分,共计36分)1.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为( )A.3 B.2 C.1 D.02.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是( )A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b23.如果a2+2a﹣3=0,那么代数式(a4a-)•22aa-的值是( )A.3 B.﹣1 C.1 D.﹣34.x的取值范围在数轴上表示为( )A.B.C.D.5.《九章算术》中有”盈不足术”的问题,原文如下:”今有共買羊,人出五,不足四十五;人出七,不足三.问人数,羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元求人数和羊价各是多少?设买羊人数为x人,则根据题意可列方程为( )A .5x +45=7x +3B .5x +45=7x ﹣3C .5x ﹣45=7x +3D .5x ﹣45=7x ﹣36.在矩形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,设小长方形的长、宽分别为x cm,y cm,则下列方程组正确的是( )A .26314x y y x y -+=⎧⎨+=⎩B .31426x y x y +=⎧⎨+=⎩C .31426x y x y +=⎧⎨-=⎩D .3146x y x y +=⎧⎨+=⎩7.对于实数a 、b ,定义一种新运算”⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若(﹣3)⊗x =2⊗x ,则x 的值为( ) A .﹣2B .﹣1C .1D .28.已知a ,b 是一元二次方程x 2+3x ﹣1=0的两个根,则代数式a 2+b 2的值是( ) A .1B .9C .7D .119.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x 元/支,若使该种钢笔的月销量不低于105支,则x 应满足的不等式为( ) A .180﹣15x ≥105 B .180﹣(x ﹣14)≤105C .180+15(x +14)≥105D .180﹣15(x ﹣14)≥10510.如图,若在象棋盘上建立平面直角坐标系xOy ,使”帅”的坐标为(﹣1,﹣2)”马”的坐标为(2,﹣2),则”兵”的坐标为( )A.(﹣3,1) B.(﹣2,1) C.(﹣3,0) D.(﹣2,3)11.直线y=﹣2x﹣1关于y轴对称的直线与直线y=﹣2x+m的交点在第四象限,则m的取值范围是( )A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤112.二次函数y12(x﹣4)2+5的图象的开口方向、对称轴、顶点坐标分别是( )A.向上,直线x=4,(4,5) B.向上,直线x=﹣4,(﹣4,5)C.向上,直线x=4,(4,﹣5) D.向下,直线x=﹣4,(﹣4,5)二、填空题(每小题3分,共计12分)13.将一张矩形纸片ABCD沿直线EF折成如图所示的形状,若∠HED=50°,则∠EFG=__________.14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于点E,若BC=4,△AOE的面积为6,则BE=__________.15.若△ABC∽△DEF,且相似比是2:3,它们周长之和是40,则△ABC的周长是__________.16.如图,在△ABC中,DE∥BC,交AB于点D,交AC于点E,点F为BC边上一点,AF与DE交于点G.若13 DEBC=,则AGGF=__________.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简:(1-32x)÷244xx x-1,再将x=-1代入求值.18.如图所示,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.19.某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.学生能接受的早餐价格统计表价格分组(单位:元) 频数频率0<x≤2 60 0.152<x≤4 180 c4<x≤6 92 0.236<x≤8 a0.12x>8 20 0.05合计b 1根据以上信息解答下列问题:(1)统计表中,a=__________,b=__________,c=__________.(2)扇形统计图中,m的值为__________,”甜”所对应的圆心角的度数是__________.(3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?20.如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC高452m,是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,在楼DE底端D点测得A的仰角为α,tanα247,在顶端E点测得A的仰角为45°,AE(1)求两楼之间的距离CD;(2)求发射塔AB的高度.21.一次函数y=kx+b的图象与反比例函数y2x-=的图象相交于A(﹣1,m),B(n,﹣1)两点.(1)求出这个一次函数的表达式.(2)求△OAB的面积.(3)直接写出使一次函数值大于反比例函数值的x的取值范围.22.网约车越来越受到大众的欢迎.某种网约车的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算(总费用不足10元按10元计价).李明、王刚两人用该打车方式出行,按上述计价规则,其行驶里程数、耗时以及打车总费用如表:里程数s(千米) 耗时t(分钟) 车费(元)李明8 8 12王刚10 12 16(1)求p,q的值;(2)若张华也用该打车方式出行,平均车速为50千米/时,行驶了15千米,那么张华的打车总费用为多少? 23.如图,AG 是∠HAF 的平分线,点E 在AF 上,以AE 为直径的⊙O 交AG 于点D,过点D 作AH 的垂线,垂足为点C,交AF 于点B .(1)求证:直线BC 是⊙O 的切线;(2)若AC=2CD,设⊙O 的半径为r,求BD 的长度.24.如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共计36分)1.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为( )A.3 B.2 C.1 D.0【答案】B【解析】∵A、B两点到原点的距离相等,A为﹣2,则B为﹣2的相反数,即B表示2.2.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是( )A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b2【答案】B【解析】如图,从左图到右图的变化过程中,解释的因式分解公式是:a2﹣b2=(a+b)(a﹣b).3.如果a2+2a﹣3=0,那么代数式(a4a-)•22aa-的值是( )A.3 B.﹣1 C.1 D.﹣3 【答案】A【解析】原式24a a -=•22a a - 22a a a +-=()()•22a a - =a (a +2)=a 2+2a ,∵a 2+2a ﹣3=0,∴a 2+2a =3, 故原式=3.4.x 的取值范围在数轴上表示为( ) A . B .C .D .【答案】A【解析】由题意可知:3010x x -≥⎧⎨-≠⎩,∴x ≤3且x ≠1. 5.《九章算术》中有”盈不足术”的问题,原文如下:”今有共買羊,人出五,不足四十五;人出七,不足三.问人数,羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元求人数和羊价各是多少?设买羊人数为x 人,则根据题意可列方程为( ) A .5x +45=7x +3 B .5x +45=7x ﹣3C .5x ﹣45=7x +3D .5x ﹣45=7x ﹣3【答案】A【解析】设买羊人数为x 人,则根据题意可列方程为5x +45=7x +3.6.在矩形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,设小长方形的长、宽分别为x cm,y cm,则下列方程组正确的是( )A .26314x y y x y -+=⎧⎨+=⎩B .31426x y x y +=⎧⎨+=⎩C .31426x y x y +=⎧⎨-=⎩D .3146x y x y +=⎧⎨+=⎩【答案】A【解析】设小长方形的长为x ,宽为y ,如图可知,31426x y x y y +=⎧⎨+-=⎩.7.对于实数a 、b ,定义一种新运算”⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若(﹣3)⊗x =2⊗x ,则x 的值为( ) A .﹣2 B .﹣1C .1D .2【答案】B【解析】根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x , 解得:x =﹣1,经检验x =﹣1是分式方程的解.8.已知a ,b 是一元二次方程x 2+3x ﹣1=0的两个根,则代数式a 2+b 2的值是( ) A .1 B .9C .7D .11【答案】D【解析】∵a、b是一元二次方程x2+3x﹣1=0的两个根,∴a+b=﹣3,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=(﹣3)2﹣2×(﹣1)=9+2=11.9.光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x元/支,若使该种钢笔的月销量不低于105支,则x应满足的不等式为( )A.180﹣15x≥105 B.180﹣(x﹣14)≤105C.180+15(x+14)≥105 D.180﹣15(x﹣14)≥105【答案】D【解析】依题意有180﹣15(x﹣14)≥105.10.如图,若在象棋盘上建立平面直角坐标系xOy,使”帅”的坐标为(﹣1,﹣2)”马”的坐标为(2,﹣2),则”兵”的坐标为( )A.(﹣3,1) B.(﹣2,1) C.(﹣3,0) D.(﹣2,3)【答案】A【解析】如图所示:可得”炮”是原点,则”兵”位于点:(﹣3,1).11.直线y=﹣2x﹣1关于y轴对称的直线与直线y=﹣2x+m的交点在第四象限,则m的取值范围是( )A.m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤1【答案】C【解析】联立212y x y x m =-⎧⎨=-+⎩,解得1412m x m y +⎧=⎪⎪⎨-⎪=⎪⎩, ∵交点在第四象限,∴104102m m +⎧>⎪⎪⎨-⎪<⎪⎩①②, 解不等式①得,m >﹣1,解不等式②得,m <1, 所以,m 的取值范围是﹣1<m <1. 12.二次函数y 12=(x ﹣4)2+5的图象的开口方向、对称轴、顶点坐标分别是( ) A .向上,直线x =4,(4,5) B .向上,直线x =﹣4,(﹣4,5) C .向上,直线x =4,(4,﹣5) D .向下,直线x =﹣4,(﹣4,5)【答案】A【解析】二次函数y 12=(x ﹣4)2+5的图象的开口向上、对称轴为直线x =4、顶点坐标为(4,5). 二、填空题(每小题3分,共计12分)13.将一张矩形纸片ABCD 沿直线EF 折成如图所示的形状,若∠HED =50°,则∠EFG =__________.【答案】65°【解析】设∠EFG =α,则由折叠可得∠BFE =α, ∵AD ∥BC ,∴∠DEF =∠BFE =α,∠FEH =α+50°,由折叠可得∠AEF=∠HEF=α+50°,又∵∠AED=180°,∴α+50°+α=180°,解得α=65°,∴∠EFG=65°.14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于点E,若BC=4,△AOE的面积为6,则BE=__________.【答案】【解析】连接E C.∵四边形ABCD是矩形∴AO=CO,且OE⊥AC,∴OE垂直平分AC∴CE=AE,S△AOE=S△COE=6,∴S△AEC=2S△AOE=12.∴12AE•BC=12,又∵BC=4,∴AE=6,∴EC=6.∴BE==15.若△ABC∽△DEF,且相似比是2:3,它们周长之和是40,则△ABC的周长是__________.【答案】16【解析】∵△ABC与△DEF的相似比为2:3,∴△ABC的周长:△DEF的周长=2:3,∴△ABC的周长2 23 =⨯+40=16.16.如图,在△ABC 中,DE ∥BC ,交AB 于点D ,交AC 于点E ,点F 为BC 边上一点,AF 与DE 交于点G .若13DE BC =,则AGGF=__________.【答案】12. 【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴13AD DE AB BC ==.同理:△ADG ∽△ABF , ∴13AG AD AF AB ==,又∵AF =AG +GF ,∴11312AG AG GF AF AG ===--. 三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简:(1-32x )÷244x x x -1,再将x=-1代入求值. 【答案】见解析.【解析】先把括号内的分式进行通分相减,再把除法化为乘法进行约分化简,最后代入求值.原式=2x x -1×22x x -1=x+2.当x=-1时,原式=-1+2=1.18.如图所示,在菱形ABCD 中,点E.F 分别为A D.CD 边上的点,DE =DF , 求证:∠1=∠2.【答案】见解析.【解析】由菱形的性质得出AD=CD,由SAS证明△ADF≌△CDE,即可得出结论.证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.19.某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.学生能接受的早餐价格统计表价格分组(单位:元) 频数频率0<x≤2 60 0.152<x≤4 180 c4<x≤6 92 0.236<x≤8 a0.12x>8 20 0.05合计b 1根据以上信息解答下列问题:(1)统计表中,a=__________,b=__________,c=__________.(2)扇形统计图中,m的值为__________,”甜”所对应的圆心角的度数是__________.(3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?【解析】(1)b=60÷0.15=400,a=400×0.12=48,c=180÷400=0.45,故答案为:400,48,0.45;(2)m%=1﹣26%﹣12%﹣23%﹣9%=30%,即m的值是30,“甜”所对应的圆心角的度数是:360°×30%=108°,故答案为:30,108°;(3)2000×26%=520(份),答:该餐厅计划每天提供早餐2000份,其中咸味大约准备520份较好.20.如图是长沙九龙仓国际金融中心,位于长沙市黄兴路与解放路交会处的东北角,投资160亿元人民币,总建筑面积达98万平方米,中心主楼BC高452m,是目前湖南省第一高楼,大楼顶部有一发射塔AB,已知和BC处于同一水平面上有一高楼DE,在楼DE底端D点测得A的仰角为α,tanα247,在顶端E点测得A的仰角为45°,AE(1)求两楼之间的距离CD;(2)求发射塔AB的高度.【解析】(1)过点E作EF⊥AC于点F,∵∠AEF=45°,AE∴EF=140,由矩形的性质可知:CD=EF=140,故两楼之间的距离为140m;(2)在Rt△ADC中,tanαACCD=,∴AC=140247⨯=480,∴AB=AC﹣BC=480﹣452=28,故发射塔AB的高度为28m.21.一次函数y=kx+b的图象与反比例函数y2x-=的图象相交于A(﹣1,m),B(n,﹣1)两点.(1)求出这个一次函数的表达式.(2)求△OAB的面积.(3)直接写出使一次函数值大于反比例函数值的x的取值范围.【解析】(1)把A(﹣1,m),B(n,﹣1)分别代入y2x-=得﹣m=﹣2,﹣n=﹣2,解得m=2,n=2,所以A点坐标为(﹣1,2),B点坐标为(2,﹣1),把A(﹣1,2),B(2,﹣1)代入y=kx+b得221k bk b-+=⎧⎨+=-⎩,解得11kb=-⎧⎨=⎩,所以这个一次函数的表达式为y=﹣x+1;(2)设直线AB交y轴于P点,如图,当x=0时,y=1,所以P点坐标为(0,1),所以S△OAB=S△AOP+S△BOP12=⨯1×112+⨯1×232=;(3)使一次函数值大于反比例函数值的x的取值范围是x<﹣1或0<x<2.22.网约车越来越受到大众的欢迎.某种网约车的总费用由里程费和耗时费组成,其中里程费按p元/千米计算,耗时费按q元/分钟计算(总费用不足10元按10元计价).李明、王刚两人用该打车方式出行,按上述计价规则,其行驶里程数、耗时以及打车总费用如表:里程数s(千米) 耗时t(分钟) 车费(元)李明8 8 12王刚10 12 16(1)求p,q的值;(2)若张华也用该打车方式出行,平均车速为50千米/时,行驶了15千米,那么张华的打车总费用为多少?【解析】(1)小明的里程数是8km,时间为8min;小刚的里程数为10km,时间为12min.由题意得8812 101216p qp q+=⎧⎨+=⎩,解得112 pq=⎧⎪⎨=⎪⎩;(2)张华的里程数是15km,时间为18min.则总费用是:15p+18q=24(元).答:总费用是24元.23.如图,AG是∠HAF的平分线,点E在AF上,以AE为直径的⊙O交AG于点D,过点D作AH的垂线,垂足为点C,交AF于点B.(1)求证:直线BC是⊙O的切线;(2)若AC=2CD,设⊙O的半径为r,求BD的长度.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2)在Rt△ACD中,设CD=a,则AC=2a,AD=a,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【解答】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(4分)(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴a=,由(1)知:OD ∥AC,∴,即,∵a=,解得BD=r .24.如图,抛物线62++=bx ax y 经过点A (-2,0),B (4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为)41(<<m m .连接AC ,BC ,DB ,D C.(4)求抛物线的函数表达式;(5)△BCD 的面积等于△AOC 的面积的43时,求m 的值; (6)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】(1)抛物线c bx ax y ++=2经过点A (-2,0),B (4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++ (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F . ∵点A 的坐标为(-2,0),∴OA =2由0=x ,得6=y ,∴点C 的坐标为(0,6),∴OC =6∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=,∵S △BCD =43S △AOC =29643=⨯ 设直线BC 的函数表达式为n kx y +=,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩ ∴直线BC 的函数表达式为623+-=x y . ∴点G 的坐标为3(,6),2m m -+ ∴2233336(6)34224DG m m m m m =-++--+=-+ ∵点B 的坐标为(4,0),∴OB =4S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅ =22133346242m m m m -+⨯=-+() ∴239622m m -+=,解得11=m (舍),32=m ,∴m 的值为3(3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图 以BD 为边进行构图,有3种情况,采用构造全等发进行求解. ∵D 点坐标为)415,3(,所以21,N N 的纵坐标为415 233156424x x -++=,解得3,121=-=x x (舍) 可得2215(1,),(0,0)4N M -∴∴34,N N 的纵坐标为415-时,2123315611424x x x x -++=-==+,∴3315(1),4N M +-∴,4415(1),(4N M -∴ 以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解. ∵111151515(1,),(34(1),0),(8,0)444N M M -∴+--+-∴。
2024届上海市崇明区初三一模数学试题及答案
上海市崇明区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个相似三角形的周长之比为1:4,那么它们对应边之比为().A 1:2;.B 1:4;.C 1:8;.D 1:16.2.在直角坐标平面内有一点 5,12A ,点A 与原点O 的连线与x 轴正半轴的夹角为 ,那么tan 的值为().A 5;12;5;12.3..A 23x .4..A .2a c ,//b c .5.在).A .C 6.).A 7.8.计算:53222a b a b.9.如果点P 是线段AB 的黄金分割点(AP BP ),那么APAB的值是.10.在Rt ABC 中,90C ,8AC ,4sin 5B,那么AB 的长为.11.如果抛物线 21y m x m 经过原点,那么该抛物线的开口方向为.(填“向上”或“向下”)12.已知一条抛物线的对称轴是直线1x ,且在对称轴右侧的部分是上升的,那么该抛物线的表达式可以是.(只要写出一个符合条件的即可)第13题图第14题图13.如图,已知////AD BE CF ,它们与直线1l 、2l 依次交于点A 、B 、C 和点D 、E 、F ,如果35EF DF ,10AB ,那么线段BC 的长是.14.19AEF BFC S S,AD 15.16.,如果3AP ,BP 17.AD 上的点G 18.定义:与 90ACB ,CD 是的余切值为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2sin 60cos 45cot 303tan 30.第15题图第20题图如图,已知在ABC 中,18BC ,点D 在边BC 上,//DE AB ,94DE AB .(1)求BD 的长;(2)联结AD ,设AB a ,AC b ,试用a 、b 表示AD.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数2246y x x .(1)用配方法把二次函数2246y x x 化为 2y a x m k 的形式,并指出这个函数图像的对称轴和顶点坐标;(2)如果该函数图像与x 轴负半轴交于点A ,与y 轴交于点C ,顶点为D ,O 为坐标原点,求四边形ADCO 的面积.第21题图第23题图如图,某校九年级兴趣小组在学习了解直角三角形知识后,开展了测量山坡上某棵大树高度的活动.已知小山的斜坡BM的坡度i D 处有一棵树AD (假设树AD 垂直水平线BN ),在坡底B 处测得树梢A 的仰角为45 ,沿坡面BM 方向前行30米到达C 处,测得树梢A 的仰角ACQ 为60 (点B 、C 、D 在一直线上).(1)求A 、C 两点的距离;(2)求树AD 的高度(结果精确到0.11.732 )23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,已知在梯形ABCD 中,//AD BC ,E 是边BC 上一点,AE 与对角线BD 相交于点F ,且2BEEF AE .(1)求证:DAB AFB ∽;(2)联结AC ,与BD 相交于点O ,若AB OB BC AF ,求证:2AF OD BF .第22题图第24题图备用图24.(本题满分12分,第(1)小题4分,第(2)①小题4分,第(2)②小题4分)已知在直角坐标平面xOy 中,抛物线2y ax bx c (0a )经过点 1,0A 、 3,0B 、 0,3C 三点.(1)求该抛物线的表达式;(2)点D 是点C 关于抛物线对称轴对称的点,联结AD 、BD ,将抛物线向下平移m (0m )个单位后,点D 落在点E 处,过B 、E 两点的直线与线段AD 交于点F (F 不与点A 、D 重合).①如果2m ,求tan DBF 的值;②如果BDF 与ABD 相似,求m 的值.第25题图2备用图第25题图125.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知Rt ABC 中,90ACB ,3AC ,5AB ,点D 是AB 边上的一个动点(不与点A 、B 重合),点F 是边BC 上的一点,且满足CDF A ,过点C 作CE CD 交DF 的延长线于E .(1)如图1,当//CE AB 时,求AD 的长;(2)如图2,联结BE ,设AD x ,BE y ,求y 关于x 的函数解析式并写出定义域;(3)过点C 作射线BE 的垂线,垂足为H ,射线CH 与射线DE 交于点Q ,当CQE 是等腰三角形时,求AD 的长.九年级数学共6页第1页崇明区2023学年第一学期期末质量调研九年级数学参考答案及评分标准一、选择题(本大题共6题,每题4分,满分24分)1.B ;2.D 3.C 4.A 5.C6.B二、填空题(本大题共12题,每题4分,满分48分)7.47;8.3a b ;9.12;10.10;11.向下;12.21y x ()(答案不唯一);13.15;14.5;15.16.163;17.;18.三、解答题(本大题共7题,满分78分)19.(本题满分10分)解:原式=2()2………………………………………………………(8分).……………………………………………………………………………(2分)20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵DE AB ∥,94DE AB ∴49DE CD AB BC ……………………………………………………………………(2分)∵18BC ,∴4189CD ,解得:10CD ,……………………………………………………(1分)∴18810BD BC CD .……………………………………………………(2分)(2)∵AB a ,b AC,∴-BC AC AB b a.………………………………………………………………(2分)又∵49CD BC ,DC 与BC 同向,九年级数学共6页第2页∴444999DC BC b a,…………………………………………………………(1分)∴.4445()9999AD AC CD AC DC b b a a b…………………(2分)21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)2246y x x 2226x x ()……………………………………………………………(1分)22218x x ()…………………………………………………………(1分)2218x ()……………………………………………………………(1分)∴对称轴为直线1x ,顶点坐标为1,8 (-).………………………………(2分)(2)由(1)得18D (,).令0y ,则22460x x ,解得:13x ,21x ,∴0A (-3,),则AO=3.……(1分)令0x ,则6y ,∴06C (,),则OC=6.……(1分)联结OD .,则:1122AOD DOC ABDC D D S S S AO y OC x△△四边形………………………………(1分)1138611522…………………………………(2分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)根据题意可知:∠ABN=45°,∠ACQ=60°,BC =30米.∵小山的斜坡BM的坡度tan i MBN ,∴∠MBN=30°=∠MCQ ,………(1分)∴∠ABC=15ABN MBN ∠∠,∠ACM=30ACQ MCQ ∠∠…………………(2分)∵∠ABC +∠BAC=∠ACM ,∴∠BAC=30°-15°=15°=∠ABC …………………………(1分)∴AC=BC=30米,即A 、C 两点的距离为30米.………………………………………(1分)(2)延长AD 交CQ 于点H ,则∠AHC=90°.在t R ACH △中,30AC ,∠ACQ=60°,∴sin 6030AH AC ,1cos6030152CH AC.……………(2分)在Rt DCH △中,9CH ,∠DCH=30°,BN九年级数学共6页第3页∴tan 3015DH CH …………………………………………………(1分)∴17.3AD AH DH (米)………………………………………………(2分)答:A 、C 两点的距离为18米,树AD 的高度约为17.3米.23.(本题满分12分,第(1)小题6分,第(2)小题6分)证明:(1)∵2BE EF AE ,∴BE AE EF BE ,又∵BEF AEB ,∴BEF AEB △∽△,…………………………………………………………(2分)∴EBF BAE .……………………………………………………………(1分)∵AD ∥BC ,∴ADB EBF ,……………………………………………………………(1分)∴BAE ADB ,……………………………………………………………(1分)又∵ABF ABD ,∴DAB AFB △∽△.……………………………………………………………(1分)(2)∵AB OB BC AF ,∴AB AFBC OB,又∵BAF OBC ,∴ABF BCO △∽△,……………………………………………………………(2分)∴AFB BOC =,∴AFO AOF =,∴AF AO .………………………………………………………………………(1分)∵BOC AOD =,∴AFB AOD =,又∵BAF ADO =,∴BAF ADO △∽△,………………………………………………………………(1分)∴AO ODBF AF,即AO AF OD BF ,………………………………………(1分)∵AF AO ,∴2AF OD BF .…………………………………………………(1分)24.(本题满分12分,第(1)小题4分,第(2)小题的①满分4分,第(2)小题的②满分4分)解:(1)∵抛物线2y ax bx c (0a )经过点A (-1,0),3,0B (),0,3C (),九年级数学共6页第4页∴-09303a b c a b c c ,解方程组得:123a b c.………………………………………(3分)∴抛物线的表达式为:223y x x ………………………………………………(1分)(2)由222314y x x x (),得抛物线对称轴为直线1x .∵点D 是点0,3C ()关于抛物线对称轴对称的点,∴2,3D ()…………………………(1分)过点D 作DH x 轴,垂足为点H ,则H (2,0)∴DH=AH=3,BH=1,∴45ADH DAH .当DE=m=2时,EH=1=BH ,∴Rt EBH BE 在中,,45EBH BEH ,∴90DFB FAB FBA ∠…………………………(1分)在t R DEF △中,DE=2,45ADH ∴EF=sin 45DE =DF ,∴BF=EF+BE=在t R DBF △中,1tan 2DF DBF BF .……………………………(2分)(3)如果BDF △与ABD △相似∵ADB 是公共角,1方法一:若DBF DAB ,则DFB DBA△∽△∴DF BD BD AD,则,解得:DF (1分)过点F 作FG DH ,垂足为点G ,则FG AB ∥.∴FG EGBH EH……………………………………(1分)在t R DFG △中,45ADH ,∴53DG FG,∴53EG m ,又3EH m ,∴553313m m,解得:52m .……(1分);方法二:若DBF DAB ,则DFB DBA △∽△,可得∠DBF =∠DAB=45°九年级数学共6页第5页利用上一题结论,可证明1tan 2EBH ………………………(1分),在t R EHB △中,1tan 2EH EBH BH ,得12EH ………………………(1分)解得52m………………………(1分);②若DFB DAB ,此时F 与A 重合,即△BDF 和△ABD 全等,即3m ……(1分).25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)解:在t R ABC △中,3AC ,5AB ,∴4BC ,3cos 5AC A AB .……………(1分)(1)∵CE CD ,∴90DCE .………(1分)∵CE ∥AB ,∴90ADC DCE …(1分)在t R ADC △中,39cos 355AD AC A……(1分)(2)∵90ACB DCE ,∴ACD BCE∵A ACD CDB ,即A ACD CDF FDB ∵CDF A ,∴ACD FDB ,∴FDB BCE ,又∵DFB CFE ,∴△DFB ∽△CFE ,………………………(1分)∴DF BFCF EF,∴DF CFBF EF,又∵CFD EFB ,∴△DFC ∽△BFE ,………………………………………………………………(1分)∴CDF EBF ,∵CDF A ∴A EBF ,∵ACD BCE ,∴△ACD ∽△CBE ,………………………………………………………………(1分)∴AC ADBC BE∵AD=x ,BE=y ,∴34x y,得:43y x.……………………………………………………………………(1分)EABE AB九年级数学共6页第6页定义域:05x .……………………………………………………………(1分)(3)∵A EBF ,∴90A ABC EBF ABC ∠∠,即90DBE ∠.∵CH ⊥BE ,∴∠CHB=90°.在t R CHB △中,4BC ,312cos cos 455BH BC CBE BC A ,165CH.若△CQE 是等腰三角形,①点Q 在线段DE 的延长线上时∵在t R CDE △中,∠CED <90°,∴∠CEQ>90°,∴只有EC=EQ 一种情况.∵CH ⊥BE ,∴165QH CH .∵90DBE CHB ∠∠,∴CQ ∥AB ,∴QH EHBD BE,∴1612555y x y ,即16124553453xx x,解得:x=1或x=9(舍去),∴AD=1………………………………………………(2分)②点Q 在线段DE 上时∵∠CQE>90°,∴只有QC=QE 一种情况.∴∠QCE=∠QEC ,∵在t R CDE △中,90CDE DEC ∠,90ECQ DCQ ∠∴∠QCD=∠QDC ,∴QC=QD ,∴QE=QD ,∵CH ∥AB ,∴EH=BH=125,∴BE =245,即42435x ,解得:185x ,…………………………………………(2分)∴185AD.以上分类讨论的情况正确,有判断过程…………………(1分)综上所述:当△CQE 是等腰三角形时,AD 的长为1或185.。
上海市浦东新区华东师范大学第二附属中学2024-2025学年九年级上学期中考一模数学试题(含答案)
2024~2025学年上海市华东师范大学第二附属中学中考一模模拟卷数学试卷(考试时间100分钟满分150分)考生注意:1.带2B铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。
与考试无关的所有物品放置在考场外。
3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。
一.选择题(共6题,每题4分,满分24分)1.航天科技集团所研制的天问一号探测器由长征五号运载火箭发射,并成功着陆于火星,距离地球约192000000千米.其中192000000用科学记数法表示为()A.1.92×108B.0.192×109C.1.92×109D.1,92×1072.中华文化博大精深,以下是古汉字“雷”的四种写法,可以看作轴对称图形的是()A.B.C.D.3.生物学研究表明,在一定的温度范围内,酶的活性会随温度的升高逐渐增强,在最适宜温度时,酶的活性最强,超过一定温度范围时,酶的活性又随温度的升高逐渐减弱,甚至会失去活性.现已知某种酶的活性值y(单位:IU)与温度x(单位:℃)的关系可以近似用二次函数y=―12x2+14x+142来表示,则当温度最适宜时,该种酶的活性值为()A.14B.240C.3.5D.444.已知a、b、c是△ABC的三边,且满足a2-b2+ac-bc=0,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5.若AB =―4CD,且|AD|=|BC|,则顺次链接四边形ABCD中点得到的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形6.下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为()A.甲和乙B.乙和丁C.甲和丙D.甲和丁二.填空题(共12题,每题4分,满分48分)12.如图,AB与CD交于点O,且AC∥__________.13.从“等腰直角三角形”,“等腰梯形”,“平行四边形”,“菱形”中随机抽取一个,是中心对称图形的概率为_________14.等腰梯形ABCD 中,AB ∥CD ,E 、F 分别是AD,BC 的中点,DC=2,AB=4,设AB =a ,则EF 用向量a 表示可得EF =________15.小华探究“幻方”时,提出了一个问题:如图,将0,-4,-2,2,4这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)(14题图)(15题图)(12题图)(11题图)16.如图,在△ABC 中,AB=4,AC=6,E 为BC 中点,AD 为△ABC 的角平分线,△ABC 的面积记为S 1,△ADE 的面积记为S 2,则S 2:S 1=_____.17.在平面直角坐标系中,过点A (m,0),且垂直于x 轴的直线l 与反比例函数y=B ,将直线l 绕(16题图)三.解答题(满分78分)19.计算: 3tan30°-tan60°+13―2―(2024)020.在菱形ABCD 中,E ,F 为线段BC 上的点,且CD=2BE=4BF ,连接AE ,DF 交于点G .(1)如图(1)所示,若∠BAE=∠ADF ,求:∠B 的余弦值的值;(2)连接CG ,在图(2)上求作CG 在AB 与AG 方向上的分向量(保留作图痕迹即可)21.如图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城A1A2A3A4A5A6A7A设立在A6A7边的正中央,游乐城南侧有23.如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,联结AE,CF.求证:(1)四边形AFCE是平行四边形:(2)FG·BE=CE·AE25.新定义1:将宽与长的比等于黄金分割比的矩形称为黄金矩形 新定义2:将顶角为36°的等腰三角形称为黄金三角形①在一张矩形纸片的一端,利用图个正方形,然后把纸片展平②如图把纸片展平③折出内侧矩形的对角线中所示的④展平纸片,按照所得到的点(1)根据以上折纸法,求证:矩形BCDE 为黄金矩形(2)如图5,已知∠A=36°,△ABC 为黄金三角形,BC=1,求:AB 的长(3)在(2)的条件下,截取BD=BC 交AC 于D ,截取CE=CD 交线段BD 于E ,过E 作任意直线与边AB,BC 交于P,Q 两点,试判断:1BP +1BQ 是否为定值,若是,请求出定值,若不是,请说明理由(图5)参考答案及部分评分标准选择题(1~6题)ADBCCD填空题(7~18题)7.(3x+1)(3x―1)8.x≥19.a<410.111.2012131415.016.1:1017.-2<m<0或m>218.103解答题(19~25题)19.原式=0(10分)20.(1)58(5分)(2)图对即给分(5分)21.(1)90°76°(4分)(2)2km(3分)(3)24km(3分)22.任务1:y=―13+703任务2:w=-2x2+72x+3360(x≥10)(6分)任务3:雅19 风17 正34 最大利润(4分)23.(1)提示:△ADF≌△EDC(6分)(2)提示:△AFG∽△BEA(6分)24.(1)(0,0),y=ax2,(1,-1),-1,y=-x2(5分合理即可)(2)y=-(x-2)2(4分)(3)y=-(x-2-1)2+1或y=-(x+2-1)2+1(4分)25. (1)证明:CDBC =5―12即可(4分)(2)AB=5+1(5分)2(5分)(3)是定值,3+52。
2023上海静安区中考初三一模数学试题及答案
九年级数学学科练习考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,无理数是()A.B.C.()2π+ D.872.计算x 3•x 2的结果是()A.xB.x 5C.x 6D.x 93.如果非零向量a 、b互为相反向量,那么下列结论中错误的是()A.a b ∥B.a b =C.0a b += D.a b =-4.如图,已知ABC 与DEF ,下列条件一定能推得它们相似的是()A.A D B E ∠=∠∠=∠,B.AB BCA D DF EF ∠=∠=且C.A B D E∠=∠∠=∠, D.AB ACA E DE DF∠=∠=且5.如果045A ︒<∠<︒,那么sin A 与cos A 的差()A.大于0B.小于0C.等于0D.不能确定6.如图,在ABC 中,中线AD 与中线BE 相交于点G ,联结DE .下列结论成立的是()A.13DG AG =B.BG DEEG AB= C.ΔΔ14DEG AGB S S = D.ΔΔ12CDE AGB S S =二、填空题:(本大题共12题,每题4分,满分48分)7.13的倒数是_____.8.计算:2422a a a +=++_________.9.已知23a b =,则a a b+的值是_____.10.抛物线()=+-2y x 12与y 轴的交点坐标是_________.11.请写出一个以直线3x =为对称轴,且在对称轴左侧部分是下降的抛物线,这条抛物线的表达式可以是_________.(只要写出一个符合条件的抛物线表达式)12.有一座拱桥的截面图是抛物线形状,在正常水位时,桥下水面AB 宽20米,拱桥的最高点O 距离水面AB 为3米,如图建立直角坐标平面xOy ,那么此抛物线的表达式为_________.13.一水库的大坝横断面是梯形,坝顶、坝底分别记作BC 、AD ,且迎水坡AB 的坡度为12.5∶,背水坡CD 的坡度为13∶,则迎水坡AB 的坡角________背水坡CD 的坡角.(填“大于”或“小于”)14.已知111222ABCA B C A B C ,ABC 与111A B C △的相似比为15,ABC 与222A B C △的相似比为23,那么111A B C △与222A B C △的相似比为_________.15.在矩形ABCD 内作正方形AEFD (如图所示),矩形的对角线AC 交正方形的边EF 于点P .如果点F 恰好是边CD 的黄金分割点()DF FC >,且2PE =,那么PF =_________.16.在ABC 中,6,5AB AC ==,点D 、E 分别在边,AB AC 上,当4,AD ADE C =∠=∠时,DEBC=_________.17.如图,ABC 绕点C 逆时针旋转90︒后得DEC ,如果点B 、D 、E 在一直线上,且60,3BDC BE ∠=︒=,那么A 、D 两点间的距离是_________.18.定义:把二次函数()2y a x m n =++与2()y a x m n =---(a ≠0,m 、n 是常数)称作互为“旋转函数”.如果二次函数2322y x bx =+-与214y x cx c =--+(b 、c 是常数)互为“旋转函数”,写出点(),P b c 的坐标_________.三、解答题:(本大题共7题,满分78分)19.2cot 45sin 45tan 45-︒︒⎛⎫ ⎪︒⎝⎭.20.如图,已知在ABC 中,点D 、E 分别在边AB 、AC 上,且2BD AD =,12AE EC =.(1)求证:DE BC ∥;(2)设BE a = ,BC b =,试用向量a 、b 表示向量AC.21.如图,已知在ABC 中,B ∠为锐角,AD 是BC 边上的高,5cos 13B =,13,21AB BC ==.(1)求AC 的长;(2)求BAC ∠的正弦值.22.有一把长为6米的梯子AB ,将它的上端A 靠着墙面,下端B 放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示),一般满足5075α≤︒≤︒时,人才能安全地使用这架梯子.(1)当梯子底端B 距离墙面2.5米时,求α的度数(结果取整数),此时人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A 离开地面最高时,梯子开始下滑,如果梯子顶端A 沿着墙面下滑1.5米到墙面上的D 点处停止,梯子底端B 也随之向后平移到地面上的点E 处(如图2所示),此时人是否能安全使用这架梯子?请说明理由.23.如图,在梯形ABCD 中,AD BC ∥,DF 分别交对角线AC 、底边BC 于点E 、F ,且=AD AC AE BC ⋅⋅.(1)求证:AB FD ∥;(2)点G 在底边BC 上,=10BC ,=3CG ,连接AG ,如果AGC 与EFC 的面积相等,求FC 的长.24.如图所示,在平面直角坐标系xOy 中,抛物线26y ax bx =+-(0a ≠)与x 轴交于点A 、B (点A 在点B 的左侧),交y 轴于点C ,联结BC ,ABC ∠的余切值为13,8AB =,点P 在抛物线上,且PO PB =.(1)求上述抛物线的表达式;(2)平移上述抛物线,所得新抛物线过点O 和点P ,新抛物线的对称轴与x 轴交于点E .①求新抛物线的对称轴;②点F 在新抛物线对称轴上,且EOF PCO ∠=∠,求点F 的坐标.25.在等腰直角ABC 中,90,4C AC ∠=︒=,点D 为射线CB 上一动点(点D 不与点B 、C 重合),以AD 为腰且在AD 的右侧作等腰直角ADF △,90ADF Ð=°,射线AB 与射线FD 交于点E ,联结BF .(1)如图1所示,当点D 在线段CB 上时,①求证:~ACD ABF ;②设,tan CD x BFD y =∠=,求y 关于x 的函数解析式,并写出x 的取值范围;(2)当2AB BE =时,求CD 的长.九年级数学学科练习考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,无理数是()A.B.C.()2π+ D.87【答案】B【分析】先根据二次根式的性质和零指数幂进行化简,再根据无理数的定义逐项进行判断即可.【详解】4=,是整数,是有理数,不是无理数,故不符合题意;C.()0π21+=,是整数,是有理数,不是无理数,故不符合题意;D.87,是分数,是有理数,不是无理数,故不符合题意;故选:B .【点睛】本题考查了二次根式的性质,零指数幂及无理数的定义,熟练掌握无限不循环小数为无理数是解题的关键.2.计算x 3•x 2的结果是()A.x B.x 5C.x 6D.x 9【答案】B【分析】根据同底数的幂相乘的法则即可求解.【详解】解:x 3•x 2=x 5.故选:B .【点睛】本题主要考查了同底数幂相乘的计算法则,正确理解法则是关键.3.如果非零向量a 、b互为相反向量,那么下列结论中错误的是()A.a b∥ B.a b = C.0a b += D.a b=-【答案】C【分析】非零向量a、b互为相反向量,则非零向量a、b大小相等,方向相反,据此分析即可.【详解】∵非零向量a 、b互为相反向量,∴a b ∥ ,a b =- ,a b = ,∴0a b +=,则C 选项错误,故选:C .【点睛】本题考查相反向量的概念,属基础题,正确理解定义是解决问题的关键.4.如图,已知ABC 与DEF ,下列条件一定能推得它们相似的是()A.A D B E ∠=∠∠=∠,B.AB BCA D DF EF ∠=∠=且C.A B D E∠=∠∠=∠, D.AB ACA E DE DF∠=∠=且【答案】A【分析】三角形相似的判定方法有(1)平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似;(2)如果两个三角形对应边的比相等且夹角相等,这2个三角形也可以说明相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.);(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似)。
2024北京大兴区初三一模数学试卷和答案
2024北京大兴初三一模数 学考生须知:1.本试卷共6页,共28道题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写姓名、准考证号、考场号和座位号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下面几何体中,是圆锥的为( )A. B. C. D.2. 2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为( )A. 643.710⨯B. 74.3710⨯C. 84.3710⨯D. 90.43710⨯3. 五边形的内角和为( )A. 180︒B. 360︒C. 540︒D. 720︒4. 如图,直线AB ,CD 相交于点O ,OE AB ⊥,若30AOC ∠=︒,则EOD ∠的大小为( )A. 30︒B. 60︒C. 120︒D. 150︒5. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 0b c ->B. 0ac >C. 0b c +<D. 1ab <6. 不透明的盒子中装有3个小球,每个小球上面写着一个汉字分别是“向”、“前”、“冲”,这3个小球除汉字外无其他差别,从中随机摸出一个小球,记录其汉字,放回并摇匀,再从中随机摸出一个小球,记录其汉字,则两次都摸到“冲”字的概率是( )A. 23 B. 13 C. 16 D. 197. 若关于x 的一元二次方程220x x m +-=有两个不相等的实数根,则实数m 的取值范围是( )A. 1m >-B. 1m ≥-C. 1m >D. m 1≥8. 如图,在ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,设BD a =,DC b =,AD c =,给出下面三个结论:①2c ab =;②2a b c +≥;③若a b >,则a c >.上述结论中,所有正确结论的序号是( )A.①②B. ①③C. ②③D. ①②③二、填空题(共16分,每题2分)9. 在实数范围内有意义,则实数x 的取值范围是______.10.分解因式:24ab a -=_______.11. 方程1341x x =-的解为______.12. 在平面直角坐标系xOy 中,若点(5,2)A 和(,2)B m -在反比例函数(0)k y k x=≠的图象上,则m 的值为______.13. 如图,AB 是O 的直径,点C ,D 在O 上,若AC BC =,则D ∠的度数为______︒.14. 如图,在矩形ABCD 中,AC 与BD 相交于点O ,OE BC ⊥于点E .若4AC =,30DBC ∠=︒,则OE 的长为______.15. 某年级为了解学生对“足球”“篮球”“排球”“乒乓球”“羽毛球”五类体育项目的喜爱情况,现从中随机抽取了100名学生进行问卷调查,根据数据绘制了如图所示的统计图.若该年级有800名学生,估计该年级喜爱“篮球”项目的学生有______人.16. 某公园门票价格如下表:某学校组织摄影、美术两个社团的学生游览该公园,两社团的人数分别为a 和()b a b >.若两社团分别以各自社团为单位购票,共需1560元;若两社团作为一个团体合在一起购票,共需1170元,那么这两个社团的人数为=a ______,b =______.购票人数1~4041~8080以上门票价格20元/人16元/人13元/人三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:0|3|(2024)2cos 45π-+++-︒18. 解不等式组:4125213x x x x -≥+⎧⎪-⎨<⎪⎩19. 已知2310a a +-=,求代数式2(1)(4)2a a a +++-的值.20. 某学校开展“浸书香校园,品诗词之美”读书活动.现有A ,B 两种诗词书籍整齐地叠放在桌子上,每本A 书籍和每本B 书籍厚度的比为5:6,根据图中所给出的数据信息,求每本A 书籍的厚度.21. 如图,在正方形ABCD 中,点E ,F 分别在BC ,AD 上,BEDF =,连接CF ,射线AE 和线段DC 的延长线交于点G .(1)求证:四边形AECF 是平行四边形;(2)若2tan 3BAE ∠=,9DG =,求线段CE 的长.22. 种子被称作农业的“芯片”,粮安天下,种子为基.农科院计划为某地区选择合适的甜玉米种子,随机抽取20块自然条件相同的试验田进行试验,得到各试验田每公顷产量(单位:t ),并对数据(每公顷产量)进行了整理、描述和分析,下面给出了部分信息:a .20块试验田每公顷产量的频数分布表如下:每公顷产量(t)频数7.407.45x ≤<37.457.50x ≤<27.507.55x ≤<m 7.557.60x ≤<67.607.65x ≤≤5b .试验田每公顷产量在7.557.60x ≤<这一组的是:7.55 7.55 7.57 7.58 7.59 7.59c . 20 块试验田每公顷产量的统计图如下:(1)写出表中m 的值;(2)随机抽取的这20块试验田每公顷产量的中位数为______.(3)下列推断合理的是______(填序号);①20块试验田的每公顷产量数据中,每公顷产量低于7.50t 的试验田数量占试验田总数的25%;②3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第5名.(4)1~10号试验田使用的是甲种种子,11~20号试验田使用的是乙种种子,已知甲、乙两种种子的每公顷产量的平均数分别为7.537t 及7.545t ,若某种种子在各试验田每公顷产量的10个数据的方差越小,则认为这种种子的产量越稳定.据此推断:甲、乙两种种子中,这个地区比较适合种植的种子是______(填“甲”或“乙”).23. 在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,与过点(2,0)-且平行于y 轴的直线交于点C .(1)求该函数的表达式及点C 的坐标;(2)当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,直接写出n 的取值范围.24. 某洒水车为绿化带浇水,图1是洒水车喷水区域的截面图,其上、下边缘都可以看作是抛物线的一部分,下边缘抛物线是由上边缘抛物线向左平移得到的.喷水口H 距地面的竖直高度OH 为1.5m ,喷水区域的上、下边缘与地面交于A ,B 两点,上边缘抛物线的最高点C 恰好在点B 的正上方,已知6m OA =,2m OB =,2m CB =.建立如图2所示的平面直角坐标系.(1)在①21(2)28y x =-++,②21(2)28y x =--+两个表达式中,洒水车喷出水的上边缘抛物线的表达式为______,下边缘抛物线的表达式为______(把表达式的序号填在对应横线上);(2)如图3,洒水车沿着平行于绿化带的公路行驶,绿化带的横截面可以看作矩形DEFG ,水平宽度3m DE =,竖直高度0.5m DG =.如图4,OD 为喷水口距绿化带底部的最近水平距离(单位:m ).若矩形DEFG 在喷水区域内,则称洒水车能浇灌到整个绿化带.①当 2.6m OD =时,判断洒水车能否浇灌到整个绿化带,并说明理由;②若洒水车能浇灌到整个绿化带,则OD 的取值范围是______.25. 如图,过O 外一点A 作O 的切线,切点为点B ,BC 为O 的直径,点D 为O 上一点,且BD BA =,连接CD ,AD ,线段AD 交直径BC 于点E ,交O 于点F ,连接BF .(1)求证:EF BF =;(2)若1sin 3A =,25OE =,求O 半径的长.26. 在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 是抛物线2(0)y ax bx c a =++<上任意两点.设抛物线的对称轴为直线x t =.(1)若22x =,2y c =,求t 的值;(2)若对于112t x t +<<+,245x <<,都有12y y >,求t 的取值范围.27. 在ABC 中,AC BC =,90ACB ∠=︒,点D 是线段AB 上一个动点(不与点A ,B 重合),()045ACD αα∠=<<︒,以D 为中心,将线段DC 顺时针旋转90︒得到线段DE ,连接EB .(1)依题意补全图形;(2)求EDB ∠的大小(用含α的代数式表示);(3)用等式表示线段BE ,BC ,AD 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点(,0)T t ,T e 的半径为1,过T e 外一点P 作两条射线,一条是T e 的切线,另一条经过点T ,若这两条射线的夹角大于或等于45︒,则称点P 为T e 的“伴随点”.(1)当0=t 时,①在1(1,0)P ,2P ,3(1,1)P -,4(1,2)P -中,T e 的“伴随点”是______.②若直线12y x b =+上有且只有一个T e 的“伴随点”,求b 的值;(2)已知正方形EFGH 的对角线的交点(0,)M t ,点11,22E t ⎛⎫-+ ⎪⎝⎭,若正方形上存在T e 的“伴随点”,直接写出t 的取值范围.参考答案一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】D【分析】本题考查了常见几何体的识别,观察所给几何体,可以直接得出答案.【详解】解:A 选项为正方体,不合题意;B 选项为球,不符合题意;C 选项为五棱锥,不合题意;D 选项为圆锥,符合题意.故选:D .2. 【答案】B【分析】本题考查科学记数法,科学记数法的表示形式为 10n a ⨯ 的形式,其中 110a ≤<,n 为整数(确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位).【详解】解:43700000=74.3710⨯,故选:B .3. 【答案】C【分析】本题考查了n 边形内角和公式,熟练记忆公式是解题的关键.代入公式即可求解.【详解】解:五边形的内角和为()52180540-⨯︒=︒,故选:C .4. 【答案】B【分析】本题主要考查的是对顶角的性质和垂线,依据垂线的定义可求得90EOB ∠=︒,然后依据对顶角的性质可求得BOD ∠的度数,最后依据EOD EOB DOB ∠=∠-∠求解即可.【详解】解:∵OE AB ⊥,∴90EOB ∠=︒.∵30DOB AOC ∠=∠=︒,∴903060EOD EOB DOB ∠=∠-∠=︒-︒=︒.故选:B .5. 【答案】C【分析】本题考查了根据点在数轴的位置判断式子的正负.熟练掌握根据点在数轴的位置判断式子的正负是解题的关键.由数轴可知,32101a b c -<<-<<-<<<,则0b c -<,0ac <,0b c +<,1ab >,然后判断作答即可.【详解】解:由数轴可知,32101a b c -<<-<<-<<<,∴0b c -<,0ac <,0b c +<,1ab >,∴A 、B 、D 错误,故不符合要求;C 正确,故符合要求;故选:C .6. 【答案】D【分析】本题考查的是列表法或画树状图求解概率,根据题意列出表格即可求解.【详解】解:根据题意列表如下:向前冲向向,向前,向冲,向前向,前前,前前,冲冲向,冲前,冲冲,冲共有9种等可能得情况,其中两次都摸到“冲”字的情况有1种,则两次都摸到“冲”字的概率是:19,故选:D .7. 【答案】A【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()22410m ∆=-⨯⨯->,然后求出不等式的解集即可.【详解】解:根据题意得()22410m ∆=-⨯⨯->,解得1m >-.故选:A .8. 【答案】D【分析】由90BAC ∠=︒,AD BC ⊥,得到ABD CAD ∽△△,BD AD AD DC =,将BD a =,DC b =,AD c =代入,即可判断①正确,由()2222a b a b ab -=+-,()2222a b a b ab +=++,将2c ab =代入,整理后即可判断②正确,将2c b a=,代入a b >,即可判断③正确,本题考查了,相似三角形的性质与判定,完全平方公式的应用,解不等式,解题的关键是:熟练掌握完全平方公式的变形及应用.【详解】解:∵90BAC ∠=︒,AD BC ⊥,∴90BAD CAD ∠+∠=︒,90BAD ABD ∠+∠=︒,90BAD ADC ∠=∠=︒,∴CAD ABD ∠=∠,∴ABD CAD ∽△△,∴BD AD AD DC=即:a c c b =,整理得:2c ab =,故①正确,∵()2222a b a b ab -=+-,即:()2222a b a b ab +=-+, ∴()()()222222244a b a b ab a b ab a b c +=++=-+=-+,∵()20a b -≥,∴()224a b c +≥,∵0a >、0b >、0c >,∴2a b c +≥,故②正确,∵a b >,2c b a=,∴2c a a>,∵0a >,∴22a c >,∴a c >,故③正确,综上所述,①②③正确,故选:D .二、填空题(共16分,每题2分)9. 【答案】3x ≥【分析】此题主要考查了分式有意义及二次根式有意义的条件,正确掌握相关定义是解题关键.由分式有意义及二次根式有意义的条件,进而得出x 的取值范围.【详解】由二次根式的概念,可知30x -≥,解得3x ≥.故答案为:3x ≥10. 【答案】()()22a b b +-.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a 后继续应用平方差公式分解即可【详解】解:()()()224422a a a a b b b b -=-=+-,故答案为:()()22a b b +-.11. 【答案】1x =【分析】本题考查了解分式方程,先将分式方程化为一元一次方程,再解一元一次方程,最后检验即可求解,注意分式的方程需要检验是解题的关键.【详解】解:1341x x =-∴413x x -=,解得:1x =,经检验,1x =是原分式方程的解,∴1x =,故答案为:1x =.12. 【答案】5-【分析】本题考查了反比例函数图象上点的坐标特征,先把(5,2)A 代入(0)k y k x=≠求出10,k =再把(,2)B m -代入10y x=,求出5m =-.【详解】解:把(5,2)A 代入(0)k y k x =≠得:25k =,解得,10,k =∴反比例函数解析式为10y x =,把(,2)B m -代入10y x =,得:102m-=,解得,5m =-,故答案为:5-13. 【答案】45【分析】本题主要考查了圆周角定理,先由直径所对的圆周角为90︒,可得90ACB ∠=︒,然后由AC BC =得:45CAB CBA ∠=∠=︒,然后根据同弧所对的圆周角相等,即可求出D ∠的度数.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵AC BC =,∴45CAB CBA ∠=∠=︒,∴45D CAB ∠=∠=︒.故答案为:4514. 【答案】1【分析】本题考查矩形的性质,等腰三角形的判定和性质,解直角三角形,根据矩形的性质,得到OB OC =,根据三线合一结合30度角的直角三角形的性质,求解即可.【详解】解:∵矩形ABCD ,∴OB OC =,90BCD ∠=︒,4BD AC ==,∵30DBC ∠=︒,∴122CD BD ==,∴BC =,∵OB OC =,OE BC ⊥,∴12BE BC ==,∴tan 301OE BE =⋅︒==;故答案为:1.15. 【答案】240【分析】本题主要考查了样本估计总体.用800乘以喜爱“篮球”项目所占的百分比,即可.【详解】解:30800240100⨯=人,即该年级喜爱“篮球”项目的学生有240人.故答案为:24016. 【答案】 ①. 60 ②. 30【分析】本题考查了二元一次方程组的应用,由两次门票费用,列出方程组,可求解.【详解】解:∵1170不能整除16,∴两个部门的人数81a b +≥,又1560不能整除16,∴每个部门的人数不可能同时在41~80之间,由于a b >,所以,当140,4180b a ≤≤≤≤,则有:()20161560131170b a a b +=⎧⎨+=⎩解得,6030a b =⎧⎨=⎩故答案为:60,30.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 【答案】4+【分析】本题考查了实数的混合运算,掌握相关运算法则是解题关键.先计算绝对值、零指数幂、二次根式、特殊角的三角函数值,再计算加减法即可.【详解】解:0|3|(2024)2cos 45π-+++-︒312=++-⨯31=++-4=.18. 【答案】3x ≥【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:4125213x x x x -≥+⎧⎪⎨-<⎪⎩①②解不等式①,得3x ≥.解不等式②,得1x >-.∴不等式组的解集为3x ≥.19. 【答案】1【分析】本题考查整式的混合运算、代数式求值,熟练掌握运算法则是解答的关键.先根据整式的混合运算法则结合完全平方公式化简原式,再将已知化为2262a a +=代入求解即可.【详解】解:2(1)(4)2a a a +++-222142a a a a =++++-2261a a =+-.2310a a +-= ,231a a ∴+=.2262a a ∴+=.∴原式2261a a =+-21=-1=.20. 【答案】每本A 书籍厚度为1cm【分析】本题主要考查了二元一次方程的应用,设每本A 书籍厚度为cm x ,桌子高度为cm y ,根据等量关系,列出方程组,解方程组即可.【详解】解:设每本A 书籍厚度为cm x ,桌子高度为cm y ,由题意可得:37965825x y x y +=⎧⎪⎨⨯+=⎪⎩,解得176x y =⎧⎨=⎩,答:每本A 书籍厚度为1cm .21. 【答案】(1)见解析 (2)2CE =【分析】本题考查了平行四边形的判定,正方形的性质,正切的定义;(1)根据正方形的性质得出AD BC ∥,AD BC =.根据题意得出AF CE =,即可得证;(2)根据正方形的性质得出2tan tan 3BAE G ∠==,在Rt ADG 中,得出6CD =则3CG =,根据2tan 3CEG CG ==,即可求解.【小问1详解】证明: 四边形ABCD 是正方形,∴AD BC ∥,AD BC =.BE FD =,∴AD FD BC BE -=-.即AF CE =.又 AF CE ∥,∴四边形AECF 是平行四边形.【小问2详解】解: 四边形ABCD 是正方形,∴AD BC ∥,90BCD D ∠=∠=︒,AD CD =.∴BAE G ∠=∠,90ECG ∠=︒,∴2tan tan 3BAE G ∠==.在Rt ADG 中, 2tan 3ADG DG ==,9DG =,∴6AD =.∴6CD =.∴3CG =.在Rt ECG 中, 2tan 3CEG CG ==,∴2CE =.22. 【答案】(1)4 (2)7.55(3)① (4)乙【分析】本题考查了频数分布表,求中位数,根据方差判断稳定性:(1)运用频数总数减去已知频数即可得出m ;(2)根据中位数的定义可求解;(3)从统计图中可得每公顷产量低于7.50t 的试验田数量有5块,可判断①;3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第4名可判断②.(4)根据图象判断稳定性即可得出结果.【小问1详解】解:2032654m =----=【小问2详解】解:随机抽取的这20块试验田每公顷产量的中位数是7.557.60x ≤<这一组的第1个和第2个数据,即:7.55和7.55,故中位数为:7.557.557.552+=,故答案为:7.55;【小问3详解】解:20块试验田的每公顷产量数据中,每公顷产量低于7.50t 的试验田数量有5块,所以,占试验田总数的百分数为510025%20⨯=,故①正确;3号试验田每公顷产量在20块试验田的每公顷产量数据中从高到低排第4名,故②错误,故答案为:①【小问4详解】解:从20 块试验田每公顷产量的统计图中可看出甲种种子每公顷产量波动大,乙种种子每公顷产量波动小,据此推断:甲、乙两种种子中,这个地区比较适合种植的种子是乙;故答案为:乙23. 【答案】(1)21y x =+;(2,3)--(2)312n ≤≤【分析】本题考查待定系数法求一次函数解析式,一次函数图象及性质,用数形结合思想考虑本题是解答本题的关键.(1)将两点代入函数解析式中即可求得函数解析式,再将2x =-代入解析式即可求出点C 坐标;(2)根据题意将(2,2)--代入(0)y nx n =≠求出n 的最小值,再根据题意将C 代入求出n 的最大值,即为本题答案.【小问1详解】解:∵函数(0)y kx b k =+≠的图象经过点(1,3)A 和(1,1)B --,∴将点(1,3)A 和(1,1)B --代入(0)y kx b k =+≠中,31k b k b +=⎧⎨-+=-⎩,解得:21k b =⎧⎨=⎩,∴该函数的表达式为:21y x =+,∵与过点(2,0)-且平行于y 轴的直线交于点C ,∴将2x =-代入21y x =+中,得=3y -,∴(2,3)C --;【小问2详解】解:∵当2x <-时,对于x 的每一个值,函数(0)y nx n =≠的值大于函数(0)y kx b k =+≠的值且小于2-,,通过图象可知,当(0)y nx n =≠的函数值小于2-时,即将(2,2)--H 代入(0)y nx n =≠中,1n =,当(0)y nx n =≠的函数值大于函数(0)y kx b k =+≠的值将(2,3)C --代入(0)y nx n =≠中,32n =,∴n 的取值范围为:312n ≤≤.24. 【答案】(1)②,① (2)①不能;理由见解析;②21OD ≤≤-【分析】本题考查了二次函数的实际应用,(1)由题意可知:顶点坐标()2,2C ,()0,1.5H ,利用待定系数法即可求出函数解析式为:()21228y x =--+,利用()0,1.5H 关于对称轴2x =的对称点为:()4,1.5,可知下边缘抛物线是由上边缘抛物线向左平移4个单位得到,求出下边缘抛物线为:()21228=-++y x ;(2)①根据 2.6m OD =,将 5.6x =代入上边缘抛物线的函数解析式得出0.380.5y =<,即可求解;②当点B 和点D 重合时,d 有最小值,此时2d =;当上边缘抛物线过点F 时,d 有最大值,231=+-=-d ;所以21d ≤≤-.【小问1详解】解:由题意可知:()2,2C ,故设上边缘抛物线的函数解析式为:()222y a x =-+,∵()0,1.5H ,将其代入()222y a x =-+可得:()21.5022=-+a ,解得:18a =-,∴上边缘抛物线的函数解析式为:()21228y x =--+,解:∵()0,1.5H 关于对称轴2x =的对称点为:()4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4个单位得到,∴下边缘抛物线为:()21228=-++y x ,故答案为:②,①.【小问2详解】①不能,理由如下,依题意, 2.63 5.6OE =+=将 5.6x =代入上边缘抛物线的函数解析式()21228y x =--+得()215.6220.380.58y =--+=<∴绿化带不全在喷头口的喷水区域内,∴洒水车不能浇灌到整个绿化带;②解:设灌溉车到绿化带的距离OD 为d ,要使灌溉车行驶时喷出的水能浇灌到整个绿化带,则当点B 和点D 重合时,d 有最小值,此时2d =;当上边缘抛物线过点F 时,d 有最大值,3m DE =,0.5m EF =.∴令()21220.58=--+=y x ,解得:2x =+2x =-,结合图像可知:()2+Fd ∴的最大值为:231=+-=-d ;∴21d ≤≤-.故答案为:21OD ≤≤-.25. 【答案】(1)证明见解析(2)92【分析】(1)由切线的定义可得出90A AEB ∠+∠=︒,由直径所对的圆周角等于90︒得出90CDE BDE ∠+∠=︒,由等边对等角得出BDA A ∠=∠,等量代换得出CDE AEB ∠=∠,由同弧所对的圆周角相等得出C D E C B F ∠=∠, 进而可得出AEB CBF ∠=∠ ,由等角对等边得出EF BF =.(2)连接CF ,先证明==AF BF EF ,设BF EF AF x ===,则2AE x =,解直角三角形Rt ABE 得出23BE x =,再证明BCF A ∠=∠,得出1sin sin 3A BCF =∠=,进一步得出22()BC OB OE BE ==+,即523223x x ⎛⎫=+ ⎪⎝⎭,解出x 即可求解.【小问1详解】证明: AB 为O 的切线,∴90OBA ∠=︒.∴90A AEB ∠+∠=︒.BC 为O 的直径,∴90CDB ∠=︒.∴90CDE BDE ∠+∠=︒.BD BA =,∴BDA A ∠=∠.∴CDE AEB ∠=∠.又CDE CBF ∠=∠ ,AEB CBF ∴∠=∠.EF BF ∴=.【小问2详解】连接CF .AB 为O 的切线,∴90OBA ∠=︒.∴90AEB A ∠+∠=︒,90EBF FBA ∠+∠=︒.AEB CBF ∠=∠,∴FBA A ∠=∠.∴AF BF =.∴==AF BF EF .设BF EF AF x ===,则2AE x =.在Rt ABE 中, 1sin 3A =,2AE x =,∴23BE x =.BC 为直径,∴90CFB ∠=︒.BCF BDA ∠=∠,BDA A ∠=∠,∴BCF A ∠=∠.∴1sin sin 3A BCF =∠=.在Rt BFC △中,BF x =,∴3BC x =.22()BC OB OE BE ==+,∴523223x x ⎛⎫=+⎪⎝⎭.解得3x =.∴92OB =.∴O 半径的长为92.【点睛】本题主要考查了切线的定义,直径所对的圆周角等于90︒,同弧所对的圆周角相等,解直角三角形的相关计算,等角对等边等知识,掌握这些性质是解题的关键.26. 【答案】(1)1t =(2)2t ≤或7t ≥【分析】本题主要考查了二次函数的图象和性质等知识,(1)将22x =,2y c =代入解析式,得出2b a =-即可得解;(2)分①当点N 在对称轴上或对称轴右侧时,②当点N 在对称轴上或对称轴左侧时两种情况讨论组成不等式组即可得解;解题的关键是理解题意,灵活运用所学知识解决问题.【小问1详解】22x =,2y c =,42a b c c ∴++=,2b a ∴=-,12bt a ∴=-=,【小问2详解】2(0)y ax bx c a =++<,∴抛物线开口向下,抛物线的对称轴为x t =,112t x t +<<+,∴点M 在对称轴的右侧,①当点N 在对称轴上或对称轴右侧时,抛物线开口向下,∴在对称轴右侧,y 随x 的增大而减小.由12y y >,∴12x x <,∴4,24t t ≤⎧⎨+≤⎩,解得42t t ≤⎧⎨≤⎩,∴2t ≤,②当点N 在对称轴上或对称轴左侧时,设抛物线上的点()22,N x y 关于x t =的对称点为()2,N d y ',2t x d t ∴-=-,解得22d t x =-,∴()222,N t x y '-,245x <<,∴225224t t x t -<-<-,在对称轴右侧,y 随x 的增大而减小,由12y y >,∴122x t x <-,∴5225t t t ≥⎧⎨+≤-⎩,解得57t t ≥⎧⎨≥⎩,∴7t ≥,综上所述,t 的取值范围是2t ≤或7t ≥.27. 【答案】(1)补全图形见解析(2)45α︒-(3)BC BE =+;证明见解析【分析】本题主要考查旋转的性质,全等三角形的性质与判定,三角形外角的性质,勾股定理等:(1)根据题目叙述作图即可;(2)由三角形外角性质得45CDB A ACD α∠=∠+∠=︒+,根据90CDE ∠=︒可得结论; (3)过点D 作DM AB ⊥,交AC 于点F ,交BC 的延长线于点M .证明DCM DEB △≌△,得出CM BE =,再证明CF CM =,CF BE =,在Rt FAD △中,由勾股定理得出AF =,得出AC FC =+,由CF BE =,BC AC =可得出结论【小问1详解】补全图形如下:【小问2详解】解: AC BC =,90ACB ∠=︒,∴45A ABC ∠=∠=︒.∴45CDB A ACD α∠=∠+∠=︒+.90CDE ∠=︒,∴45EDB CDE CDB α∠=∠-∠=︒-.【小问3详解】解:用等式表示线段BE ,BC ,AD 之间的数量关系是BC BE =+.证明:过点D 作DM AB ⊥,交AC 于点F ,交BC 的延长线于点M .90MDB CDE ∠=∠=︒,∴CDM EDB ∠=∠.45MBD ∠=︒,∴45M MBD ∠=∠=︒.∴DM DB =.又 DC DE =,∴DCM DEB △≌△.∴CM BE =.45M ∠=︒,90ACB ∠=︒,∴45CFM M ∠=∠=︒.∴CF CM =.∴CF BE =.在Rt FAD △中,45A ∠=︒,∴45AFD A ∠=∠=︒,∴,AD FD =AF ∴==.AC AF FC =+ ,AC FC ∴=+.CF BE = ,BC AC =,BC BE ∴=+.28. 【答案】(1)①2P ,3P ;②b =(232t <≤或32t -≤<【分析】(1)①设射线PM 与T e 相切于点M ,连接TM ,根据题目中的定义得出1PT <≤,分别求出四个点与()0,0T 间的距离,然后进行判断即可;②根据直线12y x b =+上有且只有一个T e 的“伴随点”,得出直线12y x b =+与以()0,0T为半径的圆相切,设直线12y x b =+与x 轴,y 轴分别交于点A 、B ,与以()0,0T 为半径的圆相切于点C ,连接TC ,求出BT ===,得出b =,即可求出结果;(2)分两种情况进行讨论:当0t >时,当0t <时,分别画出图形,列出不等式组,解不等式组即可.【小问1详解】解:①如图1,设射线PM 与T e 相切于点M ,连接TM ,∴TM PM ⊥,当45P ∠=︒时,PTM △为等腰直角三角形,∴1PM TM ==,PT ===,∴当点P 在T e 外,45P ≥︒∠时,1PT <≤,当0=t 时,点()0,0T ,∵11PT =,2PT =,3PT ==4PT ==>∴在1(1,0)P ,2P ,3(1,1)P -,4(1,2)P -中,T e 的“伴随点”是2P ,3P ;故答案为:2P ,3P②∵当点P 在T e 外,45P ≥︒∠时,1PT <≤∴点P 在以T 为半径的圆上或圆内且在以1为半径的圆外,如图2:∵直线12y x b =+上有且只有一个T e 的“伴随点”,∴直线12y x b =+与以()0,0T 为圆心,为半径的圆相切,∴0b ≠,设直线12y x b =+与x 轴,y 轴分别交于点A 、B ,与以()0,0T 为半径的圆相切于点C ,连接TC ,∴TC AB ⊥,令0x =,y b =,令0y =,2x b =-,∴()2,0A b -,()0,B b ,∴2AT b =-,BT b =,在Rt ATB △中,1tan 122bBTAT b ∠===-,1290∠+∠=︒,∵TC AB ⊥,∴2390∠+∠=︒,∴13∠=∠,∴1312tan tan ==∠∠,在Rt TCB 中132tan BC CT ===∠,∴BC =∴BT ===,∴b =∴b =;【小问2详解】解:∵正方形EFGH 的对角线的交点(0,)M t ,点11,22E t ⎛⎫-+ ⎪⎝⎭,∴点11,22G t ⎛⎫- ⎪⎝⎭,11,22F t ⎛⎫+ ⎪⎝⎭,11,22H t ⎛⎫-- ⎪⎝⎭,当0t >时,如图所示:此时正方形EFGH 上的点到圆心T 的最大距离为ET ,最小距离为GT ,∵正方形上存在T e 的“伴随点”,且点P 在以T为圆心,以为半径的圆上或圆内且在以1为半径的圆外,∴1ET >,GT ≤,∵12ET t ⎫==+⎪⎭,12GT ==-,∴11212t ⎫+>⎪⎭-≤,32t <≤;当0t <时,如图所示:此时正方形EFGH 上的点到圆心T 的最大距离为GT ,最小距离为ET ,∵正方形上存在T e 的“伴随点”,且点P 在以T为圆心,以为半径的圆上或圆内且在以1为半径的圆外,∴ET ≤,1GT >,∵12ET ==+,12GT t ⎫==-⎪⎭,∴12112t +≤⎫->⎪⎭,解得:32t -≤<;综上分析可知:t 32t <≤或32t -≤<.【点睛】本题主要考查了切线的性质,解直角三角形,勾股定理,两点间距离公式,等腰直角三角形的性质,解不等式组,解题的关键是数形结合,注意进行分类讨论.。
2023北京朝阳区初三一模数学试题及参考答案
北京市朝阳区九年级综合练习(一)一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.下图是某几何体的三视图,该几何体是(A )长方体(B )三棱柱(C )圆锥(D )圆柱第1题 第3题 第4题 第7题2.我国已建成世界上规模最大的社会保障体系、医疗卫生体系,基本养老保险覆盖1 040 000 000人左右,将1 040 000 000用科学记数法表示应为(A )1.04×1010 (B )1.04×109 (C )10.4×109 (D ) 0.104×10113.如上图,若数轴上的点A 表示下列四个无理数中的一个,则这个无理数是(A ) (B(C (D )π4. 如上图,直线AB ,CD 相交于点O ,若∠AOC =60°,∠BOE =40°,则∠DOE 的度数为(A )60° (B )40°(C )20° (D )10°5. 经过某路口的汽车,只能直行或右转. 若这两种可能性大小相同,则经过该路口的两辆汽车都直行的概率为(A )(B )(C )(D )141312346.正六边形的外角和为(A )180°(B )360°(C )540°(D )720°7.某中学为了解学生对四类劳动课程的喜欢情况,从本校学生中随机抽取了200名进行问卷调查,根据数据绘制了如上面图所示的统计图. 若该校有2000名学生,估计喜欢木工的人数为(A )64(B )380(C )640 (D )7208. 下面的三个问题中都有两个变量:①矩形的面积一定,一边长y 与它的邻边x ;②某村的耕地面积一定,该村人均耕地面积S 与全村总人口n ;③汽车的行驶速度一定,行驶路程s 与行驶时间t .其中,两个变量之间的函数关系可以用形如的式子表示的是(A )①②(B )①③(C )②③(D )①②③二、填空题(共16分,每题2分)9在实数范围内有意义,则实数x 的取值范围是 .10.分解因式:.11. 若关于x 的一元二次方程260x x m ++=有两个相等的实数根,则实数m 的值为 .12.方程的解为 .13.在平面直角坐标系xOy 中,若反比例函数的图象经过点和点,则.14.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6. 若△ABD 的周长为13,则△ABC 的周长为.15.如图,在矩形ABCD 中,点E 在AD 边上,连接BE 并延长,交CD 的延长0ky k k x=≠(为常数,)2363a a -+=322x x=+6y x=()2A m ,()2B n -,m n +=第14题图第15题图线于点F . 若AB =2,BC =4,,则BF 的长为 .16. 一个33人的旅游团到一家酒店住宿,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚130元.(说明:男士只能与男士同住,女士只能与女士同住. 三人间客房可以不住满,但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元,则他们租住了间一人间;(2)若该旅游团租住了3间一人间,且共有19名男士,则租住一晚的住宿房费最少为元.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.计算:.18.解不等式组:19.已知,求代数式的值.20. 下面是证明“等腰三角形的两个底角相等”的两种添加辅助线的方法,选择其2AEDE=(02sin 45π-+-o 17242.3x x xx +⎧⎪+⎨⎪⎩>-,≤230x x --=(2)(2)(2)x x x x +---中一种,完成证明.已知:如图,在△ABC 中,AB =AC .求证:∠B =∠C .方法一证明:如图,作△ABC 的中线AD .方法二证明:如图,作△ABC 的角平分线AD .21. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在BD 上,AE ∥CF ,连接AF ,CE .(1)求证:四边形AECF 为平行四边形;(2)若∠EAO +∠CFD =180°,求证:四边形AECF 是矩形.22. 在平面直角坐标系xOy 中,一次函数的图象经过点(0,1),(-2,2),与x轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x ≥时,对于x 的每一个值,函数的值大于一次函数0y kx b k =+≠()2y x m =+的值,直接写出m 的取值范围.23. 如图,AB 是⊙O 的弦,过点O 作OC ⊥AB ,垂足为C ,过点A 作⊙O 的切线,交OC 的延长线于点D ,连接OB .(1)求证:∠B =∠D ;(2)延长BO 交⊙O 于点E ,连接AE ,CE ,若AD=,sinBCE 的长.24.某校为了解读书月期间学生平均每天阅读时间,在该校七、八、九年级学生中各随机抽取了15名学生,获得了他们平均每天阅读时间(单位:min ),并对数据进行了整理、描述,给出部分信息.a . 七、八年级学生平均每天阅读时间统计图:0y kx b k =+≠()七年级学生平均每天阅读时间八年级学生平均每天阅读时间b . 九年级学生平均每天阅读时间:21 22 25 33 36 36 37 37 39 39 41 42 46 48 50c . 七、八、九年级学生平均每天阅读时间的平均数:年级七八九平均数26.435.236.8根据以上信息,回答下列问题:(1)抽取的15名九年级学生平均每天阅读时间的中位数是 ;(2)求三个年级抽取的45名学生平均每天阅读时间的平均数;(3)若七、八、九年级抽取的学生平均每天阅读时间的方差分别为,,,则,,之间的大小关系为.25.一位滑雪者从某山坡滑下并滑完全程,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足“一次函数”、“二次函数”或“反比例函数”关系中的一种. 测得一些数据如下:滑行时间t /s 01234滑行距离s /m261220(1)s 是t 的函数(填“一次”、“二次”或“反比例”);21s 22s 23s 21s 22s 23s(2)求s 关于t 的函数表达式;(3)已知第二位滑雪者也从坡顶滑下并滑完全程,且滑行距离与第一位滑雪者相同,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足函数关系2522s t t =+. 记第一位滑雪者滑完全程所用时间为t 1,第二位滑雪者滑完全程所用时间为t 2,则t 1t 2(填“<”,“=”或“>”).26.在平面直角坐标系xOy 中,抛物线y =ax 2+(2m -6)x +1经过点()124m -,.(1)求a 的值;(2)求抛物线的对称轴(用含m 的式子表示);(3)点()1m y -,,()2m y ,,()32m y +,在抛物线上,若231y y y <≤,求m 的取值范围.27. 如图,∠MON =α,点A 在ON 上,过点A 作OM 的平行线,与∠MON 的平分线交于点B ,点C 在OB 上(不与点O ,B 重合),连接AC ,将线段AC 绕点A 顺时针旋转180°-α,得到线段AD ,连接BD .(1)直接写出线段AO 与AB 之间的数量关系,并证明∠MOB =∠DBA ;(2)连接DC 并延长,分别交AB ,OM 于点E ,F . 若α=60°,用等式表示线段EF 与AC 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,对于点P ,C ,Q (点P 与点C 不重合),给出如下定义:若∠PCQ =90°,且1CQ CP k,则称点Q 为点P 关于点C 的“k -关联点”.已知点A (3,0),点B (0,),⊙O 的半径为r .(1)①在点D (0,3),E (0,-1.5),F (3,3)中,是点A 关于点O 的“1-关联点”的为;②点B 关于点O 的关联点”的坐标为;(2)点P 为线段AB 上的任意一点,点C 为线段OB 上任意一点(不与点B重合).①若⊙O 上存在点P 关于点O 的关联点”,直接写出r 的最大值及最小值;②当r =⊙O 上不存在点P 关于点C 的“k -关联点”,直接写出k 的取值范围:.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2023.4一、选择题(共16分,每题2分)题号12345678答案A B D C A B C A 二、填空题(共16分,每题2分)三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分)17. 解:原式12=-++1=+.18. 解:原不等式组为17242.3x xxx+⎧⎪+⎨⎪⎩>-,≤解不等式①,得 2.x>解不等式②,得 4.x≤∴原不等式组的解集为2 4.x<≤19. 解:(2)(2)(2)x x x x+---2242x x x=--+222 4.x x=--∵230x x--=,∴2 3.x x-=题号9101112答案5x≥23(1)a-9x=4题号13141516答案01951;1600①②∴原式22()4 2.x x =--=20. 方法一证明:∵AD 是△ABC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C .方法二证明:∵AD 是△ABC 的角平分线, ∴∠BAD =∠CAD . 在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C.21. 证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC . ∵AE ∥CF ,∴∠EAO =∠FCO .∵∠AOE =∠COF ,∴△AEO ≌△CFO . ∴OE =OF .∴四边形AECF 为平行四边形.(2)∵∠EAO +∠CFD =180°,∠CFO +∠CFD =180°,∴∠EAO=∠CFO . ∵∠EAO =∠FCO ,∴∠FCO=∠CFO . ∴OC=OF . ∴AC=EF .∴四边形AECF 是矩形.22. 解:(1)∵一次函数的图象经过点(0,1),(-2,2),∴12 2.b k b =⎧⎨-+=⎩,解得 121.k b ⎧=-⎪⎨⎪=⎩ ∴该一次函数的表达式为11.2y x =-+令0y =,得 2.x =∴()20.A ,(2) 4.m >-23. (1)证明:如图,连接OA .∵AD 为⊙O 的切线,∴∠OAD =90°.∴∠CAD +∠OAB =90°.∵OC ⊥AB ,∴∠ACD =90°.∴∠CAD +∠D =90°.∴∠OAB =∠D .∵OA =OB ,∴∠OAB =∠B .∴∠B =∠D .(2)解:在Rt △ACD 中,AD=,sin D =sin B,可得sin 2AC AD D =⋅=.∴AB =2AC =4.根据勾股定理,得CD =4.∴tan B =tan D =12.∵BE 为⊙O 的直径,0y kx b k =+≠()∴∠EAB =90°.在Rt △ABE 中,tan 2AE AB B =⋅=.在Rt △ACE 中,根据勾股定理,得CE=24.解:(1)37.(2)根据题意可知,三个年级抽取的45名学生平均每天阅读时间的平均数为 1526.41535.21536.832.8.45⨯+⨯+⨯=(3)<<.25.解:(1)二次.(2)设s 关于t 的函数表达式为s =at 2+bt ,根据题意,得242 6.a b a b +=⎧⎨+=⎩,解得11.a b =⎧⎨=⎩,∴s 关于t 的函数表达式为s =t 2+t.(3)>.26.解:(1)∵抛物线y =ax 2+(2m -6)x +1经过点()124m -,,∴2m -4=a +(2m -6)+1.∴a =1(2)由(1)得抛物线的表达式为y =x 2+(2m -6)x +1.∴抛物线的对称轴为3.x m =-(3)①当m >0时,可知点()1m y -,,()2m y ,,()32m y +,从左至右分布.根据23y y <可得232m m m ++-<.∴ 1.m >根据31y y ≤可得232m m m -++-≥.∴ 2.m ≤22s 21s 23s∴1 2.m <≤②当m ≤0时,∵3m m m +≤-<-,∴21y y ≥,不符合题意.综上,m 的取值范围为1 2.m <≤27.解:(1)AO =AB .证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB ,∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB .根据题意,得AC =AD ,∠OAB =∠CAD .∴∠CAO =∠DAB.∴△OAC ≌△BAD. ∴∠COA =∠DBA. ∴∠MOB =∠DBA.(2)EF =.证明:如图,在OM 上截取OH =BE ,连接CH .∵△OAC ≌△BAD ,∴OC=BD.又OH =BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED ,∵OM//AB ,∴∠MFC=∠BED.∴∠MFC=∠OHC.∴CF=CH.∴CF=DE.∴CD=EF.∵α=60°,∴∠CAD=180°-α=120°,作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK =30°,1.2CK CD =∴.CK AC =∴CD =.∴EF =.28. 解:(1)①D .②(-3,0)或(3,0).(2)① 3,32.②k .。
江苏省常州市第二十四中学、教科院、市实验中学联考2024届九年级下学期中考一模数学试卷(含解析)
数学试题一、选择题:(本大题共8小题,每小题2分,共16分)1.(2分)把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是( )A.﹣6+3=9B.﹣6﹣3=﹣3C.﹣6+3=﹣3D.﹣6+3=3解答:解:由题意可知:﹣6+3=﹣3,故选:C.2.(2分)计算(﹣a)3•a2的结果是( )A.﹣a6B.a6C.﹣a5D.a5解答:解:(﹣a)3•a2=﹣a3•a2=﹣a5,故选:C.3.(2分)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是( )A.m≤﹣1B.m≤1C.m≤4D.解答:解:∵一元二次方程x2+2x+m=0有实数解,∴b2﹣4ac=22﹣4m≥0,解得:m≤1,则m的取值范围是m≤1.故选:B.4.(2分)下列几种著名的数学曲线中,不是轴对称图形的是( )A.B.C.D.解答:解:A.不是轴对称图形,故此选项符合题意;B.是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项不合题意.故选:A.5.(2分)王老汉要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段AD应该是△ABC的( )A.角平分线B.中线C.高线D.以上都不是解答:解:由三角形的面积公式可知,三角形的中线把三角形分为面积相等的两部分,∴他所作的线段AD应该是△ABC的中线,故选:B.6.(2分)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A=88°,∠C=42°,AB=60,则点A到BC的距离为( )A.60sin50°B.C.60cos50°D.60tan50°解答:解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin B=60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.7.(2分)如图,已知∠AOB=60°,以点O为圆心,与角的两边分别交于C,D两点,D为圆心,大于,两条圆弧交于∠AOB内一点P,连结OP,过点P作直线PE∥OA交OB于点E,过点P作直线PF ∥OB交OA于点F,OP=6cm,则四边形PFOE的面积是( )A.B.C.D.解答:解:过P作PM⊥OB于M,由作图得:OP平分∠AOB,∴,∴,∴,∵PE∥OA,PF∥OB,∴四边形OEPF为平行四边形,∠EPO=∠POA=30°,∴∠POE=∠OPE,∴OE=PE,设OE=PE=x cm,在Rt△PEM中,PE2﹣MP2=EM2,即:,解得:,∴.故选:B.8.(2分)如图①,底面积为30cm2的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②,若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱体的底面积为( )cm2.A.24B.12C.18D.21解答:解:根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体”的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体”到注满用了:42s﹣24s=18(s),这段高度为:14﹣11=3(cm),设匀速注水的水流速度为x cm3/s,则18•x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;“几何体”下方圆柱的高为a,则a•(30﹣15)=18×5,解得a=6,所以“几何体”上方圆柱的高为11﹣6=5(cm),设“几何体”上方圆柱的底面积为S cm2,根据题意得5•(30﹣S)=5×(24﹣18),解得S=24,即“几何体”上方圆柱的底面积为24cm2.故选:A.二、填空题:(本大题共10小题,每小题2分,共20分)9.(2分)25的算术平方根是 5 .解答:解:∵52=25,∴25的算术平方根是5.故答案为:5.10.(2分)当a ≠﹣2 时,分式有意义.解答:解:根据题意得,a+2≠0,解得a≠﹣2.故答案为:≠﹣2.11.(2分)因式分解:a2+8a+16= (a+4)2 .解答:原式=(a+4)2,故答案为:(a+4)2.12.(2分)若m<2<m+1,且m为整数,则m= 5 .解答:解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.13.(2分)图中的小正方形的边长都相等,若△MNP≌△MEQ,则点Q可能是图中的点 D .解答:解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故答案为:D.14.(2分)如图,在平行四边形ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E 处.若∠B=60°,AB=2,则△ADE的周长为 12 .解答:解:∵四边形ABCD是平行四边形,∠B=60°,AB=2,∴∠D=∠B=60°,CD=AB=2,∴由折叠得∠E=∠D=60°,CE=CD=2,∵将△ADC沿AC折叠后,点D落在DC的延长线上的点E处,∴D、C、E三点在同一条直线上,∴DE=CE+CD=2+2=4,∠DAE=180°﹣∠E﹣∠D=60°,∴△ADE是等边三角形,∴AD=AE=DE=4,∴AD+AE+DE=3×4=12,∴△ADE的周长为12,故答案为:12.15.(2分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=8,AD=6,则AF的长为 .解答:解:∵四边形ABCD是矩形,∴AB=CD=8,∠ADC=90°,AB∥CD,∵AD=6,∴AC===10,∵点E是AB的中点,∴AE=AB=4,∵AB∥CD,∴∠CDE=∠DEA,∠DCF=∠CAE,∴△CDF∽△AEF,∴===2,∴AF=AC=,故答案为:.16.(2分)若一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为 x>3 .解答:解:由题意得,一次函数y=kx+b的图象经过(2,0),k>0,∴2k+b=0,∴b=﹣2k,∴不等式可化为:2kx﹣6k>0,解得x>3,故答案为:x>3.17.(2分)初三(9)班同学在“2021义卖”活动中表现特别突出,他们设计了两款特别的产品.第一是“人分纪念品”套装,销售一件此产品可获利16%;第二是“一路向北”手提袋,销售一件此产品可获利24%;当销售量的比为3:2时,总获利为18%.当销售量的比为1:3时,总获利为 20.8% .解答:解:设一件“人分纪念品”套装卖x元,一件“一路向北”手提袋卖y元,则一件此产品可获利16%x 元,一件“一路向北”手提袋可获利24%y元,令“人分纪念品”的销售量为3a,则“一路向北”的销售量为2a,由销售量的比为3:2时,总获利为18%,得:=18%,解得x=2y,设销售量的比为1:3时,令“人分纪念品”的销售量为b,则“一路向北”的销售量为3b,则总获利为:===20.8%,即总获利为20.8%.故答案为:20.8%.18.(2分)如图,半圆O的半径为1,AC⊥AB,BD⊥AB,且AC=1,BD=3,P是半圆上任意一点,则封闭图形ABDPC面积的最大值是 2+ .解答:解:如图,连接DC,并延长交BA的延长线于点G,欲使封闭图形ACPDB的面积最大,因梯形ACDB的面积为定值,故只需△CPD的面积最小.而CD为定值,故只需使动点P到CD的距离最小.为此作半圆平行于CD的切线EF,设切点为P′,并分别交BD及BA的延长线于点F,E.连接OC,∵CA⊥AB,DB⊥AB,∴△CGA∽△DGB,∴=,∴GA=AO=AC=1.∴△ACO和△GAC是等腰直角三角形,∴∠GCA=∠OCA=45°,∴∠GCO=90°,∴OC⊥GD.OC⊥EF,∴切点P′就是OC与半圆的交点.即当动点P取在P′的位置时,到CD的距离最小,而OC=,∴CP´=﹣1,∴S△CP´D=×2×(﹣1)=2﹣,∴封闭图形ACPDB的最大面积为:×(1+3)×2﹣(2﹣)=4﹣2+=2+.故答案为:2+.三、解答题(本大题共10小题,第19题6分.第20-25题每题8分,第26-28题每题10分,共84分)19.(6分)计算:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0.解答:解:(﹣)﹣1+tan60°+|﹣2|+(π﹣3)0=﹣2++2﹣+1=1.20.(8分)解不等式组:,并求出它的正整数解.解答:解:,解不等式①得:x≤5,解不等式②得:x<14,所以不等式组的解集为x≤5,则不等式组的正整数解为1,2,3,4,5.21.(8分)某社区通过公益讲座的方式普及垃圾分类知识.为了了解居民对相关知识的了解情况及讲座效果,请居民在讲座前和讲座后分别回答了一份垃圾分类知识问卷,从中随机抽取20名居民的两次问卷成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.这20名居民讲座前、讲座后成绩得分统计图如图:b.这20名居民讲座前、讲座后成绩的平均数、中位数、方差如下:平均数中位数方差讲座前72.071.599.7讲座后86.8m88.4c.结合讲座后成绩x,被抽取的20名居民中有5人获得“参与奖”(x<80),有7人获得“优秀奖”(80≤x <90),有8人获得“环保达人奖”(90≤x≤100),其中成绩在80≤x<90这一组的是:80 82 83 85 87 88 88根据以上信息,回答下列问题:(1)居民小张讲座前的成绩为80分,讲座后的成绩为95分,在图中用“〇”圈出代表居民小张的点;(2)写出表中m的值;(3)参加公益讲座的居民有160人,估计能获得“环保达人奖”的有 64 人.解答:解:(1)如图所示:(2)讲座后成绩的中位数是第10和第11个数的平均数,所以m==87.5;(3)估计能获得“环保达人奖”的有160×=64(人).故答案为:64.22.(8分)完全相同的四张卡片,上面分别标有数字﹣1,2,1,﹣3,将其背面朝上,从中任意抽出1张(不放回),记为m,再抽一张记为n,以m作为M点的横坐标,n作为M点的纵坐标,记为M(m,n).(1)抽出一张卡片标有数字为正数的概率是 ;(2)用树状图或列表法求所有点M(m,n)的坐标,并且点M在第二象限的概率.解答:解:(1)由题意知,共有4种等可能的结果,其中抽出一张卡片标有数字为正数的结果有:2,1,共2种,∴抽出一张卡片标有数字为正数的概率是=.故答案为:.(2)列表如下:﹣121﹣3﹣1(﹣1,2)(﹣1,1)(﹣1,﹣3)2(2,﹣1)(2,1)(2,﹣3)1(1,﹣1)(1,2)(1,﹣3)﹣3(﹣3,﹣1)(﹣3,2)(﹣3,1)由表格可知,共有12种等可能的结果.其中点M在第二象限的结果有:(﹣1,2),(﹣1,1),(﹣3,2),(﹣3,1),共4种,∴点M在第二象限的概率为=.23.(8分)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.解答:(1)证明:∵CF∥AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD∥CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=AB=AD,∴四边形ADCF是菱形.24.(8分)问题背景:新能汽车多数采用电能作为动力来,不需要燃烧汽油,这样就减少了二氧化碳等气体的排放,从而达到保护环境的目的.实验操作:为了解汽车电池需要多久能充满,以及充满电量状态下电动汽车的最大行驶里程,某综合实践小组设计两组实验.实验一:探究电池充电状态下电动汽车仪表盘增加的电量y(%)与时间t(分钟)的关系,数据记录如表1:电池充电状态时间t(分钟)0103060增加的电量y(%)0103060实验二:探究充满电量状态下电动汽车行驶过程中仪表盘显示电量e(%)与行驶里程s(千米)的关系,数据记录如表2:汽车行驶过程已行驶里程s(千米)0160200280显示电量e(%)100605030建立模型:(1)观察表1、表2发现都是一次函数模型,请结合表1、表2的数据,求出y关于t的函数表达式及e 关于s的函数表达式;解决问题:(2)某电动汽车在充满电量的状态下出发,前往距离出发点460千米处的目的地,若电动汽车行驶240千米后,在途中的服务区充电,一次性充电若干时间后继续行驶,且到达目的地后电动汽车仪表盘显示电量为20%,则电动汽车在服务区充电多长时间?解答:解:(1)根据题意,两个函数均为一次函数,设y=a1t+b1,e=a2s+b2,将(10,10),(30,30)代入y=a1t+b1得,解得,∴函数解析式为:y=t,将(160,60),(200,50)代入e=a2s+b2得,解得,∴函数解析式为:e=﹣+100.(2)由题意得,先在满电的情况下行走了w1=240km,当s1=240时,e1=﹣s1+100=﹣=40,∴未充电前电量显示为40%,假设充电充了t分钟,应增加电量:e2=y2=t,出发是电量为e3=e1+e2=40+t,走完剩余路程w2=460﹣240=220km,w2应耗电量为:e4=﹣w2+100=﹣=45,满电状态下剩余电量45%,据此可得:应耗电量100%﹣45%=55%,20=e3﹣e4=40+t﹣55,解得t=35,答:电动汽车在服务区充电35分钟.25.(8分)如图,在平面直角坐标系中,反比例函数,k>0)的图象经过点A(1,2),B (m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求反比例函数的表达式;(2)当△ABC的面积为4时,求B点坐标.解答:解:(1)把点A(1,2)代入反比例函数得,=2,∴k=2,∴反比例函数解析式为:;(2)把点B(m,n)代入反比例函数得,=n,∴B(m,),∴C(0,),BC=,∵S△ABC=),∴m=5,∴B的坐标为(5,).26.(10分)问题发现:如图1所示,将△ABC绕点A逆时针旋转90°得△ADE,连接CE、DB,根据条件填空:①∠ACE的度数为 45 °;②若CE=2,则CA的值为 ;类比探究:如图2所示,在正方形ABCD中,点E在边BC上,点F在边CD上,且满足∠EAF=45°,BE=1,DF=2,求正方形ABCD的边长;拓展延伸:如图3所示,在四边形ABCD中,CD=CB,∠BAD+∠BCD=90°,AC、BD为对角线,且满足AC=CD,若AD=3,AB=4,请直接写出BD的值.解答:问题发现:解:①将△ABC绕点A逆时针旋转90°得△ADE,∴∠DAB=∠CAE=90°,CA=EA,∴∠ACE=45°,故答案为:45;②∵△CAE是等腰直角三角形,∠ACE=45°,∴AC=CE•cos45°=2×=,故答案为:;类比探究:解:将△ABE绕A逆时针旋转90°得△ADG,如图所示:∵△ABE绕A逆时针旋转90°得△ADG,∴∠BAE=∠DAG,AE=AG,BE=DG=1,∠ABE=∠ADG=90°,∵∠ADC+∠ADG=180°,∴G、D、C共线,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAG+∠DAF=45°=∠EAF,即∠FAG=∠EAF,在△GAF与△EAF中,,∴△GAF≌△EAF(SAS),∴EF=GF,∵GF=GD+DF=1+2=3,∴EF=3,设正方形ABCD边长为x,则CE=x﹣1,CF=x﹣2,在Rt△CEF中,CE2+CF2=EF2,∴(x﹣1)2+(x﹣2)2=32,解得:x=或x=(舍去),∴正方形ABCD的边长为;拓展延伸:解:将△ADC绕C逆时针旋转至△CBE,连接AE,如图所示:∴AD=BE,CA=CE,∠ACD=∠ECB,∠ADC=∠EBC,∵CD=CB,∴∠BCD=∠ACE,,∴△DCB∽△ACE,∴,∵∠BAD+∠BCD=90°,∴∠ABC+∠ADC=270°,∵∠ADC=∠EBC,∴∠ABC+∠EBC=270°,∴∠ABE=90°,∴AE=,∴BD=.27.(10分)在一个三角形中,如果三个内角的度数之比为连续的正整数,那么我们把这个三角形叫做和谐三角形.(1)概念理解:若△ABC为和谐三角形,且∠A<∠B<∠C,则∠A= 30 °,∠B= 60 °,∠C= 90 °.(任意写一种即可)(2)问题探究:如果在和谐三角形ABC中,∠A<∠B<∠C,那么∠B的度数是否会随着三个内角比值的改变而改变?若∠B的度数改变,写出∠B的变化范围;若∠B的度数不变,写出∠B的度数,并说明理由.(3)拓展延伸:如图,△ABC内接于⊙O,∠BAC为锐角,BD为圆的直径,∠OBC=30°.过点A作AE ⊥BD,交直径BD于点E,交BC于点F,若AF将△ABC分成的两部分的面积之比为1:2,则△ABC一定为和谐三角形吗?”请说明理由.解答:解:(1)由题意得:设∠A:∠B:∠C=(n﹣1):n:(n+1),其中n≥2,n为正整数,∴.可设n=2,由∠A:∠B:∠C=1:2:3,∴.故答案为:30;60;90.(2)∠B的度数不变.由题意得:设∠A:∠B:∠C=(n﹣1):n:(n+1),其中n≥2,n为正整数,∴.∴∠B的度数不变,且∠B=60°.(3)△ABC一定为和谐三角形.理由如下:分两种情况讨论:①当S△ACF=2S△ABF时,如图1,连结OA,OC,过点O作OG⊥BC于点G.由OA=OB=OC=r,∠OBC=30°,可得∠OCB=30°,∠BOC=180°﹣30°﹣30°=120°.∴.∴.∵,∴.又∵S△ACF=2S△ABF,∴CF=2BF.∴.∵AF⊥BD,∠OBC=30°,∴∠AFB=60°=∠BAC.又∵∠ABF=∠CBA,∴△ABF∽△CBA.∴AB2=BF•BC.∴.∴解得:AB=r.∴△AOB为等边三角形.∵,∴.∴∠ABC=90°.∵30°:60°:90°=1:2:3,∴△ABC为和谐三角形.②当S△ABF=2S△ACF时,如图2,连结OA,OC,过点O作OG⊥BC于点G.同理可得OA=OB=OC=r,∠BAC=60°,,△ABF∽△CBA,∴AB2=BF•BC.∴.∴△AOB为等腰直角三角形.∴.∴∠ABC=75°.∵45°:60°:75°=3:4:5,∴△ABC为和谐三角形.综上所述,△ABC一定为和谐三角形.28.(10分)已知,抛物线y=x2﹣(2m+2)x+m2+2m与x轴交于A,B两点(A在B的左侧).(1)当m=0时,求点A,B坐标;(2)若直线y=﹣x+b经过点A,且与抛物线交于另一点C,连接AC,BC,试判断△ABC的面积是否发生变化?若不变,请求出△ABC的面积;若发生变化,请说明理由;(3)当5﹣2m≤x≤2m﹣1时,若抛物线在该范围内的最高点为M,最低点为N,直线MN与x轴交于点D,且,求此时抛物线的解析式.解答:解:(1)当m=0时,y=x2﹣2x,当y=0时,有x2﹣2x=0,解得x1=0,x2=2,∵A在B的左侧,∴点A坐标为(0,0),点B坐标为(2,0).(2)△ABC的面积不变.对于抛物线y=x2﹣(2m+2)x+m2+2m,当y=0时,有x2﹣(2m+2)x+m2+2m=0,解得:x1=m,x2=m+2.∵A在B的左侧,∴点A坐标为(m,0),点B坐标为(m+2,0),∴AB=2,∵直线y=﹣x+b经过点A(m,0),∴0=﹣m+b,∴b=m,∴y=﹣x+m,联立解得x1=m,x2=m+1,∵点C在y=﹣x+m上,当x2=m+1时,y C=﹣1,∴C点坐标为(m+1,﹣1).∴S△ABC=,∴△ABC的面积不发生变化,S△ABC=1.(3)∵5﹣2m≤x≤2m﹣1,∴5﹣2m<2m﹣1,∴m>.由题可知对称轴为x=m+1,则对称轴x=m+1,∵,即范围5﹣2m≤x≤2m﹣1的中点为x=2,∴,即抛物线的对称轴在直线x=2的右侧.①若2m﹣1≤m+1,m≤2,即<m≤2时,∵抛物线开口向上,当5﹣2m≤x≤2m﹣1时,y随x的增大而减小,如图,当x=5﹣2m时,取最高点M(5﹣2m,9m2﹣24m+15),当x=2m﹣1时,取最低点N(2m﹣1,m2﹣4m+3),分别过点M,N作x轴的垂线交于点H,G,则△MDH∽△NDG,∴,即,∴,解得m=1(舍)或m=2,∴当m=2时,抛物线的解析式为y=x2﹣6x+8.②若2<m+1<2m﹣1,即m>2,∴最低点在顶点处取得,∴N(m+1,﹣1),当x=5﹣2m时,取最高点M(5﹣2m,9m2﹣24m+15),由,得9m2﹣24m+15=3,解得,∵m>2,∴m1与m2不符合题意,舍去,综上所述,抛物线的解析式为y=x2﹣6x+8.。
九年级中考数学一模考试试卷及答案
九年级数学试卷第1页(共10页)九年级数学试卷第2页(共10页)学校________________班级________________姓名_________________密封线内不能答题初中学业水平考试模拟测试九 年 级 数 学考生须知1.本试卷共10页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的三视图,该几何体是(A )三棱柱(B )长方体(C )圆锥(D )圆柱2.2021年我国加大农村义务教育薄弱环节建设力度,提高学生营养改善计划补助标准,约37000000学生受益.将37000000用科学计数法表示应为(A )603710.⨯(B )63710.⨯(C )73710.⨯(D )63710⨯3.实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是(A )0b c -<(B )2b >-(C )0+ac >(D )b c>4.下列多边形中,内角和为720°的是(A )(B )(C )(D )5.下列图形中,既是中心对称图形也是轴对称图形的是(A )平行四边形(B )等腰三角形(C )正五边形(D )矩形6.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕AB 的长是(A )3cm (B )3cm (C)cm (D )4cm7.2022年2月4日晚,举世瞩目的北京第二十四届冬季奥林匹克运动会开幕式在国家体育场隆重举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是(A )正比例函数关系(B )一次函数关系(C )反比例函数关系(D )二次函数关系二、填空题(共16分,每题2分)9.若代数式11x -有意义,则实数x 的取值范围是.10.如图,在△ABC 中,ABAC =,AB 的垂直平分线MN交AC于D 点.若BD 平分ABC ∠,则A ∠=°.11.已知关于x 的一元二次方程22210()x a x a +-+=有两个不相等的实数根,则a 的取值范围是.124小的无理数.高山滑雪速度滑冰冰球单板滑雪冰壶2022.4九年级数学试卷第3页(共10页)九年级英语试卷第4页(共10页)密封线内不能答题13.如图,点A ,B ,C 在⊙O 上,若20∠OCB =°,则∠A 的度数为_________.14.已知点A (1,2),B 在反比例函数()0ky x x=>的图象上,若OA=OB ,则点B 的坐标为_________.15.下表记录了甲、乙、丙三名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙平均数9.359.359.34方差6.66.96.7根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.16.某市为进一步加快文明城市的建设,园林局尝试种植A 、B 两种树种.经过试种后发现,种植A 种树苗a 棵,种下后成活了()棵,种植B 种树苗b 棵,种下后成活了棵.第一阶段两种树苗共种植了40棵,且两种树苗的成活棵树相同,则种植A 种树苗_________棵.第二阶段,该园林局又种植A 种树苗m 棵,B 种树苗n 棵,若,在第一阶段的基础上进行统计,则这两个阶段种植A 种树苗成活棵数_________种植B 种树苗成活棵数(填“>”“<”或“=”).三、解答题(共68分,第17—20题,每题5分,第21—22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()2012cos3022+-⎛⎫︒-π-- ⎪⎝⎭.18.解不等式组:21115≤,x . x x ⎧⎪⎨⎪⎩-+<-19.已知230m m +-=,求代数式2211+m m m m m +⎛⎫+÷ ⎪⎝⎭的值.20.已知:如图,点M 为锐角∠APB 的边PA 上一点.求作:∠AMD ,使得点D 在边PB 上,且∠AMD =2∠P .作法:①以点M 为圆心,MP 长为半径画圆,交PA 于另一点C ,交PB 于点D ;②作射线MD .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点P ,C ,D 都在⊙M 上,∠P 为 CD所对的圆周角,∠CMD 为 CD 所对的圆心角,∴∠P =12∠CMD ()(填推理依据).∴∠AMD =2∠P .九年级数学试卷第5页(共10页)九年级数学试卷第6页(共10页)学校________________班级________________姓名_________________密封线内不能答题21.如图,一个单向隧道的断面,隧道顶是一条抛物线的一部分,经测量,隧道顶的跨度为4米,最高处到地面的距离为4米,两侧墙高均为3米,距左侧墙壁1米和3米时,隧道高度均为3.75米.设距左侧墙壁水平距离为x 米的地点,隧道高度为y 米.请解决以下问题:(1)在下边网格中建立适当的平面直角坐标系,根据题中数据描点,并用平滑的曲线连接;(2)请结合所画图象,写出抛物线的对称轴;(3)今有宽为2.4米的卡车在隧道中间行驶,如果卡车载物后的高度为3.2米,要求卡车从隧道中间通过时,为保证安全,要求卡车载物后最高点到隧道顶面对应的点的距离均不小于0.6米,结合所画图象,试判断该卡车能否通过隧道.22.如图,在□ABCD 中,过点B 作BE ⊥CD 交CD 的延长线于点E ,过点C 作C F//EB交AB 的延长线于点F.(1)求证:四边形BFCE 是矩形;(2)连接AC ,若AB =BE =2,tan ∠FBC =12,求AC 的长.23.如图,一次函数y =kx +4k (k ≠0)的图象与x 轴交于点A ,与y 轴交于点B ,且经过点C (2,m ).(1)当92m =时,求一次函数的解析式并求出点A 的坐标;(2)当x >-1时,对于x 的每一个值,函数y =x 的值大于一次函数y =kx+4k (k ≠0)的值,求k 的取值范围.24.如图,BE 是⊙O 直径,点A 是⊙O 外一点,OA ⊥OB ,AP 切⊙O 于点P ,连接BP交AO 于点C .(1)求证:∠PAO =2∠PBO ;(2)若⊙O 的半径为5,tan ∠PAO 34=,求BP 的长.九年级数学试卷第7页(共10页)九年级英语试卷第8页(共10页)密封线内不能答题25.为庆祝中国共产党建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党100周年知识测试.该校七、八年级各有300名学生参加,从中各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:a.八年级的频数分布直方图如下(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100);b.八年级学生成绩在80≤x<90的这一组是:808182838383.583.58484858686.587888989c.七、八年级学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七年级87.28591八年级85.3m90根据以上信息,回答下列问题:(1)表中m的值为;(2)在随机抽样的学生中,建党知识成绩为84分的学生,在年级抽样学生中排名更靠前,理由是;(3)若成绩85分及以上为“优秀”,请估计八年级达到“优秀”的人数.26.已知二次函数2y x bx c=++(b,c为常数)的图象经过点A(1,0)与点C(0,-3),其顶点为P.(1)求二次函数的解析式及P点坐标;(2)当m≤x≤m+1时,y的取值范围是-4≤y≤2m,求m的值.27.已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC ,BD,BP之间的数量关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.l备用图l图1九年级数学试卷第9页(共10页)九年级数学试卷第10页(共10页)学校________________班级________________姓名_________________密封线内不能答题28.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P ,Q两点(Q 在P ,H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ ·PH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4),半径为1的⊙O 与两坐标轴交于点A ,B ,C ,D .①过点E 作垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点(填“A ”,“B ”,“C ”或“D ”),⊙O 关于直线m 的“特征数”为;②若直线n 的函数表达式为y =3x +4,求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点M (1,4),点F 是坐标平面内一点,以F 为圆心,3为半径作⊙F .若⊙F 与直线l 相离,点N (-1,0)是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是66,直接写出直线l 的函数解析式.图1图2初中学业水平考试模拟测试九年级数学学科参考答案一、 选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.A 、2.C 、3.B 、4.D 、5.D 、6.B 、7.B 、8.D二、 填空题(共16分,每题2分)9.x ≠1 10. 36 11.a <1412.答案不唯一13.70°14.(2,1) 15.甲16.22,>三、解答题(共68分,第17—20题,每题5分,第21—22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:()2012cos30+224+1−⎛⎫︒−π− ⎪⎝⎭−− …………………………………………4分=3…………………………………………5分18.解:21115x x x ⎧⎪⎨⎪⎩−+<−≤②①x 由①得:≤3…………………………………………2分15546x x x +<−−<−由②得:32x >…………………………………………4分 32x ∴不等式组的解集为≤3.<……………………………………… 5分19.解:()()2222221+121+11+1+1m m m m m m m m m m m m m m m m +⎛⎫+÷ ⎪⎝⎭++=⨯+=⨯=2=m m+ …………………………………………3分230m m +−=23m m ∴+=…………………………………………4分 =3 3.∴∴原式代数式的值为 …………………………………………5分20.(1) 补全图形,如图所示 ……………………3分 (2)一条弧所对的圆周角等于它所对的圆心角的一半…………………………………………5分21.解:略…………………………………………6分22.(1)证明:∵四边形ABCD 是平行四边形,∴AB CD ∥∵//CF EB∴四边形BFCE 是平行四边形∵BE CD ⊥∴90E ∠=︒∴四边形BFCE 是矩形…………………………………………3分 (2)解:∵四边形BFCE 是矩形∴90F ∠=︒,CF EB =∵2AB BE ==∴2CF =……………………………………………4分∵1tan 2FBC ∠=ECD FA B∴4BF =∴6AF = ……………………………………………5分在Rt AFC △中,90F ∠=︒,AC == …………………6分23.解:(1)∵92m =∴将点9(2)2C ,代入4y kx k =+,得34k = ……………………………1分∴一次函数表达式为334y x =+,点A 的坐标为(4,0)−. ……………………………3分 (2)∵当1x −>时,对于x 的每一个值,函数y x =的值大于一次函数40y kx k k =+≠()的值 结合函数图象可知,当=1x −时,41kx k +−≤即可,解得13k −≤∴13k −≤………………………………………………5分24.(1)证明: 连接PO∵AP 切⊙O 于点P ∴OP AP ⊥∴90A AOP ∠+∠=︒ ∵OA OB ⊥∴90POE AOP ∠+∠=︒ ∴=A POE ∠∠∵2POE PBO ∠=∠ ∴2PAO PBO∠=∠……………………………………………3分(2)解:过点P 作PM EB ⊥于点M∵3tan 4PAO ∠=∴3tan 4POM ∠=∴设3,4PM k MO k ==∴5OP k =∵⊙O 半径为5 ∴5OB OP ==∴1k =∴3,4PM MO ==∴9BM BO MO =+=∴在Rt PMB △中,=90PMB ∠︒PB == ……………………………………………6分25.解:(1)83……………………………………………1分 (2)八 该学生的成绩大于八年级样本数据的中位数83,在八年级成绩中排名21名;该学生成绩小于七年级样本数据的中位数,在七年级排名在后25名 ………………………………………3分(3)20300=12050⨯(人)答:估计八年级达到“优秀”的人数是120人. ………………………5分 26.解:(1)∵二次函数的2y x bx c =++图象经过点(1,0)A 与点(0.3)C −∴103b c c ++=⎧⎨=−⎩解得23b c =⎧⎨=−⎩∴二次函数的表达式是223y x x =+−…………………………………………2分顶点P 的坐标为14−−(,)…………………………………………3分 (2)∵二次函数的顶点P 的坐标为14−−(,) ∴当1x =−时,y 有最小值是4−∵当1m x m +≤≤时,y 的取值范围是y m -4≤≤2 ∴21m −−≤≤① 当322m −−≤≤时,当x m =时,=2y m 即2232m m m +−=解得,m =∴m =②当312m −<≤-时,当1x m =+时,=2y m即212132m m m+++−=()()解得,12=0,2m m =−(不合题意)综上所述,m =……………………………………………………6分27.(1)①补全图形如图所示,…………………………………………………1分证明:设PD 交BC 于点E ∵ABC △是等边三角形∴60BAC ABC ACB ∠=∠=∠=︒∵将射线PC 绕点P 顺时针旋转60° ∴60DPC ∠=︒ ∵//l AC∴60DBE ACB ∠=∠=︒ ∴60DBE CPE ∠=∠=︒ ∵BED PEC ∠=∠ ∴BDP PCB ∠=∠……………………………………………………3分 ②BC BD BP=+在BC 上取一点Q 使得BQ =BP ,连接PQ ∵60ABC ∠=︒∴PBQ △是等边三角形 ∴PB =PQ ,∠BPQ =60° ∴BPD CPQ ∠=∠ 又∵BDP PCB ∠=∠ ∴PBD PQC △≌△ ∴BD QC =∵BC BQ QC =+∴BC BD BP =+ …………………………………………………5分(2)BC BD BP =− …………………………………………………7分28(1)①D,10 …………………………………………2分 ②∵直线n 的函数表达式为y =3x +4∴E (0,4),F(3−,0)∴tan 3OF FEO OE ∠== ∴30FEO ∠=︒ OM ME ⊥2OM ∴=∵⊙O 的半径为16PM PN ∴⋅=即⊙O 关于直线n 的“特征数”为6. ………………………………5分(2)直线l 的函数解析式为12977y x =−+或5y x =−+. ……………7分。
中考数学一模试题(含答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________时间120分钟满分100分一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1033.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣4.若正多边形的内角和是1260°,则该正多边形的一个外角为()A.30°B.40°C.45°D.60°5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1006.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.58.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=.10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=°.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为度.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB 的长为.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是.(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.参考答案一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣【解答】解:根据题意得:x=﹣1=﹣1,故选:C.4.若正多边形的内角和是1260°,则该正多边形的一个外角为() A.30°B.40°C.45°D.60°【解答】解:设该正多边形的边数为n,根据题意列方程,得(n﹣2)•180°=1260°解得n=9.∴该正多边形的边数是9,∵多边形的外角和为360°,360°÷9=40°,∴该正多边形的一个外角为40°.故选:B.5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.100【解答】解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.6.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组【解答】解:题目中数据共有56个,故中位数是按从小到大排列后第28、第29两个数的平均数,而第28、第29两个数均在第三组,故这组数据的中位数落在第三组.故选:C.7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.5【解答】解:∵a﹣b=5,∴原式=•=•=a﹣b=5,故选:D.8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①从图象看,抛物线的顶点坐标为(2,9),抛物线和x轴的一个交点坐标为(8,0),则设抛物线的表达式为y=a(x﹣2)2+9,将(8,0)代入上式得:0=a(8﹣2)2+9,解得a=﹣,故抛物线的表达式为y=x2﹣x+8,故①错误,不符合题意;②从点A、B的横坐标看,点A距离抛物线对称轴远,故n>m正确,符合题意;③抛物线的对称轴为直线x=2,抛物线和x轴的一个交点坐标为(8,0),则另外一个交点为(﹣4,0),故③正确,符合题意;④从图象看,当0<x<6时,m<y≤9,故④错误,不符合题意;故选:C.二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=6.【解答】解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,故答案为6.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件∠AFB=∠DEC或AB=DC,可以判断△ABF≌△DCE.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于25°.【解答】解:∵∠AOC与∠D是同弧所对的圆心角与圆周角,∠AOC=50°,∴∠D=∠AOC=25°.故答案为25°.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=45°.【解答】解:连接AF、EF,则∠CAB=∠F AD,∵∠F AD﹣∠DAE=∠F AE,∴∠BAC﹣∠DAE=∠F AE,设小正方形的边长为1,则AF=,EF=,AE=,∴AF2+EF2=AE2,∴△AFE是等腰直角三角形,∴∠F AE=45°,即∠BAC﹣∠DAE=45°,故答案为:45.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为150度.【解答】解:设扇形的圆心角为n°,∵扇形的半径为6cm,弧长为5πcm,∴5π=,解得n=150,故答案为:150.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是k>1.【解答】解:根据题意得△=b2﹣4ac=22﹣4k<0,解得k>1.故答案为:k>1.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为2.【解答】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,AC=,CH=DH=CD=3,则AH===2,在Rt△ABH中,AB===2,故答案为:,2.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.【解答】解:原式=2×+﹣1﹣+1==.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.【解答】解:去分母得,6﹣4x≥3﹣(2x+1),去括号得,6﹣4x≥3﹣2x﹣1,移项、合并同类项得,﹣2x≥﹣4,把x的系数化为1得,x≤2.在数轴上表示此不等式的解集如下:19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.【解答】解:原式=x2﹣4﹣3x2+6x=﹣2x2+6x﹣4,∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴原式=﹣2(x2﹣3x)﹣4=﹣2×1﹣4=﹣6.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.【解答】解:(1)如图,点D即为所求作.(2)连接AE,OD.∵OA=OB,DE=DB,∴AE=2OD=6,∵AB是直径,∴∠ACE=∠ACB=90°,在Rt△ACE中,AC=EC,∴AC=AE=6,∴BC===6,∴S△ABC=•AC•BC=×6×8=24.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.【解答】解:(1)m=14÷28%=50(人),50×(2%+24%)=12(人),∴男生中位数n=(25+25)÷2=25,女生C组人数=50﹣2﹣13﹣20=15(人),条形图如图所示:(2)男生的成绩比较好,因为男生的中位数比女生的中位数大(也可以根据众数的大小判断);(3)1800×=522(人),答:估计成绩处于C组的人数约为522人.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠BED=∠H+∠HEC,∴∠BED=∠HEC,在△BDE和△HCE中,,∴△BDE≌△HCE(SAS),∴BD=HC=BH﹣BC=3﹣2=1,∴CD=BH﹣BD﹣HC=3﹣1﹣1=1.综上所述,CD的长为1或3.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是(2,﹣5).(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.【解答】解:(1)当x=2时,y=(k﹣1)x﹣(2k+3)=2(k﹣1)﹣(2k+3)=﹣5;∴P (2,﹣5),故答案为:(2,﹣5);(2)解:①当x=0时,y=﹣(2k+3)∴OB=|2k+3|,∵P(2,﹣5),∴;∴2k+3=±8,解得:;②当y=0时,,∴,∴,∵S△OAB:S△OBP=3:2,∴,即,∴,解得:k=0或k=6,即k=0或k=6.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.【解答】(1)证明:连接AO,并延长交DB于点E,∵P A是⊙O的切线,∴OA⊥AP,∵BD∥AP,∴OA⊥BD于点E,∴DE=BE,即AE是BD的垂直平分线,∴AD=BD;(2)解:连接OB,OP交AB于点F,∵∠DAB=2∠OAB=∠EOB,且sin∠DAB=,∴sin∠EOB=,在Rt△EOB中,,设EB=4a,则OB=OA=5a,OE=3a,∴AE=8a,∴tan∠EAB=,又∵P A,PB与⊙O相切于点A,B,∴P A=PB,且OP平分∠APB,∴OP⊥AB,∴∠OP A+∠P AB=90°,∵∠OAB+∠P AB=90°,∴∠OAB=∠OP A,即tan∠OAB=tan∠OP A=,∴,即AP=BP=10a,又∵BD•BP=80,∴2BE•BP=80,即BE•BP=4a×10a=40a2=40,∴a=1,∴AE=8,BE=4,∴AB===4,设AF=b,则PF=2b,∴b2+(2b)2=102,∴b=2,∴FP=4,∴S△ABP=AB•FP==40.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.【解答】解:(1)∵BE平分∠ABC,∴∠EBC=∠ABF,在△BEC和△BAF中,,∴△BEC≌△BAF(SAS),∴∠BEC=∠BAF;(2)△AFC是等腰三角形.证明:过F作FG⊥BA,与BA的延长线交于点G,如图,∵BA=BE,BC=BF,∠ABF=∠CBF,∴∠AEB=∠BCF,∵∠BEC=∠BAF,∴∠GAF=∠AEB=∠BCF,∵BF平分∠ABC,FD⊥BC,FG⊥BA,∴FD=FG,在△CDF和△AGF中,,∴△CDF≌△AGF(AAS),∴FC=F A,∵△ACF是等腰三角形;(3)设AB=BE=x,∵△CDF≌△AGF,CD=2,∴CD=AG=2,∴BG=BA+AG=x+2,在Rt△BFD和Rt△BFG中,,∴△BFD≌△BFG(HL),∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.【解答】解:(1)把点A(,4)代入y=(k≠0)得:k=×4=2,∴反比例函数的表达式为:y=,∵点B(m,1)在y=上,∴m=2,∴B(2,1),∵点A(,4)、点B(2,1)都在y=ax+b(a≠0)上,∴,解得:,∴一次函数的表达式为:y=﹣2x+5;(2)∵一次函数图象与y轴交于点C,∴y=﹣2×0+5=5,∴C(0,5),∴OC=5,∵点D为点C关于原点O的对称点,∴D(0,﹣5),∴OD=5,∴CD=10,∴S△BCD=×10×2=10,设P(x,),∴S△OCP=×5×|x|=|x|,∵S△OCP:S△BCD=1:3,∴|x|=×10,∴|x|=,∴P的横坐标为或﹣,∴P(,)或(﹣,﹣).27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.【解答】解:(1)∵抛物线y=x2+2x+m的顶点在x轴上,∴=0,解得,m=1.(2)(2)∵P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,n2+2n+1>(n+2)2+2(n+2)+1,化简整理得,4n+8<0,∴n<﹣2,∴实数n的取值范围是n<﹣2.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为B,C.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.【解答】解:(1)根据“Math点”的定义,观察图象可知,△POQ关于边PQ的“Math点”为B、C.故答案为:B,C.(2)如图2中,∵P(0,4),Q(4,0),∴OP=4,OQ=4,∴tan∠PQO=,∴∠PQO=30°,①当点E与PQ的中点K重合时,点E是△POQ关于边PQ的“Math点”,此时E(2,2),∵D(0,8),∴DE==4,当⊙E′与x轴相切于点Q时,E′(4,8),∴DE′=4,观察图象可知,当点E在线段KE′上时,点E为△POQ关于边PQ的“Math点”,∵E′Q⊥OQ,∴∠E′QO=90°,∴∠E′QK=60°,∴∠E′KQ=90°,∴∠EE′Q=30°,∵DE′∥OQ,∴∠DE′K=60°,∵DE′=DK,∴△DE′K是等边三角形,∵点D到E′K的距离的最小值为4•sin60°=6,∴.②如图3中,分别以O为圆心,4和4为半径画圆,当线段MN与图中圆环(包括小圆,不包据大圆)有交点时,线段MN上存在△POQ关于边PQ的“Math 点”,当直线MN与小圆交于(0,4)或(0,﹣4)时,b=±4,当直线MN与大圆相切时,b=±8,观察图象可知,满足条件的b的值为:4≤b<8或﹣8<b≤﹣4.。
2024届上海市青浦区初三一模数学试题及答案
第5题图上海市青浦区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列图形中,一定相似的是().A 两个等腰三角形;.B 两个菱形;.C 两个正方形;.D 两个等腰梯形.2.在Rt ABC 中,90C ,如果5AC ,12BC ,那么cot A 等于().A 512;.B 125;.C 513;.D 1213.3.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,ADE C ,则下列判断错误..的是().A .C AD BC4..A a .B 如果e 是单位向量,那么.C .D 如果a 是非零向量,且5.如图,//AC ,.A EF AB ACEG.6.如图,二次函数2y ax bx c (0a )的图像的顶点在第一象限,且过点 0,1和 1,0 ,下列结论:①1c ;②0ab ;③0a b c ;④当1x 时,0y .其中正确结论的个数是().A 1个;.B 2个;.C 3个;.D 4个.二、填空题(本大题共12题,每题4分,满分48分)7.如果43a b ,那么a b b.8.已知线段2AB ,点P 是AB 的黄金分割点,且AP BP ,那么BP.第13题图第18题图①9.已知向量a 与单位向量e方向相同,且3a ,那么a .(用向量e的式子表示)10.如果两个相似三角形的周长比为1:3,那么它们的面积比为.11.如果抛物线22y x bx 的对称轴是直线2x ,那么b 的值等于.12.如果点 12,A y 和点 23,B y 是抛物线2y x m (m 是常数)上的两点,那么1y 2y .(填“ ”、“ ”、“ ”)13.如图,某人沿着斜坡AB 方向往上前进了30米,他的垂直高度上升了15米,那么斜坡AB 的坡比i .14.215.CG 16.17. 于点18.规定:平面上一点到一个图形的距离是指这点与这个图形上各点的距离中最短的距离.如图①,当190PMN 时,线段1PM 的长度是点1P 到线段MN 的距离;当290P GN 时,线段2P G 的长度是点2P 到线段MN 的距离;如图②,在ABC 中,90C ,AC ,tan 2B ,点D 为边AC 上一点,2AD DC ,如果点Q 为边AB 上一点,且点Q 到线段DC 的距离不超过5,设AQ 的长为d ,那么d 的取值范围为.15第16题图三、解答题:(本大题共7题,满分78分)19.(本题满分10分)2sin 45cos30.20.(本题满分10分,第(1)小题5分,第(2)小题5分)1 .(1)(2)21.,点E 在边AC 上,且EC (1)(2)第21题图第23题图22.(本题满分10分)北淀浦河上的浦仓路桥是一座融合江南水乡文化气息的现代空间钢结构人行廊桥.某校九年级数学兴趣小组开展了测量“浦仓路桥顶部到水面的距离”的实践活动,他们的操作方法如下:如图,在河的一侧选取B 、C 两点,在B 处测得浦仓路桥顶部点A 的仰角为22 ,再往浦仓路桥桥顶所在的方向前进17米至C 处,在C 处测得点A 的仰角为37 ,在D 处测得地面BD 到水面EF 的距离DE 为1.2米(点B 、C 、D 在一条直线上,//BD EF ,DE EF ,AF EF ),求浦仓路桥顶部A 到水面的距离AF .(精确到0.1米)(参考数据:sin 220.37 ,cos 220.93 ,tan 220.40 ;sin 370.60 ,cos370.80 ,tan 370.75 )23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在ABC 中,点D 、E 分别在边BC 、AB 上,AD 与CE 相交于点F ,CD CF ,2AC AE AB .(1)求证:ABD ACF ∽;(2)如果2CFD ACF ,求证:AB EF AD AE .浦仓路桥第22题图第24题图如图,在平面直角坐标系xOy 中,抛物线21y ax bx 经过点 1,2A 和点 2,1B ,与y 轴交于点C .(1)求a 、b 的值和点C 的坐标;(2)点P 为抛物线上一点(不与点A 重合),当PCB ACB 时,求点P 的坐标;(3)在(2)的条件下,平移该抛物线,使其顶点在射线CA 上,设平移后的抛物线的顶点为点D ,当CDP 与CAP 相似时,求平移后的抛物线的表达式.第25题(1)图第25题(2)图第25题(3)图在ABC 中,90ACB ,6AC ,8BC .点D 、E 分别在边AB 、BC 上,联结ED ,将线段ED ,绕点E 按顺时针方向旋转90 得到线段EF .(1)如图,当点E 与点C 重合,ED AB 时,AF 与ED 相交于点O ,求:AO OF 的值;(2)如果5AB BD (如图),当点A 、E 、F 在一条直线上时,求BE 的长;(3)如图,当DA DB ,2CE 时,联结AF ,求AFE 的正切值.九年级数学第1页2023学年第一学期九年级期终学业质量调研参考答案及评分说明2024.01一、选择题:1.C ;2.A ;3.B ;4.D ;5.D ;6.C .二、填空题:7.13;81 ;9.3 e ;10.1:9;11.4 ;12. ;13.;14. 21 y x ;15.2;16.5;17.32;18.2065d .三、解答题:19.解:原式222··································(4分)11 .······················································(4分)=···················································································(2分)20.解:(1)∵AD//BC ,∴ AD OD BC OB.·························································(2分)∵BC=2AD ,∴12OD OB .···························································(1分)∵OD=1,∴OB=2.···································································(1分)∴BD=3.···············································································(1分)(2)∵AD//BC ,BC=2AD ,BC b ,∴12AD b .·········································································(1分)∵12 OD OB ,∴23OB BD .∴23OB DB .········································································(1分)九年级数学第2页∵ DB AB AD ,∴12DB a b .···········································(2分)∴21213233OB a b a b .·················································(1分)21.解:(1)∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BC =2CD .·······························································(2分)∵3tan 4C ,∴4cos 5C .··········································································(1分)∴45CD AC .∵AC =5,∴CD =4.····································································(1分)∴BC =2CD =8.·········································································(1分)(2)过点E 作EH//BC ,交AD 于点H .···········································(1分)∵HE//BC ,∴EF HE BF BD , HE AEDC AC.·····················································(2分)∵BD =DC ,∴EF HEBF CD.∴EF AEBF AC.········································································(1分)∵EC =2AE ,∴13AE AC .∴13EF BF .···········································································(1分)九年级数学第3页22.解:延长BD 交AF 于点H .·····································································(1分)由题意,得∠ABC =22°,∠ACD =37°,BC =17米.∵BD ∥EF ,DE ⊥EF ,AF ⊥EF ,∴四边形DEFH 是矩形,∴AH ⊥BH ,DE =HF .∵DE =1.2米,∴HF =1.2米.······························································(1分)在Rt △ABH 中,∵tanAH ABH BH ,∴5tan 222 AH BH AH .··········(3分)在Rt △ACH 中,∵tanAH ACH CH ,∴4tan 373AH CH AH .··········(3分)∵BC =BH -CH ,∴52AH -43AH =17.∴AH≈14.6(米)························(1分)∴AF =AH +HF≈14.6+1.2=15.8(米).···················································(1分)答:浦仓路桥顶部A 到水面的距离AF 约为15.8米.23.证明:(1)∵2AC AE AB ,∴AC ABAE AC.···········································(1分)又∵∠BAC =∠CAE ,∴△ACB ∽△AEC .······································(1分)∴∠B =∠ACE .········································································(1分)∵CD =CF ,∴∠CDF =∠CFD .···················································(1分)∵∠CDF+∠BDA =∠CFD+∠CFA ,∴∠BDA =∠CFA .····················(1分)∴△ABD ∽△ACF .·································································(1分)(2)∵△ABD ∽△ACF ,∴AB AC AD AF,∠BAD =∠CAF .···················(1分)∵∠CFD =2∠ACF ,∠CFD =∠ACF+∠FAC ,∴∠ACF =∠FAC .···································································(1分)∴∠ACF =∠BAD .···································································(1分)又∵∠AEF =∠CEA ,∴△EAF ∽△ECA .······································(1分)∴AC AE FA FE .∴ AB AEAD FE.·················································(1分)∴ AB EF AD AE .···························································(1分)九年级数学第4页24.解:(1)将A (1,2)、B (2,1)代入2++1 y ax bx ,得12421 1.,a b a b ···································································(2分)解得:12.,a b ∴a 的值为-1,b 的值为2.································(1分)当x =0时,1 y .∴点C 的坐标为(0,1).·································(1分)(2)∵C (0,1)、B (2,1),∴BC ∥x 轴.∵C (0,1)、A (1,2),∴∠ACB =45°.∵∠PCB =∠ACB ,∴∠PCB =45°.················································(1分)设该抛物线与x 轴的正半轴交于点Q ,可知∠BCQ =∠CQO<45°.∴点P 在第四象限.过点P 作PH ⊥CB ,垂足为点H .设HC=HP=m .则点P 的坐标为(m ,1-m ).·································(1分)∵a =-1,b =2,∴2+2+1 y x x .将点P 代入,得21+2+1 m m m .···········································(1分)解得13 m ,20 m (舍).∴点P 的坐标为(3,-2).··························································(1分)(3)可得该抛物线的顶点为(1,2),所以点A 为其顶点.①当点D 在线段CA 上时,∵∠CDP >∠CAP>∠CPA ,∴不存在△CDP 与△CAP 相似.············(1分)②当点D 在线段CA 的延长线上时,得△CPA ∽△CDP .∴CP CACD CP.∵A (1,2)、C (0,1)、P (3,-2),∴218 CP, CA.∴ CD ···································(1分)过点D 作DM ⊥y 轴,垂足为点M .可得MD =9,MC =9.∴点D 的坐标为(9,10).··························(1分)∴平移后的抛物线的表达式为2+1871 y x x .························(1分)25.解:(1)∵CD ⊥AB ,∴∠CDA=90°.∵∠DCF=90°,∴∠CDA=∠DCF .∴AB ∥CF .······························(1分)∴ AO AD OF CF .∵DC =CF ,∴ AO AD OF CD.····································(1分)∵cot ∠CAB=34 AC BC ,∴cot ∠CAB=34 AD DC .···························(1分)∴34AO OF .············································································(1分)(2)过点D 作DG ⊥BC ,垂足为点G .∵∠ACB=90°,AC =6,BC =8,∴AB =10.∵AB =5BD ,∴BD =2.∵DG ∥AC ,∴ DG BG BD AC BC BA .∴DG=65,BG=85.···················(1分)设BE =x ,则GE =85x .····························································(1分)∵点A 、E 、F 在一条直线上,∴∠AED=90°.∵∠AEG =∠AED+∠DEG ,∠AEG =∠C+∠CAE ,∴∠DEG =∠CAE .····································································(1分)∴tan ∠DEG =tan ∠CAE .∴ DG CE EG AC .∴685865x x .·················································(1分)得25481000 x x.解得245x .所以,BE的长为245或245.··································(1分)(3)过点D 、F 作DM ⊥BC 、FN ⊥BC ,垂足分别为点M 、N .可得△DME ≌△ENF .∴DM =EN ,EM =FN .···································(1分)∵DM ∥AC ,DA =DB ,∴MD =3,MC =4.∴EN =3,ME =2,FN =2,CN =5.设AF 与NC 交于点Q .∵AC ∥FN ,∴26NQ FN QC AC .∴31544 QC CN .∴157244QE .··································(1分)过点Q 作QH ⊥EF ,垂足为点H .可得,△EQH ∽△EFN .∴ EH EQ HQ EN EF NF.∴732 EH HQ .∴52 EH,26QH .················································(1分)∴5252 HF .···············································(1分)∴tan ∠AFE=142631QH HF .····································(1分)。
上海市虹口区2023-2024学年九年级上学期期末数学试题(一模)(解析版)
2023-2024学年度初三年级第一次学生学习能力诊断练习数学练习卷(一模)(满分150分,时间100分钟)注意:1.本练习卷含三个大题,共25题;2.答题时,务必按答题要求在答题纸规定的位置上作答,在草稿纸、本练习卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列函数中,y 是关于x 的二次函数的是( )A. 21y x =−B. 21y x =C. 221y x =−D. 321y x =−【答案】C【解析】【分析】本题考查了二次函数的定义,形如2(y ax bx c a =++、b 、c 为常数, 0)a ≠ 的函数,叫二次函数,对照函数的解析式,根据函数的定义逐一判断即可.【详解】A .21y x =−是一次函数,不是二次函数,故选项A 不符合题意;B .21y x =不是二次函数,故选项B 不符合题意; C .221y x =−是二次函数,故选项C 符合题意;D .321y x =−不是二次函数,故选项D 不符合题意.2. 将抛物线23y x =−向左平移4个单位长度,所得到抛物线的表达式是( )A. ()234y x =−+B. ()234y x =−−C. 234y x =−+D. 234y x =−−【答案】A【解析】【分析】本题考查的是二次函数的图象与几何变换,根据“左加右减,上加下减”的法则解答即可.【详解】解:将抛物线23y x =−向左平移4个单位长度,得到抛物线是23(4)y x =−+.3. 如图,在Rt ABC △中,已知90C ∠=︒,3cos 4A =,3AC =,那么BC 的长为( )A. 7B. 7C. 4D. 5【答案】A【解析】【分析】本题考查了解直角三角形,勾股定理,正确理解锐角三角函数的定义是解决问题的关键.先根据余弦的定义计算出4AB =,然后利用勾股定理计算出BC 的长.【详解】解:∵90C ∠=︒, ∴3cos 4AC A AB ==, ∵3AC =,∴4AB =, ∴2222437BC AB AC ,故选:A .4. 如图,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O 到球心的长度为50厘米,小球在左、右两个最高位置时,细绳相应所成的角∠AOB 为40°,那么小球在最高位置和最低位置时的高度差为( )A. ()5050sin 40−︒厘米B. ()5050cos 40−︒厘米C. ()5050sin 20−︒厘米D. ()5050cos 20−︒厘米【答案】D【解析】【分析】此题考查了解直角三角形的应用,三角函数的基本概念,当小球在最高位置时,过小球作小球位置最低时细绳的垂线,在构建的直角三角形中,可根据偏转角的度数和细绳的长度,求出小球最低位置时的铅直高度,进而可求出小球在最高位置与最低位置时的高度差.【详解】解:如图:过A 作AC OB ⊥于C ,Rt OAC 中,50OA =厘米,40220AOC ∠=︒÷=︒,cos2050cos20OC OA ∴=⋅︒=⨯︒.5050cos2050(1cos20)CD OA OC ∴=−=−⨯︒=−︒(厘米).故选:D .5. 如图,点G 是ABC 的重心,GE AC ∥交BC 于点E .如果12AC =,那么GE 的长为( )A. 3B. 4C. 6D. 8【答案】B【解析】 【分析】本题考查的是重心的概念和性质、相似三角形的判定和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.连接BG 并延长交AC 于D ,根据点G 是ABC 的重心,得到1112622CD AC ==⨯=,23BG BD =,根据相似三角形的判定和性质即可得到结论.【详解】解:连接BG 并延长交AC 于D ,∵点G是ABC的重心,∴1112622CD AC==⨯=,23BGBD=,∵GE AC∥,∴BEG BCD∽,∴BG EG BD CD=,∴236EG =,∴4GE=,故选:B.6. 如图,四边形的顶点在方格纸的格点上,下列方格纸中的四边形与已知四边形相似的是()A. B. C. D.【答案】D【解析】【分析】本题考查了相似多边形的性质,相似三角形的判定与性质,勾股定理,如果两个四边形的四条边对应成比例,且四个角对应相等,那么这两个四边形相似,据此求解即可.【详解】解:设每个小正方形的边长为1,则已知四边形的四条边分别为12,25.选项A2,2,210,两个四边形的四条边对应不成比例,不符合题意;选项B中的四边形的四条边分别为25134,两个四边形的四条边不是对应成比例,故选项B中的四边形与已知四边形不相似,不符合题意;选项C中的四边形的四条边分别为25134,两个四边形的四条边不是对应成比例,故选项C 中的四边形与已知四边形不相似,不符合题意;选项D 中的四边形的四条边分别为2,2,4,25将已知四边形表示为四边形ABCD ,将选项D 中的四边形表示为EFGH .如图,连接AC 、EG ,则5AC =25EG =.在ABC 与EFG 中,12AB BC AC EF FG EG ===, ABC EFG ∴∽,BAC FEG ∴∠=∠,B F ∠=∠,ACB EGF ∠=∠.在ADC △与EHG 中,12AD DC AC EH HG EG ===, ADC EHG ∴∽,DAC HEG ∴∠=∠,D H ∠=∠,ACD EGH ∠=∠,BAD FEH ∴∠=∠,B F ∠=∠,DCB HGF ∠=∠,D H ∠=∠, 又12AB BC AD DC EF FG EH HG ====, ∴四边形ABCD ∽四边形EFGH .故选:D .二、填空题(本大题共12题,每题4分,满分48分)7. 已知:3:2x y =,那么():x y x −=____.【答案】1:3【解析】【分析】本题考查了比例的性质,表示出y 是解题的关键.先用x 表示出y ,再代入比例式进行计算即可得【详解】解:∵:3:2x y =, ∴23y x =, ∴()211:333x y x x x x x x ⎛⎫−=−== ⎪⎝⎭:::,故答案为:1:3.8. 如果向量a 、b 和x 满足()2a x a b −=−,那么x =____.【答案】2a b −+##2b a −【解析】【分析】本题考查的是平面向量,正确利用等式的性质是解题的关键.根据等式的性质变形,得到答案.【详解】解:()2a x a b −=−,∴2x a b −=−,∴2x a b =−+,故答案为:2a b −+.9. 已知抛物线()213y a x =−+开口向下,那么a 的取值范围是____. 【答案】1a >##1a <【解析】【分析】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当0a >时,抛物线开口向上;当a<0时,抛物线开口向下.根据二次函数的性质可知,当抛物线开口向下时,二次项系数10a −<. 【详解】解:抛物线2(1)3y a x =−+的开口向下,10a ∴−<,解得,1a >.故答案为:1a >.10. 如果点()2,1A 在抛物线()21y x m =−+上,那么m 的值是____. 【答案】0【解析】【分析】本题考查了二次函数图象上点的坐标特征,根据次函数图象上点的坐标满足二次函数解析式,把点(2,1)A 代入2(1)=−+y x m 即可求出m . 【详解】解:点(2,1)A 在抛物线2(1)=−+y x m 上,21(21)m ∴=−+, 解得0m =,11. 将抛物线y =2x 2平移,使顶点移动到点P (﹣3,1)位置,那么平移后所得新抛物线的表达式是_____.【答案】y =2(x +3)2+1【解析】【分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y =2x 2平移,使顶点移到点P (﹣3,1)的位置,所得新抛物线的表达式为y =2(x+3)2+1. 故答案为y =2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12. 已知点()13,A y −和()21,B y 都在抛物线()2212y x =−−上,那么1y 和2y 的大小关系为1y ____2y (填“>”或“<”或“=”).【答案】>【解析】【分析】本题考查二次函数图象上点的坐标特征,根据图象上点的坐标适合解析式将点A ,B 坐标代入解析式求解.【详解】解:将1(3,)A y −,2(1,)B y 代入22(1)2y x =−−得130y =,22y =−,12y y ∴>.故答案为:>.13. 已知抛物线2y x bx c =−++如图所示,那么点(),P b c 在第____象限.【答案】二【分析】本题主要考查了二次函数的性质,根据抛物线的开口方向和对称轴位置确定b 的符号,抛物线与y 轴的交点确定c 的符号,即可确定点(,)P b c 所在的象限. 【详解】解:由抛物线的图象得,022b b a −=<,0c >, 0b ∴<,的(,)P b c ∴在第二象限.故答案为:二.14. 一个三角形框架模型的边长分别为3分米、4分米和5分米,木工要以一根长6分米的木条为一边,做与模型相似的三角形,那么做出的三角形中,面积最大的是____平方分米.【答案】24【解析】【分析】本题考查相似三角形的性质,勾股定理的逆定理,由相似三角形的判定:三组对应边的比相等的两个三角形相似求出三角形最大的三边,根据勾股定理的逆定理判断新三角形是直角三角形,根据三角形的面积公式计算即可.【详解】解:当长是6分米的木条与三角形框架模型的边长最短的3分米一条边是对应边时,做出的三角形的三边最大,面积最大,设长是4分米,5分米的边的对应边的长分别是a 分米,b 分米,3:64:5:a b ∴==,8a ∴=,10b =,∴其他两条边的长分别是8分米,10分米,2226810+=,∴做出的三角形是直角三角形,直角边分别是6分米,8分米,∴做出的三角形的面积为168242⨯⨯=(平方分米).15. 如图,已知AD EF BC ∥∥,2BC AD =,2BE AE =,AD a =,那么用a 表示EF =____.【答案】43a 【解析】 【分析】本题考查了向量的运算、相似三角形的判定与性质,连接BD ,交EF 于点G ,先根据AD EF BC ∥∥求得12AE DF BE CF ==,EGB ADB ∽,DGF DBC ∽,根据相似三角形的性质可得23EG AD =,13GF BC =,即可得出43EF EG GF AD =+=,由此即可得.【详解】解:连接BD ,交EF 于点G ,∵AD EF BC ∥∥,2BE AE =, ∴12AE DF BE CF ==,EGB ADB ∽,DGF DBC ∽, 32EG BE AD AB ∴==,31GF DF BC DC ==, ∴23EG AD =,13GF BC =, 2BC AD =, ∴1233GF BC AD == ∴43EF EG GF AD =+= 4433EF AD a ∴==, 故答案为:43a . 16. 如图,在平行四边形ABCD 中,点F 是AD 上的点,2AF FD =,直线BF 与AC 相交于点E ,交CD 的延长线于点G ,若2BE =,则EG 的值为________.【答案】3【解析】【分析】本题考查了平行四边形的性质,平行线分线段成比例,设FD x =,则2AF x =,3AD x =,根据平行四边形的性质可得AD BC ∥,AB CD ∥,3AD BC x ==,根据平行线分线段成比例即可解决问题.【详解】解:设FD x =,由2AF FD =,则2AF x =,3AD x =,四边形ABCD 平行四边形,∴AD BC ∥,AB CD ∥,3AD BC x ==,2233AE AF x EC BC x ∴===, 23BE AE EG EC ∴==, 2BE =,223EG ∴=, 3EG ∴=,故答案为:3.17. 定义:如果以一条线段为对角线作正方形,那么称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD 即为线段AC 的“对角线正方形”.如图②,在Rt ABC △中,90C ∠=︒,3AC =,4BC =,点P 在边AB 上,如果线段PC 的“对角线正方形”有两边同时落在ABC 的边上,那么AP 的长是____.【答案】157【分析】本题考查了正方形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.根据正方形的性质和相似三角形的判定和性质定理即可得到结论.【详解】解:当线段PC 的“对角线正方形”有两边同时落在ABC 的边上时,设正方形的边长为x ,则4PE CE PD CD x BE x =====−,,∵PE AC ∥,∴BPE BAC ∽, ∴PE BE AC BC=, ∴434x x −=, 解得:127x =, ∴127PD =,129377AD AC CD =−=−=, ∴22157AP AD PD =+=,故答案为:157. 18. 如图,在ABC 中,5AB AC ==,3tan 4B =,点M 在边BC 上,3BM =,点N 是射线BA 上一动点,连接MN ,将BMN 沿直线MN 翻折,点B 落在点B '处,联结B C ',如果B C AB '∥,那么BN 的长是____.【答案】6【分析】本题主要考查了三角形折叠与解直角三角形,过M 点作MG B C '⊥,FM AB ⊥,AH BC ⊥垂足分别为F 、G 、H ,由5AB AC ==,3tan 4B =,求出3AH =,4BH CH ==,9sin 5FM BM B =⋅∠=,sin 3MG CM BCB '=⋅∠=,得出F 、M 、B '三点在同一直线上,进而可得18tan 5FN FB FB N ''=⋅∠=,再求出12tan 5FM BF B ==∠,由6BN BF FN =+=解题. 【详解】解:过M 点作MG B C '⊥,FM AB ⊥,AH BC ⊥垂足分别为F 、G 、H ,设3AH x =, ∵3tan 4B =,AH BC ⊥ ∴4BH CH x ==∵5AB AC ==,222AH BH AB +=,∴222(3)(4)5x x +=,解得1x =,∴3AH =,4BH CH ==,∴3sin 5B =, ∵BC AB '∥,∴B BCB '∠=∠,∵3BM =,∴5CM =, ∴39sin 355FM BM B =⋅∠=⨯=, 3sin 535MG CM BCB '=⋅∠=⨯=, ∵3MB MB '==,∴MG MB '=,即B '与G 点重合,∴F 、M 、B '三点在同一直线上, ∴924355FB FM MG '=+=+=, 由折叠可知:FB N B '∠=∠, ∴24318tan 545FN FB FB N ''=⋅∠=⨯=, ∵9312tan 545FM BF B ==÷=∠, ∴1218655BN BF FN =+=+=, 故答案为6【点睛】本题涉及了解三角形、折叠性质、等腰三角形性质、勾股定理等,解题关键是通过计算点M 到B C '的距离等于BM 得出F 、M 、B '三点在同一直线上.三、解答题(本大题共7题,满分78分)19. 计算:2tan 454sin 30cos30cos60︒︒−︒−︒【答案】3【解析】【分析】直接利用特殊角的三角函数值代入进而计算得出答案.【详解】解:2tan 454sin 30cos30cos60︒︒−︒−︒ 214()231=⨯− 131=− 131)=−+3=−【点睛】本题主要考查了特殊角的三角函数值,解题的关键是熟记特殊角三角函数值.20. 画二次函数2y ax bx =+的图像时,在“列表”的步骤中,小明列出如下表格(不完整).请补全表格,并求该二次函数的解析式. x …1− 0 2 4 5 … y …5− 4 5− …【答案】见解析,24y x x =−+【解析】【分析】此题主要考查了待定系数法求二次函数的解析式,求二次函数的值,熟练掌握待定系数法求二次函数的解析式是解决问题的关键.由表格中的对应值得当=1x −时,5y =−,当2x =时,4y =,然后将其代入二次函数2y ax bx =+中求出a ,b 的值可得该二次函数的解析式,然后再分别求出当0x =时,4x =时对应的y 的值即可. 【详解】解:由表格中的对应值可知:当=1x −时,5y =−,当2x =时,4y =,∴5424a b a b −=−⎧⎨+=⎩, 解得:14a b =−⎧⎨=⎩, ∴该二次函数的解析式为:24y x x =−+,∴当0x =时,0y =,当4x =时,0y =,填表如下: x …1− 0 2 4 5 … y …5− 0 4 0 5− …21. 如图①是某款智能磁吸键盘,如图②是平板吸附在该款设备上的照片,图③是图②的示意图.已知8cm BC =,20cm CD =,63BCD ∠=︒.当AE 与BC 形成的ABC ∠为116︒时,求DE 的长.(参考数据:sin630.90︒≈,cos630.45︒≈,cot 630.50︒≈;sin530.80︒≈,cos530.60︒≈,cot530.75︒≈)【答案】11cm【解析】【分析】本题考查了解直角三角形的应用,过B 作BH CE ⊥于H ,解直角三角形即可得到结论.【详解】解:过B 作BH CE ⊥于H ,在Rt BCH △中,sin 630.908BH BH BC ︒==≈,cos630.458CH CH BC ︒==≈, 7.2cm BH ∴=, 3.6cm CH =,在Rt BEH △中,53BEH ABC BCE ∠=∠−∠=︒,cot 530.757.2HE HE BH ∴︒==≈, 5.4cm HE ∴=,3.6 5.49(cm)CE CH EH ∴=+=+=,20911(cm)DE CD CE ∴=−=−=,答:DE长为11cm .22. 如图①,已知线段a 、b 和MON ∠.如图②,小明在射线OM 上顺次截取2OA a =,3AB a =,在射线ON 上顺次截取2OC b =,3CD b =.连接AC 、BC 和BD ,4AC =,6BC =.(1)求BD 的长;(2)小明继续作图,如图③,分别以点B 、D 为圆心,以大于12BD 的长为半径作弧,两弧分别相交于点P 、Q ,连接PQ ,分别交BD 、OD 于点E 、F .如果BC OD ⊥,求EF 的长.【答案】(1)10BD =(2)154EF =【解析】【分析】本题主要考查了相似三角形的判定和性质以及基本作图.(1)由两边对应成比例及夹角相等,两三角形相似证明OCA ODB ∽,在相似三角形性质即可求解; (2)在Rt BCD 由勾股定理求出228CD BD BC =−=,再根据作法可知PQ 是BD 的垂直平分线,证明∽BCD EFD ,由相似三角形性质即可求解.【小问1详解】解:∵2OA a =,3AB a =,2OC b =,3CD b = ∴25OA OC OB OD ==, 又∵O O ∠=∠,∴OCA ODB ∽, ∴25AC OA BD OB ==, ∵4AC =, ∴425BD = ∴10BD =,【小问2详解】∵6BC =,10BD =,BC OD ⊥, ∴2222C 1068CD BD B =−=−=,由作法可知,PQ 是BD 的垂直平分线,即EF BD ⊥,152DE BE BD ===, ∵CDB EDF ∠=∠,BCD FED ∠=∠,∴BCD FED ∽, ∴BC CD EF ED =,即685EF =, ∴154EF = 23. 如图,在ABC 中,已知点D 、E 分别在边BC AB ,上,EC 和AD 相交于点F ,EDB ADC ∠=∠,2DE DF DA =⋅.(1)求证:ABD ECD ∽;(2)如果90ACB ∠=︒,求证:12FC EC =. 【答案】(1)见解析;(2)见解析【解析】【分析】本题考查了相似三角形的判定和性质,直角三角形的性质,熟练掌握相似三角形的判定和性质定理是解题的关键.(1)根据相似三角形的判定和性质定理即可得到结论;(2)根据相似三角形的判定和性质以及直角三角形的性质即可得到结论.【小问1详解】证明:∵2·DE DF DA =, ∴DE DF AD DE=, ∵FDE EDA ∠=∠,∴DEF DAE ∽,∴DAE DEF ∠=∠,∵EDB ADC ∠=∠,∴ADB CDE ∠=∠,∴ABD ECD ∽;【小问2详解】由(1)知,ABD ECD ∽,∴B ECD ∠=∠,∴BE CE =,∵90ACB ∠=︒,∴BAC B BCE ACE ∠+∠=∠+∠,∴BAC ACE =∠∠,∴AE BE CE ==,取AD 的中点G ,连接CG ,∵=90ACD ∠︒, ∴12DG CG AD ==,∴GDC GCD ∠=∠,∴1802DGC ADC ∠=︒−∠,∵BDE ADC ∠=∠,∴1802ADE ADC ∠=︒−∠,∴ADE CGF ∠=∠,由(1)知,DEF DAE ∽,∴AED DFE ∠=∠,∵DFE CFG ∠=∠,∴AED CFG ∠=∠,∴CGF ADE ∽,∴12CG CF AD AE ==, ∴12CF AE =, ∴12FC EC =. 24. 如图,在平面直角坐标系xOy 中.已知抛物线22y x x m =++经过点()3,0A −,与y 轴交于点C ,连接AC 交该抛物线的对称轴于点E .(1)求m 的值和点E 的坐标;(2)点M 是抛物线的对称轴上一点且在直线AC 的上方.①连接AM 、CM ,如果AME MCA ∠=∠,求点M 的坐标;②点N 是抛物线上一点,连接MN ,当直线AC 垂直平分MN 时,求点N 的坐标.【答案】(1)3m =−,点E (1,2)−−(2)①点M (1−,22),②点N (12−,2)−【解析】【分析】(1)把(3,0)A −代入22y x x m =++,求出m ,求出抛物线的对称轴,在用待定系数法求出直线AC 的解析式,可得点E 的坐标.(2)①设(1,)M n −,证明AME ACM ∽,得到2AM AE AC =⋅,利用勾股定理得出AE ,AC ,AM 的长,列方程求n ,可求M 的坐标.②连接NE ,求出90MEN ∠=︒,N 的纵坐标为2−,在代入二次函数解析式求横坐标.【小问1详解】解: 抛物线22y x x m =++经过点(3,0)A −, 960m ∴−+=,解得3m =−,(0,3)C ∴−,抛物线的解析式为223y x x =+−,2223(1)4y x x x =+−=+−,∴抛物线的对称轴为直线=1x −,设直线AC 的解析式为y kx b =+,∴303k b b −+=⎧⎨=−⎩,∴13k b =−⎧⎨=−⎩,∴直线AC 的解析式为3y x =−−,当=1x −时,=2y −,∴点E 的坐标为(1,2)−−;【小问2详解】①如图,设(1,)M n −,(3,0)A −,(0,3)C −,(1,2)E −−,22(31)222AE ∴−++,22(3)332AC =−+222(31)4AM n n =−+++AME MCA ∠=∠,MAE CAM ∠=∠,AME ACM ∴∽, ∴AEAMAM AC =,2AM AE AC ∴=⋅,242232n ∴+=122n ∴=−,222n =.∴点M 的坐标为(1−,22);②连接NE .3OA OC ==,=90AOC ∠︒,45OAC OCA ∴∠=∠=︒,45AEM ∴∠=︒,直线AC 垂直平分MN ,ME NE ∴=,45AEM AEN ∠=∠=︒,90NEM ∴∠=︒.∵点E 纵坐标为2−,∴点N 的纵坐标为2−,2232x x ∴+−=−,2210x x +−=,112x =−212x =−.所以点N 的坐标为(12−−,2)−.【点睛】本题考查了二次函数的性质和应用,待定系数法求一次函式的解析式,相似三角形的判定和性质,垂直平分线的性质,关键是二次函数和三角形知识的综合运用.25. 如图①,在Rt ABC △中,90ACB ∠=︒,4tan 3ABC ∠=,点D 在边BC 的延长线上,连接AD ,点E 在线段AD 上,EBD DAC ∠=∠.的(1)求证:DBA DEC ∽△△;(2)点F 在边CA 的延长线上,DF 与BE 的延长线交于点M (如图②).①如果2AC AF =,且DEC 是以DC 为腰的等腰三角形,求tan FDC ∠的值; ②如果52DE =,3EM =,:5:3FM DM =,求AF 的长. 【答案】(1)证明见解析(2)①36tan 7FDC ∠=或2;②85AF = 【解析】【分析】(1)证明ACD BED △∽△,从而得出AD CD BD DE=,进而得出DBA DEC ∽; (2)①由两种情形:当DC CD =时,可推出AD BD =,可设CD x =,3BC a =,4AC a =,则3AD BD a x ==+,在Rt ΔACD 中勾股定理得:222(4)(3)x a a x +=+,从而76x a =,进而得出76CD a =,6CF AF AC a =+=,从而求得36tan 7CF FDC CD ∠==;当CE CD =时,根据DBA DEC ∽得出AB CE AD CD=,从而AB AD =,进一步得出结果; ②根据(1)可设5BD t =,2AD t =,设3BC a =,4AC a =,5AB a =,先由条件52DE =,确定AB BD =,进而表示出EX 和AX ,作DN CF ∥,交BE 的延长线于点N ,设AC 与BE 的交点为X ,可得出DMN FMX ∽,从而35DN MN DM FX MX FM ===,从而得出53FX DN =,可证得DNE AXE ∆≅∆,从而得出5EN EX ==,52DN AX a ==,从而表示出5NX EN EX a =+=,52536FX DN a ==,进而得出53AF FX AX a =−=,根据35MN MX =得出3358a MN NX =EN MN ME −=列出方程535328a −=,从而求得a 的值,进一步得出结果. 【小问1详解】证明:EBD DAC ∠=∠,D D ∠=∠,ACD BED ∴∽, ∴AD CD BD DE=, DBA DEC ∴∽;【小问2详解】解:①当DC CD =时,由(1)知:AD CD BD DE=, AD BD ∴=,设CD x =,3BC a =,4AC a =,则3AD BD a x ==+,则Rt ACD △中,3AD a x =+,4AC a =,CD x =,由勾股定理得:222(4)(3)x a a x +=+,76x a ∴=, 76CD a ∴=, 2AC AF =,2AF a ∴=,6CF AF AC a ∴=+=,36tan 7CF FDC CD ∴∠==, 当CE CD =时,由(1)知:DBA DEC ∽, ∴AB CE AD CD=, AB AD ∴=,AC BD ,3CD CB a ∴==,6CF a =,tan 2CF FDC CD∴∠==, 综上所述:36tan 7FDC ∠=或2; ②如图,由(1)知:BD DE AD CD=, 52DE CD =, ∴52BD AD=, 设5BD t =,2AD t =,设3BC a =,4AC a =,5AB a =,53CD BD CD t a ∴=−=−,在Rt ACD △中,由勾股定理得,222CD AC AD +=,222(53)(4)(2)t a a t ∴−+=,15t a ∴=,255t a =(舍去),55BD t a ∴==,532CD t a a =−=,55DE a ==, AB BD ∴=,由(1)知: ACD BED △∽△,90BED ACD ∴∠=∠=︒,BE AD ∴⊥,5AE DE a ∴==,21tan 42EX CD a DAC AE AC a ∠====, 152EX AE ∴==, 2252AX AE EX a ∴+=,作DN CF ∥,交BE 的延长线于点N ,设AC 与BE 的交点为X ,N AXE ∴∠=∠,DMN FMX ∽, ∴35DN MN DM FX MX FM ===, 53FX DN ∴=, AEX DEN ∠=∠,(AAS)DNE AXE ∴≌,5EN EX ∴==,52DN AX a ==, 5NX EN EX a ∴=+=,52536FX DN a ==, 2555623AF FX AX a a a ∴=−=−=, 35MN MX =, 3358a MN NX ∴==, 由EN MN ME −=得,5353=, 245a ∴=5853AF a ∴==. 【点睛】本题考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质等知识,解决问题的关键是作辅助线,构造相似三角形.。
2024届上海市宝山区初三一模数学试题及答案
图3上海市宝山区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列各组中的四条线段成比例的是().A 2cm ,3cm ,4cm ,5cm ;.B 2cm ,3cm ,4cm ,6cm ;.C 1cm ,2cm ,3cm ,2cm ;.D 3cm ,2cm ,6cm ,3cm .2.已知线段2AB ,点P 是线段AB 的黄金分割点,且AP BP ,则AP 的长是().A 3.50米,AB 与AC .A .50cos 24米.4.是().A 5.).A .D 第四象限.6.如图,在正方形网格中,、、、、M 、N 都是格点,从A 、B 、、四个格点中选取三个构成一个与AMN 相似的三角形,某同学得到两个三角形:①ABC ;②ABD .关于这两个三角形,下列判断正确..的是().A 只有①是;.B 只有②是;.C ①和②都是;.D ①和②都不是.二、填空题(本大题共12题,每题4分,满分48分)7.已知线段2a ,4b ,如果线段c 是a 和b 的比例中项,那么c =.8.比例尺为1:100000的地图上,A 、B 两地的距离为2cm ,那么A 、B 两地的实际距离为km .9.计算:sin 30sin 45cos 45.图22b x a10.二次函数2y ax bx c (0a )图像上部分点的坐标 ,x y 对应值如表1所示,那么该函数图像的对称轴是直线.表111.直径是2的圆,当半径增加x 时,面积的增加值s 与x 之间的函数关系式是.12.在ABC 中,90BAC ,点G 为重心,联结AG 并延长,交BC 于点F ,如果6BC ,那么GF 的长是.13.如图4,已知斜坡AB 的坡顶B 离地面的高度BC 为30m ,如果坡比1:3i ,那么这个斜坡的长度AB14.ABC 中,如果2BC,7AB ,AC 15.2y .16.6BC ,17.轴的“亲密点”的坐标是.18.AEC 与矩形的重叠部分是三角形ACF ,联结DE .如果6AB ,2BF ,那么BDE 的正切值是.x01234 y313图4三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图6,在ABC 中,90C ,4sin 5B ,10AB ,点D 是AB 边上一点,且BC BD .(1)求BD 的长;(2)求ACD 的余切值.20.如图7E .(1)(2)21.(1)求该二次函数的表达式;(2)如果点 4,E m 在该函数图像上,求ABE 的面积.图922.(本题满分10分)综合实践活动中,某小组利用木板和铅锤自制了一个简易测高仪测量塔高.测高仪ABCD 为矩形,CD30cm ,顶点D 处挂了一个铅锤H .图8是测量塔高的示意图,测高仪上的点C 、D 与塔顶G 在一条直线上,铅垂线DH 交BC 于点M .经测量,点D 距地面1.9m ,到塔EG 的距离13DF m ,20CM cm .求塔EG 的高度.(结果精确到1m )23.如图9AC 于点P 、Q .(1)(2)图1024.(本题满分12分,第(1)小题满分4分,第(2)题满分4分,第(3)题满分4分)如图10,在平面直角坐标系xOy 中,将抛物线212y x 平移,使平移后的抛物线仍经过原点O ,新抛物线的顶点为M (点M 在第四象限),对称轴与抛物线212y x 交于点N ,且4MN .(1)求平移后抛物线的表达式;(2)如果点N 平移后的对应点是点P ,判断以点O 、M 、N 、P 为顶点的四边形的形状,并说明理由;(3)抛物线212y x上的点A 平移后的对应点是点B ,BC MN ,垂足为点C ,如果ABC 是等腰三角形,求点A 的坐标.图1125.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知ABC 中,1AB AC ,D 是边AC 上一点,且BD AD ,过点C 作//CE AB ,并截取CE AD ,射线AE 与BD 的延长线交于点F .(1)求证:2AF DF BF ;(2)设AD x ,DF y ,求y 与x 的函数关系式;(3)如果ADF 是直角三角形,求DF 的长.2023学年第一学期期末考试九年级数学试卷评分参考一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.A ;4.D ;5.C ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)7.22;8.2;9.0;10.x =2;11.S =πx 2+2πx ;12.1;13.1030;14.37;15. ;16.2.417.),085( ;18.31或33.三、解答题:(本大题共7题,满分78分)19.解:(1)∵在Rt △ABC 中,sinB =ABAC ,又∵sinB =54,AB =10,∴AC =8,…………………………………………………………………………2分∵ C =90 ,∴,222AB BC AC ∴BC =6,…………………………………………………………………………2分∵BC =BD ,∴BD =6.…………………………………………………………………………1分(2)过点D 作DE ⊥AC ,垂足为点E .………………………………………………………1分又由 C =90 ,可得DE ∥BC ,∴,ABAD BC DE ∵BC =6,AD =4,AB =10,∴DE =2.4,………………………………………………………………………1分同理可得EC =4.8,………………………………………………………………1分∵在Rt △DEC 中,cot ACD =DE EC ,…………………………………………1分∴cot ACD = …………………………………………………………………1分20.解:(1)∵BD 平分∠ABC ,∴ 1= 2,∵DE ∥BC ,∴ 2= 3,∴ 1= 3,………………………………………………………………………1分∴DE =BE ,………………………………………………………………………1分设DE =BE =x ,则AE =5-x ,……………………………………………………1分∵DE ∥BC ,∴AB AE BC DE ,……………………………………………………1分∴554x x ………………………………………………………………………1分解得920 x ,所以,.920 DE …………………………………………………1分(2)BD =a b ,……………………………………………………………………2分BF =.149149a b …………………………………………………………………2分21.解:(1)由图像经过点B (0,3),可知c =3,………………………………………2分再由图像经过点A (1,0),可得0312b ,解得b =-4,……………………2分所以,该二次函数的表达式为.342x x y …………………………………1分(2)把x =4代入342x x y ,得y =3,……………………………………1分由B (0,3)、E (4,3)可知BE ∥x 轴,……………………………………………1分于是BE =4,BE 边上的高为3,…………………………………………………2分∴.63)04(21ABE S …………………………………………………1分22.解:在Rt △CDM 中,cot ∠CDM =CMCD ,……………………………………………1分又∵CD =30cm ,CM =20cm ,………………………………………………………1分∴cot ∠CDM =23,……………………………………………………………………1分∵DF ⊥EG ,∴∠DGF+∠GDF =90°,……………………………………………………………1分又由题意可得∠CDM+∠GDF =90°,∴∠CDM =∠DGF ,…………………………………………………………………1分在Rt △DGF 中,cot ∠DGF =DF GF ,…………………………………………………1分又∵DF =13m ,∴GF =m 239,………………………………………………………………………1分∴EG =GF+EF =m 219.1239 ,……………………………………………………2分答:塔EG 的高度约为21m .…………………………………………………………1分23.证明:(1)∵在正方形ABCD 中,∴CD =BC ,AD =CD ,∠ADE =∠DCF =90°,…………………………………1分又∵CE =BF ,∴CD -CE =BC -BF ,即DE =CF ,…………………………………………………………………………1分∴△ADE ≌△CDF ,∴∠1=∠2,…………………………………………………………………………1分∵∠ADE =90°∴∠1+∠3=90°,∴∠2+∠3=90°,……………………………………………………………………1分∵∠APQ =∠2+∠3,∴∠APQ =90°,………………………………………………………………………1分∴AE ⊥DF.(2)过点E 作EG ⊥AC ,垂足为点G .………………………………………………1分∵∠APQ =90°,∴∠APQ =∠AGE ,又∵∠PAQ =∠EAG ,∴△APQ ∽△AEG ,……………………………………………………………………1分∴EGAEPQ AQ,…………………………………………………………………………1分∵在正方形ABCD 中,∴ 45214 DCF ,在Rt △CDM 中,cot ∠4=22 CE EG ,∴CE EG 22 ,………………………………………………………………………1分∵CE =BF ,∴BF EG 22 ,………………………………………………………………………1分∵△ADE ≌△CDF ,∴AE =DF ,…………………………………………………………………………1分∴BF DF PQAQ 22,∴DF PQ BF AQ2.……………………………………………………………1分24.解:(1),,设)0)(21(2 t t t N )421(2t t M ,则,……………………………………………………1分于是平移后抛物线的表达式是421)(2122t t x y ,………………………………1分由平移后抛物线经过原点O (0,0),可得t =2(负值不合题意舍去),………………1分所以,平移后抛物线的表达式是2)2(212 x y .……………………………………1分(2)四边形OMPN 是正方形.根据题意可得O (0,0),M (2,-2),N (2,2),P (4,0),…………………………1分记MN 与OP 交于点G ,则G (2,0),∴OG =GP =2,MG =NP =2,MN =OP =4,22 NP NO ,∴四边形OMPN 是平行四边形,……………………………………………………1分∵MN =OP =4,∴四边形OMPN 是矩形,……………………………………………………………1分∵22 NP NO ,∴四边形OMPN 是正方形.……………………………………………………………1分(3),,设)21(2a a A ,,则)2212(2 a a B )2212(2a C ,,222,2)2(22a BC a AC AB ,可得,……………………………………1分;,(舍去①)84(),0,4,04,2)2(22,11222A a a a a a AC AB …………1分;,或,②)422()422(,22,22,22,112 A A a a a BC AB ………………1分;,,,③)22(2,2)2(222A a a a BC AC ……………………………………1分所以,点A 的坐标是)2,2()422()422()8,4(、,、,、 .25.(1)证明:∵CE ∥AB ,∴∠1=∠2,………………………………………………………………………………1分又∵AB =AC ,CE =AD ,∴△ABD ≌△AEC ,………………………………………………………………………1分∴∠3=∠4,又∵∠AFB =∠AFD ,∴△ABF ∽△ADF ,………………………………………………………………………1分∴AFBF DF AF ,∴BF DF AF 2.…………………………………………………………………………1分解:(2)过点D 作DG ∥AB ,交AE 于点G.………………………………………………1分又∵CE ∥AB ,∴DG ∥CE ,∴AC AD CE DG ,……………………………………………………………………………1分由AD =x ,则CE =x ,CD =1-x ,∴2x DG ,………………………………………………………………………………1分∵DG ∥AB ,∴BF DF AB DG ,……………………………………………………………………………1分∴y x y x 12,∴231x x y .……………………………………………………………………………1分(3)①∠DAF =ABD ≠90°,………………………………………………………………1分②如果∠AFD =90°,由∠1=∠3=∠4,∠1+∠3+∠4=90°,可得∠3=∠4=30°,……………………1分设DF =m ,则AD =BD =2m ,在Rt △ABF 中,cos ∠3=ABBF ,∴2312 m m ,63 m .………………………………………………………………1分③如果∠ADF =90°,由∠1=∠3=∠4,∠1+∠3=90°,可得∠3=∠4=45°,……………………………1分设DF =m ,AD =BD =m ,在Rt △ABF 中,cos ∠3=BFAB ,∴221 m m ,22 m .………………………………………………………………1分所以,当△ADF 是直角三角形时,DF 的长为63或22.。
山东省泰安市东平县2024届九年级下学期中考一模数学试卷(含解析)
数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题48分,非选择题102分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题卡交回.第Ⅰ卷(选择题共48分)一、单选题(本大题共12个小题,每小题4分,共48分.每小题给出的四个答案中,只有一项是正确的.)1. 的相反数是()A. B. C. D.答案:C解析:详解:解:的相反数是.故选:C2. 下列计算正确的是()A. B.C. D.答案:B解析:详解:解:、,故本选项不符合题意;、,故本选项符合题意;、,故本选项不符合题意;、,故本选项不符合题意;故选:B.3. 5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上.用科学记数法表示1300000是()A. B. C. D.答案:C解析:详解:解:∵,故选:C.4. 花钿()是古时汉族妇女脸上用金翠珠宝制成的一种花形首饰,有红、绿、黄三种颜色,其中以红色为最多,是唐代比较流行的一种首饰.下列四种眉心花钿图案既是轴对称图形又是中心对称图形的是()A. B.C. D.答案:D解析:详解:解:A.是轴对称图形不是中心对称图形,故该选项不符合题意;B.是轴对称图形不是中心对称图形,故该选项不符合题意;C.既不是轴对称图形也不是中心对称图形,故该选项不符合题意;D.轴对称图形也是中心对称图形,故该选项符合题意;故选:D.5. 如图,先在纸上画两条直线a,b,使,再将一块直角三角板平放在纸上,使其直角顶点落在直线b 上,若,则的度数是()A. B. C. D.答案:B解析:详解:解:如图,∵∴,∵,∴,故选:B6. 某学校组织学生进行了视力测试.刘明所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A. 4.8 4.74B. 4.8 4.5C. 5.0 4.5D. 4.8 4.8答案:D解析:详解:解:把这组数据从小到大排列为,,,,,排在中间的数是,故中位数是;这组数据中出现的次数最多,故众数为.故选:D.7. 如图,是的直径,点C,D,E在上,若,则的度数为( )A. B. C. D.答案:B解析:详解:连接,如图,∵是的直径,∴,∵,∴.故选:B.8. 在同一平面直角坐标系中,函数与(其中m,n是常数,)的大致图象可能是()A. B.C. D.答案:C解析:详解:A选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,A选项错误;B选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,B选项错误;C选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像相符,C选项正确;D选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像不符,D选项错误.故选:C.9. 如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为( )A. π﹣1B. π﹣2C. π﹣3D. 4﹣π答案:B解析:详解:解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.10. 出口贸易是我国经济发展的重要因素,由于出口贸易持续增长,一企业生产某种商品的数量增加明显.已知今年生产该商品的数量比今年和去年生产的数量总和的一半多11万件,去年的数量比今年和去年生产数量总和的三分之一少2万件.设今年生产该商品的数量为x万件,去年生产该商品的数量为y万件,根据题意可列出的方程组是()A. B.C. D.答案:D解析:详解:设今年生产该商品的数量为x万件,去年生产该商品的数量为y万件,由题意可得:,故选:D.11. 如图,在四边形ABCD中,,,连接,,且,的平分线分别交、于点O、E,则①、②、③、④.上述结论正确的有()A. 1个B. 2个C. 3个D. 4个答案:B解析:详解:解:①即,且,∴,,又∵平分,∴,∴,∵,∴,∴,即①正确,②过点A、O作于F,于G,∵平分,,,∴,又∵,,∴是等腰直角三角形,,∴,∴,∴,∴,即②错误;③∵,∴,∵,,∴,又∵于F,∴四边形是矩形,是等腰直角三角形,,∴,∴∵,∴∴,即③错误;④∵,,∴,即平分,∴与若以和为底边,高相等;以和作底边,高相同;∴,(高相等时,三角形面积之比等于底边之比)∵,,∴,∴,∴,即④正确;故正确的有:①④,共两个,故选B.12. 如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC 于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为( )A. B. C. 1 D. 2答案:C解析:详解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6个小题,每小题4分,共24分,只要求填写最后结果)13. 关于x的一元二次方程有实根,则m取值范围是___________.答案:且解析:详解:解:∵关于的一元二次方程有实数根,,解得且.故答案为:且.14. 如图1是我国明末《崇祯历书》之《割圆勾股八线表》中所绘的割圆八线图.如图2,根据割圆八线图,在扇形中,,和都是的切线,点和点是切点,交于点,交于点,.若,则的长为_________.答案:##解析:详解:解:如图,,,,,,是的切线,点是切点,,即,,在中,,,,在中,,,,.故答案为:.15. 《中华人民共和国道路交通安全法》规定,同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,其原因可以用物理和数学的知识来解释.公路上行驶的汽车急刹车时,刹车距离与时间的函数关系式为,当遇到紧急情况刹车时,由于惯性的作用,汽车最远要滑行___________才能停下.答案:16解析:详解:解:依题意,该函数关系式化简为,当时,汽车停下来,滑行了16米,汽车最远要滑行16米才能停下,故答案为:16.16. 如图,将的按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,与尺下沿重合,与尺上沿的交点B在尺上的读数为,若按相同的方式将的放置在该刻度尺上,则尺上沿的交点C在尺上的读数是________(结果精确到,参考数据)答案:解析:详解:解:作于,作于,如图:依题意得:,在中,,,,,,,且,,在中,,,,,即:,解得:,点C在尺上的读数约为,故答案为:.17. 如图,已知等边三角形纸片,点E在边上,点F在边上,沿折叠,使点落在边上的点的位置,且,则的度数为_____.答案:##度解析:详解:由翻折性质可知:,∵为等边三角形,∴,,,∵,∴为直角三角形,∴,∵是的外角,∴,∵是由翻折得到,∴,故答案为:.18. 如图,在平面直角坐标系中,已知点的坐标是,以为边在右侧作等边三角形,过点作轴的垂线,垂足为点,以为边在右侧作等边三角形,再过点作轴的垂线,垂足为点,以为边在右侧作等边三角形,按此规律继续作下去,得到等边三角形,则点的纵坐标为______答案:解析:详解:解:∵点的坐标是,以为边在右侧作等边三角开过点作轴的垂线,垂足为点∴∴,点纵坐标是,∵以为边在右侧作等边三角形,过点作轴的垂线,垂足为点,∴,,∴,∴点纵坐标,即,∵以为边在右侧作等边三角形,同理,得点纵坐标是,按此规律继续作下去,得:点的纵坐标是,即.故答案为:三、解答题(本大题共7个小题,共78分,写出必要的文字说明、证明过程或推演步骤.)19. (1)计算:(2)化简:答案:(1);(2)2解析:详解:解:(1)原式;(2)原式.20. 某学校为了开展好课后延时服务,举办了A:机器人;B:航模;C:科幻绘画:D:信息学;E:科技小制作等五个兴趣小组(每人限报一项),将参加各兴趣小组的人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)求本次参加课后延时服务的学生人数;(2)把条形统计图补充完整,并求扇形统计图中的度数;(3)在C组最优秀的2名同学(1名男生1名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加全区的课后延时服务成果展示比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.答案:(1)80 (2)图形见解析;(3)树状图见解析;所选两名同学中恰好是1名男生1名女生的概率为解析:小问1详解:解:本次参加课后延时服务的学生人数是(名).小问2详解:参加组的人数为(名).补全条形统计图如图所示.扇形统计图中的的度数是.小问3详解:设组的1名男生和1名女生分别记为组的2名男生和1名女生分别记为.画树状图如下:共有6种等可能的结果,其中所选两名同学中恰好是1名男生1名女生的结果有:,,共3种,所选两名同学中恰好是1名男生1名女生的概率为.21. 如图,一次函数的图象与反比例函数的图象相交于A,B两点,其中点A的坐标为,点B的坐标为.(1)求这两个函数的表达式;(2)根据图象,直接写出满足的取值范围;(3)求的面积;答案:(1)反比例函数关系式为,一次函数关系式为:;(2)或;(3).解析:小问1详解:解:∵图象过点,则,解得:,∴反比例函数关系式为,当时,,∴B点坐标为,设一次函数关系式为,则,解得:,∴一次函数关系式为:;小问2详解:解:由图象得,当或时,一次函数的值大于反比例函数的值;小问3详解:解:设直线与x轴的交点为C,由(2)知,,令,则,即.则.22. 为了响应国家发展科技的号召,某公司计划对A、B两类科研项目投资研发.已知研发1个A类科研项目比研发1个B类科研项目少投资75万元,且投资1200万元研发A类科研项目的个数与投资1500万元研发B类科研项目的个数相同.(1)研发一个A类科研项目所需的资金是多少万元?(2)该公司今年计划投资研发A、B两类科研项目共40个,且该公司投入研发A、B两类科研项目总资金不超过1亿3200万元,则该公司投资研发A类科研项目至少是多少个?答案:(1)研发一个类科研项目所需资金是300万元(2)今年研发类科研项目至少24个解析:小问1详解:解:设研发一个类科研项目所需资金为万元,则研发一个类科研项目所需资金为万元,根据题意,得,解得.经检验,是原分式方程的解,.答:研发一个类科研项目所需资金是300万元.小问2详解:解:设今年研发类科研项目个,则研发类科研项目个,根据题意,得,解得.答:今年研发类科研项目至少24个.23. 如图1,已知四边形是矩形,点E在的延长线上,.与相交于点G,与相交于点F,.(1)求证:;(2)若,求;(3)如图2,连接,请判定,,三者之间的数量关系并证明.答案:(1)见解析(2)(3),证明见解析解析:小问1详解:证明:∵四边形是矩形,点E在的延长线上,∴,又∵,∴,∴,∴,即,故;小问2详解:解:∵四边形是矩形,∴,,∴,∴,又∵,,即,解得或(舍去);∴;小问3详解:解;,证明如下:如图,在线段上取点,使得,在与中,,∴,∴,∴,∴为等腰直角三角形,∴,即.24. 综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在“中,,,分别取,的中点D,E,作.如图2所示,将绕点A逆时针旋转,连接,.(1)探究发现:旋转过程中,线段和的长度存在怎样的数量关系?写出你的猜想,并证明.(2)性质应用:如图3,当所在直线首次经过点B时,求的长.(3)延伸思考:如图4,在中,,,,分别取,的中点D,E.作,将绕点B逆时针旋转,连接,.当边平分线段时,求的值.答案:(1)猜想,证明见解析(2)(3)解析:小问1详解:解:猜想,证明如下:∵点D和点E为分别为中点,∴由图1可知,,∴,则,∵,∴,∴,根据旋转的性质可得:,∴,∴;小问2详解:解:由图1可知点D和点E为分别为中点,∴,,∴,∴,∴当所在直线经过点B时,,根据勾股定理可得:,由(1)可得:,∴,解得:;小问3详解:解:令相交于点Q,过点E作于点G,根据题意可得:,∵,∴,∴,∵边平分线段,,∴,∴,∵,∴,∴,根据旋转的性质可得:,∴,∴,∴,,∴,∴.25. 如图,在平面直角坐标系中,点、在轴上,点、在轴上,且,,抛物线经过三点,直线与抛物线交于另一点.(1)求这条抛物线的解析式;(2)在抛物线对称轴上是否存在一点,使得的周长最小,若存在,请求出点的坐标,若不存在,请说明理由;(3)点是直线上一动点,点为抛物线上直线下方一动点,当线段的长度最大时,请求出点的坐标和面积的最大值.答案:(1)抛物线的解析式为;(2)时的周长最小;(3)当面积最大时,点的坐标为,面积最大值为.解析:小问1详解:∵,,∴点的坐标为,点的坐标为,点的坐标为,点的坐标为,将,,代入得:,解得:,∴这条抛物线的解析式为;小问2详解:∵,∴抛物线的对称轴为直线,连接,交抛物线对称轴点,如图所示,∵点,关于直线对称,∴,∴∴当点,,三点共线时,取得最小值,即的周长最小,设直线的解析式为,将,代入得:,解得:,∴直线的解析式为,当时,,∴在这条抛物线的对称轴上存在点时的周长最小;小问3详解:∵,,∴直线的解析式为,联立直线和抛物线的解析式成方程组,得:,解得:,,∴点的坐标为,过点作轴,交直线于点,如图所示,设点的坐标为,则点的坐标为,∴,∴,,,,∵,∴当时,的面积取最大值,最大值为,∴当面积最大时,点的坐标为,面积最大值为.。
2023年黄浦区 九年级初三一模数学试卷(含标准答案)
九年级数学一、选择题(本大题共6题)1.在直角坐标平面内,如果点()41P ,,点P 与原点O 的连线与x 轴正半轴的夹角是α,那么cot α的值是()A.4B.14C.17D.172.关于抛物线()212y x =--以下说法正确的是()A.抛物线在直线=1x -右侧的部分是上升的B.抛物线在直线=1x -右侧的部分是下降的C.抛物线在直线1x =右侧的部分是上升的D.抛物线在直线1x =右侧的部分是下降的3.二次函数2285y x x =++的图像的顶点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,梯形ABCD 中,AD BC ∥,点E 、F 分别在腰AB 、CD 上,且EF BC ∥,下列比例成立的是()A.AE ADAB EF = B.AE EFAB BC= C.AE DF AB FC= D.AE DFAB DC =5.矩形ABCD 的对角线AC 与BD 相交于点O ,如果BC a = ,DC b =,那么()A.()12DO a b =- B.()12DO b a =-C .DO a b =-D.()12DO b a =+ 6.下列条件中,不能判定ABC 与DEF 相似的是()A.70A D ∠=∠=︒,50B E ∠=∠=︒B .70A D ∠=∠=︒,50B ∠=︒,60E ∠=︒C.A E ∠=∠,12AB =,15AC =,4DE =,5EF =D.A E ∠=∠,12AB =,15BC =,4DE =,5DF =二、填空题:(本大题共12题)7.计算:()()3232a b a b --+=______.8.如果一个二次函数的图像的对称轴是y 轴,且这个图像经过平移后能与232y x x =+重合,那么这个二次函数的解析式可以是______.(只要写出一个)9.已知两个矩形相似,第一个矩形的两边长分别是3和4,第二个矩形较短的一边长是4,那么第二个矩形较长的一边长是______.10.已知点P 是线段AB 的黄金分割点,且4AP BP AB >=,,那么AP =___________.11.已知ABC 的三边长分别为2、3、4,DEF 与ABC 相似,且DEF 周长为54,那么DEF 的最短边的长是______.12.如图是一个零件的剖面图,已知零件的外径为10cm ,为求出它的厚度x ,现用一个交叉卡钳(AC 和BD 的长相等)去测量零件的内孔直径AB .如果13==OC OD OA OB ,且量得CD 的长是3cm ,那么零件的厚度x 是______cm .13.在Rt ABC △中,90C = ∠,已知A ∠的正弦值是23,那么B ∠的正弦值是______.14.如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为______.15.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x 厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y 平方厘米,那么y 关于x 的函数解析式是______.(不必写定义域)16.已知G 是ABC 的重心,过点G 作GD AC ∥交边AB 于点D ,作GE AB 交边AC 于点E ,如果四边形ADGE 的面积为2,那么ABC 的面积是______.17.如图,在矩形ABCD 中,过点D 作对角线AC 的垂线,垂足为E ,过点E 作BE 的垂线,交边AD 于点F ,如果3AB =,5BC =,那么DF 的长是______.18.将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD 如图所示,其中90A C ∠=∠= ,7AB =厘米,9BC =厘米,2CD =厘米,那么原来的直角三角形纸片的面积是______平方厘米.三、解答题(本大题共7题)19.计算:tan45cot45sin45cos30︒︒︒︒++.20.已知:如图,平行四边形ABCD 中,点M 、N 分别在边DC 、BC 上,对角线BD 分别交AM 、AN 于点E 、F ,且::1:2:1DE EF BF =.(1)求证:MN BD ∥;(2)设AM a = ,AN b = ,请直接写出BD关于a、b的分解式.21.在平面直角坐标系xOy 中,已知抛物线2y x mx m =++.(1)如果拋物线经过点()19,,求该拋物线的对称轴;(2)如果抛物线的顶点在直线y x =-上,求m 的值.22.圭表(如图1)是我国古代度量日影长度的天文仪器,它包括一根直立的杆(称为“表”)和一把南北方向水平放置且与杆垂直的标尺(称为“圭”).当正午的阳光照射在“表”上时,“表”的影子便会投射在“圭”上.我国古代很多地区通过观察“表”在“圭”上的影子长度来测算二十四节气,并以此作为指导农事活动的重要依据.例如,我国古代历法将一年中白昼最短的那一天(当日正午“表”在“圭”上的影子长度为全年最长)定为冬至;白昼最长的那一天(当日正午“表”在“圭”上的影子长度为全年最短)定为夏至.某地发现一个圭表遗迹(如图2),但由于“表”已损坏,仅能测得“圭”上记录的夏至线与冬至线间的距离(即AB 的长)为11.3米.现已知该地冬至正午太阳高度角(即CBD ∠)为3534︒',夏至正午太阳高度角(即CAD ∠)为8226︒',请通过计算推测损坏的“表”原来的高度(即CD 的长)约为多少米?(参考数据见表1,结果精确到个位)表1αsin αcos αtan α3534︒'0.580.810.728226︒'0.990.137.5(注:表1中三角比的值是近似值)23.已知:如图,点D 、F 分别在等边三角形ABC 的边CB 的延长线与反向延长线上,且满足2BD CF BC ⋅=.求证:(1)ADB FAC ∽△△;(2)AF AD BC DF ⋅=⋅.24.在平面直角坐标系xOy 中,点()11A y -,,()20B y ,,()31C y ,,()42D y ,在抛物线2y x bx c =-++上.(1)当10y =,23y y =时,①求该抛物线的表达式;②将该抛物线向下平移2个单位,再向左平移m 个单位后,所得的新抛物线经过点()10-,,求m 的值;(2)若20y =,且1y 、3y 、4y 中有且仅有一个值大于0,请结合抛物线的位置和图像特征,先写出一个满足条件的b 的值,再求b 的取值范围.25.已知,如图1,在四边形ABCD 中,90BAC ADC ∠=∠=︒,4CD =,4cos 5ACD ∠=.(1)当BC AD ∥时(如图2),求AB 的长;(2)连接BD ,交边AC 于点E ,①设CE x =,AB y =,求y 关于x 的函数解析式并写出定义域;②当BDC 是等腰三角形时,求AB 的长.九年级数学一、选择题(本大题共6题)1.在直角坐标平面内,如果点()41P ,,点P 与原点O 的连线与x 轴正半轴的夹角是α,那么cot α的值是()A.4B.14C.17D.17【答案】A【分析】由锐角的余切定义,即可求解.【详解】解:如图,∵点()41P ,,∴4cot 41α==.故选∶A【点睛】本题考查解直角三角形,坐标与图形的性质,关键是掌握锐角的三角函数定义.2.关于抛物线()212y x =--以下说法正确的是()A.抛物线在直线=1x -右侧的部分是上升的B.抛物线在直线=1x -右侧的部分是下降的C.抛物线在直线1x =右侧的部分是上升的D.抛物线在直线1x =右侧的部分是下降的【答案】C【分析】根据题目中的抛物线解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线()212y x =--,∴抛物线在直线1x =右侧的部分是上升,故选项A 、B 错误,不符合题意;抛物线在直线1x =右侧的部分是上升的,故选项C 正确,符合题意,选项D 错误,不符合题意;故选∶C .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.二次函数2285y x x =++的图像的顶点位于()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】C【分析】利用配方法把二次函数解析式配成顶点式,然后利用二次函数的性质求解.【详解】解:2285y x x =++()224445x x =++-+()224485x x =++-+,()2223x =+-,∴顶点坐标为()23--,,∴二次函数2285y x x =++的图像的顶点位于第三象限,故选C .【点睛】本题考查二次函数的性质,解答本题的关键是将题目中的函数解析式化为顶点式.4.如图,梯形ABCD 中,AD BC ∥,点E 、F 分别在腰AB 、CD 上,且EF BC ∥,下列比例成立的是()A.AE ADAB EF= B.AE EFAB BC= C.AE DFAB FC= D.AE DFAB DC=【答案】D【分析】根据平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例,即可得到结论.【详解】解:∵AD BC ∥,EF BC ∥,∴AD BC EF ∥∥,∴AE DFAB DC=,故选D .【点睛】本题主要考查平行线分线段成比例,掌握平行线所分线段对应成比例是解题的关键.5.矩形ABCD 的对角线AC 与BD 相交于点O ,如果BC a =,DC b =,那么()A.()12DO a b =-B.()12DO b a =- C.DO a b=- D.()12DO b a=+ 【答案】B【分析】求出BD a b =-,再根据12DO DB =uuu r uu u r 即可得到结果.【详解】解:如图所示:∵BD BC CD=+BC DC =- a b=- ∴()1212DO DB b a -==,故选:B .【点睛】本题主要考查了平面向量,矩形的性质,本题侧重考查知识点的理解能力.6.下列条件中,不能判定ABC 与DEF 相似的是()A.70A D ∠=∠=︒,50B E ∠=∠=︒B.70A D ∠=∠=︒,50B ∠=︒,60E ∠=︒C.A E ∠=∠,12AB =,15AC =,4DE =,5EF =D.A E ∠=∠,12AB =,15BC =,4DE =,5DF =【答案】D【分析】由相似三角形的判定依次判断,可求解.【详解】解∶A .∵70A D ∠=∠=︒,50B E ∠=∠=︒,∴ABC 与DEF 相似,故选项A 不合题意;B .∵70A D ∠=∠=︒,50B ∠=︒,∴180705060C ∠=︒-︒-︒=︒,∴60C E ∠=∠=︒,∴ABC 与DEF 相似,故选项B 不合题意;C .31AB AC DE EF==,A E ∠=∠,∴ABC 与DEF 相似,故选项C 不合题意;D .31AB BCDE DF==,但B ∠与D ∠不一定相等,ABC 与DEF 不一定相似,故选项D 符合题意;故选∶D .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.二、填空题:(本大题共12题)7.计算:()()3232a b a b --+=______.【答案】35a b -##53b a-+【分析】根据向量的运算法则可直接进行解答.【详解】解:()()3232a b a b--+6332a b a b =---35a b=- ,故答案为:35a b - .【点睛】本题考查的是平面向量的知识,熟悉向量的相关性质是解题的关键.8.如果一个二次函数的图像的对称轴是y 轴,且这个图像经过平移后能与232y x x =+重合,那么这个二次函数的解析式可以是______.(只要写出一个)【答案】()2323y x =++【分析】先设原抛物线的解析式为()2y a x h k =++,根据二次函数的图像平移性质知3a =,据此写出符合要求的解析式即可.【详解】解∶先设原抛物线的解析式为()2y a x h k =++,经过平移后能与抛物线232y x x =+重合,∴3a =,∴这个二次函数的解析式可以是()2323y x =++(答案不唯一).【点睛】本题考查二次函数的图像与几何变换,熟知二次函数图像平移中不变的性质是解答的关键.9.已知两个矩形相似,第一个矩形的两边长分别是3和4,第二个矩形较短的一边长是4,那么第二个矩形较长的一边长是______.【答案】163##153【分析】设第二个矩形较长的一边长是a ,根据相似多边形的性质得出344a=,再求出a 即可.【详解】解:设第二个矩形较长的一边长是a ,∵两个矩形相似,第一个矩形的两边长分别是3和4,第二个矩形较短的一边长是4,∴344a=,解得∶163a =,即第二个矩形较长的一边长是163,故答案为∶163.【点睛】本题考查了相似多边形的性质,能熟记相似多边形的性质(相似多边形的对应边的比相等)是解此题的关键.10.已知点P 是线段AB 的黄金分割点,且4AP BP AB >=,,那么AP =___________.【答案】2-##2-+【分析】根据黄金分割点的定义,知AP 是较长线段;则12AP AB =,代入数据即可得出AP 的长.【详解】解:∵P 为线段AB 的黄金分割点,且AP 是较长线段;∴122AP AB -==-.故答案为:2-.【点睛】本题考查了黄金分割的概念.应该识记黄金分割的公式:较短的线段=原线段的32-,较长的线段=原线段的12.11.已知ABC 的三边长分别为2、3、4,DEF 与ABC 相似,且DEF 周长为54,那么DEF 的最短边的长是______.【答案】12【分析】先计算出ABC 的周长,进而得出相似比为16∶,进而得出答案.【详解】解:∵ABC 的三边长分别为2、3、4,∴ABC 的周长为:9∵DEF 与ABC 相似,且DEF 周长为54,∴ABC 与DEF 的周长比为95416=∶∶,∴ABC 与DEF 的相似比为16∶,设DEF 的最短边的长是x ,则:216x =∶∶,解得∶12x =.故答案为∶12.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.12.如图是一个零件的剖面图,已知零件的外径为10cm ,为求出它的厚度x ,现用一个交叉卡钳(AC 和BD 的长相等)去测量零件的内孔直径AB .如果13==OC OD OA OB ,且量得CD 的长是3cm ,那么零件的厚度x 是______cm .【答案】12##0.5【分析】根据相似三角形的判定和性质,可以求得AB 的长,再根据某零件的外径为10cm ,即可求得x 的值.【详解】解∶∵13==OC OD OA OB ,COD AOB ∠=∠,∴COD AOB ∽ ,∴13CD AB =,∵CD 的长是3cm ,∴9cm AB =,∵零件的外径为10cm ,∴零件的厚度为∶()1091cm 22x -==,故答案为:12.【点睛】本题考查相似三角形的应用,解答本题的关键是求出AB 的值.13.在Rt ABC △中,90C = ∠,已知A ∠的正弦值是23,那么B ∠的正弦值是______.【答案】3##【分析】根据锐角三角函数的定义以及勾股定理进行计算即可.【详解】解:Rt ABC ∆中,90C ∠=︒,∠A 的正弦值是23即23BC AB =,∴设2BC k =,则3AB k =,由勾股定理得AC ==,∴5sin 3AC B AB ==,故答案为∶53.【点睛】本题考查锐角三角函数、勾股定理,掌握锐角三角函数的定义以及勾股定理是正确解答的前提.14.如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为______.【答案】1:1.5【分析】根据坡度的概念计算,得到答案.【详解】解:∵202tan 303B ∠==,∴斜面AB 的坡度为2:3=1:1.5,故答案为:1:1.5.【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的铅直高度h 和水平宽度l 的比是解题的关键.15.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x 厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y 平方厘米,那么y 关于x 的函数解析式是______.(不必写定义域)【答案】21102x x y -+=【分析】根据几何关系先把矩形的另一边用x 表示出来,再利用矩形面积公式得到y 与x 的表达式.【详解】解:如图所示,由题意,45B C ∠=∠=︒,90DFB EGC ∠=∠=︒,FG x=∴BDF 和CEG 都是等腰直角三角形,∴,BF DF CG EG ==,由矩形可知,DF EG =,∴BF CG DF EG ===,∴2011022x DF BF x -===-,∴矩形面积为211·101022y DF FG x x x x ⎛⎫==-=-+ ⎪⎝⎭,故答案为∶21102x x y -+=.【点睛】本题考查等腰直角三角形、矩形的性质和函数表达式,解题关键是熟知等腰直角三角形和矩形的性质.16.已知G 是ABC 的重心,过点G 作GD AC ∥交边AB 于点D ,作GE AB 交边AC 于点E ,如果四边形ADGE 的面积为2,那么ABC 的面积是______.【答案】9【分析】延长BG 交AC 于F 点,连接AG ,先证四边形ADGE 为平行四边形得112122ADG ADGE S S ==⨯=四边形 ,由G 是ABC 的重心,得2BG GF =,BF 为AC 边上的中线,再根据平行线分线段成比例可证2BD BG AD GF ==,从而即可求解.【详解】解:延长BG 交AC 于F 点,连接AG ,如图,∵GD AC ∥,GE AB ,∴四边形ADGE 为平行四边形,∴112122ADG ADGE S S ==⨯=四边形 ∵G 是ABC 的重心,∴2BG GF =,BF 为AC 边上的中线,∵GD AC ∥,∴2BD BG AD GF==,∴22BDG ADG S S == ,∴213ABG S =+= ,∵2BG GF =,∴1322AGF ABG S S == ,∴92ABF ABG AGF S S S =+=,∵BF 为AC 边上的中线,∴92292ABC ABF S S ==⨯= .故答案为∶9.【点睛】本题考查了三角形的重心∶三角形的重心到顶点的距离与重心到对边中点的距离之比为21∶,也考查了平行四边形的判定与性质和平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.17.如图,在矩形ABCD 中,过点D 作对角线AC 的垂线,垂足为E ,过点E 作BE 的垂线,交边AD 于点F ,如果3AB =,5BC =,那么DF 的长是______.【答案】95【分析】利用矩形的性质求出AC ,利用三角形的面积、勾股定理求出DE 、CE 的长,再利用等角的余角相等说明BAE ADE ∠=∠、AEB DEF ∠=∠,得DEF AEB ∽ ,最后利用相似三角形的性质得结论.【详解】解:∵四边形ABCD 是矩形,∴90ABC ADC ∠=∠=︒,3AB CD ==,5BC AD ==,AB CD ∥,∴AC ===∵1122ADC S AD CD AC DE ∆=⋅=⋅,∴153434DE =,∵DE AC ⊥,∴CE ==34=,∴34AE AC CE =-=,∵AB CD ∥,∴BAE DCA ∠=∠,90DCA CDE CDE ADE ∠+∠=∠+∠=︒ ,∴BAE ADE ∠=∠,∵BE EF ⊥,DE AC ⊥,∴90BEA AEF AEF FED ∠+∠=∠+∠=︒,∴BEA FED ∠=∠,∴DEF AEB ∽ ,∴DF DE AB AE=∴95DE AB DF AE ⋅==,【点睛】本题主要考查了相似三角形,掌握相似三角形的性质与判定、三角形的内角和定理及勾股定理是解决本题的关键.18.将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD 如图所示,其中90A C ∠=∠= ,7AB =厘米,9BC =厘米,2CD =厘米,那么原来的直角三角形纸片的面积是______平方厘米.【答案】983或54【分析】先由勾股定理求得6AD =厘米,再分情况讨论,利用三角形相似求解即可.【详解】解:连接BD ,∵90A C ∠=∠= ,7AB =厘米,9BC =厘米,2CD =厘米,∴22222BD BC CD AD AB =+=+即2222927AD +=+,∴6AD =厘米,①如下图,延长AD ,BC 相交于点N ,设NC x =厘米,∵90NCD A ∠=∠=︒,N N ∠=∠,9BN x =+厘米,∴NCD NAB ∽ ,∴ND NC CD NB NA AB ==即2967ND x x ND ==++,∴83x =厘米,103ND =厘米,111098672233ANB S AN AB ⎛⎫=⨯=⨯+⨯= ⎪⎝⎭ 平方厘米;②如下图,延长CD,BA 相交于点M ,设MD y =厘米,∵90MAD C ∠=∠=︒,M M ∠=∠,2CM y =+厘米,∴MAD MCB ∽ ,∴MA MD AD MC MB CB ==即6279MA y y AM ==++,∴10y =厘米,()1110295422CMB S CM BC =⨯=⨯+⨯= 平方厘米,故答案为983或54.【点睛】本题主要考查了相似三角形的判定及性质,勾股定理,熟练掌握相似三角形的判定及性质是解题的关键.三、解答题(本大题共7题)19.计算:tan45cot45sin45cos30︒︒︒︒++.【答案】-【分析】将特殊角的三角函数值代入求解.【详解】解:tan45cot45sin45cos30︒︒︒︒++2322===【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知:如图,平行四边形ABCD 中,点M 、N 分别在边DC 、BC 上,对角线BD 分别交AM 、AN 于点E 、F ,且::1:2:1DE EF BF =.(1)求证:MN BD ∥;(2)设AM a = ,AN b = ,请直接写出BD 关于a 、b 的分解式.【答案】(1)证明见解析;(2)3322BD a b =- .【分析】(1)由平行四边形的性质可得,DM AB BN AD ∥,∥,AB CD =,AD BC =,进而得DEM BEA ∽ ,BFN DFA ∽ ,得13DM DC BN BC ==∶∶∶,再证MCN DCB ∽ 得CMN CDB ∠=∠,从而即可得证;(2)由向量的差可知,NM AM AN a b =-=- ,再证32BD MN =,从而3322BD a b =- .【小问1详解】证明:∵::1:2:1DE EF BF =∴13DE BE =∶∶,13BF DF =∶∶∵四边形ABCD 是平行四边形,∴DM AB ∥,BN AD ∥,AB CD =,AD BC =',∴DEM BEA ∽ ,BFN DFA ∽ ,∴13DM DC DM AB DE BE ===∶∶∶∶,13BN BC BN AD BF BD ===∶∶∶∶,∴13DM DC BN BC ==∶∶∶,∴23CM DC CN BC ==∶∶∶,∵MCN DCB ∠=∠,∴MCN DCB ∽ ,∴CMN CDB ∠=∠,∴MN BD ∥;【小问2详解】解:∵AM a = ,AN b = ,∴NM AM AN a b =-=-,由(1)知,MN BD ∥,MCN DCB ∽ ,23CM DC =∶∶,,∴23MN BD CM DC ==∶∶∶,∴32BD MN =,∴3322BD a b =- .【点睛】本题主要考查相似三角形的性质与判定,平行线分线段成比例,平面向量的计算等相关知识,熟练掌握相关知识是解题关键.21.在平面直角坐标系xOy 中,已知抛物线2y x mx m =++.(1)如果拋物线经过点()19,,求该拋物线的对称轴;(2)如果抛物线的顶点在直线y x =-上,求m 的值.【答案】(1)2x =-;(2)0或2.【分析】(1)把已知点的坐标代入函数解析式,列出关于系数的方程,解方程求得m 的值;然后将所求的抛物线解析式转化为顶点式,直接得到拋物线的对称轴;(2)根据题意可以求得抛物线的顶点坐标,然后将顶点坐标代入y x =-,从而可以求得m 的值.【小问1详解】解:把点()19,代入2y x mx m =++,得291m m =++.解得4m =,则该抛物线解析式为:()22442y x x x =++=+.∴该拋物线的对称轴是2x =-;【小问2详解】解:∵22224m m m y x mx m x ⎛⎫+-=+=+ ⎪⎝+⎭,∴抛物线2y x mx m =++的顶点坐标是242m m m ⎪-+⎛⎫- ⎝⎭,,∵抛物线2y x mx m =++的顶点在直线y x =-上,∴224m m m -=+,解得∶0m =或2m =.【点睛】本题考查了二次函数的性质,函数图象上点的坐标特征,顶点式2()y a x h k =-+,顶点坐标是()h k ,,对称轴是直线x h =,此题考查了学生的应用能力,熟练掌握二次函数的性质是解题的关键.22.圭表(如图1)是我国古代度量日影长度的天文仪器,它包括一根直立的杆(称为“表”)和一把南北方向水平放置且与杆垂直的标尺(称为“圭”).当正午的阳光照射在“表”上时,“表”的影子便会投射在“圭”上.我国古代很多地区通过观察“表”在“圭”上的影子长度来测算二十四节气,并以此作为指导农事活动的重要依据.例如,我国古代历法将一年中白昼最短的那一天(当日正午“表”在“圭”上的影子长度为全年最长)定为冬至;白昼最长的那一天(当日正午“表”在“圭”上的影子长度为全年最短)定为夏至.某地发现一个圭表遗迹(如图2),但由于“表”已损坏,仅能测得“圭”上记录的夏至线与冬至线间的距离(即AB 的长)为11.3米.现已知该地冬至正午太阳高度角(即CBD ∠)为3534︒',夏至正午太阳高度角(即CAD ∠)为8226︒',请通过计算推测损坏的“表”原来的高度(即CD 的长)约为多少米?(参考数据见表1,结果精确到个位)表1αsin αcos αtan α3534︒'0.580.810.728226︒'0.990.137.5(注:表1中三角比的值是近似值)【答案】表CD 的高度是9米.【分析】利用CBD ∠和CAD ∠的正切,用CD 表示出BD 和AB ,得到一个只含有CD 的关系式,再解答即可.【详解】解:∵在Rt ADC 中,tan82267.5CD AD ︒'==,在Rt BDC 中,tan35340.72CD BD︒'==,∴215AD CD =,2518BD CD =,∵2521131815CD CD -=.,∴9CD =(米)答∶表CD 的高度是9米.【点睛】本题主要考查了三角函数,熟练掌握建模思想是解决本题的关键.23.已知:如图,点D 、F 分别在等边三角形ABC 的边CB 的延长线与反向延长线上,且满足2BD CF BC ⋅=.求证:(1)ADB FAC ∽△△;(2)AF AD BC DF ⋅=⋅.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由三角形的性质证AB BC AC ==,DBA ACF ∠=∠,再由2BD CF BC ⋅=得BD BA AC CF =,即可得证;(2)证明FAC FDA ∽ 即可得证.【小问1详解】证明:∵ABC 是等边三角形,∴AB BC AC ==,60ABC ACB CAB ∠=∠=∠=︒,∴180120180DBA ABC ACB ACF ∠=︒-∠=︒=︒-∠=∠,∵2BD CF BC ⋅=,∴BD BC BC CF =即BD BA AC CF=,∴ADB FAC ∽△△;【小问2详解】证明:由(1)得ADB FAC ∽△△,∴FAC D ∠=∠,∵F F ∠=∠,∴FAC FDA ∽ ,∴AF AC DF AD=,∵AC BC =,∴AF AD BC DF ⋅=⋅,【点睛】本题主要考查了等边三角形的性质、相似三角形的判定及性质,熟练掌握相似三角形的判定及性质是解题的关键.24.在平面直角坐标系xOy 中,点()11A y -,,()20B y ,,()31C y ,,()42D y ,在抛物线2y x bx c =-++上.(1)当10y =,23y y =时,①求该抛物线的表达式;②将该抛物线向下平移2个单位,再向左平移m 个单位后,所得的新抛物线经过点()10-,,求m 的值;(2)若20y =,且1y 、3y 、4y 中有且仅有一个值大于0,请结合抛物线的位置和图像特征,先写出一个满足条件的b 的值,再求b 的取值范围.【答案】(1)①22y x x =-++;②1m =或2m =;(2)可取2b =-,1b <-或12b <≤.【分析】(1)①先求得对称轴为12x =,再根据待定系数法即可求得抛物线的表达式;②根据平移得()()222y x m x m =-++++-,又由抛物线过点()10-,,即可得解;(2)由20y =得抛物线2y x bx =-+,又由点()11A y -,,()31C y ,,()42D y ,在抛物线2y x bx =-+上,且使得1y 、3y 、4y 中有且仅有一个值大于0,从而可取2b =-,此时10y >,30y <,40y <,分抛物线的对称轴在y 轴的左侧时和抛物线的对称轴在y 轴的右侧两种情况讨论求解b 的取值范围.【小问1详解】解:①∵抛物线2y x bx c =-++过点()20B y ,,()31C y ,,23y y =,∴点B 、C 为对称点,其对称轴为01122x +==,∴122b x ==,∴1b =,∴2y x x c =-++,∵2y x x c =-++过点()11A y -,,10y =,∴()011c =-+-+,解得2c =,∴抛物线的表达式为22y x x =-++,②抛物线22y x x =-++向下平移2个单位,再向左平移m 个单位后得()()222y x m x m =-++++-,∵()()222y x m x m =-++++-过点()10-,,∴()()201122m m =--++-++-,解得1m =或2m =;【小问2详解】解:∵20y =,∴抛物线过点()00B ,,∴抛物线2y x bx=-+∵点()11A y -,,()31C y ,,()42D y ,在抛物线2y x bx =-+上,且使得1y 、3y 、4y 中有且仅有一个值大于0,∴可取2b =-,此时10y >,30y <,40y <,当抛物线的对称轴在y 轴的左侧时,∵抛物线2y x bx =-+开口向下,∴10y >,30y <,40y <,∴()210b --->,210b -+<,2220b -+<,∴1b <-,当抛物线的对称轴在y 轴的右侧时,∵抛物线2y x bx =-+开口向下,∴10y <,30y <,40y >,∴()210b ---<,210b -+>,2220b -+≤,∴1b >-,1b >,2b ≤,∴12b <≤,综上得,1b <-或12b <≤.【点睛】本题主要考查了二次函数的图像及性质,待定系数法求解二次函数的解析式以及二次函数与坐标轴的交点,熟练掌握二次函数的图像及性质式解题的关键.25.已知,如图1,在四边形ABCD 中,90BAC ADC ∠=∠=︒,4CD =,4cos 5ACD ∠=.(1)当BC AD ∥时(如图2),求AB 的长;(2)连接BD ,交边AC 于点E ,①设CE x =,AB y =,求y 关于x 的函数解析式并写出定义域;②当BDC 是等腰三角形时,求AB 的长.【答案】(1)203;(2)AB 的长为103或125-.【分析】(1)在Rt ACD △中,解直角三角形得5AC =,3AD =,再证BAC CDA ∽ 即可得解;(2)①先求得5AE x =-,165EN x =-,根据0AE >,0EN >可得定义域,证明BAC CDA ∽ 可得y 关于x 的函数解析式;②分两类讨论求解,当BD BC =时,作BQ CD ⊥于点Q ,作AP BQ ⊥于点P ,证BPA CDA ∽ 得解,当4BD CD ==时,作BN 垂直直线AD 于点N ,证NBA DAC ∽ 得解.【小问1详解】解:∵在Rt ACD △中,4cos 5ACD A CD C ∠==,4CD =,∴5AC =,3AD ==,∵BC AD ∥,∴ACB DAC ∠=∠,∵90BAC ADC ∠=∠=︒,∴BAC CDA ∽ ,∴BA AC CD AD =即543BA =,∴203AB =;【小问2详解】解:①如图2,作DN AC ⊥于点N ,∵1122ADC S AC DN AD CD =⨯=⨯ ,4CD =,5AC =,3AD =,∴125DN =,∴165CN ==,95AN AC CN =-=,∵CE x =,∴5AE x =-,165EN x =-,∵0AE >,0EN >,∴165x 5<<,∵90BAE DNE ∠=∠=︒,AEB NED ∠=∠,∴AEB NED ∽ ,∴AE AB NE DN =,即5161255x y x -=-,∴6012516x y x -=-1655x ⎛⎫<< ⎪⎝⎭,②∵90BAC ADC ∠=∠=︒,∴BC AC CD >>,∴BC CD ≠,当BD BC =时,作BQ CD ⊥于点Q ,作AP BQ ⊥于点P ,如下图,易知四边形APQD是矩形,∴2AP DQ CQ ===,90PAD PAC CAD ∠=∠+∠=︒,∵90BAC BAP PAC ∠=∠+∠=︒,∴BAP CAD ∠=∠,∵90BPA CDA ∠=∠=︒,∴BPA CDA ∽ ,∴AB AP AC AD =即253AB =,∴103AB =;当4BD CD ==时,作BN 垂直直线AD 于点N,如下图,∴90N ADC ∠=∠=︒,∴90NAB NBA ∠+∠=︒,∵90BAC ∠=︒,∴90NAB CAD ∠+∠=︒,∴NBA CAD ∠=∠,∴NBA DAC ∽ ,∴AN AB CD AC =即45AN AB =,∴45AN AB =,∵BN ⊥AD ,∴222241635BN BD DN AB ⎛⎫=-=-+ ⎪⎝⎭,2222245BN AB AN AB AB ⎛⎫=-=- ⎪⎝⎭,∴2224416355AB AB AB ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭,解得125AB -=或125AB =(舍去),综上AB 的长为103或319125-.【点睛】本题主要考查了解直角三角形、勾股定理、求函数解析式、矩形的判定及性质以及相似三角形的判定及性质,熟练掌握勾股定理以及相似三角形的判定及性质是解题的关键.。
山东省滨州市惠民县2024届九年级下学期中考一模数学试卷(含答案)
2024年初中学业水平考试第一次模拟监测数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分24分.1. 我国陆地面积约为9600000平方千米,用科学记数法可表示为()A. 9.6×106平方千米B. 9.6×105平方千米C. 9.6×107平方千米D. 9.6×108平方千米答案:A2. 下列计算,结果正确的是()A. B. C. D.答案:BB、,符合题意;C、,不符合题意;D、,不符合题意;故选:B.3. 下列四组数中,不是二元一次方程的解的是()A. B. C. D.答案:D4. 比较,,的大小,结果正确的是( )A. <<B. <<C. <<D. <<答案:A5. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里.若驽马先行一十二日,问良马几何日追及之?根据题意,若设快马x天可追上慢马,则下述所列方程正确的是()A. B.C. D.答案:C6. 反比例函数y=图象的每条曲线上y都随x增大而增大,则k的取值范围是( )A. k>1B. k>0C. k<1D. k<0答案:A7. 由化学知识可知,用表示溶液酸碱性的强弱程度,当时溶液呈碱性,当时溶液呈酸性.若将给定的溶液加水稀释,那么在下列图象中,能大致反映溶液的与所加水的体积之间对应关系的是( )A. B. C. D.答案:B8. 如图,抛物线经过点,顶点为,且抛物线与y轴的交点B在和之间(不含端点),小明同学得出了下列结论:①当时,;②a的取范围为;③当时,的面积为.其中正确的是()A. ①②B. ①③C. ②③D. ①②③答案:B第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式在实数范围内有意义,则x的取值范围为______.答案:##10. 若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________.答案:11. 若与互为相反数,则______.答案:12. 对于任意实数k,关于x的方程的实数根的情况为______.答案:方程没有实数根13. 在关于方程组,中,已知,那么将从大到小排起来应该是________.答案:14. 抛物线向左平移2个单位,再向下平移1个单位,所得抛物线的解析式为______.答案:15. 通过计算可知:,,,,,,,,…,则的个位数字是______.答案:616. 若关于x的不等式组无解,则a的取值范围为________.答案:三、解答题:本大题共6个小题,满分72分.解答时请写出必要的演推过程.17. 求直线与抛物线的交点坐标.答案:∵直线和抛物线相交,∴化简得:,解方程得,当时,,当时,,∴交点坐标为,综上所述,直线与抛物线的交点坐标为.18. 先化简再求值:,其中.答案:解:,当时,原式.19. 如图,直线为常数与双曲线(为常数)相交于,两点.(1)求直线的解析式;(2)在双曲线上任取两点和,若,试确定和的大小关系,并写出判断过程;(3)请直接写出关于的不等式的解集.答案:(1)(2)当或时,;当时,(3)或【小问1详解】解:将点代入反比例函数,∴,∴将点代入∴,将,代入,得解得:,∴【小问2详解】∵,,∴反比例函数在第二四象限,在每个象限内,随的增大而增大,∴当或时,,当时,根据图象可得,综上所述,当或时,;当时,,【小问3详解】根据图象可知,,,当时,或.20. 光明中学某天的一份营养午餐由鸡腿、芹菜、米饭、西红柿鸡蛋汤等四部分组成,总质量为,其中鸡腿质量为,米饭质量是芹菜质量的3倍.(1)若西红柿鸡蛋汤质量占总质量的,则芹菜质量与米饭质量分别为多少?(2)若西红柿鸡蛋汤质量占总质量的百分比不高于,则芹菜质量最少为多少?答案:(1)芹菜质量为120,米饭质量为360;(2)芹菜质量最少为100克.【小问1详解】∵西红柿鸡蛋汤质量占总质量的百分之二十,∴西红柿鸡蛋汤的质量为,设芹菜质量为,则米饭质量为,∵营养午餐的总质量为八百克,∴,∴,∴米饭的质量为,答:芹菜质量为120,米饭的质量为360;【小问2详解】设西红柿鸡蛋汤的质量为,芹菜的质量为,则米饭质量为,∵营养午餐的总质量为八百克,∴,∴,又∵西红柿鸡蛋汤质量百分比不高于,即西红柿鸡蛋汤质量不高于,∴,∴,答:芹菜质量最少为100克.21. (1)解不等式组(2)若把(1)中不等式组的解用数轴上对应的点表示出来,则其解集在数轴上对应的所有点构成的图形是();A.长方形B.线段C.射线D.直线(3)请类比以上解答过程,解不等式组并指出其解集在数轴上对应的所有点构成的图形是什么图形?答案:(1);(2)B;(3),射线解析:(1)解不等式①得,;解不等式②得,;∴不等式得解集为;(2)把(1)中不等式组的解用数轴上对应的点表示出来如下,则其解集在数轴上对应的所有点构成的图形是线段,故选:B;(3)解不等式①得,;解不等式②得,;∴不等式得解集为;在数轴上表示如下,∴其解集在数轴上对应所有点构成的图形是射线.22. 某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?答案:(1)450千克;(2)当月销售利润为元时,每千克水果售价为元或元;(3)当该优质水果每千克售价为元时,获得的月利润最大解:当售价为元/千克时,每月销售量为千克.设每千克水果售价为元,由题意,得即整理,得配方,得解得当月销售利润为元时,每千克水果售价为元或元;设月销售利润为元,每千克水果售价为元,由题意,得即配方,得,当时,有最大值,当该优质水果每千克售价为元时,获得的月利润最大.。
初三数学一模试题及答案
初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是无理数的是()。
A. 0.1010010001…(每两个1之间依次多一个0)B. 0.1010010001…(每两个1之间依次多一个1)C. πD. 0.33333(3无限循环)2. 已知一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是()。
A. 7B. 10C. 11D. 143. 如果一个数的平方根是它本身,那么这个数是()。
A. 0B. 1C. -1D. 0或14. 函数y=2x+1的图象不经过第几象限()。
A. 第一象限B. 第二象限C. 第三象限D. 第四象限A. 0B. 1C. -1D. 任意数6. 已知一个角的余角是30°,那么这个角的补角是()。
A. 60°B. 90°C. 120°D. 150°7. 一个数的绝对值是它本身,这个数是()。
A. 正数B. 负数C. 非负数D. 非正数8. 一个二次函数的顶点坐标是(2,3),那么这个函数的解析式可以是()。
A. y=(x-2)^2+3B. y=-(x-2)^2+3C. y=(x+2)^2-3D. y=-(x+2)^2-39. 一个数的立方根是它本身,这个数是()。
A. 0B. 1C. -1D. 0或1或-1A. 0B. 1C. -1D. 1或-1二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可以是______。
2. 一个数的相反数是-2,这个数是______。
3. 一个数的平方是25,这个数可以是______。
4. 一个数的立方是-8,这个数是______。
5. 一个角的补角是120°,这个角的度数是______。
6. 一个角的余角是60°,这个角的度数是______。
7. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是______。
8. 函数y=3x-2与x轴的交点坐标是______。
2024年江苏省常州市中考一模数学试题(含答案)
九年级教学情况调研测试数学试题2024.5一、选择题(本大题共8小题,每小题2分,共16分)1.的倒数是( )A.4B.C.D.2.截止2024年1月31日,理想汽车累计交付量达到约664500辆,其中664500可用科学记数法表示为( )A. B. C. D.3.计算的结果是()A. B. C. D.4.如图是由5个相同的小正方体组合而成的几何体,则该几何体的主视图是( )A. B. C. D.5.一元二次方程根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根D.没有实数根6.当时,代数式的值为6,那么当时,这个代数式的值是( )A.1B. C.6D.7.如图,A 、B 、C 、D 、E 、F 为的六等分点,甲同学从中任取三点画一个三角形,乙同学用剩下的点画一个三角形,则甲乙两位同学所画的三角形全等的概率为( )A.B.1C.D.8.小丽从常州开车去南京,开了一段时间后,发现油所剩不多了,于是开到服务区加油,加满油后又开始匀速行驶,下面哪一幅图可以近似的刻画该汽车在这段时间内的速度变化情况( )14-4-14-14466.4510⨯50.664510⨯56.64510⨯46.64510⨯()233xy -266x y259x y 269x y-269x y22310x x -+=2x =31ax bx ++2x =-5-4-O 122913A. B. C. D.二、填空题(本大题共10小题,每小题2分,共20分)9.4的算术平方根是__________.10.有意义,则x 的取值范围是_______.11.分解因式:________.12.点关于直线对称的点的坐标是_______.13.已知反比例函数,当时,y 随x 的增大而减小,则m 的取值范围是____.14.已知扇形的圆心角为,则这个扇形的面积_____.15.中,,,则的值是______.16.如图,是的直径,是的切线,交于点D ,连结,若,则的大小为______.17.如图,正方形的边长为10,,,,则线段的长为____.18.如图,正方形的边长为6,O 为正方形对角线的中点,点E 在边上,且,点F 是边上的动点,连接,点G 为的中点,连接、,当时,线段的长为____________.24x y y -=()2,3P -1x =5m y x-=0x >120︒S =ABC △90C ∠=︒4sin 5A =tan A AB O AC O OC O BD 26C ∠=︒B ∠︒ABCD 2CF =5BE AB =//GE CB GE ABCD AC AB 2BE =BC EF EF OG BG BG OG =EF三、解答题(共84分,其中19至26题每题8分,27、28题每题10分)19.计算(每小题4分,共8分)(1(2)20.解方程和不等式(每小题4分,共8分)(1)解方程:(2)解不等式组:21.(8分)为增进学生对数学知识的了解,某校开展了两次知识问答活动,从中随机抽取了30名学生两次活动的成绩进行整理、描述和分析,如图1,将这30名学生的第一次活动成绩作为横坐标,第二次活动成绩作为纵坐标.图1图2(1)学生甲第一次成绩是70分,则该生第二次成绩是________分.(2)两次成绩均达到或高于90分的学生有_____个(3)为了解每位学生两次活动平均成绩的情况,如图2是这30位学生两次活动平均成绩的频数分布直方图(数据分成8组:,,,,,,,)在的成绩分别是77,77,78,78,78,79,79,则这30位学生两次活动平均成绩的中位数是_________.(4)假设全校有1200名学生参加此次活动,请估计两次活动平均成绩不低于90分的学生人数.22.(8分)2024年春晚,魔术师表演了一个与纸牌相关的魔术,让人大开眼界,这个魔术中隐含了一个数学问题——约瑟夫问题,春晚结束后,小华和小丽玩起了抽扑克牌游戏,他们从同一副扑克牌中选出四张牌,牌面数字分别为3,6,7,9.将这四张牌背面朝上,洗匀.(1)小丽从中随机抽出一张牌,则抽到这张牌是奇数的概率是_____;(2)小丽从中随机抽取一张,记下牌面上的数字后放回,背面朝上,洗匀,接着小华再从中随机抽取一张,记下牌面上的数字,请求出他们抽到的两张扑克牌牌面数字之和恰好是3的倍数的概率.23.(8分)如图,菱形中,对角线、相交于点O ,过点C 作,过点D 作,与相交于点E .()6tan 603π︒+-()()()233232x y x y x y --+-12133x x+=--21512x x x x +>⎧⎪⎨+-≥⎪⎩6065x ≤<6570x ≤<7075x ≤<7580x ≤<8085x ≤<8590x ≤<9095x ≤<95100x ≤≤7580x ≤<ABCD AC BD //CE BD //DE AC CE DE(1)求证:四边形是矩形.(2)若,,求四边形的周长.24.(8分)《九章算术》中记载了这样一个问题:“假设5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、羊各值多少两银子?(2)若某商人准备用50两银子买牛和羊共20只,要求羊的数目不超过牛的数目的两倍,且银两有剩余,请问商人有几种购买方法?列出所有可能的购买方案。
2024年浙江省衢州市中考一模数学试题(解析版)
2023学年度第二学期九年级质量检测试卷数.学・试・题·卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.本次考试不得使用计算器.卷Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每题3分,共30分)1. 家用冰箱冷冻室的温度需控制在到之间,则可将冷冻室的温度设为( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了有理数大小的比较,根据进行求解即可.【详解】解:∵,∴在到之间的是,故选:C .2. 下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是( )A. B.C. D.【答案】A4-℃24-℃0℃3-℃18-℃25-℃252418430-<-<-<-<-<252418430-<-<-<-<-<4-℃24-℃18-℃【解析】【分析】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.利用“在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等”对各选项进行判断.【详解】解:两棵小树在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等,所以A 选项满足条件.故选:A .3. 一个不透明的布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从中任意摸出1个球是红球的概率为( )A 1 B. C. D. 【答案】B【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件的概率事件可能出现的结果数:所有可能出现的结果数.直接利用概率公式求解可得.【详解】解:从中任意摸出1个球共有4种结果,其中摸出的球是红球的有3种结果,∴从中任意摸出1个球是红球的概率为,故选:B .4. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】此题考查了整式的计算,正确掌握同底数幂的乘法法则、合并同类项法则、积的乘方法则及同底数幂除法法则是解题的关键.根据同底数幂的乘法法则、合并同类项法则、积的乘方法则及同底数幂除法法则依次计算判断.【详解】解:A 、不是同类项不能合并,故该项不符合题意;B 、,故该项不符合题意;.341213A ()P A =A 34235a a a +=236a a a ⋅=()236ab ab =63322a a a ÷=23a a 、235a a a ⋅=C 、,故该项不符合题意;D 、,故该项符合题意;故选:D .5. 在平面直角坐标系中,将点向右平移3个单位得到点,则点的坐标为( )A. B. C. D. 【答案】B【解析】【分析】本题考查坐标与平移,关键是根据左右平移只改变点的横坐标,左减右加进行解答.让点的横坐标加3,纵坐标不变即可得到点的坐标.【详解】解:由题中的平移规律可知:点的横坐标为;纵坐标为3;∴点的坐标为.故选:B .6. 今有三人共车,二车空:二人共车,九人步.问人与车各几何?(选自《孙子算经》)现假设有辆车,则有方程( )A. B. C. D. 【答案】A【解析】【分析】本题考查一元一次方程的应用,读懂题意,根据两种方式的总人数相等列方程即可.【详解】解:设有辆车,根据题意,得,故选:A .7. 不等式组的解集是( )A. B. C. D. 【答案】D【解析】()2326ab a b =63322a a a ÷=()1,3A -B B ()1,6-()2,3()1,0-()4,3-A B B 132-+=B ()2,3x ()3229x x -=+3229x x -=+()3229x x -=+()()3229x x -=+x ()3229x x -=+()2115114x x x x ⎧->+⎪⎨-≤+⎪⎩3x >2x ≤25x <≤35x <≤【分析】本题考查解一元一次不等式组,解题关键是熟知解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1.分别解两个不等式,求出解集公共部分即可.【详解】解:由①得:;由②得:,解得:,∴原不等式组的解集为:,故选:D .8. 某款扫地机器人的俯视图是一个等宽曲边三角形(分别以正的三个顶点A ,,为圆心,长为半径画弧得到的图形).若已知,则曲边的长为( )A. B. C. D. 【答案】B【解析】【分析】本题考查的是正多边形和圆的知识,掌握弧长公式是解题的关键.根据正三角形的性质求出弧的半径和圆心角,根据弧长的计算公式求解即可.【详解】解:由题意得是正三角形,,的长为:.故选:B .9. 某水文局测得一组关于降雨强度和产汇流历时的对应数据如下表(注:产汇流历时是北由降雨到产生径流所经历的时间),根据表中数据,可得关于的函数表达式近似为()()2115114x x x x ⎧->+⎪⎨-≤+⎪⎩①②3x >5144x x -≤+5x ≤35x <≤ABC ABC B C AB 6AB = AB π2π6π12πABC 602BAC ABC ACB AB BC AC ∴∠=∠=∠=︒===,∴ AB 60π62π180⋅⨯=I t t I降雨强度468101214产汇流历时18.012.19.07.26.05.1A. B. C. D. 【答案】A【解析】【分析】本题考查函数的关系式,通过表格中两个变量的对应值的变化关系,发现它们的乘积相等是正确解答的关键.根据表格中两个变量的对应值,探索两个变量的乘积,进而得出两个变量的函数关系式.【详解】解:由表格中两个变量的对应值可得,,所以与成反比例关系,所以与的函数关系式为,故选:A .10. 已知二次函数,当时,函数的最小值是,则的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了二次函数的最值问题,把解析式化为顶点式求出抛物线开口向上,顶点坐标为,再根据当时,函数的最小值是可得,解之即可得到答案.【详解】解:∵抛物线解析式为,∴抛物线开口向上,顶点坐标为,∴y 的最小值即为,∵当时,函数的最小值是,∴,∴,()mm/h I ()h t 72t I =72It =3242t I =-+3154t I =-+418072612.189.0107.212 6.014 5.1⨯=≈⨯=⨯=⨯=⨯≈⨯.t I t I 72t I =2=23y x x --2m x m ≤≤+y 4-m m 1≥1m £11m -≤≤02m ≤≤()14-,2m x m ≤≤+y 4-12m m ≤≤+()222314y x x x =--=--()14-,4-2m x m ≤≤+y 4-12m m ≤≤+11m -≤≤故选:C .卷Ⅱ二、填空题(本题有6小题,每题3分,共18分)11. 已知三角形两边长为3,4,则第三条边的长可以是______(写出一种即可).【答案】2【解析】【分析】本题考查三角形三边关系.三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,由此得到,即可得到答案.【详解】解:设三角形第三条边的长是,,,第三条边的长可以是2.故答案为:2(答案不唯一).12. 国际上把及以上作为正常视力,下图是某校学生的视力情况统计图,已知该校视力正常的学生有人,则未达到正常视力的学生人数为______.【答案】【解析】【分析】解答本题的关键是明确题意,由扇形统计图某项数目所占百分比求总量,再用总量求某项数目,利用数形结合的思想解答.先利用500人的正常视力学生在所有学生中所占的25%的比例,从而得出所有学生有2000人,让所有学生人数减去正常视力学生人数,从而得出未达到正常视力的学生人数.【详解】解:由题可得及以上作为正常视力名学生占所有人的,全校共计人数为人,故未达到正常视力的学生人数为人 .13. 篮球比赛规则规定:赢一场得2分,输一场得1分.某次比赛甲球队赢了场,输了场,积20分.若用含的代数式表示,则有______.17x <<x 4343x ∴-<<+17x ∴<<∴ 5.050015005.050025%∴500200025%=20005001500-=x y x y y =【答案】【解析】【分析】根据题意列出方程,求出与的关系式;本题考查了列代数式,根据题意列出方程是解答本题的关键.【详解】由题意可得:,故答案为:.14. 在中,半径,弦,则弦所对的圆周角大小为______度.【答案】或【解析】【分析】本题考查了圆周角定理,垂径定理,解直角三角形,画出正确的图形是解题的关键.按要求画出图形,连接、,过点O 作,根据垂径定理,求出的长,再根据特殊角的三角函数值求出,再通过圆周角定理,即可解答.【详解】解:如图,连接、,过点O 作,交于点D ,,,,在中,,,,故答案为:或.202x-y x 220x y +=202y x∴=-202x -O 2OA =AB =AB 60120OA OB OD AB ⊥AD AOD ∠OA OB OD AB ⊥AB OD AB ⊥∴12AD AB == 2AO =∴Rt AOD sin AOD AD AO∠==∴60AOD ∠=︒∴2120AOB AOD ∠=∠=︒∴1602AMB AOB ∠=∠=︒∴180120ANB AMB ∠=︒-∠=︒6012015. 某校为了解学生在校午餐所需的时间,抽查了名同学在校午餐所花的时间,获得如下数据(单位:分):.若将这些数据分为6组,制作频数表,则频数最大的组是______.【答案】【解析】【分析】本题考查了频数分布表.熟练掌握频数分布表是解题的关键.将数据从小到大依次排序为,由题意知,最大值与最小值的差为,分6组,则组距为5,可分组为、、、、、,然后求各组的频数,最后作答即可.【详解】解:将数据从小到大依次排序为:,由题意知,最大值与最小值的差为,分6组,则组距为5,分组为、、、、、,频数分别为3、9、6、1、1,∴频数最大的组为,故答案为:.16. 如图,是由四个全等的直角三角形和中间一个小正方形拼成的赵爽弦图,连结并延长,交于点,交于点.记的面积为,的面积为.(1)若,则的值为______.(2)若,且,则的长度为______.【答案】① ②. 【解析】【分析】(1)过点作交于点,根据已知得出,证出,得.20912151016181918203822252018182015162116,,,,,,,,,,,,,,,,,,,13.518.5~38929-=8.513.5~13.518.5~18.523.5~23.528.5~28.533.5~33.538.5~910121515161616181818181920202021222538,,,,,,,,,,,,,,,,,,,38929-=8.513.5~13.518.5~18.523.5~23.528.5~28.533.5~33.538.5~13.518.5~13.518.5~EFGH CE BG M AB N NAE 1S CGM △2S NA NE =12S S 1213S S =9EF =AE 1292N N I A F ⊥I 51∠=∠A I N ∽CG M,由三线合一得到为中点,再结合即可求出;(2)根据已知证出,得到,根据得到,,令,列出等式计算出结果即可.【详解】(1)过点作交于点, ∵设在与中,由三线合一:为中点I N A I G M C G =I EA 1212⋅==⋅AE IN S IN S CG GM GM C G M ∽E FM C G G M E F FM =1213S S =3I N I N C G E I =293I N C G C G C G =+CG t =N N I A F ⊥I NA NE=56∴∠=∠46∠=∠ 54∴∠=∠∥FC H A 41∴∠=∠51∴∠=∠AE x=C G B F A E x D H ====∴A I N CGM △51,90A I N C G M ∠=∠∠=∠=︒ A I N ∽C G M ∴ I N A I G M C G=∴,N A N E A E I N=⊥ I EA 1122A E I N G M C G ==∴(2)在与中,,,令,则∴121122⋅===⋅AE IN S IN S CG GM GM CGM △EFM △14,23∠=∠∠=∠ C G M ∽E FM∴ C G G M E F FM∴=9E F G F == AE CG =99C GG MG M∴=- 1213S S =13I N G M ∴=3G M I N∴=146∠=∠=∠ ta n =ta n 16G M I N C G E I ∴∠=∠=3I N I NC G E I∴=13E I C G ∴=13A I C G =ta n 5I N B F A I A F∠==293I NC G C GC G ∴=+CG t =()2239t I N t =+即【点睛】本题主要考查正方形性质,相似三角形的判定和性质,三角形面积公式,列代数式等知识,熟练掌握以上知识并准确列出等式是解题关键.三、解答题(本题有8小题,共72分.第17~18题每题6分,第1920题每题8分,第21~22题每题10分,第23~24题每题12分,请务必写出解答过程)17. 计算:.【答案】【解析】【分析】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.原式第一项利用异号两数相乘的法则计算,第二项利用算术平方根定义化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【详解】解:..18.化简:.399933C GG M I N I N G M I N I N===--- ()39I N tI N -=()39t t I N=+39tI N t=+()2239t I N t=+ ()223939t t tt∴=++29t ∴=92t =92A E C G ==())0231π⨯--4-()()02331π⨯--+-+-6231=--++4=-22122a a a ---【答案】【解析】【分析】本题考查的是异分母分式的加减运算,先通分化为同分母分式,然后分子相减即可求解.【详解】解:.19. 如图,在的方格纸中,每个小正方形的边长都为1,点,位于格点处.(1)分别在图1,图2中画出两个不全等的格点,使其内部(不含边)均有2个格点.(2)任选一个你所画的格点,判断其是否为等腰三角形并说明理由.【答案】(1)见解析(2)为等腰三角形,见解析【解析】【分析】本题考查的是格点作图及勾股定理的应用,根据图中已知线段正确作图是解题关键,(1)按要求画出两个不全等的格点即可;(2)通过计算所作三角形边长判断即可;【小问1详解】解:如图,作,,三种三角形中的任意两个即可;【小问2详解】1a-22122a a a ---()()222a a a a a =---()22aa a -=-1a =-55⨯A B ABC ABC ABC ABC ()13ABC ABC ()24ABC ABC 5ABC解:分别计算和的长度,,;或者分别计算和的长度,;所以为等腰三角形.20. 某市组织九年级20000名学生参加“一路书香,去阿克苏”捐书活动,每人可捐书1~4本.为估计本次活动的捐书总数,随机抽查了400名学生的捐赠情况,绘制了如图所示的条形统计图(A :捐1本:B :捐2本;C :捐3本:D :捐4本).分析:根据“用样本估计总体”这一统计思想,既可以先求出被抽查的400名同学的人均捐书数,继而估算20000名同学的捐书总数;也可以……请根据分析,给出两种方法估计本次活动捐书总数,写出你的解答过程.【答案】本次活动的捐书总数约为50000本,见解析【解析】【分析】本题考查了用样本估计总体,条形统计图等知识,可以用样本的平均数估计总体的平均数进行求解,也可以用的总数估计总体的总数进行求解等.【详解】解:①利用平均数估计∴(本)估计本次活动的捐书总数约为52000本.②利用总数估计∴(本)估计本次活动的捐书总数约为52000本.或者利用中位数估计的AB ()315,AC BC BC AB ()315,AC BC BC =2AC 2BC 2AC =2BC =ABC 14021603120480 2.6400x ⨯+⨯+⨯+⨯==20000 2.652000⨯=400140216031204801040S =⨯+⨯+⨯+⨯=人捐书2000020000104052000400S =⨯=人捐书中位数为∴(本)估计本次活动的捐书总数约为50000本.21. 我市“一户一表、抄表到户”居民生活用水实行阶梯水价,三级收费标准如下表,每户每年应缴水费(元)与用水量关系如图.分类用水量单价(元/)第1级不超过300第2级超过300不超过480的部分第3级超过480的部分根据图表信息,解答下列问题:(1)小南家2022年用水量为,共缴水费1168元.求,及线段的函数表达式.(2)小南家2023年用水量增加,共缴水费元,求2023年小南家用水量.【答案】(1),(2)【解析】【分析】本题主要考查了一次函数实际应用,一元一次方程的实际应用:(1)根据函数图象即可求出a 的值,进而求出k 的值,再求出点B 的坐标,即可利用待定系数法求出对应的函数解析式;(2)先推出,进而根据共缴水费元列出方程求解即可.的23 2.52+=20000 2.550000⨯=y ()3m x ()3m x 3m a k 6.23400m a k AB 1516.42.7, 3.58a k ==()3.58264300480y x x =-≤≤3490m 480x >1516.4【小问1详解】解:由图表可知:,∴;∴当用水量为时,每年应缴水费为元∴设,把,代入,得,解得)∴线段的函数表达式为.【小问2详解】解:∵,∴,∴,解得.∴2023年小南家用水量为.22. 已知矩形纸片.第①步:将纸片沿折叠,使点与边上的点重合,展开纸片,连结,,与相交于点(如图1).第②步:将纸片继续沿折叠,点的对应点恰好落在上,展开纸片,连接,与交于点(如图2).(1)请猜想和的数量关系并证明你的结论.(2)已知,,求的值和的长.【答案】(1),见解析810300 2.7a =÷=()()1168810400300 3.58k =-÷-=3480m ()810 3.584803001454.4+⨯-=()480,1454.4B AB y k x b '=+()300,810A ()480,1454.4B 3008104801454.4k b k b +=⎧⎨+=''⎩,3.58264k b =-'=⎧⎨⎩,AB ()3.58264300480y x x =-≤≤1454.41516.4<480x >()()810480300 3.58 6.24801516.4x +-⨯+-=490x =3490m ABCD AE D BC F AF DF DF AE O DF C G AF DG AE H DE DH 5DE =4CE =tan CDF ∠AH DE DH =(2),.【解析】【分析】(1)由折叠的性质知,,,根据证明即可得到;(2)连接,利用勾股定理列式求得,正切函数的定义求得,利用等角的余角相等求得,据此求解即可.【小问1详解】解:,理由如下:由第①步折叠知:,,则有,由第②步折叠知:,即,又所以,∴;【小问2详解】解:连接,由折叠的性质得,∵,∴,∴,13AH =AE DF ⊥OF OD =EDO HDO ∠=∠ASA DEO DHO △≌△DE DH =EF 3CF ==DF ==1tan 3CF CDF CD ∠==1tan tan tan 3ODH DAE CDF ∠=∠=∠=DE DH =AE DF ⊥OF OD =90EOD HOD ∠=∠=︒CDF GDF ∠=∠EDO HDO ∠=∠DO DO =()ASA DEO DHO ≌DE DH =EF 5EF DE ==4CE =3CF ==31tan 543CF CDF CD ∠===+∵∴,∵,,∴,∴,∴,∴.【点睛】本题考查了矩形与折叠问题,解直角三角形的应用,全等三角形的判定和性质,勾股定理与折叠问题.解题的关键是灵活运用所学知识解决问题.23. 综合与实践矩形种植园最大面积探究情境实践基地有一长为12米的墙,研究小组想利用墙和长为40米的篱笆,在前面的空地围出一个面积最大的矩形种植园.假设矩形一边,矩形种植园的面积为.分析要探究面积的最大值,首先应将另一边用含的代数式表示,从而得到关于的函数表达式,同时求出自变量的取值范围,再结合函数性质求出最值.思考一:将墙的一部分用来替代篱笆按图1的方案围成矩形种植园(边为墙的一部分).探究思考二:将墙的全部用来替代篱笆按图2方案围成矩形种植园(墙为边的DF ==12OD DF ==90EAD DEA ∠+∠=︒90CDF DEA ∠+∠=︒DAE CDF ∠=∠1tan tan tan 3ODH DAE CDF ∠=∠=∠=13OH OD ==3OA OD ==AH OA OH =-=MN MN CD x =S S BC x S xMN AB MN MN MN的一部分).解决问题(1)根据分析,分别求出两种方案中的的最大值;比较并判断矩形种植园的面积最大值为多少.类比应用(2)若“情境”中篱笆长为20米,其余条件不变,请画出矩形种植园面积最大的方案示意图(标注边长).【答案】(1)方案1中,方案2中,矩形种植园面积最大为;(2)见解析【解析】【分析】题目主要考查二次函数的应用,根据题意,列出二次函数关系式,然后再求最值即可得出结果,理解题意是解题关键.(1)方案1:根据题意得出面积的函数关系式,然后利用其性质求解即可;方案2:设,然后确定相应函数关系式求解即可;(2)同(1)方法类似,确定函数关系式求解即可.【详解】(1)方案1:∵,则,∴,∵,∴当时,,方案2:设,则,∴,∵,当时,.∵,∴矩形种植园面积最大为;(2)图示如下:AB S max 168S =max 169S =2169m AB CD x ==CD x =402x AD BC -==()2240112020200222x S x x x x -=⋅=-+=--+012x <≤12x =max 168S =AB CD x ==40122262x AD BC x +-===-()()22262613169S x x x x x =⋅-=-+=--+1226x ≤<13x =max 169S =169168>2169m(同(1)过程,可分别求得:方案1:∵,则.∴().∴当时, .方案2:()∴当为12时,达到最大,最大值是48.可见矩形种植园面积最大为,此时.24. 在中,⊙O 是的外接圆,连结并延长,交于点,交⊙O 于点,.连结,.(1)求证:.(2)求证:.(3)已知,,是否能确定⊙O 的大小?若能,请求出⊙O 的直径;若不能,请说明理由.【答案】(1)见解析(2)见解析(3)能,【解析】【分析】本题主要考查了圆周角定理,相似三角形的判定以及性质,同弧所对的圆周角相等等知识掌握这些性质定理是解题的关键.(1)由圆周角定理可知,结合已知条件,可得出,由同弧所对的圆周角相等可知,等量代换可.AB x =202x AD BC -==()2201105022x S x x -=⋅=--+012x <≤10x =max 50S =2322162x S x x x -=⋅=-+1216x ≤<x S 250m 10CD =ABC ABC CO AB D E 2ACE BCE ∠=∠OB BE ABE EOB ∠=∠212BD ED EC =⋅2AC EB =11AB=7+2EOB BCE ∠=∠EOB ACE ∠=∠ACE ABE ∠=∠ABE EOB ∠=∠(2)证明,由相似的性质可得,,即可得.(3)先证明,可得出,令,,则有,,结合(2)可得出,化简可得,结合已知条件即可求出直径.【小问1详解】证明:∵,∴.又,∴.【小问2详解】∵,∴,∴,即.由相似知,又,∴,∴.【小问3详解】能确定的大小.∵,,∴,∴.已知,∴令,,则有,(如图).BED OEB △∽△BE ED OE EB =BE BD OE OB=21122BD ED OE ED EC ED EC =⋅=⋅=⋅EDB ADC ∽EB ED BD AC AD CD==EB BD x ==ED y =2AC DC x ==2=AD y ()2122x y y x =+)1y x =2EOB BCE ∠=∠2ACE BCE∠=∠EOB ACE ∠=∠ACE ABE ∠=∠ABE EOB ∠=∠ABE EOB ∠=∠BED OEB∠=∠BED OEB △∽△BE ED OE EB=2OE EDEB =⋅BE BD OE OB=OE OB =BE BD =21122BD ED OE ED EC ED EC =⋅=⋅=⋅O EDB ADC ∠=∠E A ∠=∠EDB ADC ∽EB ED BD AC AD CD==2AC EB =EB BD x ==ED y =2AC DC x ==2=AD y由(2)知,化简得到,解得,∴.又,∴.∴直径()2122x y y x =+22220y xy x +-=(1y x ==-)1y x =-()2111AB x y x =+==1x ==+))()21117EC x y x =+==+=+。
2024年河南省平顶山中考数学一模模拟试题(解析版)
2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。
2023年广西贺州市中考一模数学试题(含答案解析)
2023年广西贺州市中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,数轴上点Q所表示的数可能是()-D.0.4A.1.5B.2.6C.0.7【答案】C【分析】先根据数轴上Q点的位置确定Q的取值范围,再根据每个选项中的数值进行判断即可.【详解】解:由图可知:点Q在1-的右边,0的左边,∴点Q表示的数大于1-,小于0,故选:C.【点睛】本题考查的是数轴的特点,能根据数轴的特点确定出Q的取值范围是解答此题的关键.2.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A.B.C.D.【答案】D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,利用轴对称图形的定义进行解答即可.【详解】解:选项A、B、C均不能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.【点睛】此题主要考查了轴对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为=.下列判断正确的是()2πC rA .2是变量B .π是变量C .r 是变量D .C 是常量【答案】C【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.【详解】解:2与π为常量,C 与r 为变量,故选:C .【点睛】本题考查变量与常量的概念,能够熟练掌握变量与常量的概念为解决本题的关键.4.点(4,3)-往右平移一个单位长度后坐标为()A .(5,3)-B .(3,3)-C .(4,2)-D .(4,4)-【答案】A【分析】根据点的坐标平移规律:横坐标(左减右加)、纵坐标(上加下减)可得答案.【详解】解:点的坐标平移规律:横坐标(左减右加)、纵坐标(上加下减)可得:点(4,3)-向右平移两个单位长度得到的坐标为()413+-,,即()53-,故答案选A .【点睛】本题主要考查点的坐标平移,熟练掌握点的坐标平移规律是解题关键.5.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A .B .C .D .【答案】B【分析】根据既可以堵住圆形空洞,又可以堵住方形空洞从物体的三视图中即有圆形又有正方形的物体可以堵住空洞,然后对各选项的视图进行一一分析即可.【详解】解:∵既可以堵住圆形空洞,又可以堵住方形空洞,∴从物体的三视图来看,三视图中具有圆形和方形的可以堵住带有圆形空洞和方形空洞的小木板,A .正方体的三视图都是正方形,没有圆形,不可以是选项A ;B .圆柱形的直径与高相等时的正视图与左视图都是正方形,俯视图是圆形,具有圆形与正方形,可以是选项B ,C .圆锥的正视图与左视图都是三角形,俯视图数圆形,没有方形,不可以是选项C ;D .球体的三视图都是圆形,没有方形,不可以是选项D .故选择B .【点睛】本题考查物体能堵住圆形空洞和方形空洞,实际上是考查物体的视图,掌握物体三视图中找出具有圆形和方形的物体是解题关键.6.若O 的半径为3,圆心O 到直线l 的距离为3,那么直线与O 的位置关系是()A .相离B .相切C .相交D .不能确定【答案】B【分析】直接根据直线与圆的位置关系进行解答即可.【详解】解:∵O 的半径为3,又∵圆心O 到直线l 的距离为3,∴直线l 与O 相切.故选:B .【点睛】本题考查的是直线与圆的位置关系,设O 的半径为r ,圆心O 到直线l 的距离为d ,当d r <时,直线与圆O 相交;当d r =时,直线与圆O 相切;当d r >时,直线与圆O 相离.7.如图,直线a b ∥,将含30︒角的直角三角板的直角顶点放在直线b 上,已知140∠=︒,则2∠的度数为()A .55︒B .60︒C .65︒D .70︒【答案】D【分析】根据三角形外角的性质结合平行线的性质,即可求解.【详解】如图,∵140∠=︒,30A ∠=︒,∴3170A ∠=∠+∠=︒.A .23x y =⎧⎨=⎩B .x y ⎧⎨⎩【答案】A【分析】根据一次函数32y x =象与7y kx =+的图象相交于点【详解】解:∵一次函数32y =∴当2x =时,3y =,∴()23A ,,∵一次函数32y x =的图象与y ∴方程组732y kx y x =+⎧⎪⎨=⎪⎩的解是x y ⎧⎨⎩故选:A .A .(183)40x x -=B .(202x -【答案】D【分析】设AB 的长为x 米,则AD 为40平方米列出方程即可.【详解】解:设AB 的长为x 米,则(203)40x x -=,故D 正确.故选:D .【点睛】本题主要考查了一元二次方程的应用,12.将边长为3的等边三角形ABC 在AB 边上,且点E 与点B 重合).第一次将次将11E FD △以点1D 为中心旋转至旋转至222D E F △的位置,…,按照上述办法旋转,在此过程中DEF 的内心O 点运动轨迹的长度是(A .43πB .83π【答案】D∵点O等边三角形DEF的内心,则∴1122OEF DEF DFE ∠=∠=∠=∴OE OF=,∵OM EF⊥,∴1122BF BE EF===,则OF=由等边三角形ABC边长为3,等边三角形F,1D为旋转中线旋转,旋转角均为……可知,点O每次旋转的半径为3 3240︒,120︒,120︒,240︒,∴在此过程中DEF的内心O点运动轨迹的长度为:故选:D.【点睛】本题考查旋转的性质,弧长公式,等边三角形的性质,理解内心是解决问题的关键.二、填空题13.当x_________时,1x-有意义.【答案】1≥【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【详解】解:根据题意得:1x-≥【答案】15【分析】根据众数的定义:众数就是一组数据中出现次数最多的那个数据,找出统计图【答案】(2,4)或(8,1)【分析】由题意可得()4,2A ,B 情况进行解答,一是点P 在点A 梯形面积,设出坐标,构造方程求解即可,二是点只是表示线段的代数式不同,构造方程求解,舍去不符合题意的解.【详解】解:联立128y xy x⎧=⎪⎪⎨⎪=⎪⎩,解得:作PN x ⊥轴于N ,AM x ⊥轴于如图:由对称性得,OA OB =,OP OQ =,三、解答题19.计算:2023218(2)|4|5-+÷---⨯.【答案】19-【分析】按照有理数的运算法则和运算顺序进行计算即可.【详解】解:原式18445=-+÷-⨯1220=-+-19=-.∠的平分线,交(1)请用尺规作C(2)连接AD,BD,若AC【答案】(1)见解析(2)52(2)连接AD,BD,OD 是直径ABACB ADB︒90∴∠=∠=在Rt ABC△中,AC=22∴=+= AB BC AC∠,CD平分ACB∴∠=∠,ACD BCD(1)【实践探究】某小组通过思考,绘制了如图2所示的测量示意图,即在水平地面上的=米,即可得出塔高点C处测得塔顶端A的仰角为α,点C到点B的距离BC a(1)求证:四边形BEFM为菱形;(2)猜想CE和MN的数量关系,并说明理由;(3)4=AD,求线段CE的长和【答案】(1)见解析=,见解析(2)CE MNABE AFE△≌△,∴∠=∠=,90AFE ABE︒EF BM∴∠=∠=,即GNF AFE︒90在矩形ABCD中FC⊥(1)求点A ,B ,C 的坐标;(2)设点P 的横坐标为m ,请用含m 的式子表示线段PD 的长;(3)如图2,连接OP ,交线段BC 于点Q ,连接PC ,若△面积为2S ,则12S S 是否有最大值?如果有,请求出最大值;如果没有,请说明理由.【答案】(1)(1,0),(3,0),(0,3)A B C -(2)23PD m m =-+1211S S 22PQ CH OQ =⋅=⋅,121S 21S 2PQ CH PQ OQOQ CH ⋅==⋅∵PD y ∥轴,DPQ COQ PDQ ∴∠=∠∠,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学一模试题(含答案)
中考是九年义务教育的终端显示与成果展示,中考是一次选拔性考试,其竞争较为激烈。
为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文为大家准备了九年级数学一模试题。
A级基础题
1.(2019年新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()
A.12
B.15
C.12或15
D.18
2.(2019年湖北武汉)在△ABC中,AB=AC,A=36,BD是AC边上的高,则DBC的度数是()
A.18
B.24
C.30
D.36
3.(2019年广东深圳)如图437,在△ABC中,AC=AD=BD,DAC=80,则B的度数是()
A.40
B.35
C.25
D.20
4.(2019年山东德州)如图438,AB∥CD,点E在BC上,且CD=CE,D=74,则B的度数为()
A. 68
B.32
C. 22
D.16
5.(2019年山东滨州)在△ABC中,C=90,AB=7,BC=5,则边AC的长为________.
6.(2019年山东泰安)在Rt△ABC中,ACB=90,AB的垂直平分线DE交AC于点E,交BC的延长线于点F,若F=30,DE=1,
则BE的长是________.
7.(2019年吉林)在Rt△ABC中,ACB=90,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.
8.(在Rt△ABC中,ACB=90,D,E,F分别是AB,BC,CA的中点,若CD=5 cm,则EF=________ cm.
9.(2019年福建莆田)图442是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形E 的面积是________.
10.(2019年湖北荆门)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)若BE的延长线交AC于点F,且BFAC,垂足为F,如图443(2),BAC=45,原题设其他条件不变.求证:△AEF≌△BCF.
希望这篇九年级数学一模试题,可以帮助更好的迎接即将到来的考试!。