(压轴题)高中数学选修三第一单元《计数原理》测试(答案解析)(2)
(压轴题)高中数学选修三第一单元《计数原理》检测卷(答案解析)
一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30B .30C .-40D .402.已知()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-,则展开式中的常数项为( ) A .80B .80-C .40D .40-3.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( )A .448B .448-C .672D .672-4.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12965.动点M 位于数轴上的原点处,M 每一次可以沿数轴向左或者向右跳动,每次可跳动1个单位或者2个单位的距离,且每次至少跳动1个单位的距离.经过3次跳动后,M 在数轴上可能位置的个数为( ) A .7B .9C .11D .136.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4807.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形(每次旋转90°仍为L 形的图案),那么在56⨯个小方格组成的方格纸上可以画出不同位置的L 形需案的个数是()A .36B .64C .80D .968.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种 A .27B .81C .54D .1089.在二项式(2n x x的展开式中,当且仅当第5项的二项式系数最大,则系数最小的项是 A .第6项B .第5项C .第4项D .第3项10.从A ,B ,C ,D ,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .24 B .48 C .72D .12011.在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有( ) A .180种B .150种C .96种D .114种12.1231261823n nn n n n C C C C -+++⋯+⨯=( )A .2123n + B .()2413n- C .123n -⨯ D .()2313n- 二、填空题13.()()6122x x --的展开式中5x 的系数为________.14.二项展开式012233(1),N n n n n n n n n x C C x C x C x C x n ++=+++++∈,两边对x 求导,得112321(1)23n n n n n n n n x C C x C x nC x --+=++++,令1x =, 可得1231232nn n n n n C C C nC n -++++=⋅,类比上述方法,则123234(1)n n n n n C C C n C +++++=______.15.计算546101011C C C +-的结果为__________.16.若()316*2323C n n C n N ++=∈,()20123nn n x a a x a x a x -=++++且,则()121nn a a a -+-+-的值为____________.17.二项式636ax ⎛⎫+ ⎪ ⎪⎝⎭的展开式中5x 320a x dx =⎰________.18.若()523450123452x a a x a x a x a x a x -=+++++,则012345a a a a a a -+-+-=_________.19.()()42x y x y ++的展开式中32x y 的系数为______________.20.6名同学站成一排,甲、乙两人相邻,丙与丁不相邻,则共有______种不同的排法(用数字作答).三、解答题21.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中. (1)求该二项展开式中所有项的系数和的值; (2)求该二项展开式中含4x 项的系数; (3)求该二项展开式中系数最大的项.22.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问: (1)五位数中,两个偶数排在一起的有几个?(2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)23.已知)23nx展开式中各项系数和比它的二项式系数和大992,其中,2n N n +∈≥.(Ⅰ)求n 的值;(Ⅱ)求其展开式中的有理项.24.已知在2nx ⎫⎪⎭的展开式中,第6项的系数与第4项的系数之比是6: 1. (1)求展开式中11x 的系数; (2)求展开式中系数绝对值最大的项;(3)求2319819n nn n n n C C C -++++的值.25.已知:22)nx(n ∈N *)的展开式中第五项的系数与第三项的系数的比是10:1. (1)求展开式中各项系数的和;(2)求展开式中含32x 的项.26.已知在1nx ⎛+ ⎝的展开式中所有奇数项的二项式系数和为128. (1)求展开式中常数项;(2)求展开式中二项式系数最大的项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.B解析:B 【分析】令1x =,由展开式中所有项的系数和为2-,列出方程并求出a 的值,得出展开式中常数项为52x x ⎛⎫- ⎪⎝⎭中1x -的系数与52x x ⎛⎫- ⎪⎝⎭的0x 的系数之和,然后利用二项展开式的通项公式求解. 【详解】解:由题可知,()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-, 令1x =,则所有项的系数和为()()5211121a a ⎛⎫+-=-+=- ⎪⎝⎭,解得:1a =,()()555522221x a x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫∴+-=+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()521x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为:52x x ⎛⎫- ⎪⎝⎭中1x -的系数与52x x ⎛⎫- ⎪⎝⎭的0x 的系数之和, 由于52x x ⎛⎫- ⎪⎝⎭展开式的通项公式为:()5515522rr r r r r r T C x C x x --+⎛⎫=⋅-=⋅-⋅ ⎪⎝⎭,当521r -=-时,即3r =时,52x x ⎛⎫- ⎪⎝⎭中1x -的系数为:()335280C ⨯-=-,当520r -=时,无整数解,所以()521x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为80-.故选:B. 【点睛】本题考查二项式定理的应用,考查利用赋值法求二项展开式所有项的系数和,以及二项展开式的通项公式,属于中档题.3.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2r r r r rr r rx T C x C x ---+⎛⎫=-=- ⎪⎝⎭,由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.4.B解析:B 【分析】依据回文数对称的特征,可知有两种情况:1、在6个数字中任取1个组成16C 个回文数;2、在6个数字中任取2个26C 种取法,又由两个数可互换位置22A 种,即2262C A 个回文数;结合两种情况即可求出组成4位“回文数”的个数 【详解】由题意知:组成4位“回文数”∴当由一个数组成回文数,在6个数字中任取1个:16C 种 当有两组相同的数,在6个数字中任取2个:26C 种又∵在6个数字中任取2个时,前两位互换位置又可以组成另一个数 ∴2个数组成回文数的个数:22A 种故,在6个数字中任取2个组成回文数的个数:2262C A综上,有数字1,2,3,4,5,6可以组成4位“回文数”的个数为:2262C A +16C =36 故选:B 【点睛】本题考查了排列组合,根据回文数的特征—对称性,先由分类计数得到取数的方法数,再由分步计数得到各类取数中组成回文数的个数,最后加总即为所有组成4位“回文数”的个数5.D解析:D 【分析】根据题意,分为动点M ①向左跳三次,②向右跳三次,③向左跳2次,向右跳1次,④向左跳1次,向右跳2次,四种情况进行讨论,得到相应的位置,从而得到答案. 【详解】根据题意,分4种情况讨论:①,动点M 向左跳三次,3次均为1个单位,3次均为2个单位,2次一个单位,2次2个单位,故有﹣6,﹣5,﹣4,﹣3,②,动点M 向右跳三次,3次均为1个单位,3次均为2个单位,2次一个单位,2次2个单位,故有6,5,4,3,③,动点M 向左跳2次,向右跳1次,故有﹣3,﹣2,﹣1,0,2, ④,动点M 向左跳1次,向右跳2次,故有0,1,2,3,故M 在数轴上可能位置的个数为﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6共有13个, 故选:D. 【点睛】本题考查分类计数原理,考查了分类讨论的思想,属于中档题.6.C解析:C 【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A (种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.7.C解析:C 【分析】把问题分割成每一个“田”字里,求解. 【详解】每一个“田”字里有4个“L ”形,如图因为56⨯的方格纸内共有4520⨯=个“田”字,所以共有20480⨯=个“L ”形.. 【点睛】本题考查排列组合问题,关键在于把“要做什么”转化成“能做什么”,属于中档题.8.B解析:B 【分析】以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果. 【详解】甲在五楼有33种情况,甲不在五楼且不在二楼有11232354C C ⨯=种情况,由分类加法计数原理知共有542781+=种不同的情况, 故选B. 【点睛】该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.9.C解析:C 【分析】由已知条件先计算出n 的值,然后计算出系数最小的项 【详解】由题意二项式n的展开式中,当且仅当第5项的二项式系数最大,故8n =二项式展开式的通项为8821881122rrrrrrr r T C C ---+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭要系数最小,则r 为奇数 当1r =时,18142C ⎛⎫-⨯=- ⎪⎝⎭当3r =时,338172C ⎛⎫-⨯=- ⎪⎝⎭当5r =时,5581724C ⎛⎫-⨯=- ⎪⎝⎭当7r =时,77811216C ⎛⎫-⨯=- ⎪⎝⎭故当当3r =时系数最小 则系数最小的项是第4项 故选C 【点睛】本题主要考查了二项式展开式的应用,结合其通项即可计算出系数最小的项,较为基础10.C解析:C 【分析】根据题意,分2种情况讨论: ①A 不参加任何竞赛,此时只需要将,,,B C D E 四个人全排列,对应参加四科竞赛即可;②A 参加竞赛,依次分析A 与其他四人的情况数目,由分步计数原理可得此时参加方案的种数,进而由分类计数原理计算可得结论. 【详解】A 参加时参赛方案有31342348C A A = (种),A 不参加时参赛方案有4424A = (种),所以不同的参赛方案共72种,故选C. 【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.11.D解析:D 【解析】分析:先不管条件甲和乙不能安排在同一个路口,先算出总共的安排方法,再减去甲和乙在同一个路口的情况即可.详解:先不管条件甲和乙不能安排在同一个路口,分两种情况:①三个路口人数情况3,1,1,共有335360C A =种情况;②三个路口人数情况2,2,1,共有2235332290C C A A ⋅=种情况. 若甲乙在同一路口,则把甲乙看作一个整体,则相当于将4名特警分配到三个不同的路口,则有234336C A =种,故甲和乙不能安排在同一个路口,不同的安排方法有609036114+-=种. 故选:D.点睛:本题考查排列、组合的实际应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.12.B解析:B 【解析】1212618323n nn n n C C C C -++++⨯=1220012222(333)(33331)33n n n n n n n n n n n C C C C C C C =⨯+⨯+⨯=⨯+⨯+⨯+⨯-22[(13)1](41)33n n =+-=-选B. 二、填空题13.【分析】本题首先可确定二项式展开式的通项然后分别对第一个因式取1以及第一个因式取两种情况进行讨论即可得出结果【详解】二项式展开式的通项为当第一个因式取1时第二个因式应取含的项则对应系数为:;当第一个 解析:132-【分析】本题首先可确定二项式()62x -展开式的通项,然后分别对第一个因式取1以及第一个因式取2x -两种情况进行讨论,即可得出结果. 【详解】二项式()62x -展开式的通项为6162kkkkT C x ,当第一个因式取1时,第二个因式应取含5x 的项,则对应系数为:()55612112C ⨯⨯⨯-=-;当第一个因式取2x -时,第二个因式应取含4x 的项,则对应系数为:()()42622120C -⨯⨯=-;则()()6121x x -+的展开式中5x 的系数为12120132--=-, 故答案为:132-. 【点睛】本题考查展开式中特定项的系数,考查二项式展开式的通项的应用,二项式()na b +展开式的通项为1C k n k kk n T a b -+=,考查推理能力与计算能力,是中档题.14.【分析】依据类比推理观察式子的特点可得然后两边求导并代入特殊值可得结果【详解】两边对求导左边右边令故答案为:【点睛】本题考查类比推理以及二项式定理与导数的结合难点在于找到式子属中档题 解析:1(2)21n n -+⋅-【分析】依据类比推理观察式子的特点,可得01223341(1)n n n n n n n n x x C x C x C x C x C x ++=+++++,然后两边求导并代入特殊值,可得结果. 【详解】01223341(1)n n n n n n n n x x C x C x C x C x C x ++=+++++,两边对x 求导,左边1(1)(1)nn x nx x -=+++右边012233234(1)n nn n n n n C C x C x C x n C x =++++++令1x =,01231234(1)(2)2nn n n n n n C C C C n C n -++++++=+⋅1231234(1)(2)21n n n n n n C C C n C n -∴+++++=+⋅-.故答案为:1(2)21n n -+⋅-【点睛】本题考查类比推理以及二项式定理与导数的结合,难点在于找到式子01223341(1)n n n n n n n n x x C x C x C x C x C x ++=+++++,属中档题.15.【分析】利用组合数的性质来进行计算可得出结果【详解】由组合数的性质可得故答案为【点睛】本题考查组合数的计算解题的关键就是利用组合数的性质进行计算考查计算能力属于中等题 解析:0【分析】利用组合数的性质111k k k n n n C C C ++++=来进行计算,可得出结果.由组合数的性质可得5465655101011111111110C C C C C C C +-=-=-=,故答案为0.【点睛】本题考查组合数的计算,解题的关键就是利用组合数的性质进行计算,考查计算能力,属于中等题.16.175【分析】先利用二项式系数的性质求得n =4再令x =﹣1可得a0﹣a1+a2﹣…+(﹣1)nan 的值再令x =0可得a0=81即可求解【详解】由C233n+1=C23n+6(n ∈N*)可得3n+1+解析:175 【分析】先利用二项式系数的性质求得n =4,再令x =﹣1可得 a 0﹣a 1+a 2﹣…+(﹣1)n a n 的值,再令x =0可得a 0=81,即可求解. 【详解】由C 233n +1=C 23n +6(n ∈N *)可得 3n +1+(n +6)=23,或 3n +1=n +6,解得 n =4 或n 52=(舍去).故(3﹣x )4=a 0+a 1x +a 2x 2+…+a 4 x 4,令x =﹣1可得 a 0﹣a 1+a 2﹣…+(﹣1)n a n =44=256, 再令x =0可得a 0=81,∴﹣a 1+a 2﹣…+(﹣1)n a n =256-81=175, 故答案为 175. 【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和问题,属于中档题.17.【解析】分析:先根据二项展开式的通项求得的系数进而得到的值然后再根据微积分基本定理求解即可详解:二项式的展开式的通项为令可得的系数为由题意得解得∴点睛:解答有关二项式问题的关键是正确得到展开式的通项解析:13【解析】分析:先根据二项展开式的通项求得5x 的系数,进而得到a 的值,然后再根据微积分基本定理求解即可.详解:二项式6ax ⎛+ ⎝⎭的展开式的通项为666166()()((),0,1,2,,666r r r r r r rr T C ax a C x r ---+===,令1r =,可得5x 5156a C =,5=,∴12310011|33x dx x ==⎰. 点睛:解答有关二项式问题的关键是正确得到展开式的通项,然后根据题目要求求解.定积分计算的关键是确定被积函数的原函数,然后根据微积分基本定理求解.18.【分析】根据二项式定理知为正数为负数然后令可得出所求代数式的值【详解】展开式通项为当为偶数时即为正数;当为奇数时即为负数故答案为:【点睛】本题考查利用赋值法求各项系数绝对值的和差计算解题时要结合二项 解析:1【分析】根据二项式定理知0a 、2a 、4a 为正数,1a 、3a 、5a 为负数,然后令1x =可得出所求代数式的值. 【详解】展开式通项为()55152rrrr r r r T C x a x -+==⋅⋅-=∑,当r 为偶数时,0r a >,即0a 、2a 、4a 为正数;当r 为奇数时,0r a <,即1a 、3a 、5a 为负数.()5012345012345211a a a a a a a a a a a a ∴-+-+-=+++++=-=.故答案为:1. 【点睛】本题考查利用赋值法求各项系数绝对值的和差计算,解题时要结合二项展开式通项确定各系数的正负,便于去绝对值,考查计算能力,属于中等题.19.14【分析】针对部分由二项式定理知通项为结合整个代数式有的项组成为即可求其系数【详解】对于由二项式通项知:∴含项的组成为:∴的系数为14故答案为:14【点睛】本题考查二项式定理根据已知代数式形式求指解析:14 【分析】针对4()x y +部分由二项式定理知通项为414r rr r T C xy -+=,结合整个代数式有32x y 的项组成为22213442x C x y y C x y ⋅+⋅即可求其系数. 【详解】对于4()x y +,由二项式通项知:414r rr r T C xy -+=,∴含32x y 项的组成为:22213213244442(2)x C x y y C x y C C x y ⋅+⋅=+, ∴32x y 的系数为14. 故答案为:14. 【点睛】本题考查二项式定理,根据已知代数式形式求指定项的系数,属于基础题.20.【分析】甲乙两人相邻用捆绑法丙与丁不相邻用插空法【详解】先排丙与丁以外的人且甲乙在一起有种排法再排丙丁两人有种排法∴共有种排法【点睛】本题考查了排列知识的应用求解排列问题的六种主要方法:直接法:把符 解析:144【分析】甲、乙两人相邻用捆绑法,丙与丁不相邻用插空法. 【详解】先排丙与丁以外的4人且甲、乙在一起,有323212A A =种排法,再排丙、丁两人有2412A =种排法,∴共有1212144⨯=种排法. 【点睛】本题考查了排列知识的应用. 求解排列问题的六种主要方法:直接法:把符合条件的排列数直接列式计算; 优先法:优先安排特殊元素或特殊位置;捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列; 插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列;间接法:正难则反、等价转化的方法.三、解答题21.(1)123(2)7920(3)20126720x 【分析】(1)令1x =,即可得该二项展开式中所有项的系数和的值;(2)在通项公式中,令x 的幂指数等于4,求得r 的值,可得含4x 项的系数;(3)根据1211312121211112122222r r r rr r r rC C C C ----+-⎧⎨⎩,求得r 的值,可得结论; 【详解】(1)令1x =,可得该二项展开式中所有项的系数和的值为123;(2)二项展开式中,通项公式为123641122r rr r T C x --+=,令3644r -=,求得8r =, 故含4x 项的系数为841227920C =.(3)第1r +项的系数为12122r rC-,由1211312121211112122222r r r r r r r rC C C C ----+-⎧⎨⎩,求得4r =,故该二项展开式中系数最大的项为 384201421(2)()126720C x x x=. 【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题. 22.(1)576;(2)144 【分析】(1)先从3个偶数抽取2个偶数和从4个奇数中抽取3个奇数,利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(2)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,即可得出结果. 【详解】解:可知从1到7的7个数字中,有3个偶数,4个奇数, (1)五位数中,偶数排在一起的有:23413442576C C A A =个,(2)两个偶数不相邻且三个奇数也不相邻的五位数有:23233423144C C A A =个. 【点睛】本题考查数字的排列问题,涉及排列和组合的实际应用以及排列数和组合数的运算公式,考查利用捆绑法解决相邻问题,利用插空法解决不相邻问题,考查运算能力. 23.(Ⅰ)5n =;(Ⅱ)690x 、10243x . 【分析】(Ⅰ)由题意)23nx展开式中二项式系数和为2n 、各项系数和为()134nn +=,列方程即可得解;(Ⅱ)写出展开式的通项公式4103153r r rr T C x++=⋅⋅,分别令2r 、=5r 即可得解.【详解】(Ⅰ)由题意可得)23nx展开式中二项式系数和为2n ,令1x =,可得)23nx展开式中各项系数和为()134nn +=,则由题意可得42992n n -=,化简得()()2322310nn-+=, 由2310n +>可得2320n -=, 所以5n =;(Ⅱ)由(Ⅰ)得))52233nxx=,则其展开式的通项公式()5241023315533rr rr r rr T C x xC x-++⎛⎫=⋅=⋅⋅ ⎪⎝⎭,要使4103r +为有理数,则2r 或=5r ,当2r时,41022663553390r r r C xC x x +⋅⋅=⋅⋅=;当=5r 时,41055101035533243r r rC xC x x +⋅⋅=⋅⋅=;所以其展开式中的有理项为690x 、10243x . 【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于中档题.24.(1)18-;(2)325376x -;(3)91019-.【分析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中的第6项的系数与第4项的系数,列出方程求出n 的值,代入二项展开式的通项公式即可求解;(2)利用两边夹定理,设第1r +项系数的绝对值最大,列出关于r 的不等式即可求解; (3)利用二项式定理求解即可. 【详解】(1)由5533(2):(2)6:1n n C C --=,得9n =,∴通项2752219(2)r r rr TC x-+=-,令2751122r-=,解得1r =, ∴展开式中11x 的系数为119(2)18C -=-.(2)设第1r +项系数的绝对值最大,则11991199221732022r r r r r rr r C C r C C ++--⎧≥⇒≤≤⎨≥⎩,所以6r =, ∴系数绝对值最大的项为27303662229(2)5376C x x ---=.(3)原式()90012299999991110199991(19)1999C C C C -⎡⎤=++++-=+-=⎣⎦. 【点睛】本题考查二项式定理的应用、二项展开式的通项公式和系数最大项的求解;考查运算求解能力和逻辑推理能力;熟练掌握二项展开式的通项公式是求解本题的关键;属于中档题、常考题型. 25.(1)1,(2)3216x -【解析】由题意知,第五项系数为44(2)n C ⋅-,第三项的系数22(2)n C ⋅-, 则有4422(2)10(2)n n C C ⋅-=⋅-,解8n =.(1)令1x =得各项系数的和为8(12)1-=.(2)通项公式828218822()(2)rr r rr r rr T C C x x---+=⋅⋅-=⋅-⋅,令83222r r --=, 则1r =,故展开式中含32x 的项为32216T x =-.26.(1)1792;(2)831120x -.【分析】(1)先根据二项式系数的性质,求出n 的值,然后写出通项,即可进一步求常数项; (2)二项式系数的最大项,即为中间项,由此利用通项法求解. 【详解】解:(1)二项式系数和为2256n =,∴8n =.483182rrr k T C x-++=⋅,(08,)r r N ≤≤∈.显然,当4803r -+=时,6r =. 所以常数项为667821792T C x ==. (2)∵8n =∴第5项二项式系数最大,∴4r =. 故二项式系数最大的项为488444335821120T C xx -+⨯-==.【点睛】本题考查二项式展开式中二项式系数的性质,通项法研究展开式中的特定项问题,属于中档题.。
(压轴题)高中数学选修三第一单元《计数原理》检测(含答案解析)
一、选择题1.若1n x x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是 A .462-B .462C .792D .792- 2.两名老师和3名学生站成两排照相,要求学生站在前排,老师站在后排,则不同的站法有( )A .120种B .60种C .12种D .6种 3.()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项是( ) A .15 B .-15 C .7 D .-74.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( )A .7种B .6种C .5种D .4种5.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( )A .320B .720C .316D .256.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( )A .18种B .24种C .32种D .36种 7.411()x y x y +--的展开式的常数项为( ) A .36 B .36- C .48 D .48-8.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为()A .6B .7C .8D .99.在下方程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x x x+⋅-的展开式中的常数项是A .224B .336C .112D .56010.设40cos2t xdx π=⎰,若20182012(1)x a a x a x t-=++20182018a x ++,则 1232018a a a a +++=( )A .-1B .0C .1D .256 11.若从1,2,3,...,9这9个整数中同时取3个不同的数,其和为奇数,则不同的取法种数为( )A .10B .30C .40D .6012.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )A .240种B .288种C .192种D .216种二、填空题13.()3621()x x x -的展开式中的常数项为_____.(用数字作答)14.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项是第________项..15.计算546101011C C C +-的结果为__________. 16.设集合{}{}12310(,,,...,)1,0,1,1,2,3,...,10i A x x x x x i =∈-=,则集合A 中满足条件“123101+9x x x x ≤+++≤…”的元素个数为_____.17.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科学科,3门文科学科)中选择3门学科参加等级考试,小丁同学理科成绩较好,决定至少选择两门理科学科,那么小丁同学的选科方案有__________种.18.设n 为正整数,32n x x ⎛⎫- ⎪⎝⎭展开式中仅有第5项的二项式系数最大,则展开式中的常数项为__________.19.已知多项式()()522701272312...x x x a a x a x a x ++-=++++,则765432a a a a a a -+-+-=______.20.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有______种.三、解答题21.已知4n x x ⎛+ ⎪⎝⎭的二项展开式的各二项式系数的和与各项系数的和均为256. (1)求展开式中有理项的个数;(2)求展开式中系数最大的项.22.已知5名同学站成一排,要求甲站在中间,乙不站在两端,记满足条件的所有不同的排法种数为m .(I )求m 的值;(II )求342m x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项.23.现有大小相同的7只球,其中2只不同的红球,2只不同的白球,3只不同的黑球. (1)将这7只球排成一列且相同颜色的球必须排在一起,有多少种排列的方法?(请用数字作答)(2)将这7只球分成三堆,三堆的球数分别为:1,3,3,共有多少种分堆的方法?(请用数字作答)(3)现取4只球,求各种颜色的球都必须取到的概率.(请用数字作答)24.已知4530n nA C =,设()3n f x x x ⎛=- ⎪⎝⎭. (Ⅰ)求n 的值; (Ⅱ)求()f x 的展开式中的常数项.25.在42n x x ⎛+ ⎪⎝⎭的二项展开式中,(1)当6n =时,求该二项展开式中的常数项;(2)若前三项系数成等差数列,求该二项展开式中的所有有理项.26.已知3n x x 的展开式中的二项式系数之和比各项系数之和大255 (1)求展开式所有的有理项;(2)求展开式中系数最大的项.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =.121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211C r r r r T x -+=-,令1222r -=,得5r =. ∴展开式中含2x 项的系数是()12551C 792-=-,故选D . 【名师点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项,可依据条件写出第1r +项,再由特定项的特点求出r 值即可;(2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数. 2.C解析:C【分析】根据题意,分2步讨论老师、学生的安排方法,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:①将两名老师全排列,安排在后排,有222A =种安排方法,②将三名学生全排列,安排在前排,有336A =种安排方法,则一共有2612⨯=种安排方法;故选:C【点睛】本题考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.3.B解析:B【分析】 先求得7211x ⎛⎫- ⎪⎝⎭展开式的通项公式,分别令r =4,5,6,7,求得对应的四项,又()3264226128x x x x +=+++,则()7322121x x ⎛⎫+- ⎪⎝⎭展开式中所有x 的零次幂的系数和即为常数项,计算化简,即可得结果.【详解】 7211x ⎛⎫- ⎪⎝⎭的通项公式为721417721()(1)(1)r r r r r r r T C C x x --+=⋅⋅-=⋅-⋅, 令4r =,得446657(1)35T C x x --=⋅-⋅=,令=5r ,得554467(1)21T C x x --=⋅-⋅=-,令6r =,得662277(1)7T C x x --=⋅-⋅=,令7r =,得77087(1)1T C x =⋅-⋅=-,又()3264226128x x x x +=+++,所以()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项为351(21)6712(1)815⨯+-⨯+⨯+-⨯=-, 故选:B【点睛】本题考查利用赋值法解决展开式中常数项的问题,考查分析理解,计算求值的能力,属中档题.4.B解析:B【分析】根据题意可得选出的2人必为一男—女,分别求出选出1名男性党员和1名女性党员的选法数目,由分步乘法计数原理计算可得答案.【详解】根据题意,选出的2人中既有男性又有女性,必为一男一女,在3名男性党员中任选1人,有3种选法,在2名女性党员中任选1人,有2种选法,则既有男性又有女性的不同选法有3×2=6种,故选:B【点睛】本题主要考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.5.B解析:B【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案.【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法, 故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B .【点睛】 本题主要考查了分类计数原理,关键是如何分步,属于中档题.6.B解析:B【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案.【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况,②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种;故选:B .【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.7.A解析:A【分析】 先对多项式进行变行转化成441()1x y xy ⎛⎫+- ⎪⎝⎭,其展开式要出现常数项,只能第1个括号出22x y 项,第2个括号出221x y 项. 【详解】 ∵4444111()1x y x y x y x y x y xy xy ⎛⎫⎛⎫⎛⎫++--=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴411x y x y ⎛⎫+-- ⎪⎝⎭的展开式中的常数项为22244222(C (C 361))x y x y ⨯=. 故选:A.【点睛】本题考查二项式定理展开式的应用,考查运算求解能力,求解的关键是对多项式进行等价变形,同时要注意二项式定理展开式的特点. 8.C解析:C【分析】根据古典概型概率计算公式列出不等式,利用组合数公式进行计算,由此求得至少抽取的产品件数.【详解】设抽取x 件,次品全部检出的概率为2228100.6x x C C C ->,化简得()154x x ->,代入选项验证可知,当8x =时,符合题意,故选C.【点睛】本小题主要考查古典概型概率计算,考查组合数的计算,属于基础题.9.D解析:D【分析】由程序图先求出m 的值,然后代入二项式中,求出展开式中的常数项【详解】由程序图可知求输入18100a b ==,的最大公约数,即输出2m =则二项式为())348332812161x x x x x x x ⎛⎫⎛⎫+⋅-=+++ ⎪ ⎪⎝⎭⎝⎭)81的展开通项为()82181r r r r T C x -+=-要求展开式中的常数项,则当取38x 时,令832r -= 解得2r =,则结果为288224C =,则当取12x 时,令812r -=,解得6r =,则结果为6812336C =,故展开式中的常数项为224336560+=,故选D【点睛】本题考查了运用流程图求两个数的最大公约数,并求出二项式展开式中的常数项,在求解过程中注意题目的化简求解,属于中档题10.B解析:B【解析】分析:先求定积分,再求()()()()12320181,010f f a a a a f f +++=-, 详解:4400111cos22|02222t xdx sin x sin πππ===-=⎰,故设()(f x =1-2x 2018),所以 ()()11,01f f ==,()()1232018100a a a a f f +++=-=,故选B 点睛:求复合函数的定积分要注意系数能够还原,二项式定理求系数和的问题,采用赋值法.11.C解析:C【解析】分析:分两种情况讨论:先在1,3,5,7,9五个数中取出三个个奇数,再在1,3,5,7,9五个数中取出一个奇数在2,4,6,8四个偶数中取出两个偶数,由分类计数加法原理结合分步计数乘法原理可得结果.详解:根据题意,从1到9的正整数正任意抽取3个数相加,若所得的和为奇数,则取出的数为3个奇数或1奇数2个偶数,在1,3,5,7,9五个数中取出1个奇数,有155C =种取法.在2,3,6,8四个偶数中取出2个偶数,有246C =种取法.则1奇数,2个偶数的取法有5630⨯=种,在1,3,5,7,9五个数中取出3个奇数,有3510C =种取法即所得的和为奇数的不同情形种数是301040+=,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.12.D解析:D【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .考点:排列及计数原理的应用.二、填空题13.180【分析】根据二项式定理结合展开式通项即可确定的指数形式将多项式展开即可确定常数项【详解】的展开式中的通项公式而分别令解得或∴的展开式中的常数项故答案为:180【点睛】本题考查了二项式定理通项展 解析:180【分析】根据二项式定理,结合展开式通项即可确定x 的指数形式.将多项式展开,即可确定常数项.【详解】62x x ⎫⎪⎭的展开式中的通项公式 363216622k k k k k k k T C x C x x --+⎛⎫==⋅⋅ ⎪⎝⎭,而()666332221)x x x x x =-⎫⎫⎫-⎪⎪⎪⎭⎭⎭ 分别令3332k -=-,3302k -=, 解得4k =,或2k =.∴()6321x x ⎫-⎪⎭的展开式中的常数项44226622180C C -=. 故答案为:180.【点睛】本题考查了二项式定理通项展开式的应用,多项式的乘法展开式,常数项的求法,属于中档题.14.8和9【分析】根据求得利用二项式系数的性质可得展开式中二项式系数的最大【详解】解:由题意可得即解得∵故展开式中二项式系数的最大的项为第8项或第9项故答案为:8和9【点睛】本题主要考查二项式定理的应用 解析:8和9【分析】根据21121n n n n n n C C C --++= 求得15n =,利用二项式系数的性质可得展开式中二项式系数的最大.【详解】解:由题意可得,21121n n n nn n C C C --++=,即(1)11212n n n -++=,解得15n =, ∵1182n -+=, 1192n ++= 故展开式中二项式系数的最大的项为第8项或第9项,故答案为:8和9.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.15.【分析】利用组合数的性质来进行计算可得出结果【详解】由组合数的性质可得故答案为【点睛】本题考查组合数的计算解题的关键就是利用组合数的性质进行计算考查计算能力属于中等题解析:0【分析】利用组合数的性质111k k k n n n C C C ++++=来进行计算,可得出结果.【详解】由组合数的性质可得5465655101011111111110C C C C C C C +-=-=-=,故答案为0.【点睛】本题考查组合数的计算,解题的关键就是利用组合数的性质进行计算,考查计算能力,属于中等题.16.58024【分析】依题意得的取值是1到10的整数满足的个数等于总数减去和的个数【详解】集合中共有个元素其中的只有1个元素的有个元素故满足条件的元素个数为59049-1-1024=58024【点睛】本解析:58024【分析】 依题意得12310+x x x x +++⋯的取值是1到10的整数,满足123101+9x x x x ≤+++≤…的个数等于总数减去12310+0x x x x +++⋯=和12310+10x x x x +++⋯=的个数.【详解】集合A 中共有个元素10359049= , 其中12310+0x x x x +++⋯=的只有1个元素,12310+10x x x x +++⋯=的有1021024= 个元素,故满足条件“123101+9x x x x ≤+++≤…”的元素个数为59049-1-1024=58024.【点睛】本题考查计数原理,方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.17.10【分析】分类讨论:选择两门理科学科一门文科学科;选择三门理科学科即可得出结论【详解】选择两门理科学科一门文科学科有种;选择三门理科学科有1种故共有10种故答案为10【点睛】本题考查计数原理的应用 解析:10【分析】分类讨论:选择两门理科学科,一门文科学科;选择三门理科学科,即可得出结论.【详解】选择两门理科学科,一门文科学科,有2133C C 9=种;选择三门理科学科,有1种,故共有10种.故答案为10.【点睛】本题考查计数原理的应用,考查学生的计算能力,比较基础.18.112【解析】由展开式中仅有第5项的二项式系数最大得则令则展开式中的常数项为解析:112【解析】由展开式中仅有第5项的二项式系数最大得8n =则()884188322rr r rrr r T C xC x x --+⎛⎫=-=- ⎪⎝⎭,令840r -=,2r =则展开式中的常数项为()2282112C -=19.【分析】利用赋值法令得出令时求出再根据二项展开式的通项公式求出从而可求得结果【详解】解:根据题意令时则即所以得令时由于为展开式中项的系数对于由二项展开式的通项公式得:则所以即故答案为:-16【点睛】 解析:16-【分析】利用赋值法,令1x =-,得出765432100a a a a a a a a -+-+-+-=,令0x =时,求出0a ,再根据二项展开式的通项公式求出1a ,从而可求得结果.【详解】解:根据题意,令1x =-时,则()()()()552231223130x x x ++-=-+⨯-=,即012345670a a a a a a a a -+-+-+-=, 所以765432100a a a a a a a a -+-+-+-=, 得76543201a a a a a a a a -+-+-=-, 令0x =时,()50232a =-=-,由于()()522312x x x ++-, 1a 为展开式中x 项的系数,对于()52x -,由二项展开式的通项公式得: ()552rrr C x -⋅-⋅,则()()54011553212968016a C C =⨯⋅-+⨯⋅-=-+=-,所以()76543201321616a a a a a a a a -+-+-=-=---=-, 即76543216a a a a a a -+-+-=-. 故答案为:-16. 【点睛】本题考查二项式定理的应用和二项展开式的通项公式,以及利用赋值法解决项的系数问题,考查化简运算能力.20.30【分析】先假设可放入一个盒里那么方法有种减去在一个盒子的情况就有5种把2个球的组合考虑成一个元素就变成了把三个不同的球放入三个不同的盒子从而可得到结果【详解】解:由题意知有一个盒子至少要放入2球解析:30 【分析】先假设,A B 可放入一个盒里,那么方法有24C 种,减去,A B 在一个盒子的情况,就有5种,把2个球的组合考虑成一个元素,就变成了把三个不同的球放入三个不同的盒子,从而可得到结果.【详解】解:由题意知有一个盒子至少要放入2球,先假设,A B 可放入一个盒里,那么方法有246C =.再减去,A B 在一起的情况,就是615-=种.把2个球的组合考虑成一个元素,就变成了把三个不同的球放入三个不同的盒子,那么共有336A =种.∴根据分步计数原理知共有5630⨯=种. 故选:C . 【点睛】本题考查分步计数原理,考查带有限制条件的元素的排列问题.两个元素不能同时放在一起,或两个元素不能相邻,这都是常见的问题,需要掌握方法.三、解答题21.(1)3;(2)70x 或1220412x - 【分析】(1)根据二项式系数和的性质,以及二项式系数和为256,可得2256n =,解出8n =,再由通项公式163418k k k k Ta C x-+=,0,1,2,,8k =,分析即得;(2)根据各项系数的和均为256,可得()81256a +=,解出3a =-或1a =,再由通项公式分情况进行计算即得. 先通过二项展开式的各二项式系数的和与各项系数的和均为256求出n . 【详解】(1)n的二项展开式的各二项式系数的和为2n,各项系数的和为()1n a +,由已知得2256n =,故8.n =此时n展开式的通项为:163418k k k k T a C x -+=,0,1,2,,8k =,当0,4,8k =时,该项为有理项,故有理项的个数为3. (2)由()81256a +=,得3a =-或 1.a = 当1a =时,展开式通项为163418k kk TC x-+=,0,1,2,,8k =,故二项式系数最大时系数最大,即第5项系数最大,即系数最大的项为45870T C x x ==;当3a =-时,163418(3)k kk k TC x-+=-,0,1,2,,8k =,展开式系数最大的项是奇数项,其中41T x =,523252T x =,55670T x =,12720412T x-=,296561T x -=,故展开式中系数最大的项为第7项,即系数最大的项为12720412T x-=.综上,展开式中系数最大的项为70x或1220412x-.【点睛】本题考查二项式系数的性质,以及通项公式的应用,要注意二项式系数与各项的系数的区别,考查分析计算能力,属于中档题.22.(I)12;(II)672.【分析】(I)先考虑特殊要求,再排列其他的;(II)根据二项式定理展开式的通项公式求解.【详解】(I)所有不同的排法种数132312m C A =•=.(II)由(I)知,39422mx x⎫⎫=⎪⎪⎭⎭,92x⎫∴⎪⎭的展开式的通项公式为932192rr rrT C x-+=⋅⋅,令932r-=,解得3r=,∴展开式中的常数项为3392672C⋅=.【点睛】本题考查排列与二项式定理.23.(1)144种;(2)70种;(3)2435.【分析】(1)用捆绑法求解;(2)运用不平均分组问题的方法求解;(3)针对取出2个红球,1个不同的白球,1个的黑球;1个红球,2个白球,1个黑球;1个红球,1个白球,2个黑球三种情况讨论.【详解】解:(1)7只球排成一列且相同颜色的球必须排在一起,共有33223322144A A A A=种方法;(2)将这7只球分成三堆,三堆的球数分别为:1,3,3,共有13762270C CA=种分法;(3)当取出2个红球,1个的白球,1个的黑球时,211223147C C CpC=;当取出1个红球,2个白球,1个黑球时,121223247C C CpC=;当取出1个红球,1个白球,2个黑球时,112223347C C CpC=;211121112223223223123472435C C C C C C C C C p p p p C ++=++==. 故各种颜色的球都必须取到的概率为2435. 【点睛】本题考查排列与组合、古典概型概率的计算问题,难度一般.一般地,解答排列问题时要注意一些模型的应用,如捆绑法、插空法、分组分配问题等. 24.(Ⅰ)8n =;(Ⅱ)728T .【分析】(Ⅰ)利用排列数,组合数公式化简4530n n A C =即可得n 的值.(Ⅱ)写出()f x 的展开式的通项公式,令x 的指数为0即可得到常数项. 【详解】(Ⅰ)由已知4530nn A C =得:!30!4!5!5!n n n n ,!30!45!1205!n n n nn解得:8n =.(Ⅱ)8x ⎛⎝展开式的通项为488318831kk kkkk k T C xCxx由4803k 得6k =,即()f x 的展开式中的常数项为728T .【点睛】本题考查排列数组合数公式的应用,考查求解二项展开式中的常数项,考查计算能力,属于基础题. 25.(1)1516(2)41T x =,5358T x =,921256T x =.【分析】(1)写出二项展开式的通项第1r +项234112rn rrr n T C x-+⎛⎫= ⎪⎝⎭,令x 的指数为0,即可求得结果;(2)由二项展开式的通项写出前三项的系数,可求得8n =,在根据通项求有理项即可。
(必考题)高中数学选修三第一单元《计数原理》测试卷(有答案解析)(2)
一、选择题1.关于6212xx⎛⎫-⎪⎝⎭的展开式,下列说法中正确的是()A.展开式中二项式系数之和为32 B.展开式中各项系数之和为1C.展开式中二项式系数最大的项为第3项D.展开式中系数最大的项为第4项2.二项式2()nxx-的展开式中,第3项的二项式系数比第2项的二项式系数大9,则该展开式中的常数项为()A.160-B.80-C.80D.1603.已知231(1)nx xx⎛⎫++⎪⎝⎭的展开式中没有2x项,*n N∈,则n的值可以是()A.5 B.6 C.7 D.84.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有()A.180 B.192 C.420 D.4805.若0k m n≤≤≤,且,,m n k N∈,则mn m kn k nkC C--==∑()A.2m n+B.2mnmCC.2n m n C D.2m m n C6.已知()()()()1521501215111x a a a x a x a x+=+-+-+⋅⋅⋅+-中0a>,若13945a=-,则a的值为()A.2 B.3 C.4 D.57.若4()(1)a x x++的展开式关于x的系数和为64,则展开式中含3x项的系数为()A.26 B.18 C.12 D.98.在二项式(2nxx的展开式中,当且仅当第5项的二项式系数最大,则系数最小的项是A.第6项B.第5项C.第4项D.第3项9.在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有( ) A .180种B .150种C .96种D .114种10.()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是( ) A .-5B .7C .-11D .1311.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .240种B .288种C .192种D .216种12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.代数式2521(2)(1)x x+-的展开式的常数项是________(用数字作答) 14.化简:()()()1231223312131n n n n nn n n n C p p C p p C p p nC p ----+-+-++=______.15.某老师安排甲、乙、丙、丁4名同学从周一至周五值班,每天安排1人,每人至少1天,若甲连续两天值班,则不同的安排方法种数为______.(请用数字作答) 16.(x +y )(2x -y )5的展开式中x 3y 3的系数为________. 17.621(2)x x-的展开式中的常数项为______. 18.已知集合S={﹣1,0,1},P={1,2,3,4},从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个.19.已知()n x y +的展开式中,只有第七项的系数最大,则n =___________ 20.()()42x y x y ++的展开式中32x y 的系数为______________.三、解答题21.已知二项式*1)(,2)2nn N n x∈≥,若该二项式的展开式中前三项的系数的绝对值成等差数列. (1)求正整数n 的值;(2)求展开式中二项式系数最大项,并指出是第几项? 22.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:i i i im n n A m A <;(2)证明:(1)(1)m nn m +<+.23.已知n的二项展开式的各二项式系数的和与各项系数的和均为256. (1)求展开式中有理项的个数; (2)求展开式中系数最大的项.24.在二项2nx ⎫⎪⎭的展开式中,前三项的系数和为73. (1)求正整数n 的值;(2)求出展开式中所有x 的有理项.25.设(nx 的展开式中,第二项与第四项的系数比为1:2,试求2x 项的系数.26.已知)22nx的展开式的系数和比()31nx -的展开式的二项式系数和大992,求212nx x ⎛⎫+ ⎪⎝⎭的展开式中: (1)二项式中的常数项; (2)系数小于1025的项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用二项式展开式的应用求出结果. 【详解】 解:关于621(2)x x-的展开式,根据二项式的展开式的应用:61621(2)()r rr r T C x x -+=-, 对于选项A :展开式中二项式系数之和6264=,故错误.对于选项B :利用赋值法的应用,当1x =时,各项的系数的和为6(21)1-=,故正确.对于选项C :展开式中二项式系数最大的项为第4项3620C =,故错误. 对于选项D :展开式中系数最大的项为第2项,系数为2462240C ⨯=.故错误.故选:B . 【点睛】本题考查的知识要点:二项展开式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.2.A【分析】根据展开式的二项式系数关系求解n ,结合通项即可得到常数项. 【详解】由题第3项的二项式系数比第2项的二项式系数大9,即()21219,,2,9,61802n n n n C C n N n n n n *--=∈≥-=--= 解得:6n =,二项式62()x x-的展开式中,通项6162()r r rr T C x x-+=-,当r =3时,取得常数项,3333162()160T C x x+=-=-. 故选:A 【点睛】此题考查二项式定理,根据二项式系数关系求解参数,根据通项求展开式中的指定项.3.C解析:C 【分析】将条件转化为31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项,然后写出31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项,即可分析出答案. 【详解】因为231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,所以31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项为:4131,0,1,2,,rr n r r n r r n n T C x C x r n x --+⎛⎫=== ⎪⎝⎭所以当n 取5,6,7,8时,方程40,41,42n r n r n r -=-=-=无解检验可得7n = 故选:C 【点睛】本题考查的是二项式定理的知识,在解决二项式展开式的指定项有关的问题的时候,一般先写出展开式的通项.4.C【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A =(种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.5.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn mk n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.6.A解析:A 【分析】根据()1515[(1)(1)]x a a x +=--++-利用二项展开式的通项公式、二项式系数的性质、以及13945a =-,即可求得a 的值,得到答案. 【详解】由题意,二项式()()()()1521501215111x a a a x a x a x +=+-+-+⋅⋅⋅+-, 又由()1515[(1)(1)]x a a x +=--++-,所以()()()2151501215[(1)(1)]111a x a a x a x a x --++-=+-+-+⋅⋅⋅+-, 其中0a >,由13945a =-,可得:1321315[(1)]945a C a =-⋅-+=-,即2105(1)945a -+=-,即2(1)9a +=,解得2a =, 故选A . 【点睛】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,其中解答中熟记二项展开式的通项及性质是解答的关键,着重考查了推理与运算能力,属于中档试题.7.B解析:B 【分析】取1x =解得3a =,展开式中含3x 项有两种情况,相加得到答案. 【详解】令1x =得4(1)264a +⋅=,所以3a =.所以4(3)(1)x x ++展开式中含3x 项为33223443C C 18x x x x ⋅+⋅=,所以展开式中含3x 项的系数为18, 故选B . 【点睛】本题考查了二项式定理,把握展开式中含3x 项的两种情况是解题的关键.8.C解析:C 【分析】由已知条件先计算出n 的值,然后计算出系数最小的项 【详解】由题意二项式n的展开式中,当且仅当第5项的二项式系数最大, 故8n =二项式展开式的通项为8821881122rrrrrr r r T C C ---+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭要系数最小,则r 为奇数当1r =时,18142C ⎛⎫-⨯=- ⎪⎝⎭当3r =时,338172C ⎛⎫-⨯=- ⎪⎝⎭当5r =时,5581724C ⎛⎫-⨯=- ⎪⎝⎭当7r =时,77811216C ⎛⎫-⨯=- ⎪⎝⎭故当当3r =时系数最小 则系数最小的项是第4项 故选C 【点睛】本题主要考查了二项式展开式的应用,结合其通项即可计算出系数最小的项,较为基础9.D解析:D 【解析】分析:先不管条件甲和乙不能安排在同一个路口,先算出总共的安排方法,再减去甲和乙在同一个路口的情况即可.详解:先不管条件甲和乙不能安排在同一个路口,分两种情况:①三个路口人数情况3,1,1,共有335360C A =种情况;②三个路口人数情况2,2,1,共有2235332290C C A A ⋅=种情况. 若甲乙在同一路口,则把甲乙看作一个整体,则相当于将4名特警分配到三个不同的路口,则有234336C A =种,故甲和乙不能安排在同一个路口,不同的安排方法有609036114+-=种. 故选:D.点睛:本题考查排列、组合的实际应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.10.C解析:C 【解析】611x ⎛⎫- ⎪⎝⎭的展开式的通项公式是61,rr C x ⎛⎫- ⎪⎝⎭ 其中含1x 的项是1161,C x ⎛⎫- ⎪⎝⎭ 常数项为0611,C x ⎛⎫-= ⎪⎝⎭ 故()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是116121112111.x C x ⎡⎤⎛⎫⨯-+⨯=-+=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选C.11.D解析:D 【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .考点:排列及计数原理的应用.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.3【解析】的通项公式为令得;令得∴常数项为故答案为点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项可依据条件写出第项再由特定项的特点求出值即可(2)已知展开式的某项求特定项的系解析:3 【解析】5211x ⎛⎫- ⎪⎝⎭的通项公式为521015521()(1)(1)r r r r r r r T C C x x --+=-=-.令2102r -=-,得4r =;令2100r -=,得=5r .∴常数项为445555(1)2(1)523C C -+-=-=故答案为3.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.14.【分析】由将原式转化为再由二项式定理可得答案【详解】∴故答案为:【点睛】本题考查组合数公式和二项式定理的应用考查转化思想属于中档题 解析:np【分析】由11=kk n n kC nC --将原式转化为()()()1232311110121111n n n n nn n n n nC p p nC p p nC p p nC p ---------+-+-++,再由二项式定理可得答案. 【详解】()()()()111!1!!=!()!1!()!1!()!kk n n nk n n n kn kC nC k n k k k n k k n k ----===-----,∴()()()1231223312131n n n n nn n n n C p p C p p C p p nC p ----+-+-++()()()123212311111=111n n n n nn n n n nC p p nC p p nC p p nC p ---------+-+-++()()11211111=11n n n n n n n np C p C p C p p -------+⎦+⎡⎤-+-⎣1[(1)]n np p p -=-+ 11n np -=⋅np =故答案为:np 【点睛】本题考查组合数公式和二项式定理的应用,考查转化思想,属于中档题.15.24【分析】首先在周一到周五任选连续的两天安排甲值班即有种方式其它三天安排乙丙丁值班有种方式由分步计数原理即有总方法有种即可求得所有安排方法数【详解】从周一至周五值班甲连续两天值班乙丙丁每人值班一天解析:24 【分析】首先在周一到周五任选连续的两天安排甲值班,即有14C 种方式,其它三天安排乙、丙、丁值班,有33A 种方式,由分步计数原理,即有总方法有14C 33A 种,即可求得所有安排方法数【详解】从周一至周五值班,甲连续两天值班,乙、丙、丁每人值班一天,可知 周一到周五任选连续的两天安排给甲值班,则有:14C 种安排方法 甲值班两天除外,其它三天安排乙、丙、丁值班,则有:33A 种安排方法以上两步是分步计数方法:故总的不同的安排方法为14C 33A = 24种故答案为:24 【点睛】本题考查了排列组合,应用分步计数原理求总计数,注意其中“对甲连续两天的值班安排”应用了捆绑法16.40【分析】先求出的展开式的通项再求出即得解【详解】设的展开式的通项为令r=3则令r=2则所以展开式中含x3y3的项为所以x3y3的系数为40故答案为:40【点睛】本题主要考查二项式定理求指定项的系解析:40 【分析】先求出5(2)x y -的展开式的通项,再求出43,T T 即得解.【详解】设5(2)x y -的展开式的通项为555155(2)()(1)2r rr r r r r r r T C x y C x y ---+=-=-,令r=3,则32323454=40T C x y x y =--, 令r=2,则23232358=80T C x y x y =,所以展开式中含x 3y 3的项为233233(40)(80)40x x y y x y x y ⋅-+⋅=.所以x 3y 3的系数为40. 故答案为:40 【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.17.240【分析】根据二项式展开式通项公式确定常数项对应项数再代入得结果【详解】令得所以的展开式中的常数项为【点睛】本题考查求二项式展开式中常数项考查基本分析求解能力属基础题解析:240 【分析】根据二项式展开式通项公式确定常数项对应项数,再代入得结果 【详解】()()616211C 2rrrr r T x x -+⎛⎫=-⋅ ⎪⎝⎭()31261C 2r r r r x -⎡⎤=-⋅⎣⎦, 令3120r -=得,4r =,所以6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为()44461C 2240-⋅=.【点睛】本题考查求二项式展开式中常数项,考查基本分析求解能力,属基础题.18.23【解析】试题分析:由题意知本题是一个分步计数问题S 集合中选出一个数字共有3种选法P 集合中选出一个数字共有4种结果取出的两个数字可以作为横标和纵标因此要乘以2去掉重复的数字得到结果解:由题意知本题解析:23 【解析】试题分析:由题意知本题是一个分步计数问题,S 集合中选出一个数字共有3种选法,P 集合中选出一个数字共有4种结果,取出的两个数字可以作为横标和纵标,因此要乘以2,去掉重复的数字,得到结果.解:由题意知本题是一个分步计数问题, 首先从S 集合中选出一个数字共有3种选法, 再从P 集合中选出一个数字共有4种结果,取出的两个数字可以作为横标,也可以作为纵标,共还有一个排列, ∴共有C 31C 41A 22=24,其中(1,1)重复了一次.去掉重复的数字有24﹣1=23种结果, 故答案为23考点:计数原理的应用.19.12【分析】根据题意利用二项式定理二项式系数的性质得出结论【详解】的展开式中只有第七项的系数最大故展开式中有13项则故答案为:12【点睛】结论点睛:本题考查二项式定理如果二项式的幂指数n 是偶数中间一解析:12 【分析】根据题意,利用二项式定理,二项式系数的性质得出结论. 【详解】()+n x y 的展开式中,只有第七项的系数最大,故展开式中有13项,则12n =故答案为:12 【点睛】结论点睛:本题考查二项式定理,如果二项式的幂指数n 是偶数,中间一项12nT +项的二项式系数最大;如果二项式的幂指数n 是奇数,中间两项12n T +与112n T ++项的二项式系数相等且最大.20.14【分析】针对部分由二项式定理知通项为结合整个代数式有的项组成为即可求其系数【详解】对于由二项式通项知:∴含项的组成为:∴的系数为14故答案为:14【点睛】本题考查二项式定理根据已知代数式形式求指解析:14 【分析】针对4()x y +部分由二项式定理知通项为414r rr r T C xy -+=,结合整个代数式有32x y 的项组成为22213442x C x y y C x y ⋅+⋅即可求其系数. 【详解】对于4()x y +,由二项式通项知:414r rr r T C xy -+=,∴含32x y 项的组成为:22213213244442(2)x C x y y C x y C C x y ⋅+⋅=+,∴32x y 的系数为14. 故答案为:14. 【点睛】本题考查二项式定理,根据已知代数式形式求指定项的系数,属于基础题.三、解答题21.(1)8;(2)2358x -,展开式中二项式系数最大项为第五项. 【分析】(1)根据二项展开式的通项,分别求得123,,T T T ,结合等差中项公式,列出方程,即可求解;(2)根据二项式系数的性质,即可求解. 【详解】(1)由二项式*1)(,2)2nn N n x∈≥,可得0212012123111,,222nn n nn n T CT C T C x x x --⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为展开式中前三项的系数的绝对值成等差数列,可得10211224n n n C C C ⨯⨯=+, 整理得1(1)142n n n -=+,即2980n n -+=,解得1n =或8n =.因为*,2n N n ∈≥,所以8n =.(2)当8n =时,展开式中二项式系数最大项为第五项44425813528T C x x -⎛⎫=-= ⎪⎝⎭.【点睛】对于二项式中的项的求解方法:(1)求二项式的特定项问题,实质是在考查通项rn rr r n T C ab -=的特点,一把需要建立方程求得r 的值,在将r 的值代回通项,主要r 的取值范围(0,1,2,,)k n =;(2)若n 为偶数时,中间一项(第12n+项)的二项式系数最大; (3)若n 为奇数时,中间一项(第12n +项和第112n ++项)的二项式系数最大. 22.(1)证明过程见解析;(2)证明过程见解析. 【分析】(1)根据排列数的公式,结合不等式的性质进行证明即可;(2)根据二项式定理,结合(1)中的结论、排列数、组合数的公式进行证明即可. 【详解】(1)由排列数的公式得:(1)(2)(1)121i m i A m m m m i m m m m i m mmm m m m m m---+---+==⋅⋅, (1)(2)(1)121i n i A n n n n i n n n n i n nnn n n n n n---+---+==⋅⋅, 当1i m n <≤<,1,2,31k i =-时,()()()=0m k n k n m k m n k k m n m k n km n mn mn m n ---------=<⇒<, 由不等式的性质可知: 121m m m m i m m mm ---+⋅⋅<121n n n n i n n nn---+⋅⋅, 即i m i A m <i i i m ni i n i n A nm A A <⇒; (2)由二项式定理可知:0(1),(1)mnmi i ni imn i i n n Cm m C ==+=⋅+=⋅∑∑,因为,!!i iiim n mn A A C C i i ==,由(1)知:i i i i m n n A m A <, 所以有i i i im n n C m C <,又因为000011111,,0i in m n m n m C n C m C n C nm m C ====>(1)i m n <≤<,所以(1)(1)n mii ii n m nm i i m C n Cm n ==⋅>⋅⇒+>+∑∑.【点睛】本题考查了排列数、组全数公式的应用,考查了二项式定理,考查了不等式的性质,考查推理论证能力和数学运算能力. 23.(1)3;(2)70x 或1220412x - 【分析】(1)根据二项式系数和的性质,以及二项式系数和为256,可得2256n =,解出8n =,再由通项公式163418k k k k Ta C x-+=,0,1,2,,8k=,分析即得;(2)根据各项系数的和均为256,可得()81256a +=,解出3a =-或1a =,再由通项公式分情况进行计算即得. 先通过二项展开式的各二项式系数的和与各项系数的和均为256求出n . 【详解】(1)n的二项展开式的各二项式系数的和为2n,各项系数的和为()1n a +,由已知得2256n =,故8.n =此时n展开式的通项为:163418k k k k T a C x -+=,0,1,2,,8k =,当0,4,8k =时,该项为有理项,故有理项的个数为3. (2)由()81256a +=,得3a =-或 1.a = 当1a =时,展开式通项为163418k kk TC x-+=,0,1,2,,8k =,故二项式系数最大时系数最大,即第5项系数最大,即系数最大的项为45870T C x x ==;当3a =-时,163418(3)k kk k TC x-+=-,0,1,2,,8k =,展开式系数最大的项是奇数项,其中41T x =,523252T x =,55670T x =,12720412T x-=,296561T x -=,故展开式中系数最大的项为第7项,即系数最大的项为12720412T x-=.综上,展开式中系数最大的项为70x 或1220412x -. 【点睛】本题考查二项式系数的性质,以及通项公式的应用,要注意二项式系数与各项的系数的区别,考查分析计算能力,属于中档题. 24.(1)6;(2)33624064,60,,x x x【分析】(1)根据二项式定理通项公式列式解得n 的值; (2)根据二项式定理通项公式确定有理项,即可得结果. 【详解】(1)3212()2n rr n rr r rr nn T C C x x --+==⋅ 所以前三项的系数和为0011222(1)222124217362n n n n n C C C n n n -⋅+⋅+⋅=++⨯=+=∴=; (2)632162,0,1,2,3,4,5,6rr rr T C xr -+=⋅=所以展开式中所有x 的有理项为0033220443666666636240642,260,2,2C x x C x C x C x x x--⋅=⋅=⋅=⋅= 【点睛】本题考查二项式定理及其应用,考查基本分析求解能力,属基础题. 25.12 【分析】分别写出(nx -的展开式的第二项与第四项,由展开式中第二项与第四项的系数比为1:2,可求出n ,进而可得出展开式中2x 项的系数.【详解】(nx -展开式的第二项与第四项分别为:1112(n n n T C x --==,333334(n n n n T C x x --==-.12=,即2340n n --=, 解得4n =或1n =-, 显然只有4n =符合题意,设(4x 展开式中2x 项为第1r +项,则441(rr r r T C x -+=⋅,令42-=r ,得2r,即(4x 展开式中2x项为222234(12T C x x ==.故2x 项的系数为12. 【点睛】本题考查二项式的系数,要熟练掌握二项式定理,属于中档题. 26.(1)8064;(2)101024x 、4960x 、6180x 、820x 、101x . 【分析】(1)根据题意可得出关于n 的等式,即可解出正整数n 的值,进而写出212nx x ⎛⎫+ ⎪⎝⎭的展开式的通项,令x 的指数为零,求出参数的值,代入通项公式即可得出展开式中的常数项; (2)利用二项展开式通项写出展开式中的每一项,进而可得出结果. 【详解】 (1))22nx的展开式的系数和为22n ,()31nx -的展开式的二项式系数和为2n ,由题意可得222992n n -=,可得232n =或231n =-(舍),所以,5n =.1012x x ⎛⎫+ ⎪⎝⎭展开式的通项为()101010211010122rr r r r rr T C x C x x ---+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭, 令1020r -=,可得=5r ,因此,展开式中的常数项为5561028064T C =⋅=;(2)1012x x ⎛⎫+ ⎪⎝⎭展开式的各项分别为:1011024T x =,825120T x =,6311520T x =,4415360T x =,2513440T x =,68064T =,723360T x =,84960T x =,96180T x =。
(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(2)
一、选择题1.设01a <<,2a b +=,随机变量X 的分布列如表:则当()0,1a ∈内增大时( )A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大2.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481253.一批产品(数量很大)中,次品率为13,现连续地抽取4次,其次品数记为X ,则()E X 等于( )A .13B .23C .89D .434.已知随机变量ξ服从正态分布(1,2)N ,则(23)D ξ+=( ) A .4B .6C .8D .115.设随机变量X 服从正态分布()0,9N ,则()36P X <<=( )(附:若()2~,X N μσ,则()0.6826P X μσμσ-<<+≈,(2)0.9544P X μσμσ+<<+=)A .0.0456B .0.1359C .0.2718D .0.31746.已知随机变量ξ的分布列如表,则ξ的标准差为( )A .3.56B C .3.2D 7.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .258.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .389.将4个文件放入到3个盒子中,随机变量X 表示盒子中恰有文件的盒子个数,则EX 等于( ) A .6227B .73C .6427D .652710.在10个排球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为( ) A .542B .435C .1942D .82111.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小12.将3颗骰子各掷一次,记事件A 为“三个点数都不同”,事件B 为“至少出现一个1点”,则条件概率(A |B)P 和(|)P B A 分别为( ) A .160,291B .560,1891C .601,912D .911,2162二、填空题13.A ,B ,C ,D 四人之间进行投票,各人投自己以外的人1票的概率都是13(个人不投自己的票),则仅A 一人是最高得票者的概率为________.14.如图所示,已知一个系统由甲、乙、丙、丁4个部件组成,当甲、乙都正常工作,或丙、丁都正常工作时,系统就能正常工作.若每个部件的可靠性均为()01r r <<,而且甲、乙、丙、丁互不影响,则系统的可靠度为___________.15.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.16.改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A先生实行的是早九晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z1(单位:分钟)服从正态分布N(33,42),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z2(单位:分钟)服从正态分布N(44,22),从地铁站步行到单位需要5分钟.现有下列说法:①若8:00出门,则乘坐公交一定不会迟到;②若8:02出门,则乘坐公交和地铁上班迟到的可能性相同;③若8:06出门,则乘坐公交比地铁上班迟到的可能性大;④若8:12出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_____.参考数据:若Z~N(μ,σ2),则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544,P(μ﹣3σ<Z≤μ+3σ)=0.997417.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为______.18.(理)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分别是以7000元、5600元、4200元,则参加此次大赛获得奖金的期望是_________元.19.设随机变量ξ的分布列为P(ξ=k)=300-30012C?33k kk⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭(k=0,1,2,…,300),则E(ξ)=____.20.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m,13,n,已知三个社团他都能进入的概率为124,至少进入一个社团的概率为34,且m>n.则m n+=_____三、解答题21.已知集合{}1,2,3,4A =和集合{}1,2,3,4,5B =,从集合A 中任取三个不同的元素,其中最小的元素用S 表示;从集合B 中任取三个不同的元素,其中最大的元素用T 表示,记X T S =-.(1)当5T =时,有多少种情况?(2)求随机变量X 的概率分布和数学期望()E X .22.2020年1月10日,引发新冠肺炎疫情的9COVID -病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数K 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元.本着节约成本的原则,选择哪种实验方案. 23.某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若这两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率均为12,复审能通过的概率为310,各专家评审的结果相互独立.(1)求某应聘人员被录用的概率;(2)若4人应聘,设X 为被录用的人数,试求随机变量X 的分布列.24.“过大年,吃水饺”是我国不少地方过春节的一大习俗,2020年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布()2,N μσ,利用该正态分布,求Z 落在()38.45,50.4内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于()10,30内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为11.95σ=≈; ②若()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.25.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.26.某次数学测验共有12道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分. 在这次数学测验中,考生甲每道选择题都按照规则作答,并能确定其中有9道题能选对;其余3道题无法确定正确选项,在这3道题中,恰有2道能排除两个错误选项,另1题只能排除一个错误选项. 若考生甲做这3道题时,每道题都从不能排除的选项中随机挑选一个选项作答,且各题作答互不影响.在本次测验中,考生甲选择题所得的分数记为x (1)求55x =的概率; (2)求x 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先求出()E X ,利用方差的定义建立()()22=13D X a -,利用二次函数单调性判断出()D X 的变化.【详解】由题意:()1111333E X a b =⨯+⨯+⨯,∵2a b +=,∴()1E X =.∴()()()()()222221111=111123333D X a b a b -⨯+-⨯+-⨯=+-⨯ 又2a b +=,∴2b a =-,∴()()()()2222122=2=21=1333D X a b a a a +-⨯-+- ∴当01a <<时,()()22=13D X a -单调递减,即当()0,1a ∈内增大时()D X 减小. 故选:B2.A解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.3.D解析:D 【分析】根据独立重复试验的条件,转化成4次的独立重复试验,利用二项分布期望的计算公式,即可求解. 【详解】由题意,一批产品数量很大,其中次品率为13,现连续地抽取4次, 可以看出是4次的一个独立重复试验,可得随机变量X 服从二项分布,即1(4,)3X B ,所以()14433E X =⨯=. 故选:D . 【点睛】本题主要考查了独立重复试验,以及二项分布的期望的计算,其中解答熟记独立重复试验的条件,掌握独立重复试验中随机变量服从二项分布是解答的关键,着重考查了分析问题和解答问题的能力.4.C解析:C 【分析】由已知条件求得()2D ξ=,再由2(23)2()D D ξξ+=⨯,即可求解. 【详解】由题意,随机变量ξ服从正态分布(1,2)N ,可得()2D ξ=, 所以2(23)2()8D D ξξ+=⨯=. 故选:C . 【点睛】本题主要考查了正态分布曲线的特点及曲线所表示的意义,其中解答中熟记方差的求法是解答的关键,着重考查了计算能力.5.B解析:B 【分析】由随机变量X 符合正态分布()0,9N ,得0μ=,3σ=,则所求(36)P X <<,即为(2)P X μσμσ+<<+,根据3σ原则,以及正态曲线的对称性即可求值.【详解】因为随机变量X 符合正态分布()0,9N ,则0μ=,3σ=, 所以(36)(2)P X P X μσμσ<<=+<<+, 由()0.6826P X μσμσ-<<+≈,()220.9544P X μσμσ-<<+=,以及正态曲线的对称性,可知()00.3413P X μσ<<+≈,(02)0.4772P X μσ<<+=,则(36)0.47720.34130.1359P X <<=-=. 故选:B. 【点睛】本题考查了正态分布曲线的对称性,两个变量μ和σ的应用,3σ原则,属于中档题.6.D解析:D 【分析】由分布列的性质求得x ,利用方差的计算公式可求得()D ξ,进而得到标准差. 【详解】由分布列的性质得:0.40.11x ++=,解得:0.5x =,()10.430.150.5 3.2E ξ∴=⨯+⨯+⨯=,()()()()2221 3.20.43 3.20.15 3.20.5 3.56D ξ∴=-⨯+-⨯+-⨯=,ξ∴=故选:D . 【点睛】本题考查根据离散型随机变量的分布列求解标准差的问题,考查了分布列的性质、数学期望和方差的求解,考查基础公式的应用.7.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.8.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果, 所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.9.D解析:D 【分析】本道题分别计算X=1,2,3对应的概率,然后计算数学期望,即可. 【详解】()()()21322213432423441141,2327327C C C A C C C P X P X +======, ()234344339C A P X ===列表:所以数学期望1232727927EX =⋅+⋅+⋅=,故选D . 【点睛】本道题考查了数学期望的计算方法,较容易.10.A解析:A 【解析】分析:根据超几何分布,可知共有410C 种选择方法,符合正品数比次品数少的情况有两种,分别为0个正品4个次品,1个正品3个次品,分别求其概率即可. 详解:正品数比次品数少,有两种情况:0个正品4个次品,1个正品3个次品,由超几何分布的概率可知,当0个正品4个次品时444101210C P C ==当1个正品3个次品时136441024421035C C P C === 所以正品数比次品数少的概率为1452103542+= 所以选A点睛:本题考查了超几何分布在分布列中的应用,主要区分二项分布和超几何分布的不同.根据不同的情况求出各自的概率,属于简单题.11.D解析:D 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+, 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑12.C解析:C 【解析】根据条件概率的含义,()|P A B 其含义为在B 发生的情况下,A 发生的概率,即在“至少出现一个3点” 的情况下,“三个点数都不相同”的概率,因为“至少出现一个3 点”的情况数目为66655591⨯⨯-⨯⨯=,“三个点数都不相同”,则只有一个3点,共135460C ⨯⨯=种,()60|91P A B ∴=;()|P B A 其含义为在A 发生的情况下,B 发生的概率,即在“三个点数都不相同”的情况下,“至少出现一个3点”的概率,()601|=1202P B A ∴=,故选C. 二、填空题13.【分析】根据的票数为分类讨论再根据互斥事件的概率加法公式即可求出【详解】若仅A 一人是最高得票者则的票数为若的票数为则;若的票数为则三人中有两人投给剩下的一人与不能投同一个人;所以仅A 一人是最高得票者解析:527【分析】根据A 的票数为3,2分类讨论,再根据互斥事件的概率加法公式即可求出. 【详解】若仅A 一人是最高得票者,则A 的票数为3,2. 若A 的票数为3,则1111133327P =⨯⨯=; 若A 的票数为2,则BCD 三人中有两人投给A ,剩下的一人与A 不能投同一个人,213111242333327P C ⎛⎫=⨯⨯⨯⨯⨯= ⎪⎝⎭; 所以仅A 一人是最高得票者的概率为12145272727P P P =+=+=. 故答案为:527. 【点睛】本题解题关键是根据A 的得票数进行分类讨论,当A 的票数为3时,容易求出1127P =,当A 的票数为2时,要考虑如何体现A 的票数最高,分析出四人投票情况,是解题的难点,不妨先考虑BC 投给A ,则D 投给B (C ),A 就投给C 或D (B 或D ),即可容易解出.14.【分析】记甲乙都正常工作为事件记丙丁都正常工作为事件计算出利用对立事件的概率公式可求得系统的可靠度为【详解】记甲乙都正常工作为事件记丙丁都正常工作为事件则当且仅当事件或事件发生时系统正常工作当且仅当 解析:242r r -【分析】记甲、乙都正常工作为事件A ,记丙、丁都正常工作为事件B ,计算出()P A 、()P B ,利用对立事件的概率公式可求得系统的可靠度为()()1P A P B -. 【详解】记甲、乙都正常工作为事件A ,记丙、丁都正常工作为事件B ,则()()2P A P B r ==,当且仅当事件A 或事件B 发生时,系统正常工作, 当且仅当事件A 和事件B 都不发生时,系统不工作. 因此,系统的可靠度为()()()22241112P P A P B r r r =-=--=-.故答案为:242r r -. 【点睛】关键点点睛:本题考查事件概率的计算,解本题的关键就是确定事件“系统正常运行”的对立事件为“两条线路都不工作”,进而可利用概率的乘法公式以及对立事件的概率公式来进行求解.15.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.16.②④【分析】利用正态分布对每一个说法求解其概率逐项分析即可选出正确答案【详解】解:①若8:00出门江先生乘坐公交从家到车站需要5分钟下车后步行再到单位需要12分钟乘坐公交到离单位最近的公交站所需时间解析:②④ 【分析】利用正态分布对每一个说法求解其概率,逐项分析,即可选出正确答案. 【详解】解:①若8:00出门,江先生乘坐公交,从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故()()12145452P Z P Z -<<≥=10.99740.00132-==, ∴江先生仍有可能迟到,只不过概率较小,故①错误; ②若8:02出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足P (Z≤41)()()1254125410.97722P Z P Z -=+=<<<<时,江先生乘坐公交不会迟到;若8:02出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足P (Z≤48)()()1404840480.99722P Z P Z -=+=<<<<时,江先生乘坐地铁不会迟到,此时两种上班方式江先生不迟到的概率相当,故②正确; ③若8:06出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足()()()129373729370.84132P Z P Z P Z -≤=+=<<<<时,江先生乘坐公交不会迟到;若8:06出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足()1440.52P Z ≤==时,江先生乘坐地铁不会迟到, 此时两种上班方式,乘坐公交比地铁上班迟到的可能性小,故③错误; ④若8:12出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足()31P Z ≤时,江先生乘坐公交不会迟到, 而()()()1293731290.18572P Z P Z P Z -≤>≤==<<;若8:12出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟,乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足()()13850380.001352P Z P Z -<<≤==时,江先生乘坐地铁不会迟到,由0.18570.00135>,∴若8:12出门,则乘坐地铁比公交上班迟到的可能性大,故④正确; 故答案为:②④. 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,正确理解题意是关键,考查计算能力,属于中档题.17.【分析】前三局乙获胜一场计算得到概率【详解】根据题意知:前三局乙获胜一场故故答案为:【点睛】本题考查了概率的计算意在考查学生的理解应用能力 解析:827【分析】前三局,乙获胜一场,计算得到概率. 【详解】根据题意知:前三局,乙获胜一场,故3131283327p C ⎛⎫=⨯⨯=⎪⎝⎭ 故答案为:827【点睛】本题考查了概率的计算,意在考查学生的理解应用能力.18.【分析】根据概率和为1求再根据期望公式求结果【详解】因为所以期望是故答案为:【点睛】本题考查数学期望公式考查基本分析求解能力属基础题 解析:5000【分析】根据概率和为1求a ,再根据期望公式求结果. 【详解】因为12417a a a a ++=∴=所以期望是700056002420041000160024005000a a a ⨯+⨯+⨯=++= 故答案为:5000 【点睛】本题考查数学期望公式,考查基本分析求解能力,属基础题.19.【解析】分析:由二项分布的期望公式计算详解:由题意得ξ~B 所以E(ξ)=300=100点睛:本题考查二项分布的期望计算公式若则解析:【解析】分析:由二项分布的期望公式计算. 详解:由题意,得ξ~B 1300,3⎛⎫ ⎪⎝⎭,所以E (ξ)=30013⨯=100. 点睛:本题考查二项分布的期望计算公式.若(,)B n p ξ,则E np ξ=,(1)D np p ξ=-.20.【分析】三个社团都能进入的概率为得到至少进入一个社团的概率为即一个社团都没能进入的概率为得到即联立得解【详解】由题知三个社团都能进入的概率为即又因为至少进入一个社团的概率为即一个社团都没能进入的概率解析:34【分析】三个社团都能进入的概率为124得到18m n ⨯=,至少进入一个社团的概率为34,即一个社团都没能进入的概率为14得到,即318m n m n --+⨯=,联立得解 【详解】由题知三个社团都能进入的概率为124,即1113248m n m n ⨯⨯=⇒⨯=,又因为至少进入一个社团的概率为34, 即一个社团都没能进入的概率为31144-=,即()()213111348m n m n m n -⨯⨯-=⇒--+⨯=,整理得34m n +=. 故答案为:34. 【点睛】熟练运用独立事件概率乘法公式是解题关键.三、解答题21.(1)6;(2)分布列见解析,()134E X =. 【分析】(1)当5T =时,即从1,2,3,4中再选2个即可;(2)计算X 的取值对应的S 和T 的取值,利用组合数公式计算概率,得出分布列和数学期望; 【详解】(1)当5T =时,即5被选中,再从其余4个中选两个即可,即246C =, ∴共有6种情况.(2)S 的可能取值为1,2,T 的可能取值为3,4,5; 则X 的可能取值为1,2,3,4,1245111(1)40P X C C ==⋅=; 223333334545113(2)20C C P X C C C C ==⋅+⋅=;2223343332454513(3)8C C C P X C C C C ==⋅+⋅=; 223433459(4)20C C P X C C ==⋅=;X 的分布列为:()123440208204E X =⨯+⨯+⨯+⨯=. 【点睛】关键点点睛:(1)理解新定义中,S T 的意义,得到其对应的事件结果; (2)利用相互独立事件同时发生的概率乘法公式得到其对应的概率. 22.(1)分布列见解析;(2)①825元;②选择方案二. 【分析】(1)利用二项分布的知识计算出分布列.(2)①先求得一个接种周期的接种费用的期望值,由此求得三个接种周期的接种费用的期望值()E X .②首先求得“在一个接种周期内出现2次或3次抗体”的概率,根据相互独立事件概率计算公式,结合随机变量期望值的计算,计算出花费的期望值()E Y .由于()()E X E Y >,所以选择方案二. 【详解】(1)由题意可知,随机变量K 服从二项分布13,2KB ⎛⎫ ⎪⎝⎭, 故()331122kkk P K k C -⎛⎫⎛⎫==⋅⋅ ⎪⎪⎝⎭⎝⎭(0,1,2,3k =)则X 的分布列为(2)①设一个接种周期的接种费用为ξ元,则ξ可能的取值为200,300, 因为()12004P ξ==,()33004P ξ==, 所以()1320030027544E ξ=⨯+⨯=. 所以三个接种周期的平均花费为()()33275825E X E ξ==⨯=. ②随机变量Y 可能的取值为300,600,900,设事件A 为“在一个接种周期内出现2次或3次抗体”,由(1)知,()311882P A =+=. 所以()()13002P Y P A ===, ()()()160014P Y P A P A ==-⨯=⎡⎤⎣⎦, ()()()19001114P Y P A P A ==-⨯-⨯=⎡⎤⎡⎤⎣⎦⎣⎦, 所以()111300600900525244E Y =⨯+⨯+⨯= 因为()()E X E Y >. 所以选择方案二. 【点睛】本小题主要考查二项分布,考查相互独立事件概率计算,考查数学期望的计算,属于中档题. 23.(1)25;(2)分布列见解析. 【分析】(1)通过分析知所求的应聘人员被录用的情况包括两位专家都同意通过的情况和只有一位专家同意通过并通过复审的情况,所以分别求概率,利用独立事件的概率求解;(2)先求出每个人被录用的概率,再利用二项分布求出每种情况的概率,列出分布列,利用二项分布的期望公式计算数学期望. 【详解】设“两位专家都同意通过”为事件A ,“只有一位专家同意通过”为事件B ,“通过复审”为事件C .(1)设“某应聘人员被录用”为事件D ,则D A BC =+, ∵()111224P A =⨯=,()11121222P B ⎛⎫=⨯⨯-= ⎪⎝⎭,()310P C =,∴()()()()()25P D P A BC P A P B P C =+=+=. (2)根据题意,0,1,2,3,4X =,i A 表示“应聘的4人中恰有i 人被录用”.∵()04004238155625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()31142321655625P A C ⎛⎫=⨯⨯= ⎪⎝⎭, ()222242321655625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()3334239655625P A C ⎛⎫=⨯⨯=⎪⎝⎭, ()4444231655625P A C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,∴X 的分布列为本题主要考查独立事件的概率,考查了离散型随机变量的分布列,考查学生的分析问题解决问题的能力、计算能力.24.(1)26.5;(2)①0.1359;②分布列详见解析,数学期望为2. 【分析】(1)根据频率分布直方图分别计算各组的频率,再计算平均值即可; (2)①直接由正态分布的性质及题目所给可得;②根据题意得1~4,2X B ⎛⎫ ⎪⎝⎭,根据二项分布的性质即可求得X 的分布列、期望值. 【详解】(1)根据频率分布直方图可得各组的频率为:(]0,10的频率为:0.010100.1⨯=;(]10,20的频率为:0.020100.2⨯=; (]20,30的频率为:0.030100.3⨯=; (]30,40的频率为:0.025100.25⨯=; (]40,50的频率为:0.015100.15⨯=,所以所抽取的100包速冻水饺该项质量指标值的样本平均数x 为50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布()2,N μσ,且26.5μ=,11.95σ≈()38.4550.4P Z <<()()26.5211.9526.5211.9526.511.9526.511.95P Z P Z =-⨯<<+⨯--<<+()0.95440.682620.1359-÷==∴Z 落在()38.45,50.4内的概率是0.1359.②根据题意得每包速冻水饺的质量指标值位于(]10,30内的概率为0.20.30.5+=, 所以1~4,2X B ⎛⎫ ⎪⎝⎭,X 的可能取值分别为:0,1,2,3,4,()404110216P X C ⎛⎫=== ⎪⎝⎭,()41411124P X C ⎛⎫=== ⎪⎝⎭, ()42413228P X C ⎛⎫=== ⎪⎝⎭, ()43411324P X C ⎛⎫=== ⎪⎝⎭,()444114216P X C ⎛⎫=== ⎪⎝⎭,∴X 的分布列为:∴()422E X =⨯=. 【点睛】本题考查了统计的基础知识,正态分布,属于中档题. 25.(1)49;(2)分布列见解析,1 【分析】(1)甲获胜的情况为3:1,3:2,2:1分别计算概率即可得解;(2)X 的所有可能取值是0,1,2,3,分别计算概率,写出分布列,计算数学期望. 【详解】(1)甲以3:1获胜的概率221211329P ⎛⎫⎛⎫=⨯=⎪ ⎪⎝⎭⎝⎭,甲以3:2获胜的概率22122212C 329P ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭,。
(压轴题)高中数学选修三第一单元《计数原理》检测(答案解析)(2)
一、选择题1.若2021220210122021(12)x a a x a x a x -=++++,则1232021a a a a ++++=( )A .1B .1-C .2D .2-2.()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项是( ) A .15B .-15C .7D .-73.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-4.二项式2()nx x-的展开式中,第3项的二项式系数比第2项的二项式系数大9,则该展开式中的常数项为( ) A .160-B .80-C .80D .1605.已知8281239(1)x a a x a x a x +=++++,若数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,则k 的最大值是( ) A .6B .5C .4D .36.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( ) A .7种B .6种C .5种D .4种7.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中1,3至少选一个,若1,3都选则0不选,这样的五位数中偶数共有( ) A .144个B .168个C .192个D .196个8.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4809.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C10.有m 位同学按照身高由低到高站成一列,现在需要在该队列中插入另外n 位同学,但是不能改变原来的m 位同学的顺序,则所有排列的种数为( ) A .mm n C +B .mm n A +C .nm n A +D .m nm n A A +11.本周日有5所不同的高校来我校作招生宣传,学校要求每位同学可以从中任选1所或2所去咨询了解,甲、乙、丙三位同学的选择没有一所是相同的,则不同的选法共有( ) A .330种B .420种C .510种D .600种12.()6232x x ++展开式中x 的系数为( ) A .92B .576C .192D .384二、填空题13.有7人站成一排照相,要求A ,B 两人相邻,C ,D ,E 三人互不相邻,则不同的排法种数为______.14.关于x 的方程222424x xC C =的解为_________. 15.设集合{}{}12310(,,,...,)1,0,1,1,2,3,...,10i A x x x x x i =∈-=,则集合A 中满足条件“123101+9x x x x ≤+++≤…”的元素个数为_____.16.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种. 17.若()()7280128112x x a a x a x a x +-=++++,则127a a a +++的值为__.18.25(32)x x ++的展开式中3x 的项的系数是________. 19.()()42x y x y ++的展开式中32x y 的系数为______________.20.已知关于x 的方程log (01)xa a x a =<<的实数根的个数为n ,若1101(1)(1)(3)n x x a a x +++=++2101121011(3)(3)(3)a x a x a x +++++++,则1a 的值为______.三、解答题21.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中. (1)求该二项展开式中所有项的系数和的值; (2)求该二项展开式中含4x 项的系数; (3)求该二项展开式中系数最大的项. 22.计算:(1)()2973100100101CC A +÷ (2)3333410C C C +++.23.已知多项式12nx ⎫⎪⎭的展开式中,第3项与第5项的二项式系数之比为2:5.(1)求n 的值;(2)求展开式中含x 项的系数.24.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数? (1)比21034大的偶数;(2)左起第二、四位是奇数的偶数.25.在①只有第6项的二项式系数最大,②第4项与第8项的二项式系数相等,③所有二项式系数的和为102,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知()123012321n n n x a a x a x a x a x -=++++⋅⋅⋅+(n *∈N ),若()21nx -的展开式中,______. (1)求n 的值;(2)求123n a a a a +++⋅⋅⋅+的值.26.请从下面三个条件中任选一个,补充在下面的横线上,并解答.①第5项的系数与第3项的系数之比是14:3;②第2项与倒数第3项的二项式系数之和为55;③22110n n nC C -+-=.已知在n的展开式中,________. (1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分别令0x =和1x =,即可解出所求. 【详解】解:由2021220210122021(12)x a a x a x a x -=+++⋯+, 令0x =得01a =;令1x =得01220211a a a a -=+++⋯+, 1220212a a a ∴++⋯+=-.故选:D . 【点睛】本题考查赋值法在研究二项展开式中系数的问题,同时考查方程思想在解题中的作用.属于中档题.解析:B 【分析】先求得7211x ⎛⎫- ⎪⎝⎭展开式的通项公式,分别令r =4,5,6,7,求得对应的四项,又()3264226128x x x x +=+++,则()7322121x x ⎛⎫+- ⎪⎝⎭展开式中所有x 的零次幂的系数和即为常数项,计算化简,即可得结果. 【详解】7211x ⎛⎫- ⎪⎝⎭的通项公式为721417721()(1)(1)r r r r r r r T C C x x --+=⋅⋅-=⋅-⋅,令4r =,得446657(1)35T C x x --=⋅-⋅=, 令=5r ,得554467(1)21T C x x --=⋅-⋅=-, 令6r =,得662277(1)7T C x x --=⋅-⋅=, 令7r =,得77087(1)1T C x =⋅-⋅=-,又()3264226128x x x x +=+++,所以()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项为351(21)6712(1)815⨯+-⨯+⨯+-⨯=-, 故选:B 【点睛】本题考查利用赋值法解决展开式中常数项的问题,考查分析理解,计算求值的能力,属中档题.3.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2r r r r rr r rx T C x C x ---+⎛⎫=-=- ⎪⎝⎭,由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.解析:A 【分析】根据展开式的二项式系数关系求解n ,结合通项即可得到常数项. 【详解】由题第3项的二项式系数比第2项的二项式系数大9,即()21219,,2,9,61802n n n n C C n N n n n n *--=∈≥-=--= 解得:6n =,二项式62()x x-的展开式中,通项6162()r r rr T C x x-+=-,当r =3时,取得常数项,3333162()160T C x x+=-=-. 故选:A 【点睛】此题考查二项式定理,根据二项式系数关系求解参数,根据通项求展开式中的指定项.5.B解析:B 【分析】可得结论.写出各项的系数,由组合数性质知123456789a a a a a a a a a <<<<>>>>,结合数列123,,,,k a a a a ⋅⋅⋅是一个单调递增数列,可得结论. 【详解】由二项式定理,得98ii a C -=()*19,i i N≤≤∈,所以根据组合数性质知123456789a a a a a a a a a <<<<>>>>, 又数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,所以k 的最大值为5. 故选:B 【点睛】本题主要考查二项式定理的运用,考查学生分析解决问题的能力,属于基础题.6.B解析:B 【分析】根据题意可得选出的2人必为一男—女,分别求出选出1名男性党员和1名女性党员的选法数目,由分步乘法计数原理计算可得答案. 【详解】根据题意,选出的2人中既有男性又有女性,必为一男一女,在3名男性党员中任选1人,有3种选法,在2名女性党员中任选1人,有2种选法,则既有男性又有女性的不同选法有3×2=6种,故选:B【点睛】本题主要考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.7.B解析:B【分析】根据条件分选1不选3、选3不选1、选1和3三种情况分别计算五位数中偶数的个数.【详解】解:当选1不选3时,五位数中偶数有4113432360A C C A+=个;当选3不选1时,五位数中偶数有4113432360A C C A+=个;当选1和3时,五位数中偶数有142448C A=个,所以这样的五位数中偶数共有60+60+48=168个.故选:B.【点睛】本题考查了排列、组合与简单的计算原理,考查了分类讨论思想,属中档题.8.C解析:C【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数.【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A=(种).若5块区域只用4种颜色涂色,则颜色的选法有45C,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A=(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为5 5120A=(种).综上,共有不同的涂色方案数为420(种).故选:C.【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题. 9.D解析:D【分析】先利用特殊值排除A,B,C,再根据组合数公式以及二项式定理论证D成立.令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.10.C解析:C 【分析】将问题转化为将这m n +个同学中新插入的n 个同学重新排序,再利用排列数的定义可得出答案. 【详解】问题等价于将这m n +个同学中新插入的n 个同学重新排序,因此,所有排列的种数为n m n A +,故选C.【点睛】本题考查排列问题,解题的关键就是将问题进行等价转化,考查转化与化归数学思想的应用,属于中等题.11.A解析:A 【解析】种类有(1)甲1,乙1,丙1,方法数有35A 60=;(2)甲2,乙1,丙1;或甲1,乙2,丙1;或甲1,乙1,丙2——方法数有2115323C C C 180⨯=;(3)甲2,乙2,丙1;或甲1,乙2,丙2;或甲2,乙1,丙2——方法数有22533C C 90⨯⋅=.故总的方法数有6018090330++=种.【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.12.B【解析】()6232x x ++展开式中含x 的项为15565(3)26332576C x C x x ⋅⋅=⨯⨯=,即x 的系数为576;故选B.点睛:本题考查二项式定理的应用;求三项展开式的某项系数时,往往有两种思路: (1)利用组合数公式和多项式乘法法则,如本题中解法;(2)将三项式转化成二项式,如本题中,可将26(32)x x ++化成66(1)(2)x x ++,再利用两次二项式定理进行求解.二、填空题13.288【分析】将AB 捆绑作为一个整体排列再与剩余2人全排列三人插空排列即可【详解】将AB 捆绑作为一个整体排列为将AB 整体与剩余2人全排列则再将三人插入4个空位排列则所以总的排列方法有种故答案为:28解析:288 【分析】将A 、B 捆绑作为一个整体排列,再与剩余2人全排列,C 、D 、E 三人插空排列即可. 【详解】将A 、B 捆绑作为一个整体排列为22A , 将A 、B 整体与剩余2人全排列则33A ,再将C 、D 、E 三人插入4个空位排列,则34A ,所以总的排列方法有233234232432288A A A =⨯⨯⨯⨯⨯= 种,故答案为:288. 【点睛】本题考查了排列中相邻、不相邻问题的解法,属于中档题.14.0或2或4【分析】因为所以:或解方程可得【详解】解:因为所以:或解得:(舍)故答案为:0或2或4【点睛】本题考查了组合及组合数公式属于基础题解析:0或2或4 【分析】因为222424x xC C =,所以:22x x =或2224x x +=,解方程可得. 【详解】解:因为222424x x C C =, 所以:22x x =或2224x x +=,解得:0x =,2x =,4x =,6x =-(舍) 故答案为:0或2或4本题考查了组合及组合数公式.属于基础题.15.58024【分析】依题意得的取值是1到10的整数满足的个数等于总数减去和的个数【详解】集合中共有个元素其中的只有1个元素的有个元素故满足条件的元素个数为59049-1-1024=58024【点睛】本解析:58024 【分析】依题意得12310+x x x x +++⋯的取值是1到10的整数,满足123101+9x x x x ≤+++≤…的个数等于总数减去12310+0x x x x +++⋯=和12310+10x x x x +++⋯=的个数.【详解】集合A 中共有个元素10359049= ,其中12310+0x x x x +++⋯=的只有1个元素,12310+10x x x x +++⋯=的有1021024= 个元素,故满足条件“123101+9x x x x ≤+++≤…”的元素个数为59049-1-1024=58024. 【点睛】本题考查计数原理,方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.16.19【分析】6门学科(3门理科3门文科)中选择3门学科可以分为全为理科有理科有文科全为文科决定至少选择一门理科学科包括前两种考虑起来比较麻烦故用间接法:用总数减去全为文科的数量【详解】根据题意从物理解析:19 【分析】6门学科(3门理科,3门文科)中选择3门学科可以分为全为理科,有理科有文科,全为文科,决定至少选择一门理科学科包括前两种,考虑起来比较麻烦,故用间接法:用总数减去全为文科的数量. 【详解】根据题意,从物理、化学、生物、政治、历史、地理6门学科任选3门,有3620C =种选取方法 ,其中全部为文科科目,没有理科科目的选法有331C =种, 所以至少选择一门理科学科的选法有20-1=19种; 故答案为19, 【点睛】本题考查排列组合.方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.17.125【解析】分析:令可得;令可得;又故可得的值详解:在中令可得;令可得;又∴点睛:对形如(ax +b)n(ax2+bx +c)m(ab ∈R)的式子求其展开式的各项系数之和常用赋值法只需令x =1即可;对解析:125 【解析】分析:令0x =可得01a =;令1x =,可得01282a a a a ++++=-;又78(2)a =-128=-,故可得127a a a +++的值.详解:在()()7280128112x x a a x a x a x +-=++++中,令0x =,可得01a =; 令1x =,可得01282a a a a ++++=-;又78(2)128a =-=-,∴12721281125a a a +++=-+-=.点睛:对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R)的式子求其展开式各项系数之和,只需令x =y =1即可.解题时如何赋值,要观察所求和式与差式的特点,根据所求值的式子的特征选择适合的方法.18.1560【分析】把转化为再利用二项式的展开式的通项公式可求出答案【详解】由题意因为的展开式的通项公式为的展开式的通项公式为所以的展开式中的项的系数是故答案为:1560【点睛】关键点点睛:本题考查二项解析:1560 【分析】把25(32)x x ++转化为()()5512x x ++,再利用二项式的展开式的通项公式,可求出答案.【详解】由题意,()()2555(32)12x x x x =++++,因为()51x +的展开式的通项公式为15r rr T C x +=,()52x +的展开式的通项公式为5152k k k k T C x -+=,所以25(32)x x ++的展开式中3x 的项的系数是305214123032555555552222C C C C C C C C +++320800*********=+++=.故答案为:1560. 【点睛】关键点点睛:本题考查二项式定理的应用,考查三项展开式的系数问题.解决本题的关键是把25(32)x x ++转化为()()5512x x ++,进而分别求出()51x +、()52x +的展开式的通项公式,令3r k +=,可求出25(32)x x ++的展开式中3x 的项的系数.考查学生的逻辑推理能力,计算求解能力,属于中档题.19.14【分析】针对部分由二项式定理知通项为结合整个代数式有的项组成为即可求其系数【详解】对于由二项式通项知:∴含项的组成为:∴的系数为14故答案为:14【点睛】本题考查二项式定理根据已知代数式形式求指解析:14 【分析】针对4()x y +部分由二项式定理知通项为414r rr r T C xy -+=,结合整个代数式有32x y 的项组成为22213442x C x y y C x y ⋅+⋅即可求其系数. 【详解】对于4()x y +,由二项式通项知:414r rr r T C xy -+=,∴含32x y 项的组成为:22213213244442(2)x C x y y C x y C C x y ⋅+⋅=+, ∴32x y 的系数为14. 故答案为:14. 【点睛】本题考查二项式定理,根据已知代数式形式求指定项的系数,属于基础题.20.【分析】利用图象法判断出关于的方程的实数根的个数由此求得利用结合二项式展开式求得【详解】当时画出和的图象如下图所示由图可知两个函数图象有个交点所以关于的方程的实数根个数为1所以所以所以故答案为:【点 解析:11265【分析】利用图象法判断出关于x 的方程log (01)xa a x a =<<的实数根的个数,由此求得n ,利用132x x +=+-,结合二项式展开式求得1a . 【详解】当01a <<时,画出xy a =和log ay x =的图象如下图所示,由图可知两个函数图象有1个交点,所以关于x 的方程log (01)xa a x a =<<的实数根个数为1,所以1n =.所以()()()()11111113232n x x x x +++=+-++-,所以10101111(2)11265a C =+-=.故答案为:11265【点睛】本小题主要考查方程的根的个数判断,考查二项式展开式,属于中档题.三、解答题21.(1)123(2)7920(3)20126720x 【分析】(1)令1x =,即可得该二项展开式中所有项的系数和的值;(2)在通项公式中,令x 的幂指数等于4,求得r 的值,可得含4x 项的系数;(3)根据1211312121211112122222r r r r r r r rC C C C ----+-⎧⎨⎩,求得r 的值,可得结论; 【详解】(1)令1x =,可得该二项展开式中所有项的系数和的值为123;(2)二项展开式中,通项公式为123641122r rr r T C x --+=,令3644r -=,求得8r =, 故含4x 项的系数为841227920C =.(3)第1r +项的系数为12122r rC-,由1211312121211112122222r r r r r r r rC C C C ----+-⎧⎨⎩,求得4r =, 故该二项展开式中系数最大的项为 384201421(2)()126720C x x x=. 【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题. 22.(1)16(2)330 【分析】(1)根据组合数的性质以及组合数的计算公式,化简得出结果.(2)根据组合数的性质以及组合数的计算公式,通过逐步求和,求出计算结果. 【详解】 解:(1)原式()23333100100101101101C CACA=+÷=÷333101101333116A A A A =÷=÷=. (2)原式43333445105140C C C C C C =+++⋯+=+4334346610101011C C C C C C =++⋯+==+=330=.【点睛】本小题主要考查组合数的性质以及组合数的计算公式,属于基础题. 23.(1)8;(2)7. 【分析】(1)根据二项式系数的比值列式求解n ;(2)先求出展开式的通项,然后求解所求项的系数. 【详解】(1)因为多项式12nx x ⎛⎫- ⎪⎝⎭的展开式中第3项、第5项二项式系数分别为2n C ,4n C ,又第3项与第5项的二项式系数之比为2:5.所以,2425n n C C =,.即()()()()122112354321n n n n n n -⨯=---⨯⨯⨯, 化简得25240n n --=,解得8n =或3n =-(舍去); 故n 的值为8.(2)又因为展开式通项()83821881122rx rr r rr T C x C xx --+⎛⎫⎛⎫=⋅-=- ⎪ ⎪⎝⎭⎝⎭, 当8312r-=时,解得2r ;.所以2238172T C x x ⎛⎫=-= ⎪⎝⎭, 所以展开式中含x 项的系数为7. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有给定项的二项式系数,利用通项求特定项的系数,属于简单题目. 24.(1)30(2)39(3)8 【解析】试题分析:(1)合理分类或分步,做到不重不漏; (2)正难则反,注意间接法的应用. 试题(1)可分五类,当末位数字是0,而首位数字是2时,有6个五位数; 当末位数字是0,而首位数字是3或4时,有C A =12个五位数; 当末位数字是2,而首位数字是3或4时,有C A =12个五位数; 当末位数字是4,而首位数字是2时,有3个五位数;当末位数字是4,而首位数字是3时,有A =6个五位数; 故共有6+12+12+3+6=39个满足条件的五位数.(2)可分为两类:末位数是0,个数有A ·A =4;末位数是2或4,个数有A ·C =4; 故共有A ·A +A ·C =8个满足条件的五位数. 25.(1)10;(2)1031- 【分析】(1)分别选择不同方案,根据展开式系数关系即可求出; (2)令0x =和1x =-可求出. 【详解】(1)选择条件①,若()21nx -的展开式中只有第6项的二项式系数最大,则52n=, 10n ∴=;选择条件②,若()21nx -的展开式中第4项与第8项的二项式系数相等,则37n n C C =,10n ∴=;选择条件②,若()21nx -的展开式中所有二项式系数的和为102,则1022n,10n ∴=;(2)由(1)知10n =,则()101231001231021x a a x a x a x a x -=++++⋅⋅⋅+, 令0x =,得01a =,令1x =-,则100123101012331a a a a a a a a a +=-+-+⋅⋅++⋅⋅⋅⋅++=+,101231031a a a a ∴+++⋅⋅⋅+=-.【点睛】本题考查二项展开式系数关系,属于基础题. 26.(1)56252x-;(2)5x . 【分析】(1)先求出二项展开式的通项,根据条件求出n ,即可知道二项式系数最大的项; (2)令x 的指数为5,即可计算出r ,求出含5x 的项. 【详解】可知35613()(1)rn rr n r rr r n n T C x C x x --+⎛==- ⎝,方案一:选条件①,(1)由题可知4422(1)14(1)3n n C C -=-,!2!(2)!144!(4)!!3n n n n -∴⨯=-,25500n n ∴--=,解得10n =或5n =-(舍去),所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)由(1)知56110510,(1)r r r rn T C x-+==-,令5556r -=,0r ∴=,51T x ∴=, 所以展开式中含5x 的项是第一项,为5x ; 方案二:选条件②, (1)由题可知21212552n nnnnn nC CC C -++=+==,整理得21100n n +-=,解得10n =或11n =-(舍去), 所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)同方案一(2); 方案三:选条件③, (1)222211110n n nn n n C C C C C -++-=-==,10n ∴=,所以展开式共有11项,其中二项式系数最大的项是第六项,555566610(1)252T C x x =-=-,所以展开式中二项式系数最大的项是第6项,566252T x =-;(2)同方案一(2). 【点睛】本题考查二项展开式的相关性质,属于中档题.。
(必考题)高中数学选修三第一单元《计数原理》检测题(答案解析)(2)
一、选择题1.2020年12月1日,大连市开始实行生活垃圾分类管理.某单位有四个垃圾桶,分别是一个可回收物垃圾桶、一个有害垃圾桶、一个厨余垃圾桶、一个其它垃圾桶.因为场地限制,要将这四个垃圾桶摆放在三个固定角落,每个角落至少摆放一个,则不同的摆放方法共有(如果某两个垃圾桶摆放在同一角落,它们的前后左右位置关系不作考虑)( ) A .18种B .24种C .36种D .72种2.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40-B .25-C .25D .553.若1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是 A .462- B .462 C .792D .792-4.对任意正整数n ,定义n 的双阶乘!!n 如下:当n 为偶数时,()()!!24642n n n n =--⨯⨯;当n 为奇数时,()()!!24531n n n n =--⨯⨯.现有四个命题:①()()2009!!2008!!2009!=;②2008!!21004!=⨯;③2008!!个位数为0;④2009!!个位数为5.其中正确的个数为( ) A .1B .2C .3D .45.若0k m n ≤≤≤,且m ,n ,k ∈N ,则0CC mn mk n k n k --==∑( )A .2m n+B .C 2n mmC .2C nmnD .2C m mn6.动点M 位于数轴上的原点处,M 每一次可以沿数轴向左或者向右跳动,每次可跳动1个单位或者2个单位的距离,且每次至少跳动1个单位的距离.经过3次跳动后,M 在数轴上可能位置的个数为( ) A .7B .9C .11D .137.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种8.在下方程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x x x+⋅-的展开式中的常数项是A .224B .336C .112D .5609.若从0,1,2,3,4,5这六个数字中选3个数字,组成没有重复数字的三位偶数,则这样的三位数一共有( ) A .20个B .48个C .52个D .120个10.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49611.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134********+=),则称(),m n 为“简单的”有序对,而m n +称为有序数对(),m n 的值,那么值为2964的“简单的”有序对的个数是( ) A .525B .1050C .432D .864 12.899091100⨯⨯⨯⨯可表示为( )A .10100AB .11100AC .12100AD .13100A第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为________.14.甲、乙、丙、丁、戊五人去参加数学、物理、化学三科竞赛,每个同学只能参加一科竞赛,若每个同学可以自由选择,则不同的选择种数是____;若甲和乙不参加同一科,甲和丙必须参加同一科,且这三科都有人参加,则不同的选择种数是_____.(用数字作答)15.已知()2311nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*N n ∈且58n ≤≤,则n =______. 16.已知集合{}08A C =,{}1288,B C C =,{}456888,,C C C C =,若从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定不同点的个数为___________.17.若二项式nx ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.18.若()5234501234512x a a x a x a x a x a x +=+++++,则024a a a ++=__________. 19.设S 为一个非空有限集合,记||S 为集合S 中元素的个数,若集合S 的两个子集A 、B 满足:||A B k =并且A B S =,则称子集{,}A B 为集合S 的一个“k —覆盖”(其中0||k S ≤≤),若||S n =,则S 的“k —覆盖”个数为________20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员3人,组成5人服务队,要求服务队中至少有1名女生,共有________种不同的选法(用数字作答)三、解答题21.已知()(n f x x =,()f x 的展开式的各二项式系数的和等于128,(1)求n 的值;(2)求()f x 的展开式中的有理项;(3)求()f x 的展开式中系数最大的项和系数最小的项. 22.已知()10210012101mx a a x a x a x +=++++中,0m ≠,且63140a a +=.(1)求m ;(2)求246810a a a a a ++++.23.已知二项式10x ⎛⎝的展开式.(1)求展开式中含4x 项的系数;(2)如果第3r 项和第2r +项的二项式系数相等,求r 的值.24.已知4530n n A C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.25.为弘扬我国古代的“六艺”文化,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程.(1)若体验课连续开设六周,每周一门,求其中“射”不排在第一周,“数”不排在最后一周的所有可能排法种数;(2)甲、乙、丙、丁、戊五名教师在教这六门课程,每名教师至少任教一门课程,求其中甲不任教“数”的课程安排方案种数.26.若2012112nn n x a a x a x a x ⎛⎫-=++++ ⎪⎝⎭,且27a =.(1)求112nx ⎛⎫- ⎪⎝⎭的展开式中二项式系数最大的项; (2)求23112342222n n a a a a a -+++++的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分析题意,得到有一个固定点放着两个垃圾桶,先选出两个垃圾桶,之后相当于三个元素分配到三个地方,最后利用分步乘法计数原理,求得结果. 【详解】根据题意,有四个垃圾桶放到三个固定角落,其中有一个角落放两个垃圾桶, 先选出两个垃圾桶,有246C =种选法,之后与另两个垃圾桶分别放在三个不同的地方有33A 种放法;所以不同的摆放方法共有23436636C A ⋅=⨯=种, 故选:C. 【点睛】思路点睛:该题考查的是有关排列组合综合题,解题方法如下:(1)首先根据题意,分析出有两个垃圾桶分到同一个地方,有246C =种选法; (2)之后就相当于三个元素的一个全排; (3)利用分步乘法计数原理求得结果.2.B解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x 与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=-故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3.D解析:D 【解析】∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =.121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211C r r r r T x -+=-,令1222r -=,得5r =. ∴展开式中含2x 项的系数是()12551C 792-=-,故选D . 【名师点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项,可依据条件写出第1r +项,再由特定项的特点求出r 值即可; (2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.4.C解析:C 【分析】利用双阶乘的定义以及阶乘的定义可判断①的正误;化简2008!!可判断②的正误;由2008!!能被10整除可判断③的正误;由2009!!能被5整除且为奇数可判断④的正误.综合可得出结论. 【详解】对于命题①,由双阶乘的定义得2009!!1352009=⨯⨯⨯⨯,2008!!2462008=⨯⨯⨯⨯,所以,()()2009!!2008!!1234200820092009!=⨯⨯⨯⨯⨯⨯=,命题①正确;对于命题②,()()()()2008!!246200821222321004=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯100421004!=⨯,命题②错误;对于命题③,2008!!2468102008=⨯⨯⨯⨯⨯⨯,则2008!!能被10整除,则2008!!的个位数为0,命题③正确; 对于命题④,2009!!1352009=⨯⨯⨯⨯能被5整除,则2009!!的个位数为0或5,由于2009!!为奇数,所以,2009!!的个位数为5,命题④正确.故选:C. 【点睛】本题考查双阶乘的新定义,考查计算能力,属于中等题.5.D解析:D 【分析】根据已知条件,运用组合数的阶乘可得:n m k m kn k n n m C C C C --=,再由二项式系数的性质,可得所要求的和. 【详解】()()()()()()()()!!!!!!!!!!!!!!!!n m k n k n m kn mn k n n C C n m m k k n k n m m k k n m C C m n m k m k ---=⋅=-⋅-⋅--⋅-⋅=⋅=⋅-⋅-则()012mmn m k m k m m m m n knn m n m m m n k k CC C C C C C C C --====⋅+++=∑∑故选:D 【点睛】本题考查了组合数的计算以及二项式系数的性质,属于一般题.6.D解析:D 【分析】根据题意,分为动点M ①向左跳三次,②向右跳三次,③向左跳2次,向右跳1次,④向左跳1次,向右跳2次,四种情况进行讨论,得到相应的位置,从而得到答案. 【详解】根据题意,分4种情况讨论:①,动点M 向左跳三次,3次均为1个单位,3次均为2个单位,2次一个单位,2次2个单位,故有﹣6,﹣5,﹣4,﹣3,②,动点M 向右跳三次,3次均为1个单位,3次均为2个单位,2次一个单位,2次2个单位,故有6,5,4,3,③,动点M 向左跳2次,向右跳1次,故有﹣3,﹣2,﹣1,0,2, ④,动点M 向左跳1次,向右跳2次,故有0,1,2,3,故M 在数轴上可能位置的个数为﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6共有13个, 故选:D. 【点睛】本题考查分类计数原理,考查了分类讨论的思想,属于中档题.7.B解析:B 【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案.【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况, ②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种; 故选:B . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.8.D解析:D 【分析】由程序图先求出m 的值,然后代入二项式中,求出展开式中的常数项 【详解】由程序图可知求输入18100a b ==,的最大公约数,即输出2m =则二项式为())348332812161x x x x x x x ⎛⎫⎛⎫+⋅-=+++ ⎪ ⎪⎝⎭⎝⎭)81的展开通项为()82181r rr r T C x-+=-要求展开式中的常数项,则当取38x 时,令832r-= 解得2r =,则结果为288224C =,则当取12x 时,令812r-=,解得6r =,则结果为6812336C =,故展开式中的常数项为224336560+=,故选D【点睛】本题考查了运用流程图求两个数的最大公约数,并求出二项式展开式中的常数项,在求解过程中注意题目的化简求解,属于中档题9.C解析:C 【分析】由于0不能在首位数字,则分2种情况讨论:①若0在个位,此时0一定不在首位,由排列公式即可得此时三位偶数的数目;②若0不在个位,要排除0在首位的可能,由分步计数原理可得此情况下三位偶数的数目,综合2种情况,由分类计数原理计算可得答案. 【详解】根据题意,分2种情况讨论: ①若0在个位,此时只须在1,2,3,4,5中任取2个数字,作为十位和百位数字即可,有A 52=20个没有重复数字的三位偶数; ②若0不在个位,此时必须在2或4中任取1个,作为个位数字,有2种取法,0不能作为百位数字,则百位数字有4种取法,十位数字也有4种取法,此时共有2×4×4=32个没有重复数字的三位偶数,综合可得,共有20+32=52个没有重复数字的三位偶数.故选C.【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,解题需要注意偶数的末位数字以及0不能在首位等性质.10.C解析:C【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C种方法,用四种颜色涂色时,有41126322C C C A种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C=种方法,用四种颜色涂色时,有41126432360C C C A=种方法,根据分类计数原理得不同涂法的种数为120+360=480.故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.11.B解析:B【分析】由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种取法,从0,1,2,3,4,5,6,7,8,9 ,第三位有7种取法,从0,1,2,3,4,5,6取一个数字,第四为有5种,从0,1,2,3,4取一个数字,根据分步计数原理得到结果.【详解】由题意知本题是一个分步计数原理,第一位取法3种为0,1, 2,第二位有10种为0,1,2,3,4,5,6,7,8,9 ,第三位有7种为0,1,2,3,4,5,6,第四为有5种为0,1,2, 3,4根据分步计数原理知共有3×10×7×5=1050个故选:B.【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.12.C解析:C【分析】由排列数的定义即可得出结果.【详解】12 100=10099(100121)1009989⨯⨯⨯-+=⨯⨯⨯A故选:C【点睛】本题考查了排列数的定义,考查了理解辨析能力和逻辑推理能力,属于一般题目.二、填空题13.36【分析】先从4个人中选出2人作为一个元素看成整体再把它同另外两个元素在三个位置全排列根据分步乘法原理得到结果【详解】从4名学生中选出2名学生作为一个整体有种再和另外两人分别推荐到3所不同的大学共解析:36【分析】先从4个人中选出2人作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果.【详解】从4名学生中选出2名学生作为一个整体,有24C种,再和另外两人分别推荐到3所不同的大学,共有234336C A=种分配方案.故答案为:36【点睛】本题考查分步乘法计数原理,利用了捆绑法,属于中档题.14.24330【分析】由分步乘法原理可知每个同学可以自由选择的种数根据题意可分两类221和311安排参加竞赛根据组合与排列即可求解【详解】若每个同学可以自由选择由乘法原理可得不同的选择种数是;因为甲和乙解析:243 30【分析】由分步乘法原理可知每个同学可以自由选择的种数,根据题意可分两类2、2、1和3、1、1安排参加竞赛,根据组合与排列即可求解.【详解】若每个同学可以自由选择,由乘法原理可得,不同的选择种数是53243=;因为甲和乙不参加同一科,甲和丙必须参加同一科,所以有2、2、1和3、1、1两种分配方案.当分配方案为2、2、1时,共有233318C A =种;当分配方案为3、1、1时,共有132312C A =种;所以不同的选择和数是181230+=. 【点睛】本题考查排列组合的实际应用,分类加法计数原理与分步乘法计数原理,考查逻辑推理能力,属于中档题.15.7【分析】先将问题转化成二项式的展开式中没有常数项项和项利用二项展开式的通项公式求出第项然后即可求解【详解】因为的展开式中没有项所以的展开式中没有常数项项和项的展开式的通项为所以方程当且时无解检验可解析:7 【分析】先将问题转化成二项式31()nx x+的展开式中没有常数项、x 项和2x 项,利用二项展开式的通项公式求出第1r +项,然后即可求解 【详解】因为()2233111()(12)()n n x x x x x x x++=+++的展开式中没有2x 项 所以31()nx x+的展开式中没有常数项、x 项和2x 项 31()n x x+的展开式的通项为341,0,1,2r n r r r n rr n n T C x x C x r n ---+=== 所以方程40,41,42n r n r n r -=-=-=,当*N n ∈且58n ≤≤时无解 检验可得7n = 故答案为:7 【点睛】二项式(+)na b 的展开式的通项为:1,0,1,2r n r r r n T C a b r n -+==16.【分析】由组合数的性质得出先求出无任何限制条件下所确定的点的个数然后考虑坐标中有两个相同的数的点的个数将两数作差可得出结果【详解】由组合数的性质得出不考虑任何限制条件下不同点的个数为由于坐标中同时含 解析:33【分析】由组合数的性质得出2688C C =,先求出无任何限制条件下所确定的点的个数,然后考虑坐标中有两个相同的数的点的个数,将两数作差可得出结果. 【详解】由组合数的性质得出2688C C =,不考虑任何限制条件下不同点的个数为11323336C C A =, 由于2688C C =,坐标中同时含28C 和68C 的点的个数为133C =,综上所述:所求点的个数为36333-=,故答案为33. 【点睛】本题考查排列组合思想的应用,常用的就是分类讨论和分步骤处理,本题中利用总体淘汰法,可简化分类讨论,考查分析问题和解决问题的能力,属于中等题.17.15【解析】二项式展开式中各项系数的和为64令得的通项为令常数项为故答案为【方法点晴】本题主要考查二项展开式定理的通项系数及各项系数和的求法属于简单题二项展开式定理的问题也是高考命题热点之一关于二项解析:15 【解析】二项式nx⎛+ ⎝展开式中各项系数的和为64,∴令1x =,得6264,8,n n x⎛== ⎝的通项为36622166r r r r r r T C x x C x ---+=⋅=,令360,42r r -==,常数项为4615C =,故答案为15.【方法点晴】本题主要考查二项展开式定理的通项、系数及各项系数和的求法,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.【分析】分别令和再将两个等式相加可求得的值【详解】令则;令则上述两式相加得故答案为:【点睛】本题考查偶数项系数和的计算一般令和通过对等式相加减求得考查计算能力属于中等题 解析:121【分析】分别令1x =和1x =-,再将两个等式相加可求得024a a a ++的值. 【详解】令1x =,则50123453a a a a a a +++++=;令1x =-,则0123451a a a a a a -+-+-=-.上述两式相加得5024311212a a a -++==.故答案为:121. 【点睛】本题考查偶数项系数和的计算,一般令1x =和1x =-,通过对等式相加减求得,考查计算能力,属于中等题.19.【分析】当时共有种情况当时共有种情况由此可计算得到答案【详解】由题意当时即中有个元素所以共有种情况此时集合中剩下个元素其子集个数为个即共有种情况所以的—覆盖个数为故答案为:【点睛】本题主要考查组合数解析:2k n kn C -⋅【分析】 当||A B k =时,共有k n C 种情况,当A B S =时,共有2n k -种情况,由此可计算得到答案. 【详解】 由题意,当||AB k =时,即A B 中有k 个元素,所以共有kn C 种情况,此时集合S 中剩下n k -个元素,其子集个数为2n k -个, 即AB S =共有2n k -种情况,所以S 的“k —覆盖”个数为2k n kn C -⋅. 故答案为:2k n kn C -⋅【点睛】本题主要考查组合数的应用和集合子集个数的应用,考查学生分析解决问题的能力,属于中档题.20.1000【分析】根据题意分为1女4男和2女3男再利用排列组合求解每类的种数结合计数原理即可求解【详解】由题意可分为两类:第一类:先选1女4男有种再在这5人中选2人作为队长和副队长有种所以共有;第二类解析:1000 【分析】根据题意,分为1女4男和2女3男,再利用排列、组合求解每类的种数,结合计数原理,即可求解. 【详解】由题意,可分为两类:第一类:先选1女4男,有142630C C =种,再在这5人中选2人作为队长和副队长有2520A =种,所以共有3020600⨯=; 第二类:先选2女3男,有232620C C =种,再在这5人中选2人作为队长和副队长有2520A =种,所以共有2020400⨯=,根据分类计数原理,共有6004001000+=种不同的选法. 故答案为:1000 【点睛】本题主要考查了分类计数原理和分步计数原理,以及排列、组合的综合应用,其中解答中认真审题,合理分类,结合排列、组合的知识求得每类的种数是解答的关键,着重考查了分析问题和解答问题的能力.三、解答题21.(1)7n =;(2)71=T x ,3435T x =-,177-=T x ;(3)系数最大的项为第五项53535T x =;系数最小的项为第4项3435T x =-【分析】(1)根据()f x 的展开式的各二项式系数的和等于2128n =求解. (2)先得到()f x 的展开式中的通项公式47317(1)r r rr TC x-+=-,再令473r-为整数求解. (3)由通项公式知:第1r +项的系数为7(1)⋅-r r C ,若该系数最大,则r 为偶数,且7rC 最大求解.若该系数最小,则r 为奇数,且7rC 最大求解. 【详解】 (1)已知()(n f x x =,()f x ∴的展开式的各二项式系数的和等于2128n =,7n ∴=.(2)()f x 的展开式中的通项公式为47317(1)-+=⋅-⋅r r rr T C x,令473r-为整数,可得0r =,3,6, 故展开式的有理项为71=T x ,3435T x =-,177-=T x . (3)第1r +项的系数为7(1)⋅-r r C ,当该系数最大时,r 为偶数,且7rC 最大,此时,4r =, 故()f x 的展开式中系数最大的项为第五项53535T x =; 当该系数最小时,r 为奇数,且7rC 最大,此时,3r =, 故()f x 的展开式中系数最小的项为第4项3435T x =-. 【点睛】本题主要考查二项展开式的通项公式,二项式系数的性质,项的系数,还考查了运算求解的能力,属于中档题. 22.(1)2m =-(2)29524 【分析】(1)由二项式定理求出第4项和第7项的系数,代入已知可得m ;(2)令1x =得所有项系数和,令1x =-得奇数项系数和与偶数项系数和的差,两者结合后可得偶数项系数和,0a 是常数项易求,从而可得246810a a a a a ++++, 【详解】(1)因为10i ii a C m =,1,2,310i =,依题意得:66331010140C m C m +=,331098710981404321321m m ⨯⨯⨯⨯⨯⎛⎫+=⎪⨯⨯⨯⨯⨯⎝⎭因为0m ≠,所以38m =-,得2m =-. (2)()102100121012x a a x a x a x -=+++令1x =得:()10012345678910121a a a a a a a a a a a ++++++++++=-=.① 令1x =-得:()1010012345678910123a a a a a a a a a a a -+-+-+-+-+=+=.② 由①+②得:()10024*******a a a a a a +++++=+,即100246810132a a a a a a ++++++=. 又()001021a C =-=,所以1010246810133112952422a a a a a +-++++=-==【点睛】本题考查二项式定理的应用和赋值法,考查推理论证能力、运算求解能力,考查化归与转化思想,导向对发展数学抽象、逻辑推理、数学运算等核心素养的关注. 23.(1)3360;(2)1 【分析】(1)写出二项展开式的通项公式,当x 的指数是4时,可得到关于k 方程,解方程可得k 的值,从而可得展开式中含4x 项的系数;(2)根据上一问写出的通项公式,利用第3r 项和第2r +项的二项式系数相等,可得到一个关于r 的方程,解方程即可得结果. 【详解】(1)设第k +1项为T k +1=令10-k =4,解得k =4,故展开式中含x 4项的系数为()441023360C =-.(2)∵第3r 项的二项式系数为,第r +2项的二项式系数为,∵=,故3r -1=r +1或3r -1+r +1=10,解得r =1或r =2.5(不合题意,舍去),∴r =1. 24.(Ⅰ)8n =;(Ⅱ)728T .【分析】(Ⅰ)利用排列数,组合数公式化简4530n n A C =即可得n 的值.(Ⅱ)写出()f x 的展开式的通项公式,令x 的指数为0即可得到常数项. 【详解】(Ⅰ)由已知4530n n A C =得:!30!4!5!5!n n n n ,!30!45!1205!n n n n n解得:8n =.(Ⅱ)8x ⎛⎝展开式的通项为488318831kk kkkk k T C xCxx由4803k 得6k =,即()f x 的展开式中的常数项为728T .【点睛】本题考查排列数组合数公式的应用,考查求解二项展开式中的常数项,考查计算能力,属于基础题.25.(1)504种;(2)1440种. 【分析】(1)由题意,分“射”排在最后一周,剩下的课程没有限制和“射”不排在最后一周从中间四周选一周,再选一门课程排在最后一周,其他没有限制,然后与加法计数原理求解. (2)由题意,分甲只任教1科和甲任教2科,然后与加法计数原理求解. 【详解】(1)当“射”排在最后一周时,5554321120A =⨯⨯⨯⨯=, 当“射”不排在最后一周时,114444444321384C C A =⨯⨯⨯⨯⨯=,120384504+=,所以“射”不排在第一周,“数”不排在最后一周的排法有504种.(2)当甲只任教1科时,11121454325433554341200C C C C C A A =⨯⨯⨯⨯=, 当甲任教2科时,245454432124021C A ⨯=⨯⨯⨯⨯=⨯, 12002401440+=,所以甲不任教“数”的课程安排方案有1440种. 【点睛】本题主要考查排列组合的应用以及分步,分类计数原理的应用,属于中档题. 26.(1)4358x (2)12-【分析】(1)由二项展开式通项公式得出2a ,然后由27a =求出n ,根据二项式系数的性质得出最大项的项数,再求出该项即可;(2)在展开式中令0x =可得0a ,令2x =再结合0a 可得结论. 【详解】(1)因为22222321124nn T C x C x a x ⎛⎫=-== ⎪⎝⎭,且27a =,所以21(1)7(8)(7)048n n n C n n -==⇒-+=,解得8n =或7n =-(舍), 故112nx ⎛⎫- ⎪⎝⎭的展开式中二项式系数最大的项为第5项,为4544813528T C x x ⎛⎫=-=⎪⎝⎭; (2)令0x =,可知01a =,令2x =,得23401234022222n n a a a a a a =++++++,所以2341234222221n n a a a a a +++++=-,故()231234123412341122222222222n n n n a a a a a a a a a a -+++++=+++++=-. 【点睛】本题考查二项式定理,考查二项式系数的性质,考查赋值法求系数的和.属于基本题型.。
(好题)高中数学选修三第一单元《计数原理》测试卷(有答案解析)(2)
一、选择题1.把5名同学分配到图书馆、食堂、学生活动中心做志愿者,每个地方至少去一个同学,不同的安排方法共有( )种. A .60B .72C .96D .1502.2020是全面实现小康社会目标的一年,也是全面打赢脱贫攻坚战的一年.复旦大学团委发起了“跟着驻村第一书记去扶贫”的实践活动,其中学生小明与另外3名学生一起分配到某乡镇甲、乙、丙3个贫困村参与扶贫工作,若每个村至少分配1名学生,则小明恰好分配到甲村的方法数是( ) A .3 B .8 C .12 D .63.两名老师和3名学生站成两排照相,要求学生站在前排,老师站在后排,则不同的站法有( ) A .120种B .60种C .12种D .6种4.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-5.在10的展开式中,系数的绝对值最大的项为( ) A .10532B .56638x -C .531058xD .5215x -6.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出的产品个数为( ) A .7B .8C .9D .107.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种8.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种9.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .48010.在下方程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x m x x x+⋅-+的展开式中的常数项是A .224B .336C .112D .56011.设40cos2t xdx π=⎰,若20182012(1)x a a x a x t-=++20182018a x ++,则1232018a a a a +++=( )A .-1B .0C .1D .25612.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .20212二、填空题13.二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足和医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援. 若将5名医生志愿者分配到两家医院(每人去一家医院,每家医院至少去1人),则共有_______种分配方案.(用数字作答) 15.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项是第________项..16.计算:01220181232019C C C C ++++=______.17.二项式92(x x展开式中3x 的系数为__________.18.设S 为一个非空有限集合,记||S 为集合S 中元素的个数,若集合S 的两个子集A 、B 满足:||A B k =并且A B S =,则称子集{,}A B 为集合S 的一个“k —覆盖”(其中0||k S ≤≤),若||S n =,则S 的“k —覆盖”个数为________19.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有______种. 20.数列{}n a 中,11a =,121n n a a +=+(*n N ∈),则012345515253545556C a C a C a C a C a C a +++++=________三、解答题21.已知(x)n 的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有的有理项.22.在二项式12312x x ⎛⎫+ ⎪⎝⎭的展开式中.(1)求该二项展开式中所有项的系数和的值; (2)求该二项展开式中含4x 项的系数; (3)求该二项展开式中系数最大的项.23.在二项式32(*)nx n N x ⎛⎫+∈ ⎪⎝⎭的展开式中,第三项的系数与第四项的系数相等. (1) 求n 的值,并求所有项的二项式系数的和;(2) 求展开式中的常数项.24.已知数列{}n a 是等比数列,11a =,公比是4214x x ⎛⎫+ ⎪⎝⎭的展开式的第二项(按x 的降幂排列).(1)求数列{}n a 的通项n a ; (2)求数列{}n a 前n 项和n S ;(3)若2112nn n n n n A C S C S C S =++⋅⋅⋅+,求n A .25.已知()2*12nx n N x ⎛⎫-∈ ⎪⎝⎭的展开式中所有偶数项的二项式系数和为64. (1)求展开式中二项式系数最大的项;(2)求221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式中的常数项.26.已知在2nx ⎫⎪⎭的展开式中,第6项的系数与第4项的系数之比是6: 1.(1)求展开式中11x 的系数; (2)求展开式中系数绝对值最大的项;(3)求2319819n nn n n n C C C -++++的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先把5名同学分成3组,有113,122++++两种情况,再将他们分配下去即可求出. 【详解】5名同学分成3组,有113,122++++两种情况,故共有1235452225C C C A +=种分组方式,再将他们分配到图书馆、食堂、学生活动中心有336A =种方式,根据分步乘法计数原理可知,不同的安排方法共有256150⨯=种. 故选:D . 【点睛】本题主要考查有限制条件的排列组合问题的解法应用,解题关键是对“至少”的处理,属于中档题.方法点睛:常见排列问题的求法有: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.C解析:C 【分析】对甲村分配的学生人数进行分类讨论,结合分类加法计数原理可求得结果. 【详解】若甲村只分配到1名学生,则该学生必为小明,此时分配方法数为22326C A =种;若甲村分配到2名学生,则甲村除了分配到小明外,还应从其余3名学生中挑选1名学生分配到该村,此时分配方法数为12326C A =种.综上所述,不同的分配方法种数为6612+=种. 故选:C. 【点睛】方法点睛:不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.3.C解析:C 【分析】根据题意,分2步讨论老师、学生的安排方法,由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①将两名老师全排列,安排在后排,有222A =种安排方法, ②将三名学生全排列,安排在前排,有336A =种安排方法,则一共有2612⨯=种安排方法; 故选:C 【点睛】本题考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.4.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2r r r r rr r rx T C x C x ---+⎛⎫=-=- ⎪⎝⎭,由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.5.D解析:D 【分析】根据最大的系数绝对值大于等于其前一个系数绝对值;同时大于等于其后一个系数绝对值;列出不等式求出系数绝对值最大的项; 【详解】10∴二项式展开式为:(10)113211012kk k k T C x x --+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭设系数绝对值最大的项是第1k +项,可得11101011101011221122k k k kk k k kC CC C--++⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥⎪ ⎪⎪⎝⎭⎝⎭⎩可得11112101112kkkk-⎧≥⎪⎪⎨-⎪≥⋅⎪+⎩,解得81133k≤≤*k N∈∴3k=在10的展开式中,系数的绝对值最大的项为:3711310523241215x xT C x-⎛⎫⎛⎫=-=⎪⎭-⎪⎝⎭⎝故选:D.【点睛】本题考查二项展开式中绝对值系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.6.C解析:C【分析】根据题意,设至少应抽出x个产品,由题设条件建立不等式3337100.6xxC CC-≥,由此能求出结果.【详解】解:要使这3个次品全部被抽出的概率不小于0.6,设至少抽出x个产品,则基本事件总数为10xC,要使这3个次品全部被抽出的基本事件个数为3337xC C-,由题设知:3337100.6xxC CC-≥,所以()()12310985x x x--≥⨯⨯,即()()12432x x x--≥,分别把A,B,C,D代入,得C,D均满足不等式,因为求x的最小值,所以9x=.故选:C.【点睛】本题考查概率的应用,解题时要认真审题,仔细解答,注意合理的进行等价转化.7.D解析:D 【分析】根据(1)(2)(3)(4)f f f f ≤≤≤中等号所取个数分类讨论,利用组合知识求出即可. 【详解】解:当(1)(2)(3)(4)f f f f ≤≤≤中全部取等号时,情况有155C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有两个取等号,一个不取等号时,情况有215330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有一个取等号,两个不取等号时,情况有315330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中都不取等号时,情况有455C =种;共560+60+5=70+种. 故选:D. 【点睛】本题考查分类讨论研究组合问题,关键是要找准分类标准,是中档题.8.B解析:B 【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案. 【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况, ②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种; 故选:B . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.9.C解析:C 【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A =(种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.10.D解析:D 【分析】由程序图先求出m 的值,然后代入二项式中,求出展开式中的常数项 【详解】由程序图可知求输入18100a b ==,的最大公约数,即输出2m =则二项式为())348332812161x xx x x x x ⎛⎫⎛⎫+⋅-=+++ ⎪ ⎪⎝⎭⎝⎭)81的展开通项为()82181r rr r T C x-+=-要求展开式中的常数项,则当取38x 时,令832r-= 解得2r =,则结果为288224C =,则当取12x 时,令812r-=,解得6r =,则结果为6812336C =,故展开式中的常数项为224336560+=,故选D【点睛】本题考查了运用流程图求两个数的最大公约数,并求出二项式展开式中的常数项,在求解过程中注意题目的化简求解,属于中档题11.B解析:B 【解析】分析:先求定积分,再求()()()()12320181,010f f a a a a f f +++=-,详解:4400111cos22|02222t xdx sin x sin πππ===-=⎰,故设()(f x =1-2x 2018),所以()()11,01f f ==,()()1232018100a a a a f f +++=-=,故选B点睛:求复合函数的定积分要注意系数能够还原,二项式定理求系数和的问题,采用赋值法.12.C解析:C【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.二、填空题13.60【分析】根据二项式展开式的通项公式求解【详解】有题意可得二项式展开式的通项为:令可得此时【点睛】本题考查二项式定理的应用考查通项公式考查计算能力属于基础题解析:60 【分析】根据二项式展开式的通项公式求解. 【详解】有题意可得,二项式展开式的通项为:()62612316612(1)2rrrr r r rr T C xC xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.【点睛】本题考查二项式定理的应用,考查通项公式,考查计算能力,属于基础题.14.30【分析】根据题意先将5名医生分成2组再分配的两家医院即可求得分配方案的种数分组时有和两种分组方法结合组合的运算集合求出结果【详解】解:由题可知先将5名医生分成2组有种再分配的两家医院有种即有30解析:30 【分析】根据题意,先将5名医生分成2组,再分配的两家医院即可求得分配方案的种数,分组时有14+和23+两种分组方法,结合组合的运算集合求出结果. 【详解】解:由题可知,先将5名医生分成2组,有1423545351015C C C C ⋅+⋅=+=种,再分配的两家医院有221530A =种,即有30种分配方案. 故答案为:30. 【点睛】本题考查排列和组合的运算和应用,考查了先选再排的技巧,分组时要注意分类讨论.15.8和9【分析】根据求得利用二项式系数的性质可得展开式中二项式系数的最大【详解】解:由题意可得即解得∵故展开式中二项式系数的最大的项为第8项或第9项故答案为:8和9【点睛】本题主要考查二项式定理的应用解析:8和9 【分析】 根据21121n n n nn n C C C --++= 求得15n =,利用二项式系数的性质可得展开式中二项式系数的最大. 【详解】解:由题意可得,21121n n nn n n C C C --++=,即(1)11212n n n -++=,解得15n =, ∵1182n -+=, 1192n ++= 故展开式中二项式系数的最大的项为第8项或第9项, 故答案为:8和9. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.16.【分析】将变为然后利用组合数性质即可计算出所求代数式的值【详解】故答案为:【点睛】本题考查组合数的计算利用组合数的性质进行计算是解题的关键考查计算能力属于中等题 解析:2039190【分析】将01C 变为02C ,然后利用组合数性质111k k k n n n C C C ++++=即可计算出所求代数式的值.【详解】()111,,1k k k n n n C C C n N k N k n ++*++=∈∈≤+, 012201801220181220182018123201922320193320192020C C C C C C C C C C C C ∴++++=++++=+++=2039190=.故答案为:2039190. 【点睛】本题考查组合数的计算,利用组合数的性质进行计算是解题的关键,考查计算能力,属于中等题.17.【分析】由题意求得二项展开式的通项利用展开式的通项即可求解的系数得到答案【详解】由题意二项式展开式的通项为令解得所以即中的系数为【点睛】本题主要考查了二项展开式的指定项的系数的求解其中熟记二项展开式 解析:18【分析】由题意,求得二项展开式的通项,利用展开式的通项,即可求解3x 的系数,得到答案. 【详解】由题意,二项式92x ⎛ ⎝展开式的通项为(()93992199212rrr rr rr r T C C xx ---+⎛⎫=⋅⋅=-⋅⋅⋅ ⎪⎝⎭令3932r -=,解得8r =,所以()81833191218r T C x x +=-⋅⋅⋅=,即中3x 的系数为18. 【点睛】本题主要考查了二项展开式的指定项的系数的求解,其中熟记二项展开式的通项,利用通项求解指定项的系数是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.18.【分析】当时共有种情况当时共有种情况由此可计算得到答案【详解】由题意当时即中有个元素所以共有种情况此时集合中剩下个元素其子集个数为个即共有种情况所以的—覆盖个数为故答案为:【点睛】本题主要考查组合数解析:2k n kn C -⋅【分析】 当||A B k =时,共有k n C 种情况,当A B S =时,共有2n k -种情况,由此可计算得到答案. 【详解】 由题意,当||AB k =时,即A B 中有k 个元素,所以共有kn C 种情况,此时集合S 中剩下n k -个元素,其子集个数为2n k -个, 即AB S =共有2n k -种情况,所以S 的“k —覆盖”个数为2k n kn C -⋅. 故答案为:2k n kn C -⋅【点睛】本题主要考查组合数的应用和集合子集个数的应用,考查学生分析解决问题的能力,属于中档题.19.30【分析】先假设可放入一个盒里那么方法有种减去在一个盒子的情况就有5种把2个球的组合考虑成一个元素就变成了把三个不同的球放入三个不同的盒子从而可得到结果【详解】解:由题意知有一个盒子至少要放入2球解析:30 【分析】先假设,A B 可放入一个盒里,那么方法有24C 种,减去,A B 在一个盒子的情况,就有5种,把2个球的组合考虑成一个元素,就变成了把三个不同的球放入三个不同的盒子,从而可得到结果. 【详解】解:由题意知有一个盒子至少要放入2球,先假设,A B 可放入一个盒里,那么方法有246C =.再减去,A B 在一起的情况,就是615-=种.把2个球的组合考虑成一个元素,就变成了把三个不同的球放入三个不同的盒子,那么共有336A =种.∴根据分步计数原理知共有5630⨯=种. 故选:C . 【点睛】本题考查分步计数原理,考查带有限制条件的元素的排列问题.两个元素不能同时放在一起,或两个元素不能相邻,这都是常见的问题,需要掌握方法.20.454【分析】由结合等比数列的定义和通项公式可求出结合二项式定理可求出的值【详解】解:因为所以以为首项为公比的等比数列所以所以则又所以原式故答案为:454【点睛】关键点睛:本题的关键是求出数列通项公解析:454 【分析】由()1121n n a a ++=+,结合等比数列的定义和通项公式可求出21nn a =-,结合二项式定理可求出012345515253545556C a C a C a C a C a C a +++++的值. 【详解】解:因为()112221n n n a a a ++=+=+,所以{}1n a +以2为首项,2为公比的等比数列,所以11222n n n a -+=⨯=,所以21n n a =-,则012345515253545556C a C a C a C a C a C a +++++()01223344556012345555555555555222222C C C C C C C C C C C C =⨯+⨯+⨯+⨯+⨯++++⨯-++又01223344556555555222222C C C C C C ⨯+⨯+⨯+⨯+⨯+⨯()0011223344555555552222222C C C C C C =⨯⨯+⨯+⨯+⨯+⨯+⨯()5212486=⨯+=,0123455555555232C C C C C C +++++==,所以原式48632454=-=,故答案为:454. 【点睛】关键点睛:本题的关键是求出数列通项公式后,结合二项式定理对所求式子进行合理变形,减少计算量.三、解答题21.(1)5n =;(2)51T x =,2352T x =,5516T x=. 【分析】(1)写出二项式(n x +展开式的通项公式,得到第二项和第三项的系数,所以得到关于n 的方程,解得答案;(2)由(1)得到n的值,写出二项式(n x 展开式的通项公式,整理后,得到其x 的指数为整数的r 的值,再写出其展开式中的有理项. 【详解】解:二项式(n x +展开式的通项公式为32112rrn rr n r r r n n T C x C x--+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,()0,1,2r n =⋅⋅⋅; (1)根据展开式中的第二项和第三项的系数相等,得2121122nn C C ⎛⎫⋅=⋅ ⎪⎝⎭,即()111242n n n -=⋅, 解得5n =;(2)二项式展开式的通项公式为3521512rrr r T C x -+⎛⎫=⋅⋅ ⎪⎝⎭,()0,1,2r n =⋅⋅⋅;当0,2,4r =时,对应项是有理项, 所以展开式中所有的有理项为0551512T C x x ⎛⎫=⋅⋅= ⎪⎝⎭, 22532351522T C x x -⎛⎫=⋅⋅= ⎪⎝⎭,44565515216T C x x -⎛⎫=⋅= ⎪⎝⎭. 【点睛】本题考查二项展开式的项的系数,求二项展开式中的有理项,属于中档题.22.(1)123(2)7920(3)20126720x 【分析】(1)令1x =,即可得该二项展开式中所有项的系数和的值;(2)在通项公式中,令x 的幂指数等于4,求得r 的值,可得含4x 项的系数;(3)根据1211312121211112122222r r r r r r r rC C C C ----+-⎧⎨⎩,求得r 的值,可得结论; 【详解】(1)令1x =,可得该二项展开式中所有项的系数和的值为123;(2)二项展开式中,通项公式为123641122r rr r T C x --+=,令3644r -=,求得8r =, 故含4x 项的系数为841227920C =.(3)第1r +项的系数为12122r rC -,由1211312121211112122222r r r r r r r rC C C C ----+-⎧⎨⎩,求得4r =, 故该二项展开式中系数最大的项为 384201421(2)()126720C x x x=. 【点睛】本题考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题. 23.(1)8,256;(2)1792. 【分析】(1)由题意利用二项展开式的通项公式,求出n 的值,可得所有项的二项式系数的和;(2)在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项. 【详解】(1) ∵ 二项式32(*)nx n N x ⎛⎫+∈ ⎪⎝⎭的展开式的通项公式为()312n rrr r nT C x x -+⎛⎫= ⎪⎝⎭,由已知得332222n n n n C C --=,即322n n C C =,解得8n =,所有二项式系数的和为012825622nn n n n n C C C C ++++===;(2)展开式中的通项公式()838838481888222rrr r r r r r r r r T C x C x x C x x -----+⎛⎫=== ⎪⎝⎭,若它为常数项时480,2r r -==. 所以常数项是263821792.T C ==【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.24.(1)1n n a x -=;(2),11,11n n n x S x x x =⎧⎪=⎨-≠⎪-⎩;(3)()12,121,11n nn n n x A x x x -⎧⋅=⎪=⎨-+≠⎪-⎩.【分析】(1)利用二项式定理求得4214x x ⎛⎫+ ⎪⎝⎭的展开式的第二项,可求得数列{}n a 的公比,利用等比数列的通项公式可求得n a ;(2)分1x =和1x ≠两种情况讨论,利用等比数列的求和公式可求得n S ; (3)分1x =和1x ≠两种情况讨论,利用二项式定理可求得n A 的表达式. 【详解】(1)4214x x ⎛⎫+ ⎪⎝⎭的展开式的第二项为1324214T C x x x =⋅⋅=,所以,数列{}n a 的公比为x ,则111n n n a a x x --=⋅=;(2)当1x =时,则1n a =,n S n =; 当1x ≠时,()11111n n na x x S xx--==--.综上所述,,11,11n n n x S x x x=⎧⎪=⎨-≠⎪-⎩;(3)当1x =时,n S n =,()()()()111!!!!1!!k k k n k n n n n n C S kC k nC k n k k n k --⋅-==⋅==---,此时,()11112112112nn n n n n n n n n n A C S C C n C S S C C n -----=++⋅=++=+⋅⋅⋅+; 当1x ≠时,()()()()()1220120122111n n nn nn n n n n n n n n n n C x C x C x C C C C C C x C x C x ⋅-+⋅-++⋅-=++++-++++()21nn x =-+,此时,()1212211nn n n n n nn xA x C S C S C S =++⋅⋅-+=+-⋅. 综上所述,()12,121,11n nn n n x A x x x -⎧⋅=⎪=⎨-+≠⎪-⎩. 【点睛】本题考查等比数列通项的求解、等比数列求和以及利用二项式定理求和,考查计算能力,属于中等题.25.(1)54500T x =-,25280T x =(2)112 【分析】(1)由偶数项二项式系数可得7n =,可知展开式中间两项二项式系数最大,利用展开式通项公式求解;(2)由(1)利用展开式通项公式求含1x -和2x 项,结合与212x x ⎛⎫+ ⎪⎝⎭相乘即可求解. 【详解】(1)由展开式中所有的偶数项二项式系数和为64,得1264n -=, 所以7n =所以展开式中二项式系数最大的项为第四项和第五项.因为7212x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()()72714317712121rrrr r r rr r T C xC x x ---+⎛⎫=-=- ⎪⎝⎭, 所以()f x 的展开式中二项式系数最大的项为54500T x =-,25280T x =(2)由(1)知7n =,且7212x x ⎛⎫- ⎪⎝⎭的展开式中1x -项为684T x =-, 2x 项为25280T x =,所以221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式的常数项为()2841280112⨯-+⨯=, 【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.26.(1)18-;(2)325376x -;(3)91019-.【分析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中的第6项的系数与第4项的系数,列出方程求出n 的值,代入二项展开式的通项公式即可求解;(2)利用两边夹定理,设第1r +项系数的绝对值最大,列出关于r 的不等式即可求解; (3)利用二项式定理求解即可. 【详解】(1)由5533(2):(2)6:1n n C C --=,得9n =,∴通项2752219(2)r r rr TC x-+=-,令2751122r-=,解得1r =, ∴展开式中11x 的系数为119(2)18C -=-.(2)设第1r +项系数的绝对值最大,则11991199221732022r r r r r rr r C C r C C ++--⎧≥⇒≤≤⎨≥⎩,所以6r =,∴系数绝对值最大的项为27303662229(2)5376C xx ---=.(3)原式()90012299999991110199991(19)1999C C C C -⎡⎤=++++-=+-=⎣⎦. 【点睛】本题考查二项式定理的应用、二项展开式的通项公式和系数最大项的求解;考查运算求解能力和逻辑推理能力;熟练掌握二项展开式的通项公式是求解本题的关键;属于中档题、常考题型.。
(常考题)人教版高中数学选修三第一单元《计数原理》测试(答案解析)(2)
一、选择题1.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40-B .25-C .25D .552.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午课程安排如表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有( )A .8种B .10种C .12种D .14种3.从5名志愿者中选出4人分别到A 、B 、C 、D 四个部门工作,其中甲、乙两名志愿者不能到A 、B 二个部门工作,其他三人能到四个部门工作,则选派方案共有( ) A .120种B .24种C .18种D .36种4.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种B .48种C .60种D .72种5.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( ) A .166B .155C .566D .5116.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有 A .96种 B .124种 C .130种D .150种7.二项式2()nx x-的展开式中,第3项的二项式系数比第2项的二项式系数大9,则该展开式中的常数项为( ) A .160-B .80-C .80D .1608.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种9.若m 是小于10的正整数,则()()()151620m m m ---等于( )A .515m P -B .1520mm P --C .520m P - D .620m P -10.262()x x-的展开式中常数项为( ) A .-240B .-160C .240D .16011.已知67017(1)()...x a x a a x a x +-=+++,若017...0a a a +++=,则3a =( )A .5-B .20-C .15D .3512.在二项式n 的展开式中,当且仅当第5项的二项式系数最大,则系数最小的项是 A .第6项B .第5项C .第4项D .第3项二、填空题13.从3名男医生和5名女医生中,选派3人组成医疗小分队,要求男、女医生都有,则不同的选取方法种数为__________(用数字作答). 14.已知()2n1(2x )n N*x-∈的展开式中各项的二项式系数之和为128,则其展开式中含1x项的系数是______.(结果用数值表示) 15.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答) 16.二项式61(2x )x-的展开式中常数项为______(用数字表示). 17.()()42x y x y ++的展开式中32x y 的系数为______________.18.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______. 19.6名同学站成一排,甲、乙两人相邻,丙与丁不相邻,则共有______种不同的排法(用数字作答). 20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.(1)求证:当n *∈N 时,((11nn+为偶数;(2)当n *∈N时,(3n的整数部分是奇数,还是偶数?请证明你的结论.22.设()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅.(1)求0a 的值;(2)求1232n a a a a +++⋯+的值; (3)求13521n a a a a -+++⋯+的值.23.已知数列{}n a 是等比数列,11a =,公比是4214x x ⎛⎫+ ⎪⎝⎭的展开式的第二项(按x 的降幂排列).(1)求数列{}n a 的通项n a ; (2)求数列{}n a 前n 项和n S ;(3)若2112nn n n n n A C S C S C S =++⋅⋅⋅+,求n A .24.已知n+的展开式中前三项的系数为等差数列. (1)求二项式系数最大项; (2)求展开式中系数最大的项.25.现有大小相同的7只球,其中2只不同的红球,2只不同的白球,3只不同的黑球. (1)将这7只球排成一列且相同颜色的球必须排在一起,有多少种排列的方法?(请用数字作答)(2)将这7只球分成三堆,三堆的球数分别为:1,3,3,共有多少种分堆的方法?(请用数字作答)(3)现取4只球,求各种颜色的球都必须取到的概率.(请用数字作答)26.已知二项式n⎛⎝的展开式中各项二项式系数的和为256,其中实数a 为常数.(1)求n 的值;(2)若展开式中二项式系数最大的项的系数为70,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.2.B解析:B 【分析】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3节,而自习课可以上任意一节.故以生物课(或政治课)进行分类,再分步排其他科目.由计数原理可得张毅同学不同的选课方法. 【详解】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3、4节,而自习课可以上任意一节.若生物课排第2节,则其他课可以任意排,共有336A =种不同的选课方法.若生物课排第3节,则政治课有12C 种排法,其他课可以任意排,有22A 种排法,共有12224C A =种不同的选课方法.所以共有6410+=种不同的选课方法. 故选:B . 【点睛】本题考查两个计数原理,考查排列组合,属于基础题.3.D解析:D 【分析】根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,②、甲、乙两人都被选中,根据分类计数原理可得 【详解】解:根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,需要从甲、乙中选出1人,到C ,D 中的一个部门,其他三人到剩余的部门,有113223··24C C A =种选派方案. ②、甲、乙两人都被选中,安排到C ,D 部门,从其他三人中选出2人,到剩余的部门,有2223·12A A =种选派方案, 综上可得,共有24+12=36中不同的选派方案, 故选D . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中档题.4.A解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
(易错题)高中数学选修三第一单元《计数原理》检测(含答案解析)(2)
一、选择题1.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种B .48种C .60种D .72种2.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-3.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( ).A .420B .180C .64D .254.某景观湖内有四个人工小岛,为方便游客登岛观赏美景,现计划设计三座景观桥连通四个小岛,且每个小岛最多有两座桥连接,则设计方案的种数最多是( )A .8B .12C .16D .245.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出的产品个数为( ) A .7 B .8C .9D .106.由0,1,2,3,,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为( )A .180B .196C .210D .2247.已知二项式(nx x的展开式中二项式系数之和为64,则该展开式中常数项为 A .-20 B .-15C .15D .208.甲、乙二人均从5种不同的食品中任选一种或两种吃,则他们一共吃到了3种不同食品的情况有( ) A .84种B .100种C .120种D .150种9.杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )A .3n >B .4n <C .3n <D .4n >10.在622x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( ) A .15-B .15C .60-D .6011.以长方体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情兄有( )种A .1480B .1468C .1516D .1492 12.899091100⨯⨯⨯⨯可表示为( )A .10100AB .11100AC .12100AD .13100A第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.方程10x y z ++=的正整数解的个数__________.14.已知集合{}08A C =,{}1288,B C C =,{}456888,,C C C C =,若从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定不同点的个数为___________.15.二项式92(x展开式中3x 的系数为__________. 16.二项式61(2x )x-的展开式中常数项为______(用数字表示). 17.62x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答) 18.()6221x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为______.19.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.20.高中学生要从物理、化学、生物、政治、历史、地理这6个科目中,依照个人兴趣、未来职业规划等要素,任选3个科目构成“选考科目组合”参加高考.已知某班37名学生关于选考科目的统计结果如下:为“历史+地理+政治”的学生一定不超过9人;③在选考化学的所有学生中,最多出现10种不同的选考科目组合;④选考科目组合为“生物+历史+地理”的学生人数一定是所有选考科目组合中人数最少的.其中所有正确结论的序号是_______.三、解答题21.已知()*3nx n N⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是1∶3,(1)求n 的值;(2)求二项展开式中各项二项式系数和以及各项系数和; (3)求展开式中系数的绝对值最大的项. 22.设2012(21)n n n x a a x a x a x -=++++展开式中只有第1010项的二项式系数最大.(1)求n ;(2)求012n a a a a ++++;(3)求.312232222nna a a a ++++. 23.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:iiiim n n A m A <;(2)证明:(1)(1)m nn m +<+.24.现有大小相同的7只球,其中2只不同的红球,2只不同的白球,3只不同的黑球.(1)将这7只球排成一列且相同颜色的球必须排在一起,有多少种排列的方法?(请用数字作答)(2)将这7只球分成三堆,三堆的球数分别为:1,3,3,共有多少种分堆的方法?(请用数字作答)(3)现取4只球,求各种颜色的球都必须取到的概率.(请用数字作答)25.在二项2nx ⎫⎪⎭的展开式中,前三项的系数和为73. (1)求正整数n 的值;(2)求出展开式中所有x 的有理项.26.已知)22nx的展开式的系数和比()31nx -的展开式的二项式系数和大992,求212nx x ⎛⎫+ ⎪⎝⎭的展开式中: (1)二项式中的常数项; (2)系数小于1025的项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
(压轴题)高中数学选修三第一单元《计数原理》检测(有答案解析)(2)
一、选择题1.已知(a x)5的展开式中,常数项为10,则a =( ) A .﹣1B .1C .﹣2D .22.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有 A .96种 B .124种 C .130种D .150种3.若0k m n ≤≤≤,且m ,n ,k ∈N ,则0CC mn m k n k n k --==∑( )A .2m n+B .C 2n mmC .2C nmnD .2C m mn4.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .255.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则: ①若开启3号,则必须同时开启4号并且关闭2号; ②若开启2号或4号,则关闭1号; ③禁止同时关闭5号和1号. 则阀门的不同开闭方式种数为( ) A .7 B .8 C .11 D .146.411()x y x y+--的展开式的常数项为( ) A .36 B .36-C .48D .48-7.设2019220190122019(12)x a a x a x a x -=+++⋅⋅⋅+,则201920182017012201820192222a a a a a ⋅+⋅+⋅+⋅⋅⋅+⋅+的值为( )A .20192B .1C .0D .-18.若从0,1,2,3,4,5这六个数字中选3个数字,组成没有重复数字的三位偶数,则这样的三位数一共有( ) A .20个B .48个C .52个D .120个9.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49610.设(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x+a 2x 2+…+a n x n ,当a 0+a 1+a 2+…+a n =254时,n 等于( ) A .5B .6C .7D .811.以长方体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情兄有( )种A .1480B .1468C .1516D .1492 12.899091100⨯⨯⨯⨯可表示为( )A .10100AB .11100AC .12100AD .13100A第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.()()6122x x --的展开式中5x 的系数为________.15.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域(有公共边)的颜色不同,则不同的染色方法有______种.16.数列{}n a 共有13项,10a =,134a =,且11k k a a +-=,1,2,,12k =⋯,满足这种条件不同的数列个数为______17.二项式92()x x-展开式中3x 的系数为__________.18.现有红、黄、蓝三种颜色,对如图所示的正五角星的内部涂色(分割成六个不同部分),要求每个区域涂一种颜色且相邻部分(有公共边的两个区域)的颜色不同,则不同的涂色方案有________种.(用数字作答).19.()6221x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为______. 20.已知多项式()()522701272312...x x x a a x a x a x ++-=++++,则765432a a a a a a -+-+-=______.三、解答题21.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法; (2)如果女生必须全分开,有多少种不同的排法. 22.已知)3223nx x展开式中各项系数和比它的二项式系数和大992,其中,2n N n +∈≥.(Ⅰ)求n 的值;(Ⅱ)求其展开式中的有理项.23.已知二项式2nx x ⎛⎝的展开式中各项二项式系数的和为256,其中实数a 为常数.(1)求n 的值;(2)若展开式中二项式系数最大的项的系数为70,求a 的值.24.若某一等差数列的首项为112225113n n nnCA----,公差为52mx ⎛ ⎝展开式中的常数项,其中m 是777715-除以19的余数,则此数列前多少项的和最大?并求出这个最大值. 25.为弘扬我国古代的“六艺”文化,某夏令营主办单位计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”、“数”六门体验课程.(1)若体验课连续开设六周,每周一门,求其中“射”不排在第一周,“数”不排在最后一周的所有可能排法种数;(2)甲、乙、丙、丁、戊五名教师在教这六门课程,每名教师至少任教一门课程,求其中甲不任教“数”的课程安排方案种数. 26.已知二项式()23nx x +.(1)若它的二项式系数之和为128.求展开式中二项式系数最大的项; (2)若3,2016x n ==,求二项式的值被7除的余数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值,再根据常数项为10,求得a 的值. 【详解】5()a x x x -的展开式中,通项公式为15552155()()()rr r r r rr a T C x x C a x x--+==--,令15502r-=,求得3r =, 可得常数项为335()10C a -=,求得1a =-. 故选:A 【点睛】本题主要考查二项式定理的应用,考查根据展开式的某一项求参数的值,意在考查学生对这些知识的理解掌握水平.2.D解析:D 【分析】根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①、五个参会国要在a 、b 、c 三家酒店选择一家,且这三家至少有一个参会国入住, ∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2 当按照1、1、3来分时共有C 53=10种分组方法;当按照1、2、2来分时共有22532215C C A = 种分组方法;则一共有101525+= 种分组方法;②、将分好的三组对应三家酒店,有336A = 种对应方法;则安排方法共有256150⨯= 种; 故选D . 【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.3.D解析:D 【分析】根据已知条件,运用组合数的阶乘可得:n m k m kn k n n m C C C C --=,再由二项式系数的性质,可得所要求的和. 【详解】()()()()()()()()!!!!!!!!!!!!!!!!n m k n knm kn mn k n n CCn m m k k n k n m m k k n m C C m n m k m k ---=⋅=-⋅-⋅--⋅-⋅=⋅=⋅-⋅-则()012mmn m k m k m m m m n knn m n m m m n k k CC C C C C C C C --====⋅+++=∑∑故选:D 【点睛】本题考查了组合数的计算以及二项式系数的性质,属于一般题.4.B解析:B 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择;如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020 P==故选:B.【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.5.A解析:A【分析】分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果.【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号,此时有1种方法;第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有1337++=种方式.故选:A.【点睛】本题考查分类加法计数原理,属于中档题.6.A解析:A【分析】先对多项式进行变行转化成441()1x y xy ⎛⎫+- ⎪⎝⎭,其展开式要出现常数项,只能第1个括号出22x y 项,第2个括号出221x y 项. 【详解】∵4444111()1x y x y x y x y x y xy xy ⎛⎫⎛⎫⎛⎫++--=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴411x y x y ⎛⎫+-- ⎪⎝⎭的展开式中的常数项为22244222(C (C 361))x y x y ⨯=.故选:A. 【点睛】本题考查二项式定理展开式的应用,考查运算求解能力,求解的关键是对多项式进行等价变形,同时要注意二项式定理展开式的特点.7.C解析:C 【分析】首先采用赋值法,令12x =,代入求值201932019120232019112 (022222)a a a a a ⎛⎫-⨯=+++++= ⎪⎝⎭,通分后即得结果. 【详解】 令12x =, 201932019120232019112 (022222)a a a a a ⎛⎫-⨯=+++++= ⎪⎝⎭, 20192018201732019012201820191202320192019222...2...022222a a a a a a a a a a ⋅+⋅+⋅++⋅++++++==,∴ 2019201820170122018201922220a a a a a ⋅+⋅+⋅+⋅⋅⋅+⋅+=.故选C 【点睛】本题考查二项式定理和二项式系数的性质,涉及系数和的时候可以采用赋值法求和,本题意在考查化归转化和计算求解能力,属于中档题型.8.C解析:C 【分析】由于0不能在首位数字,则分2种情况讨论:①若0在个位,此时0一定不在首位,由排列公式即可得此时三位偶数的数目;②若0不在个位,要排除0在首位的可能,由分步计数原理可得此情况下三位偶数的数目,综合2种情况,由分类计数原理计算可得答案.【详解】根据题意,分2种情况讨论:①若0在个位,此时只须在1,2,3,4,5中任取2个数字,作为十位和百位数字即可,有A52=20个没有重复数字的三位偶数;②若0不在个位,此时必须在2或4中任取1个,作为个位数字,有2种取法,0不能作为百位数字,则百位数字有4种取法,十位数字也有4种取法,此时共有2×4×4=32个没有重复数字的三位偶数,综合可得,共有20+32=52个没有重复数字的三位偶数.故选C.【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,解题需要注意偶数的末位数字以及0不能在首位等性质.9.C解析:C【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C种方法,用四种颜色涂色时,有41126322C C C A种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C=种方法,用四种颜色涂色时,有41126432360C C C A=种方法,根据分类计数原理得不同涂法的种数为120+360=480.故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.10.C解析:C【解析】试题分析:观察已知条件a0+a1+a2+…+a n=254,可令(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+a n x n中的x=1,可得254=2n+1﹣2,解之即可.解:∵(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+a n x n∴令x=1得2+22+23+…+2n=a0+a1+a2+…+a n,而a0+a1+a2+…+a n=254==2n+1﹣2,∴n=7考点:数列的求和;二项式定理的应用.11.B解析:B 【分析】根据平行六面体的几何特征,可以求出以平行六面体1111ABCD A B C D -的任意三个顶点为顶点作三角形的总个数,及从中随机取出2个三角形的情况总数,再求出这两个三角形共面的情况数,即可得到这两个三角形不共面的情况数,即可得到答案. 【详解】因为平行六面体1111ABCD A B C D -的8个顶点任意三个均不共线, 故从8个顶点中任取三个均可构成一个三角形共有38=56C 个三角形,从中任选两个,共有2561540C =种情况,因为平行六面体有六个面,六个对角面, 从8个顶点中4点共面共有12种情况, 每个面的四个顶点共确定6个不同的三角形,故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种, 故选:B. 【点睛】本题考查了棱柱的结构特征,考查了组合数的计算,在解题过程中注意共面和不共面的情况,做到不重不漏,属于中档题.12.C解析:C 【分析】由排列数的定义即可得出结果. 【详解】12100=10099(100121)1009989⨯⨯⨯-+=⨯⨯⨯A故选:C 【点睛】本题考查了排列数的定义,考查了理解辨析能力和逻辑推理能力,属于一般题目.二、填空题13.【分析】首先由二项式系数相等求再根据通项公式求指定项的系数【详解】由条件可知所以所以的通项公式是令解得:所以函数的系数是故答案为:-4【点睛】易错点睛:本题考查二项式定理求指定项系数其中二项式系数与 解析:4-【分析】首先由二项式系数相等求n ,再根据通项公式求指定项的系数.由条件可知57n n C C =,所以5712n =+=,所以1213x x ⎛⎫- ⎪⎝⎭的通项公式是12122112121133r rr r r rr T C x C x x --+⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令12210r -=,解得:1r =,所以函数10x 的系数是112143C ⎛⎫-⋅=- ⎪⎝⎭.故答案为:-4 【点睛】易错点睛:本题考查二项式定理求指定项系数,其中二项式系数与项的关系是第1r +项的系数是rn C ,这一点容易记错,需注意.14.【分析】本题首先可确定二项式展开式的通项然后分别对第一个因式取1以及第一个因式取两种情况进行讨论即可得出结果【详解】二项式展开式的通项为当第一个因式取1时第二个因式应取含的项则对应系数为:;当第一个 解析:132-【分析】本题首先可确定二项式()62x -展开式的通项,然后分别对第一个因式取1以及第一个因式取2x -两种情况进行讨论,即可得出结果. 【详解】二项式()62x -展开式的通项为6162kk kkT C x ,当第一个因式取1时,第二个因式应取含5x 的项,则对应系数为:()55612112C ⨯⨯⨯-=-;当第一个因式取2x -时,第二个因式应取含4x 的项,则对应系数为:()()42622120C -⨯⨯=-;则()()6121x x -+的展开式中5x 的系数为12120132--=-, 故答案为:132-. 【点睛】本题考查展开式中特定项的系数,考查二项式展开式的通项的应用,二项式()na b +展开式的通项为1C k n k kk n T a b -+=,考查推理能力与计算能力,是中档题.15.30【分析】由题意按照分类分步计数原理可逐个安排注意相邻不同即可【详解】对于1有三种颜色可以安排;若2和3颜色相同有两种安排方法4有两种安排5有一种安排此时共有;若2和3颜色不同则2有两种3有一种当解析:30 【分析】由题意按照分类分步计数原理,可逐个安排,注意相邻不同即可. 【详解】对于1,有三种颜色可以安排;若2和3颜色相同,有两种安排方法,4有两种安排,5有一种安排,此时共有322112⨯⨯⨯=;若2和3颜色不同,则2有两种,3有一种.当5和2相同时,4有两种;当5和2不同,则4有一种,此时共有()322118⨯⨯+=⎡⎤⎣⎦, 综上可知,共有121830+=种染色方法. 故答案为:30. 【点睛】本题考查了排列组合问题的综合应用,分类分步计数原理的应用,染色问题的应用,属于中档题.16.495【分析】根据题意先确定数列中的个数再利用组合知识即可得到结论【详解】或设上式中有个则有个解得:这样的数列个数有故答案为:495【点睛】本题以数列递推关系为背景本质考查组合知识的运用考查函数与方解析:495 【分析】根据题意,先确定数列中11k k a a +-=的个数,再利用组合知识,即可得到结论. 【详解】1||1k k a a +-=,11k k a a +∴-=或11k k a a +-=-,13113121211111021()()()()a a a a a a a a a a -=-+-+-+⋯+-,设上式中有x 个11k k a a +-=,则有12x -个11k k a a +-=-,4(12)(1)x x ∴=+-⋅-,解得:8x =,∴这样的数列个数有812495C =.故答案为:495 【点睛】本题以数列递推关系为背景,本质考查组合知识的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意确定数列中11k k a a +-=的个数是关键.17.【分析】由题意求得二项展开式的通项利用展开式的通项即可求解的系数得到答案【详解】由题意二项式展开式的通项为令解得所以即中的系数为【点睛】本题主要考查了二项展开式的指定项的系数的求解其中熟记二项展开式 解析:18【分析】由题意,求得二项展开式的通项,利用展开式的通项,即可求解3x 的系数,得到答案.【详解】由题意,二项式92x x ⎛⎫- ⎪⎝⎭展开式的通项为()()93992199212rrr rr rr r T C xC xx ---+⎛⎫=⋅⋅-=-⋅⋅⋅ ⎪⎝⎭令3932r -=,解得8r =,所以()81833191218r T C x x +=-⋅⋅⋅=,即中3x 的系数为18. 【点睛】本题主要考查了二项展开式的指定项的系数的求解,其中熟记二项展开式的通项,利用通项求解指定项的系数是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.18.【分析】根据题意假设正五角星的区域依此为分析6个区域的涂色方案数再根据分步计数原理计算即可【详解】根据题意假设正五角星的区域依此为如图所示:要将每个区域都涂色才做完这件事由分步计数原理先对区域涂色有 解析:96【分析】根据题意,假设正五角星的区域依此为A 、B 、C 、D 、E 、F ,分析6个区域的涂色方案数,再根据分步计数原理计算即可. 【详解】根据题意,假设正五角星的区域依此为A 、B 、C 、D 、E 、F ,如图所示:要将每个区域都涂色才做完这件事,由分步计数原理,先对A 区域涂色有3种方法,B 、C 、D 、E 、F 这5个区域都与A 相邻,每个区域都有2种涂色方法,所以共有32222296⨯⨯⨯⨯⨯=种涂色方案. 故答案为:96 【点睛】方法点睛:涂色问题常用方法:(1)根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法; (2)根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数;(3)根据某两个不相邻区域是否同色分类讨论.从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数.19.80【分析】先求出展开式中的常数项与含的系数再求展开式中的常数项【详解】展开式的通项公式为: 令解得 令解得 展开式中常数项为: 故答案为:80【点睛】本题考查二项展开式常数项的求解属于基础题解析:80 【分析】先求出62x x ⎛⎫- ⎪⎝⎭展开式中的常数项与含21x 的系数,再求()6221x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项. 【详解】62x x ⎛⎫- ⎪⎝⎭展开式的通项公式为: 662166(2)2rr r r rr r T C x C x x --+⎛⎫=⋅⋅-=-⋅⋅ ⎪⎝⎭, 令620r -=,解得3r =,33316(2)160T C +∴=-⋅=-,令622r -=-,解得4r =,444162211(2)240T C x x +∴=-⋅⋅=⋅, ()6212x x x ⎛⎫∴+- ⎪⎝⎭展开式中常数项为: (160)24080-+=.故答案为:80. 【点睛】本题考查二项展开式常数项的求解,属于基础题.20.【分析】利用赋值法令得出令时求出再根据二项展开式的通项公式求出从而可求得结果【详解】解:根据题意令时则即所以得令时由于为展开式中项的系数对于由二项展开式的通项公式得:则所以即故答案为:-16【点睛】 解析:16-【分析】利用赋值法,令1x =-,得出765432100a a a a a a a a -+-+-+-=,令0x =时,求出0a ,再根据二项展开式的通项公式求出1a ,从而可求得结果.【详解】解:根据题意,令1x =-时,则()()()()552231223130x x x ++-=-+⨯-=,即012345670a a a a a a a a -+-+-+-=, 所以765432100a a a a a a a a -+-+-+-=, 得76543201a a a a a a a a -+-+-=-, 令0x =时,()50232a =-=-,由于()()522312x x x ++-, 1a 为展开式中x 项的系数,对于()52x -,由二项展开式的通项公式得: ()552rrr C x -⋅-⋅,则()()54011553212968016a C C =⨯⋅-+⨯⋅-=-+=-,所以()76543201321616a a a a a a a a -+-+-=-=---=-, 即76543216a a a a a a -+-+-=-. 故答案为:-16. 【点睛】本题考查二项式定理的应用和二项展开式的通项公式,以及利用赋值法解决项的系数问题,考查化简运算能力.三、解答题21.(1)4320;(2)14400 【分析】(1)利用捆绑法,先将女生捆绑,再和男生一起排列,计算即得解; (2)利用插空法,先排男生,再将女生插入男生空隙,即得解. 【详解】(1)由题意,女生必须全排在一起,利用捆绑法有36364320A A =种不同的排法;(2)女生必须全分开,利用插空法有535614400A A =种不同的排法【点睛】本题考查了排列组合的实际应用,考查了学生综合分析,转化划归,数学运算能力,属于基础题22.(Ⅰ)5n =;(Ⅱ)690x 、10243x . 【分析】(Ⅰ)由题意)23nx展开式中二项式系数和为2n 、各项系数和为()134nn +=,列方程即可得解;(Ⅱ)写出展开式的通项公式4103153r r rr T C x++=⋅⋅,分别令2r 、=5r 即可得解.【详解】(Ⅰ)由题意可得)23nx展开式中二项式系数和为2n ,令1x =,可得)23nx展开式中各项系数和为()134nn +=,则由题意可得42992n n -=,化简得()()2322310nn-+=, 由2310n +>可得2320n -=, 所以5n =;(Ⅱ)由(Ⅰ)得))52233nxx=,则其展开式的通项公式()5241023315533rr rr r rr T C x xC x-++⎛⎫=⋅=⋅⋅ ⎪⎝⎭,要使4103r +为有理数,则2r 或=5r ,当2r时,41022663553390r r r C xC x x +⋅⋅=⋅⋅=;当=5r 时,41055101035533243r r rC xC x x +⋅⋅=⋅⋅=;所以其展开式中的有理项为690x 、10243x . 【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于中档题. 23.(1)8n =;(2)12a =±. 【分析】(1)根据二项式系数和列方程,解方程求得n 的值.(2)根据二项式系数最大项为70,结合二项式展开式的通项公式列方程,解方程求得a 的值. 【详解】(1)由题知,二项式系数和1202256n n n n n n C C C C ++++==,故8n =;(2)二项式系数分别为01288888,,,,C C C C ,根据其单调性知其中48C 最大,即为展开式中第5项,∴44482()70C a -⋅⋅=,即12a =±. 【点睛】本小题主要考查二项式展开式有关计算,属于中档题.24.此数列的前25项之和与前26项之和相等且最大,25261300S S ==. 【分析】根据题意,由排列、组合数的性质,可得不等式112522113n nn n -≤⎧⎨-≤-⎩,解可得n 的范围,结合n ∈N ,可得n 的值,进而可得首项a 1,对7777﹣15变形,结合二项式定理可得m 的值,从而可得数列的公差,即可得数列的通项公式,根据等差数列的性质,设其前k 项之和最大,则()10440104410k k -≥⎧⎨-+⎩<,解可得k=25或k=26,可得答案.【详解】由已知得:112522113n nn n-≤⎧⎨-≤-⎩,又,2n N n ∈∴=,1122272325113105105n n n n C A C A C A ---∴-=-=- 10985410032⨯⨯=-⨯=⨯故1100a =. ()7777771576115-=+- 7717617777767676115C C =+⋅+⋅⋅⋅+⋅+-()7614,*M M N =-∈,所以777715-除以19的余数是5,即5m =52m x ⎛- ⎝的展开式的通项51552rrr r T C x -+⎛⎫⎛= ⎪ ⎝⎭⎝()()52553551,0,1,2,3,4,52rr rr C xr --⎛⎫=-= ⎪⎝⎭,若它为常数项,则550,33r r -=∴=,代入上式44T d ∴=-=.从而等差数列的通项公式是:1044n a n =-,……10分设其前k 项之和最大,则()10440104410n k -≥⎧⎨-+<⎩,解得k=25或k=26,故此数列的前25项之和与前26项之和相等且最大,25261001044252513002S S +-⨯==⨯=.【点睛】本题考查二项式定理的应用,排列组合数的性质和等差数列的性质,关键由排列、组合数的性质得出首项,根据二项式定理得到m 的值,从而得到公差. 25.(1)504种;(2)1440种. 【分析】(1)由题意,分“射”排在最后一周,剩下的课程没有限制和“射”不排在最后一周从中间四周选一周,再选一门课程排在最后一周,其他没有限制,然后与加法计数原理求解. (2)由题意,分甲只任教1科和甲任教2科,然后与加法计数原理求解. 【详解】(1)当“射”排在最后一周时,5554321120A =⨯⨯⨯⨯=,当“射”不排在最后一周时,114444444321384C C A =⨯⨯⨯⨯⨯=,120384504+=,所以“射”不排在第一周,“数”不排在最后一周的排法有504种.(2)当甲只任教1科时,11121454325433554341200C C C C C A A =⨯⨯⨯⨯=, 当甲任教2科时,245454432124021C A ⨯=⨯⨯⨯⨯=⨯, 12002401440+=,所以甲不任教“数”的课程安排方案有1440种. 【点睛】本题主要考查排列组合的应用以及分步,分类计数原理的应用,属于中档题.26.(1)()()34342104321147573945,32835T C x x x T C x x x ====;(2)1【分析】(1)根据二项式性质可求n 的值,再根据通项公式可得展开式中二项式系数最大的项.(2)由题意得二项式2016201630(282)=+,按二项式定理展开转化为20162被7除的余数,再由20166722(71)=+,再展开可解.【详解】 (1)2128,7n n =∴=∴展开式中二项式系数最大的项为第4,5项,()()34342104321147573945,32835T C x xx T C x xx ====.(2)2016201620161201520152015201620162016201630(282)282822822282C C K =+=+⋅⋅+⋯+⋅⋅+=+转化为20162被7除的余数,201667267228(71)71k ==+=+,即余数为1.【点睛】考查二项式定理和二项式通项公式.二项式定理:011222n ()+C n n n n r n r r n n n n n n a b C a C a b C a b C a b b ---+=+++++…………. 二项式通式:1(0,1n)r n r rr n T C a b r -+==…….。
(常考题)人教版高中数学选修三第一单元《计数原理》检测题(有答案解析)(2)
一、选择题1.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种 B .48种 C .60种 D .72种2.若2021220210122021(12)x a a x a x a x -=++++,则1232021a a a a ++++=( )A .1B .1-C .2D .2-3.()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项是( ) A .15B .-15C .7D .-74.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12965.已知8281239(1)x a a x a x a x +=++++,若数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,则k 的最大值是( ) A .6B .5C .4D .36.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( ) A .7种B .6种C .5种D .4种7.若0k m n ≤≤≤,且m ,n ,k ∈N ,则CC mn m k n k n k --==∑( )A .2m n+ B .C 2n mm C .2C n m n D .2C m m n8.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种 9.若4()(1)a x x ++的展开式关于x 的系数和为64,则展开式中含3x 项的系数为( ) A .26B .18C .12D .910.杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )A .3n >B .4n <C .3n <D .4n >11.在下方程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x m x x x+⋅-+的展开式中的常数项是A .224B .336C .112D .56012.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为 A .18B .200C .2800D .33600二、填空题13.二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)14.已知x 、y 满足组合数方程21717x yC C =,则xy 的最大值是_____________.15.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有____个.16.已知()1121011012101112x a a x a x a x a x +=+++++ ,则12101121011a a a a -+-+=_____.17.已知关于x 的方程log (01)xa a x a =<<的实数根的个数为n ,若1101(1)(1)(3)n x x a a x +++=++2101121011(3)(3)(3)a x a x a x +++++++,则1a 的值为______.18.用0,1,2,3,4,5这六个数字组成没有重复数字的三位数,且是偶数,则这样的三位数有______个.19.数列{}n a 中,11a =,121n n a a +=+(*n N ∈),则012345515253545556C a C a C a C a C a C a +++++=________20.高中学生要从物理、化学、生物、政治、历史、地理这6个科目中,依照个人兴趣、未来职业规划等要素,任选3个科目构成“选考科目组合”参加高考.已知某班37名学生关于选考科目的统计结果如下:为“历史+地理+政治”的学生一定不超过9人;③在选考化学的所有学生中,最多出现10种不同的选考科目组合;④选考科目组合为“生物+历史+地理”的学生人数一定是所有选考科目组合中人数最少的.其中所有正确结论的序号是_______.三、解答题21.已知(x)n 的展开式中的第二项和第三项的系数相等.(1)求n 的值;(2)求展开式中所有的有理项.22.二项式n 的二项式系数和为256.(1)求展开式中二项式系数最大的项; (2)求展开式中各项的系数和;(3)展开式中是否有有理项,若有,求系数;若没有,说明理由. 23.已知()23*23n n A C n N =∈.(1)求n 的值;(2)求12nx x ⎛⎫- ⎪⎝⎭展开式中2x 项的系数.24.在二项式n 的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项; (3)求展开式中各项的系数和.25.已知数列{}n a 的首项为1,令()()12*12nn n n n a C a C a f n N n C =+++∈.(1)若{}n a 为常数列,求()f n 的解析式;(2)若{}n a 是公比为3的等比数列,试求数列(){}31f n +的前n 项和n S .26.在n的展开式中,前3项的系数的和为73. (1)求n 的值及展开式中二项式系数最大的项;(2)求展开式中的有理项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
人教版高中数学选修三第一单元《计数原理》检测卷(答案解析)(2)
一、选择题1.4(1)x +的展开式中2x 的系数是( )A .8B .7C .6D .42.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40- B .25-C .25D .553.两名老师和3名学生站成两排照相,要求学生站在前排,老师站在后排,则不同的站法有( ) A .120种B .60种C .12种D .6种4.二项式2()nx x-的展开式中,第3项的二项式系数比第2项的二项式系数大9,则该展开式中的常数项为( ) A .160- B .80-C .80D .1605.若()352()x x a -+的展开式的各项系数和为32,则实数a 的值为( )A .-2B .2C .-1D .16.有m 位同学按照身高由低到高站成一列,现在需要在该队列中插入另外n 位同学,但是不能改变原来的m 位同学的顺序,则所有排列的种数为( ) A .mm n C +B .mm n A +C .nm n A +D .m nm n A A +7.若4()(1)a x x ++的展开式关于x 的系数和为64,则展开式中含3x 项的系数为( ) A .26 B .18C .12D .98.如果21()2nx x-的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数和是( ) A .0 B .256C .64D .1649.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或610.()6232x x ++展开式中x 的系数为( ) A .92B .576C .192D .38411.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .2021212.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )A .315B .640C .840D .5040二、填空题13.数列{}n a 共有13项,10a =,134a =,且11k k a a +-=,1,2,,12k =⋯,满足这种条件不同的数列个数为______14.在(23)n x y -的二项展开式中,二项式系数的和是512,则各项系数的和是_____ .15.计算546101011C C C +-的结果为__________.16.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.17.二项式92(x展开式中3x 的系数为__________. 18.已知(12)n x +展开式中只有第4项的二项式系数最大,则21(1)(12)n x x++展开式中常数项为_______.19.若102100121013x a a x a x a x -+++⋯+=(),则12310a a a a +++⋯+=_____.20.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有______种.三、解答题21.已知二项式*1)(,2)2nn N n x∈≥,若该二项式的展开式中前三项的系数的绝对值成等差数列. (1)求正整数n 的值;(2)求展开式中二项式系数最大项,并指出是第几项? 22.设函数(,)(1)(0,0)x f x y my m y =+>>.(1)当3m =时,求()9,f y 的展开式中二项式系数最大的项;(2)已知(2,)f n y 的展开式中各项的二项式系数和比(,)f n y 的展开式中各项的二项式系数和大4032,若01(,)nn f n y a a y a y =++⋅⋅⋅+,且2135a =,求1i ni a =∑23.从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问: (1)五位数中,两个偶数排在一起的有几个?(2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示) 24.已知5名同学站成一排,要求甲站在中间,乙不站在两端,记满足条件的所有不同的排法种数为m . (I )求m 的值;(II )求342mx ⎫⎪⎭的展开式中的常数项.25.在二项2nx ⎫⎪⎭的展开式中,前三项的系数和为73. (1)求正整数n 的值;(2)求出展开式中所有x 的有理项.26.已知:22)nx(n ∈N *)的展开式中第五项的系数与第三项的系数的比是10:1. (1)求展开式中各项系数的和;(2)求展开式中含32x 的项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二项式定理展开式的通项公式,令2r 即可得出答案.【详解】4(1)x +的展开式中,14,(0,1,2,3,4)r r r r T x +==,令2r ,2x ∴的系数为246C =.故选:C . 【点睛】本题考查二项式定理的应用,考查推理能力与计算能力,属于基础题.2.B解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3.C解析:C 【分析】根据题意,分2步讨论老师、学生的安排方法,由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①将两名老师全排列,安排在后排,有222A =种安排方法, ②将三名学生全排列,安排在前排,有336A =种安排方法,则一共有2612⨯=种安排方法; 故选:C 【点睛】本题考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.4.A解析:A 【分析】根据展开式的二项式系数关系求解n ,结合通项即可得到常数项. 【详解】由题第3项的二项式系数比第2项的二项式系数大9,即()21219,,2,9,61802n n n n C C n N n n n n *--=∈≥-=--= 解得:6n =,二项式62()x x-的展开式中,通项6162()r r rr T C x x-+=-,当r =3时,取得常数项,3333162()160T C x x+=-=-. 故选:A 【点睛】此题考查二项式定理,根据二项式系数关系求解参数,根据通项求展开式中的指定项.5.D解析:D 【分析】根据题意,用赋值法,在()352()x x a -+中,令1x =可得()521(1)32a -+=,解可得a的值,即可得答案. 【详解】根据题意,()352()xx a -+的展开式的各项系数和为32,令1x =可得:()521(1)32a -+=, 解可得:1a =, 故选:D . 【点睛】本题考查二项式定理的应用,注意特殊值的应用.6.C解析:C 【分析】将问题转化为将这m n +个同学中新插入的n 个同学重新排序,再利用排列数的定义可得出答案. 【详解】问题等价于将这m n +个同学中新插入的n 个同学重新排序,因此,所有排列的种数为n m n A +,故选C.【点睛】本题考查排列问题,解题的关键就是将问题进行等价转化,考查转化与化归数学思想的应用,属于中等题.7.B解析:B 【分析】取1x =解得3a =,展开式中含3x 项有两种情况,相加得到答案. 【详解】令1x =得4(1)264a +⋅=,所以3a =.所以4(3)(1)x x ++展开式中含3x 项为33223443C C 18x x x x ⋅+⋅=,所以展开式中含3x 项的系数为18, 故选B . 【点睛】本题考查了二项式定理,把握展开式中含3x 项的两种情况是解题的关键.8.D解析:D 【解析】分析:先确定n 值,再根据赋值法求所有项的系数和.详解:因为展开式中只有第4项的二项式系数最大,所以n =6.令x =1,则展开式中所有项的系数和是611(1)264-=, 选D.点睛:二项式系数最大项的确定方法 ①如果n 是偶数,则中间一项(第12n+ 项)的二项式系数最大; ②如果n 是奇数,则中间两项第12n +项与第1(1)2n ++项的二项式系数相等并最大. 9.D解析:D 【解析】 因为2132020x x C C -+=,所以213x x -=+ 或21320x x -++=,所以4x = 或6x =,选D.10.B解析:B 【解析】()6232xx ++展开式中含x 的项为15565(3)26332576C x C x x ⋅⋅=⨯⨯=,即x 的系数为576;故选B.点睛:本题考查二项式定理的应用;求三项展开式的某项系数时,往往有两种思路: (1)利用组合数公式和多项式乘法法则,如本题中解法;(2)将三项式转化成二项式,如本题中,可将26(32)x x ++化成66(1)(2)x x ++,再利用两次二项式定理进行求解.11.C解析:C 【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.495【分析】根据题意先确定数列中的个数再利用组合知识即可得到结论【详解】或设上式中有个则有个解得:这样的数列个数有故答案为:495【点睛】本题以数列递推关系为背景本质考查组合知识的运用考查函数与方解析:495 【分析】根据题意,先确定数列中11k k a a +-=的个数,再利用组合知识,即可得到结论. 【详解】1||1k k a a +-=,11k k a a +∴-=或11k k a a +-=-,13113121211111021()()()()a a a a a a a a a a -=-+-+-+⋯+-,设上式中有x 个11k k a a +-=,则有12x -个11k k a a +-=-,4(12)(1)x x ∴=+-⋅-,解得:8x =,∴这样的数列个数有812495C =.故答案为:495 【点睛】本题以数列递推关系为背景,本质考查组合知识的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意确定数列中11k k a a +-=的个数是关键.14.【分析】根据二项式系数的和求解出的值求解各项系数的和时可考虑令由此可计算出各项系数的和【详解】因为二项式系数的和是所以所以又因为令可得:所以各项系数的和为:故答案为【点睛】本题考查根据二项式系数求参 解析:1-【分析】根据二项式系数的和求解出n 的值,求解各项系数的和时可考虑令1x y ==,由此可计算出各项系数的和. 【详解】因为二项式系数的和是512,所以01...2512n nn n n C C C +++==,所以9n =,又因为()()()()()()()998109129992323...2323C x y C x y C x y x y =-+-+-+-, 令1x y ==可得:()()()()()()()998191299912323...231C C C -=-+-++-=-,所以各项系数的和为:1-. 故答案为1-. 【点睛】本题考查根据二项式系数求参数以及求解各项系数和,难度一般.(1)求解形如()nax by +的展开式中的各项系数和时,可令1x y ==求得结果; (2)形如()nax by +的展开式中的二项式系数之和为2n .15.【分析】利用组合数的性质来进行计算可得出结果【详解】由组合数的性质可得故答案为【点睛】本题考查组合数的计算解题的关键就是利用组合数的性质进行计算考查计算能力属于中等题 解析:0【分析】利用组合数的性质111k k k n n n C C C ++++=来进行计算,可得出结果.【详解】由组合数的性质可得5465655101011111111110C C C C C C C +-=-=-=,故答案为0.【点睛】本题考查组合数的计算,解题的关键就是利用组合数的性质进行计算,考查计算能力,属于中等题.16.【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案即可求解得到答案【详解】由题意先在4位同学中选2人选地理学科共种选法再将剩下的2人在政治化学生物3门活动课任选一门报名共3×3=9种选法故地 解析:54【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得到答案. 【详解】由题意,先在4位同学中选2人选地理学科,共246C =种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共3×3=9种选法, 故地理学科恰有2人报名的方案有6×9=54种选法, 故答案为54. 【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.17.【分析】由题意求得二项展开式的通项利用展开式的通项即可求解的系数得到答案【详解】由题意二项式展开式的通项为令解得所以即中的系数为【点睛】本题主要考查了二项展开式的指定项的系数的求解其中熟记二项展开式 解析:18【分析】由题意,求得二项展开式的通项,利用展开式的通项,即可求解3x 的系数,得到答案. 【详解】由题意,二项式92x ⎛ ⎝展开式的通项为(()93992199212rrr rr rr r T C C xx ---+⎛⎫=⋅⋅=-⋅⋅⋅ ⎪⎝⎭令3932r -=,解得8r =,所以()81833191218r T C x x +=-⋅⋅⋅=,即中3x 的系数为18. 【点睛】本题主要考查了二项展开式的指定项的系数的求解,其中熟记二项展开式的通项,利用通项求解指定项的系数是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.18.61【解析】分析:根据题设可列出关于的不等式求出代入可求展开式中常数项为详解:的展开式中只有第4项的二项式系数最大即最大解得又则展开式中常数项为点睛:在二项展开式中有时存在一些特殊的项如常数项有理项解析:61 【解析】分析:根据题设可列出关于n 的不等式,求出6n =,代入可求21(1)(12)nx x++展开式中常数项为61. 详解:(12)n x +的展开式中,只有第4项的二项式系数最大,即3n C 最大,3234n n n nC C C C ⎧>∴⎨>⎩,解得57n <<, 又*,6n N n ∈∴=, 则21(1)(12)n x x++展开式中常数项为02266261C C +⋅=. 点睛:在二项展开式中,有时存在一些特殊的项,如常数项、有理项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式1r T +.19.1023【分析】赋值法令得:;令得:再两式相减可得【详解】解:∵令得:;①令得:;②由①②可得:;故答案为:【点睛】赋值法在求各项系数和中的应用(1)形如()的式子求其展开式的各项系数之和常用赋值法解析:1023 【分析】赋值法 令0x =得:01a =;令1x = 得:10012310131024a a a a a =++⋯+-=++(),再两式相减可得.【详解】解:∵102100121013x a a x a x a x -+++⋯+=(),令0x =得:01a = ;①令1x = 得:10012310131024a a a a a =++⋯+-=++(); ②由①②可得:12310102411023a a a a +++⋯+-==; 故答案为:1023. 【点睛】赋值法在求各项系数和中的应用(1)形如()n ax b +,2()m ax bx c ++ (a b c R ∈,,)的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可.(2)对形如()()n ax by a b R +∈,的式子求其展开式各项系数之和,只需令1x y ==即可. (3)若()2012nn f x a a x a x a x +++⋯+=,则()f x 展开式中各项系数之和为()1f .20.30【分析】先假设可放入一个盒里那么方法有种减去在一个盒子的情况就有5种把2个球的组合考虑成一个元素就变成了把三个不同的球放入三个不同的盒子从而可得到结果【详解】解:由题意知有一个盒子至少要放入2球解析:30 【分析】先假设,A B 可放入一个盒里,那么方法有24C 种,减去,A B 在一个盒子的情况,就有5种,把2个球的组合考虑成一个元素,就变成了把三个不同的球放入三个不同的盒子,从而可得到结果. 【详解】解:由题意知有一个盒子至少要放入2球,先假设,A B 可放入一个盒里,那么方法有246C =.再减去,A B 在一起的情况,就是615-=种.把2个球的组合考虑成一个元素,就变成了把三个不同的球放入三个不同的盒子,那么共有336A =种.∴根据分步计数原理知共有5630⨯=种. 故选:C . 【点睛】本题考查分步计数原理,考查带有限制条件的元素的排列问题.两个元素不能同时放在一起,或两个元素不能相邻,这都是常见的问题,需要掌握方法.三、解答题21.(1)8;(2)2358x -,展开式中二项式系数最大项为第五项. 【分析】(1)根据二项展开式的通项,分别求得123,,T T T ,结合等差中项公式,列出方程,即可求解;(2)根据二项式系数的性质,即可求解.【详解】(1)由二项式*1)(,2)2n n N n x ∈≥,可得0212012123111,,222n n n n n n T C T C T C x x x --⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为展开式中前三项的系数的绝对值成等差数列,可得10211224n n n C C C ⨯⨯=+, 整理得1(1)142n n n -=+,即2980n n -+=,解得1n =或8n =. 因为*,2n N n ∈≥,所以8n =.(2)当8n =时,展开式中二项式系数最大项为第五项44425813528T C x x -⎛⎫=-= ⎪⎝⎭. 【点睛】对于二项式中的项的求解方法:(1)求二项式的特定项问题,实质是在考查通项r n r r r n T C a b -=的特点,一把需要建立方程求得r 的值,在将r 的值代回通项,主要r 的取值范围(0,1,2,,)k n =; (2)若n 为偶数时,中间一项(第12n +项)的二项式系数最大; (3)若n 为奇数时,中间一项(第12n +项和第112n ++项)的二项式系数最大. 22.(1)4511206T y =,5633618T y =;(2)4095.【分析】(1)根据二项式的性质知二项式系数最大项为第5、第6项,代入通项计算;(2)利用展开式中各项的二项式系数和公式列出等式求解n ,代入(,)f n y 由2135a =列等式求解m ,即可利用赋值法求1i ni a =∑. 【详解】(1)9(9,)(13)f y y =+,二项式系数最大项为第5、第6项,44459(3)11206T C y y ==,55569(3)33618T C y y ==.(2)由题意:2224032n n -=,即()()2642630n n -+=,解得6n =, 6260126(6,)(1)f y my a a y a y a y =+=+++⋅⋅⋅+,则2226135a C m ==,29m =,解得3m =或3-(舍去),则6(6,)(13)f y y =+,令1y =可得601264a a a a =+++⋅⋅⋅, 所以661260126011414095n ii i i a a a a a a a a a a ====++⋅⋅⋅=+++⋅⋅⋅-=-=∑∑.【点睛】本题考查二项式定理,涉及二项式系数最大项、展开式中二项式系数和、赋值法求展开式中项的系数和,属于中档题.23.(1)576;(2)144【分析】(1)先从3个偶数抽取2个偶数和从4个奇数中抽取3个奇数,利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(2)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,即可得出结果.【详解】解:可知从1到7的7个数字中,有3个偶数,4个奇数,(1)五位数中,偶数排在一起的有:23413442576C C A A =个,(2)两个偶数不相邻且三个奇数也不相邻的五位数有:23233423144C C A A =个.【点睛】本题考查数字的排列问题,涉及排列和组合的实际应用以及排列数和组合数的运算公式,考查利用捆绑法解决相邻问题,利用插空法解决不相邻问题,考查运算能力. 24.(I )12;(II )672.【分析】(I )先考虑特殊要求,再排列其他的;(II )根据二项式定理展开式的通项公式求解.【详解】(I )所有不同的排法种数132312m C A =•=.(II )由(I )知,39422m x x ⎫⎫=⎪⎪⎭⎭, 92x ⎫∴⎪⎭的展开式的通项公式为932192r r r r T C x -+=⋅⋅, 令9302r -=,解得3r =,∴展开式中的常数项为3392672C ⋅=.【点睛】本题考查排列与二项式定理.25.(1)6;(2)33624064,60,,x x x 【分析】(1)根据二项式定理通项公式列式解得n 的值;(2)根据二项式定理通项公式确定有理项,即可得结果.【详解】(1)3212()2n r rn r r r r r n n T C C x x --+==⋅ 所以前三项的系数和为0011222(1)222124217362n n n n n C C C n n n -⋅+⋅+⋅=++⨯=+=∴=; (2)632162,0,1,2,3,4,5,6rr r r T C x r -+=⋅=所以展开式中所有x 的有理项为0033220443666666636240642,260,2,2C x x C x C x C x x x--⋅=⋅=⋅=⋅= 【点睛】本题考查二项式定理及其应用,考查基本分析求解能力,属基础题. 26.(1)1,(2)3216x - 【解析】由题意知,第五项系数为44(2)n C ⋅-,第三项的系数22(2)n C ⋅-,则有4422(2)10(2)n n C C ⋅-=⋅-,解8n =. (1)令1x =得各项系数的和为8(12)1-=.(2)通项公式828218822()(2)r r r r r r r r T C C x x ---+=⋅⋅-=⋅-⋅,令83222r r --=, 则1r =,故展开式中含32x 的项为32216T x =-.。
人教版高中数学选修三第一单元《计数原理》检测卷(有答案解析)(2)
一、选择题1.从5名志愿者中选出4人分别到A 、B 、C 、D 四个部门工作,其中甲、乙两名志愿者不能到A 、B 二个部门工作,其他三人能到四个部门工作,则选派方案共有( ) A .120种B .24种C .18种D .36种2.已知8a x x ⎛⎫+ ⎪⎝⎭展开式中4x 项的系数为112,其中a R ∈,则此二项式展开式中各项系数之和是( )A .83B .1或83C .82D .1或823.在10的展开式中,系数的绝对值最大的项为( ) A .10532B .56638x -C .531058xD .5215x -4.已知10个产品中有3个次品,现从其中抽出若干个产品,要使这3个次品全部被抽出的概率不小于0.6,则至少应抽出的产品个数为( ) A .7B .8C .9D .105.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( ) A .48B .72C .84D .1686.已知()()()()1521501215111x a a a x a x a x +=+-+-+⋅⋅⋅+-中0a >,若13945a =-,则a 的值为()A .2B .3C .4D .57.262()x x-的展开式中常数项为( ) A .-240B .-160C .240D .1608.有m 位同学按照身高由低到高站成一列,现在需要在该队列中插入另外n 位同学,但是不能改变原来的m 位同学的顺序,则所有排列的种数为( ) A .mm n C +B .mm n A +C .nm n A +D .m nm n A A +9.若4()(1)a x x ++的展开式关于x 的系数和为64,则展开式中含3x 项的系数为( ) A .26 B .18C .12D .910.在(nx的展开式中,各项系数与二项式系数和之比为128,则4x 的系数为( ) A .21B .63C .189D .72911.在二项式x ⎪⎭的展开式中,各项系数之和为A ,二项式系数之和为B ,若72A B +=,则n =( )A .3B .4C .5D .612.1231261823n nn n n n C C C C -+++⋯+⨯=( )A .2123n + B .()2413n- C .123n -⨯ D .()2313n- 二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.()()6122x x --的展开式中5x 的系数为________. 15.方程10x y z ++=的正整数解的个数__________.16.已知x 、y 满足组合数方程21717x yC C =,则xy 的最大值是_____________.17.已知()2n1(2x )n N*x-∈的展开式中各项的二项式系数之和为128,则其展开式中含1x项的系数是______.(结果用数值表示) 18.若102100121013x a a x a x a x -+++⋯+=(),则12310a a a a +++⋯+=_____.19.设S 为一个非空有限集合,记||S 为集合S 中元素的个数,若集合S 的两个子集A 、B 满足:||A B k =并且A B S =,则称子集{,}A B 为集合S 的一个“k —覆盖”(其中0||k S ≤≤),若||S n =,则S 的“k —覆盖”个数为________20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.设()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅.(1)求0a 的值;(2)求1232n a a a a +++⋯+的值; (3)求13521n a a a a -+++⋯+的值.22.已知()*3nx n N⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是1∶3,(1)求n 的值;(2)求二项展开式中各项二项式系数和以及各项系数和; (3)求展开式中系数的绝对值最大的项.23.已知在x ⎪⎭的展开式中,第6项的系数与第4项的系数之比是6: 1. (1)求展开式中11x 的系数; (2)求展开式中系数绝对值最大的项;(3)求2319819n nn n n n C C C -++++的值.24.(1)求91x ⎛- ⎝的展开式的常数项;(2)若1nx ⎛ ⎝的展开的第6项与第7项的系数互为相反数,求展开式的各项系数的绝对值之和.25.设(nx 的展开式中,第二项与第四项的系数比为1:2,试求2x 项的系数.26.在二项式n 的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项; (3)求展开式中各项的系数和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,②、甲、乙两人都被选中,根据分类计数原理可得 【详解】解:根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,需要从甲、乙中选出1人,到C ,D 中的一个部门,其他三人到剩余的部门,有113223··24C C A =种选派方案. ②、甲、乙两人都被选中,安排到C ,D 部门,从其他三人中选出2人,到剩余的部门,有2223·12A A =种选派方案, 综上可得,共有24+12=36中不同的选派方案, 故选D . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中档题.2.B解析:B 【分析】利用二项式定理展开通项,由4x 项的系数为112求出实数a ,然后代入1x =可得出该二项式展开式各项系数之和. 【详解】8a x x ⎛⎫+ ⎪⎝⎭的展开式通项为882188kk k k k kk a T C x C a x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭, 令824k -=,得2k =,该二项式展开式中4x 项的系数为222828112C a a ⋅==,得2a =±.当2a =时,二项式为82x x ⎛⎫+ ⎪⎝⎭,其展开式各项系数和为()88123+=;当2a =-时,二项式为82x x ⎛⎫- ⎪⎝⎭,其展开式各项系数和为()8121-=. 故选B. 【点睛】本题考查二项式定理展开式的应用,同时也考查了二项式各项系数和的概念,解题的关键就是利用二项式定理求出参数的值,并利用赋值法求出二项式各项系数之和,考查运算求解能力,属于中等题.3.D解析:D 【分析】根据最大的系数绝对值大于等于其前一个系数绝对值;同时大于等于其后一个系数绝对值;列出不等式求出系数绝对值最大的项; 【详解】10∴二项式展开式为:(10)113211012kk k k T C x x --+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭设系数绝对值最大的项是第1k +项,可得11101011101011221122k k k k k k k k C C C C --++⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩可得11112101112kkkk-⎧≥⎪⎪⎨-⎪≥⋅⎪+⎩,解得81133k≤≤*k N∈∴3k=在10的展开式中,系数的绝对值最大的项为:3711310523241215x xT C x-⎛⎫⎛⎫=-=⎪⎭-⎪⎝⎭⎝故选:D.【点睛】本题考查二项展开式中绝对值系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.4.C解析:C【分析】根据题意,设至少应抽出x个产品,由题设条件建立不等式3337100.6xxC CC-≥,由此能求出结果.【详解】解:要使这3个次品全部被抽出的概率不小于0.6,设至少抽出x个产品,则基本事件总数为10xC,要使这3个次品全部被抽出的基本事件个数为3337xC C-,由题设知:3337100.6xxC CC-≥,所以()()12310985x x x--≥⨯⨯,即()()12432x x x--≥,分别把A,B,C,D代入,得C,D均满足不等式,因为求x的最小值,所以9x=.故选:C.【点睛】本题考查概率的应用,解题时要认真审题,仔细解答,注意合理的进行等价转化.5.D解析:D【分析】分两步,第一步选2名理科班的学生检查文科班,第二步,理科班检查的方法,需要分三类,根据分布和分类计数原理可得. 【详解】第一步:选2名理科班的学生检查文科班,有2412A =种第二步:分三类①2名文科班的学生检查剩下的2名理科生所在的班级,2名理科生检查另2名理科生所在的班级,有22224A A =种②2名文科班的学生检查去文科班检查的2名理科生所在班级,剩下的2名理科生互查所在的班级,有21212A A =种③2名文科生一人去检查去文科班检查的2名理科生所在的班级的一个和一人去检查剩下的2名理科生其中一个所在的班级,有1112228A A A =种根据分步分类技术原理可得,共有()12428168⨯++=不同的安排方法 故选:D 【点睛】本题考查的是分步分类计数原理及排列组合的知识,怎么将一个复杂的事情进行合理的分步分类去完成是解题的关键.6.A解析:A 【分析】根据()1515[(1)(1)]x a a x +=--++-利用二项展开式的通项公式、二项式系数的性质、以及13945a =-,即可求得a 的值,得到答案. 【详解】由题意,二项式()()()()1521501215111x a a a x a x a x +=+-+-+⋅⋅⋅+-, 又由()1515[(1)(1)]x a a x +=--++-,所以()()()2151501215[(1)(1)]111a x a a x a x a x --++-=+-+-+⋅⋅⋅+-, 其中0a >,由13945a =-,可得:1321315[(1)]945a C a =-⋅-+=-,即2105(1)945a -+=-,即2(1)9a +=,解得2a =, 故选A . 【点睛】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,其中解答中熟记二项展开式的通项及性质是解答的关键,着重考查了推理与运算能力,属于中档试题.7.C解析:C【分析】求得二项式的通项12316(2)r r rr T C x -+=-,令4r =,代入即可求解展开式的常数项,即可求解. 【详解】由题意,二项式262()x x-展开式的通项为261231662()()(2)r rr r r r r T C x C x x--+=-=-, 当4r =时,4456(2)240T C =-=,即展开式的常数项为240,故选C.【点睛】本题主要考查了二项式的应用,其中解答中熟记二项展开式的通项,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.8.C解析:C 【分析】将问题转化为将这m n +个同学中新插入的n 个同学重新排序,再利用排列数的定义可得出答案. 【详解】问题等价于将这m n +个同学中新插入的n 个同学重新排序,因此,所有排列的种数为n m n A +,故选C.【点睛】本题考查排列问题,解题的关键就是将问题进行等价转化,考查转化与化归数学思想的应用,属于中等题.9.B解析:B 【分析】取1x =解得3a =,展开式中含3x 项有两种情况,相加得到答案. 【详解】令1x =得4(1)264a +⋅=,所以3a =.所以4(3)(1)x x ++展开式中含3x 项为33223443C C 18x x x x ⋅+⋅=,所以展开式中含3x 项的系数为18, 故选B . 【点睛】本题考查了二项式定理,把握展开式中含3x 项的两种情况是解题的关键.10.C解析:C 【解析】分析:令1x =得各项系数和,由已知比值求得指数n ,写出二项展开式通项,再令x 的指数为4求得项数,然后可得系数.详解:由题意41282n n =,解得7n =,∴37721773r r r r r rr T C x C x --+==,令3742r-=,解得2r ,∴4x 的系数为2273189C =.故选C . 点睛:本题考查二项式定理,考查二项式的性质.在()n a b +的展开式中二项式系数和为2n ,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为1C r n r rr n T ab -+=. 11.A解析:A 【解析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得B ,最后根据72B +=解出.n详解:因为各项系数之和为(13)4nn+=,二项式系数之和为2n , 因为72A B +=,所以4272283n n n n +=∴=∴=, 选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b R +++∈的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)nax by a b +∈R 的式子求其展开式各项系数之和,只需令1x y ==即可.12.B解析:B 【解析】1212618323n nn n n C C C C -++++⨯=1220012222(333)(33331)33n n n n n n n n n n n C C C C C C C =⨯+⨯+⨯=⨯+⨯+⨯+⨯-22[(13)1](41)33n n =+-=-选B. 二、填空题13.【分析】首先由二项式系数相等求再根据通项公式求指定项的系数【详解】由条件可知所以所以的通项公式是令解得:所以函数的系数是故答案为:-4【点睛】易错点睛:本题考查二项式定理求指定项系数其中二项式系数与 解析:4-【分析】首先由二项式系数相等求n ,再根据通项公式求指定项的系数. 【详解】由条件可知57n n C C =,所以5712n =+=,所以1213x x ⎛⎫- ⎪⎝⎭的通项公式是12122112121133r rr r r rr T C x C x x --+⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令12210r -=,解得:1r =, 所以函数10x 的系数是112143C ⎛⎫-⋅=- ⎪⎝⎭. 故答案为:-4 【点睛】易错点睛:本题考查二项式定理求指定项系数,其中二项式系数与项的关系是第1r +项的系数是rn C ,这一点容易记错,需注意.14.【分析】本题首先可确定二项式展开式的通项然后分别对第一个因式取1以及第一个因式取两种情况进行讨论即可得出结果【详解】二项式展开式的通项为当第一个因式取1时第二个因式应取含的项则对应系数为:;当第一个 解析:132-【分析】本题首先可确定二项式()62x -展开式的通项,然后分别对第一个因式取1以及第一个因式取2x -两种情况进行讨论,即可得出结果. 【详解】二项式()62x -展开式的通项为6162kk kkT C x ,当第一个因式取1时,第二个因式应取含5x 的项,则对应系数为:()55612112C ⨯⨯⨯-=-;当第一个因式取2x -时,第二个因式应取含4x 的项,则对应系数为:()()42622120C -⨯⨯=-;则()()6121x x -+的展开式中5x 的系数为12120132--=-, 故答案为:132-. 【点睛】本题考查展开式中特定项的系数,考查二项式展开式的通项的应用,二项式()na b +展开式的通项为1C k n k kk n T a b -+=,考查推理能力与计算能力,是中档题.15.【分析】本题转化为把10个球放在三个不同的盒子里有多少种方法利用隔板法即可求得答案【详解】问题中的看作是三个盒子问题则转化为把个球放在三个不同的盒子里有多少种方法将个球排一排后中间插入两块隔板将它们 解析:36【分析】本题转化为把10个球放在三个不同的盒子里,有多少种方法,利用隔板法,即可求得答案. 【详解】问题中的x y z 、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法.将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球. 隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C =种.故答案为:36 【点睛】本题解题关键是掌握将正整数解的问题转化为组合数问题,考查了分析能力和转化能力,属于中档题.16.【分析】由组合数的性质得出或然后利用二次函数的性质或基本不等式求出的最大值并比较大小可得出结论【详解】满足组合数方程或当时则;当时因此当时取得最大值故答案为【点睛】本题考查组合数基本性质的应用同时也 解析:128【分析】由组合数的性质得出()208y x x =≤≤或217x y +=,然后利用二次函数的性质或基本不等式求出xy 的最大值,并比较大小可得出结论. 【详解】x 、y 满足组合数方程21717x yC C =,()208y xx ∴=≤≤或217x y +=,当2y x =时,则[]220,128xy x =∈;当217x y +=时,222172892224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭. 因此,当216x y ==时,xy 取得最大值128.故答案为128. 【点睛】本题考查组合数基本性质的应用,同时也考查了两数乘积最大值的计算,考查了二次函数的基本性质的应用以及基本不等式的应用,考查运算求解能力,属于中等题.17.-84【分析】由已知求得n 写出二项展开式的通项由x 的指数为求得r 则答案可求【详解】由题意得其二项展开式的通项由得展开式中含项的系数是故答案为【点睛】本题考查二项式定理关键是熟记二项展开式的通项是基础题解析:-84 【分析】由已知求得n ,写出二项展开式的通项,由x 的指数为1-求得r ,则答案可求. 【详解】由题意,n 2128=,得n 7=.2n 2711(2x )(2x )x x∴-=-,其二项展开式的通项r27rr r 7r r143r r 1771T C (2x )()(1)2C x x---+=⋅⋅-=-⋅⋅⋅.由143r 1-=-,得r 5=.∴展开式中含1x项的系数是574C 84-⨯=-. 故答案为84-. 【点睛】本题考查二项式定理,关键是熟记二项展开式的通项,是基础题.18.1023【分析】赋值法令得:;令得:再两式相减可得【详解】解:∵令得:;①令得:;②由①②可得:;故答案为:【点睛】赋值法在求各项系数和中的应用(1)形如()的式子求其展开式的各项系数之和常用赋值法解析:1023 【分析】赋值法 令0x =得:01a =;令1x = 得:10012310131024a a a a a =++⋯+-=++(),再两式相减可得.【详解】解:∵102100121013x a a x a x a x -+++⋯+=(),令0x =得:01a = ;①令1x = 得:10012310131024a a a a a =++⋯+-=++(); ②由①②可得:12310102411023a a a a +++⋯+-==; 故答案为:1023. 【点睛】赋值法在求各项系数和中的应用(1)形如()n ax b +,2()m ax bx c ++ (a b c R ∈,,)的式子求其展开式的各项系数之和,常用赋值法,只需令1x =即可.(2)对形如()()n ax by a b R +∈,的式子求其展开式各项系数之和,只需令1x y ==即可. (3)若()2012nn f x a a x a x a x +++⋯+=,则()f x 展开式中各项系数之和为()1f .19.【分析】当时共有种情况当时共有种情况由此可计算得到答案【详解】由题意当时即中有个元素所以共有种情况此时集合中剩下个元素其子集个数为个即共有种情况所以的—覆盖个数为故答案为:【点睛】本题主要考查组合数解析:2k n k n C -⋅【分析】当||A B k =时,共有k n C 种情况,当A B S =时,共有2n k -种情况,由此可计算得到答案.【详解】 由题意,当||AB k =时,即A B 中有k 个元素,所以共有kn C 种情况,此时集合S 中剩下n k -个元素,其子集个数为2n k -个, 即AB S =共有2n k -种情况,所以S 的“k —覆盖”个数为2k n kn C -⋅. 故答案为:2k n kn C -⋅【点睛】本题主要考查组合数的应用和集合子集个数的应用,考查学生分析解决问题的能力,属于中档题.20.0【分析】根据题意给自变量赋值取和两个式子相减得到的值用二项展开式可以看出被12整除的结果得到余数【详解】在已知等式中取得取得两式相减得即因为能被12整除所以则被12整除余数是0故答案为:0【点睛】解析:0 【分析】根据题意,给自变量x 赋值,取1x =和1x =-,两个式子相减,得到1352019a a a a +++的值,用二项展开式可以看出被12整除的结果,得到余数.【详解】在已知等式中,取1x =得202001220205a a a a ++++=,取1x =-得01220201a a a a -+-+=, 两式相减得202013520192()51a a a a +++=-,即()202013520191512a a a a +++=⨯-,因为()()()1010202010101111512512412222⨯-=⨯-=⨯+- ()01010110091010101010101010101124242422C C C C =⨯++++- ()0101011009110101010101012424242C C C =⨯+++能被12整除,所以则1352019a a a a ++++被12整除,余数是0.故答案为:0. 【点睛】本题考查二项式定理的应用和带余除法,本题解题的关键是利用赋值的方法、利用二项式定理得到式子的结果,属于中等题.三、解答题21.(1)1;(2)231n-;(3)2312n -.【分析】(1)赋值0x =即可得解;(2)赋值1x =,结合(1)即可得解; (3)赋值1x =-,结合(2)即可得解. 【详解】(1)0x =代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:01a =; (2)1x =代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:032122=3n n a a a a a ++++⋯+,所以: 13222=31n n a a a a +++⋯-+;(3)1x =-代入()22201221nn n x x a a x a x a x ++=+++⋅⋅⋅可得:01232=1n a a a a a -+-+⋯+,又032122=3n n a a a a a ++++⋯+,、两式相减可得:5221312()31n na a a a -+++⋯=-+,所以221351312n n a a a a -+=+⋯-++. 【点睛】本题考查了二项展开式中项的系数和项的系数和,主要方法是赋值法,属于基础题. 22.(1)7n =;(2)二项式系数和为128,各项系数和为1;(3)展开式中系数的绝对值最大的项为5222680x -. 【分析】(1由已知得12:1:3n n C C =,解得可得7n =;(2)由(1)将原式化为73x⎛- ⎝,求得二项展开式中各项二项式系数和为72,令1x =时,可得二项展开式中各项系数和;(3)设第+1r 项的系数的绝对值最大,设()7732rrr f r C -=⨯⨯,建立不等式组()()()()+11f r f r f r f r ⎧≥⎪⎨≥-⎪⎩,解之求得以3r =,从而可得答案. 【详解】(1)()*3nx n N⎛∈ ⎝的展开式的通项为:()()321332rrn n r r r r n r r n n T C x C x ---+⎛==⨯⨯- ⎝, 又展开式中第2项与第3项的二项式系数之比是1∶3,所以12:1:3n n C C =,解得7n =;(2)由(1)得原式为73x ⎛- ⎝,所以二项展开式中各项二项式系数和为72128=,令1x =,得二项展开式中各项系数和为7131⎛⨯ ⎝=;(3)73x ⎛ ⎝展开式的通项为()()37772177332rrr r r r r r T C x C x ---+⎛==⨯⨯- ⎝,设第+1r 项的系数的绝对值最大, 设()7732r rrf r C -=⨯⨯,则()()()()+11f r f r f r f r ⎧≥⎪⎨≥-⎪⎩,即7+16+17771817732323232r r r r r r r r r r r r C C C C ------⎧⨯⨯≥⨯⨯⎨⨯⨯≥⨯⨯⎩,解得131855r ≤≤,又r N *∈,所以3r =, 所以展开式中系数的绝对值最大的项为()3357337322473222680T C xx ⨯--=⨯⨯-=-.【点睛】本题考查二项式展开的通项,二项式系数,系数,二项式系数和,各项系数和,属于中档题.23.(1)18-;(2)325376x -;(3)91019-.【分析】(1)利用二项展开式的通项公式求出展开式的通项,求出展开式中的第6项的系数与第4项的系数,列出方程求出n 的值,代入二项展开式的通项公式即可求解;(2)利用两边夹定理,设第1r +项系数的绝对值最大,列出关于r 的不等式即可求解; (3)利用二项式定理求解即可. 【详解】(1)由5533(2):(2)6:1n n C C --=,得9n =,∴通项2752219(2)r r rr TC x-+=-,令2751122r-=,解得1r =, ∴展开式中11x 的系数为119(2)18C -=-.(2)设第1r +项系数的绝对值最大,则11991199221732022r r r r r rr r C C r C C ++--⎧≥⇒≤≤⎨≥⎩,所以6r =,∴系数绝对值最大的项为27303662229(2)5376C xx ---=.(3)原式()90012299999991110199991(19)1999C C C C -⎡⎤=++++-=+-=⎣⎦. 【点睛】本题考查二项式定理的应用、二项展开式的通项公式和系数最大项的求解;考查运算求解能力和逻辑推理能力;熟练掌握二项展开式的通项公式是求解本题的关键;属于中档题、常考题型. 24.(1)84 (2)2048 【分析】(1)利用二项展开式的通项公式,令x 的次数为0,即可求出常数项.(2)通过第6项与第7项的系数互为相反数,可得11n =,111(x的各项系数绝对值之和与111(x的各系数之和相等,令x=1,即可得到答案.【详解】解:(1)因为91(x 的通项是39921991()((1)r r r r r r r T C C x x--+==-,当r=6时可得展开式的常数项,即常数项是6679(1)84T C =-=.(2)1(n x 的通项为3211()((1)r n r n r r r r r n n T C C x x--+==-,则第6项与第7项分别为15526n nT C x-=-和697nn T C x -=,它们的系数分别为5n C -和6n C .因为第6项与第7项的系数互为相反数,所以56n n C C =,则11n =,因为111(x 的各项系数绝对值之和与111(x 的各系数之和相等,令1x =,得111(x的各项系数的绝对值之和为1122048=.【点睛】本题考查二项式定理的应用,考查二项式展开式通项公式和二项式系数的应用,属于基础题. 25.12 【分析】分别写出(nx -的展开式的第二项与第四项,由展开式中第二项与第四项的系数比为1:2,可求出n ,进而可得出展开式中2x 项的系数.【详解】(nx -展开式的第二项与第四项分别为:1112(n n n T C x --==,333334(n n n n T C x x --==-.12=,即2340n n --=, 解得4n =或1n =-, 显然只有4n =符合题意,设(4x 展开式中2x 项为第1r +项,则441(rr r r T C x -+=⋅,令42-=r ,得2r,即(4x 展开式中2x项为222234(12T C x x ==.故2x 项的系数为12. 【点睛】本题考查二项式的系数,要熟练掌握二项式定理,属于中档题. 26.(1)237x -;(2)358;(3)1256.【解析】试题分析:(1)根据展开式的通项为23112rn r r r n T C x -+⎛⎫=- ⎪⎝⎭,结合前三项系数的绝对值成等差数列,求得8n =,从而求得展开式的第四项;(2)在展开式中,令x 的幂指数等于零,求得r 的值,代入通项公式可得常数项;(3)在二项式n 的展开式中,令1x =,可得各项系数和. 试题展开式的通项为23112rn r r r n T C x -+⎛⎫=- ⎪⎝⎭,r=0,1,2,…,n由已知:02012111,,222n n nC C C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成等差数列,∴ 12112124n n C C ⨯=+,∴ n=8 ,8231812rr r r T C x -+⎛⎫=- ⎪⎝⎭. (1)令3r =,32233348172T C x x ⎛⎫=-=- ⎪⎝⎭, (2)令820y -=,得4r = ,5358T ∴=,(3)令x=1,各项系数和为1256. 【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.。
(易错题)高中数学选修三第一单元《计数原理》检测题(含答案解析)(2)
一、选择题1.2020是全面实现小康社会目标的一年,也是全面打赢脱贫攻坚战的一年.复旦大学团委发起了“跟着驻村第一书记去扶贫”的实践活动,其中学生小明与另外3名学生一起分配到某乡镇甲、乙、丙3个贫困村参与扶贫工作,若每个村至少分配1名学生,则小明恰好分配到甲村的方法数是( ) A .3B .8C .12D .62.()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项是( ) A .15B .-15C .7D .-73.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( ) A .166B .155C .566D .5114.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960-B .960C .1120D .16805.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则: ①若开启3号,则必须同时开启4号并且关闭2号; ②若开启2号或4号,则关闭1号; ③禁止同时关闭5号和1号. 则阀门的不同开闭方式种数为( ) A .7B .8C .11D .146.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C7.杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )A .3n >B .4n <C .3n <D .4n >8.在下方程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x m x x x+⋅-+的展开式中的常数项是A .224B .336C .112D .5609.已知21nx x ⎛⎫ ⎪⎝⎭+的二项展开式的各项系数和为32,则二项展开式中x 的系数为( ) A .5 B .10 C .20 D .4010.在()nx x的展开式中,各项系数与二项式系数和之比为128,则4x 的系数为( ) A .21B .63C .189D .72911.1231261823n nn n n n C C C C -+++⋯+⨯=( )A .2123n + B .()2413n- C .123n -⨯ D .()2313n- 12.以长方体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情兄有( )种A .1480B .1468C .1516D .1492二、填空题13.()3621()x x x-的展开式中的常数项为_____.(用数字作答)14.设122012(1)(1)(1)n n n x x x a a x a x a x ++++++=++++,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=,则n =_____15.对于无理数x ,用x 表示与x 最接近的整数,如3π=32=.设n *∈N ,对于区间11,22n ⎛⎫-+ ⎪⎝⎭的无理数x ,定义x x m m C C =,我们知道,若m *∈N ,()n m n *∈N ≤和()r r n *∈N ≤,则有以下两个恒等式成立:①m n m n n C C -=;②11r r r m m m C C C -+=+,那么对于正整数n 和两个无理数()0,m n ∈,()1,r n ∈,以下两个等式依然成立的序号是______;①m n m n n C C -=;②11r r r n n n C C C -+=+.16.621(2)x x-的展开式中的常数项为______. 17.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)18.已知33210n n A A =,那么n =__________.19.设S 为一个非空有限集合,记||S 为集合S 中元素的个数,若集合S 的两个子集A 、B 满足:||A B k =并且A B S =,则称子集{,}A B 为集合S 的一个“k —覆盖”(其中0||k S ≤≤),若||S n =,则S 的“k —覆盖”个数为________20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.现有5本书和3位同学,将书全部分给这三位同学.(1)若5本书完全相同,每个同学至少有一本书,共有多少种分法? (2)若5本书都不相同,共有多少种分法?(3)若5本书都不相同,每个同学至少有一本书,共有多少种分法?22.若7767610(31)x a x a x a x a -=++++,求(1)127a a a +++;(2)1357a a a a +++; (3)0246a a a a +++.23.二项式n 的二项式系数和为256.(1)求展开式中二项式系数最大的项; (2)求展开式中各项的系数和;(3)展开式中是否有有理项,若有,求系数;若没有,说明理由. 24.已知(n x 的展开式中的第二项和第三项的系数相等.()1求n 的值;()2求展开式中所有二项式系数的和; ()3求展开式中所有的有理项.25.已知二项式()*1,22nx n N n x ⎛⎫+∈ ⎪⎝⎭.(1)若该二项式的展开式中前三项的系数成等差数列,求正整数n 的值; (2)在(1)的条件下,求展开式中4x 项的系数.26.已知二项式)22nx -.(1)若展开式中第二项系数与第四项系数之比为1:8,求二项展开式的系数之和. (2)若展开式中只有第6项的二项式系数最大,求展开式中的常数项.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对甲村分配的学生人数进行分类讨论,结合分类加法计数原理可求得结果. 【详解】若甲村只分配到1名学生,则该学生必为小明,此时分配方法数为22326C A =种;若甲村分配到2名学生,则甲村除了分配到小明外,还应从其余3名学生中挑选1名学生分配到该村,此时分配方法数为12326C A =种.综上所述,不同的分配方法种数为6612+=种. 故选:C. 【点睛】方法点睛:不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.2.B解析:B 【分析】先求得7211x ⎛⎫- ⎪⎝⎭展开式的通项公式,分别令r =4,5,6,7,求得对应的四项,又()3264226128x x x x +=+++,则()7322121x x ⎛⎫+- ⎪⎝⎭展开式中所有x 的零次幂的系数和即为常数项,计算化简,即可得结果. 【详解】7211x ⎛⎫- ⎪⎝⎭的通项公式为721417721()(1)(1)r r r r r r r T C C x x --+=⋅⋅-=⋅-⋅,令4r =,得446657(1)35T C x x --=⋅-⋅=, 令=5r ,得554467(1)21T C x x --=⋅-⋅=-, 令6r =,得662277(1)7T C x x --=⋅-⋅=,令7r =,得77087(1)1T C x =⋅-⋅=-,又()3264226128x x x x +=+++,所以()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项为351(21)6712(1)815⨯+-⨯+⨯+-⨯=-, 故选:B 【点睛】本题考查利用赋值法解决展开式中常数项的问题,考查分析理解,计算求值的能力,属中档题.3.C解析:C【分析】对甲分甲选牛或羊作礼物、甲选马作礼物,利用分步计数原理和分类计数原理计算出事件“三位同学都选取了满意的礼物”所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】若甲选牛或羊作礼物,则乙有3种选择,丙同学有10种选择,此时共有231060⨯⨯=种;若甲选马作礼物,则乙有4种选择,丙同学有10种选择,此时共有141040⨯⨯=种.因此,让三位同学选取的礼物都满意的概率为31260401005132066A +==. 故选:C. 【点睛】本题考查古典概型概率的计算,同时也涉及了分类计数和分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.4.C解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C . 【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.5.A解析:A 【分析】分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果. 【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号, 此时有1种方法; 第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号, 此时有种3方法;综上所述,共有1337++=种方式. 故选:A. 【点睛】本题考查分类加法计数原理,属于中档题.6.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.7.C解析:C 【分析】利用()!!!i n n C i n i =-,执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出的值为22C ,即可得到输出条件. 【详解】利用()!!!in n C i n i =-,执行程序框图,当0n =时,输出的是00C ; 当1n =时,输出的是0111,C C ; 当2n =时,012222,,C C C ;当3n =时,输出的是01233333,,,C C C C ,因为第5次输出数“1”,即2n =,输出22C 后结束程序, 所以3n =时不满足条件,结束程序,所以,空白判断框内应填入的条件为3n <,故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.D解析:D 【分析】由程序图先求出m 的值,然后代入二项式中,求出展开式中的常数项 【详解】由程序图可知求输入18100a b ==,的最大公约数,即输出2m =则二项式为())348332812161x x x x x x x ⎛⎫⎛⎫+⋅-=+++ ⎪ ⎪⎝⎭⎝⎭)81的展开通项为()82181r rr r T C x-+=-要求展开式中的常数项,则当取38x时,令832r-= 解得2r =,则结果为288224C =,则当取12x 时,令812r-=,解得6r =,则结果为6812336C =,故展开式中的常数项为224336560+=,故选D【点睛】本题考查了运用流程图求两个数的最大公约数,并求出二项式展开式中的常数项,在求解过程中注意题目的化简求解,属于中档题9.B解析:B 【分析】首先根据二项展开式的各项系数和012232n n n n n n C C C C +++==,求得5n =,再根据二项展开式的通项为211()()r rn rr n T C x x-+=,求得2r,再求二项展开式中x 的系数.【详解】因为二项展开式的各项系数和012232n n n n n n C C C C +++==,所以5n =,又二项展开式的通项为211()()r rn rr n T C x x-+==3r r n n C x -,351r -=,2r所以二项展开式中x 的系数为2510C =.答案选择B .【点睛】本题考查二项式展开系数、通项等公式,属于基础题.10.C解析:C 【解析】分析:令1x =得各项系数和,由已知比值求得指数n ,写出二项展开式通项,再令x 的指数为4求得项数,然后可得系数.详解:由题意41282n n =,解得7n =,∴37721773r r r r r rr T C x C x --+==,令3742r-=,解得2r ,∴4x 的系数为2273189C =.故选C . 点睛:本题考查二项式定理,考查二项式的性质.在()n a b +的展开式中二项式系数和为2n ,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为1C r n r rr n T ab -+=. 11.B解析:B 【解析】1212618323n nn n n C C C C -++++⨯=1220012222(333)(33331)33n n n n n n n n n n n C C C C C C C =⨯+⨯+⨯=⨯+⨯+⨯+⨯-22[(13)1](41)33n n =+-=-选B. 12.B解析:B 【分析】根据平行六面体的几何特征,可以求出以平行六面体1111ABCD A B C D -的任意三个顶点为顶点作三角形的总个数,及从中随机取出2个三角形的情况总数,再求出这两个三角形共面的情况数,即可得到这两个三角形不共面的情况数,即可得到答案. 【详解】因为平行六面体1111ABCD A B C D -的8个顶点任意三个均不共线, 故从8个顶点中任取三个均可构成一个三角形共有38=56C 个三角形,从中任选两个,共有2561540C =种情况,因为平行六面体有六个面,六个对角面, 从8个顶点中4点共面共有12种情况, 每个面的四个顶点共确定6个不同的三角形,故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种, 故选:B. 【点睛】本题考查了棱柱的结构特征,考查了组合数的计算,在解题过程中注意共面和不共面的情况,做到不重不漏,属于中档题.二、填空题13.180【分析】根据二项式定理结合展开式通项即可确定的指数形式将多项式展开即可确定常数项【详解】的展开式中的通项公式而分别令解得或∴的展开式中的常数项故答案为:180【点睛】本题考查了二项式定理通项展解析:180 【分析】根据二项式定理,结合展开式通项即可确定x 的指数形式.将多项式展开,即可确定常数项. 【详解】62x ⎫⎪⎭的展开式中的通项公式 363216622kkkkk k k T C C x x --+⎛⎫==⋅⋅ ⎪⎝⎭,而()666332221)x x x x x =-⎫⎫⎫-⎪⎪⎪⎭⎭⎭ 分别令3332k -=-,3302k -=, 解得4k =,或2k =.∴()6321x x ⎫-⎪⎭的展开式中的常数项44226622180C C -=.故答案为:180. 【点睛】本题考查了二项式定理通项展开式的应用,多项式的乘法展开式,常数项的求法,属于中档题.14.9【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想解析:9 【分析】记函数122012()(1)(1)(1)n n n f x x x x a a x a x a x =++++++=++++,012222(1)2n n f a a a a =+++=++++,利用等比数列求和公式即可求解. 【详解】由题:记函数212012()(1)(1)(1)n n n f x a a x a x a x x x x =++++=++++++,021222(12)(21)212n nn f a a a a -=++++++=-=+, 即1221022n +-=,121024,9n n +== 故答案为:9 【点睛】此题考查多项式系数之和问题,常用赋值法整体代入求解,体现出转化与化归思想.15.①②【分析】根据新定义结合组合数公式进行分类讨论即可【详解】当时由定义可知:当时由定义可知:故①成立;当时由定义可知:当时由定义可知:故②成立故答案为:①②【点睛】本题考查了新定义题考查了数学阅读能解析:①,②.. 【分析】根据新定义,结合组合数公式,进行分类讨论即可. 【详解】当1()2m n +>时,由定义可知:m n 〈〉=,01,1m m n n m n m n n n n nn C C C C C C 〈〉-〈-〉======, 当1()2m n +<时,由定义可知:1m n 〈〉=-,11,m m n n m n m n n n n nn C C C n C C C n 〈〉--〈-〉======, 故①m n mn n C C -=成立;当1()2r n +>时,由定义可知:r n 〈〉=,1111111,1r r n r r r r n n n n n n nn n n n C C C n C C C C C C n 〈〉-〈〉〈-〉-+++===++=+=+=+, 当1()2r n +<时,由定义可知:1r n 〈〉=-,11112111(1)(1)(1),222r r n r r r r n n n n n n n n n n n n n n n n n C C C C C C C C C n 〈〉--〈〉〈-〉--++++-+===+=+=+=+=故②11r r r n n n C C C -+=+成立.故答案为:①,②. 【点睛】本题考查了新定义题,考查了数学阅读能力,考查了组合数的计算公式,考查了分类讨论思想.16.240【分析】根据二项式展开式通项公式确定常数项对应项数再代入得结果【详解】令得所以的展开式中的常数项为【点睛】本题考查求二项式展开式中常数项考查基本分析求解能力属基础题解析:240 【分析】根据二项式展开式通项公式确定常数项对应项数,再代入得结果【详解】()()616211C 2rrrr r T x x -+⎛⎫=-⋅ ⎪⎝⎭()31261C 2rrr r x -⎡⎤=-⋅⎣⎦, 令3120r -=得,4r =,所以6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为()44461C 2240-⋅=.【点睛】本题考查求二项式展开式中常数项,考查基本分析求解能力,属基础题.17.【解析】分析:根据排列定义求结果详解:将5家招聘员工的公司看作5个不同的位置从中任选3个位置给3名大学毕业生则本题即为从5个不同元素中任取3个元素的排列问题所以不同的招聘方案共有=5×4×3=60( 解析:60【解析】分析:根据排列定义求结果.详解:将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A =5×4×3=60(种).点睛:本题考查排列定义,考查基本求解能力.18.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=-- ()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.19.【分析】当时共有种情况当时共有种情况由此可计算得到答案【详解】由题意当时即中有个元素所以共有种情况此时集合中剩下个元素其子集个数为个即共有种情况所以的—覆盖个数为故答案为:【点睛】本题主要考查组合数解析:2k n kn C -⋅【分析】 当||AB k =时,共有k nC 种情况,当A B S =时,共有2n k -种情况,由此可计算得到答案. 【详解】 由题意,当||AB k =时,即A B 中有k 个元素,所以共有kn C 种情况,此时集合S 中剩下n k -个元素,其子集个数为2n k -个, 即AB S =共有2n k -种情况,所以S 的“k —覆盖”个数为2k n kn C -⋅. 故答案为:2k n kn C -⋅【点睛】本题主要考查组合数的应用和集合子集个数的应用,考查学生分析解决问题的能力,属于中档题.20.0【分析】根据题意给自变量赋值取和两个式子相减得到的值用二项展开式可以看出被12整除的结果得到余数【详解】在已知等式中取得取得两式相减得即因为能被12整除所以则被12整除余数是0故答案为:0【点睛】解析:0 【分析】根据题意,给自变量x 赋值,取1x =和1x =-,两个式子相减,得到1352019a a a a +++的值,用二项展开式可以看出被12整除的结果,得到余数.【详解】在已知等式中,取1x =得202001220205a a a a ++++=,取1x =-得01220201a a a a -+-+=, 两式相减得202013520192()51a a a a +++=-,即()202013520191512a a a a +++=⨯-,因为()()()1010202010101111512512412222⨯-=⨯-=⨯+- ()01010110091010101010101010101124242422C C C C =⨯++++- ()0101011009110101010101012424242C C C =⨯+++能被12整除,所以则1352019a a a a ++++被12整除,余数是0.故答案为:0. 【点睛】本题考查二项式定理的应用和带余除法,本题解题的关键是利用赋值的方法、利用二项式定理得到式子的结果,属于中等题.三、解答题21.(1)6种;(2)243种;(3)150种. 【分析】(1)用挡板法求解;(2)每本书都有三种分配方法,求幂便可得到答案;(3)用分组分配问题的求解方法求解,①将5本书分成3组,②将分好的三组全排列,对应3名学生,由分步计数原理计算可得答案. 【详解】解:(1)根据题意,若5本书完全相同,将5本书排成一排,中间有4个空位可用, 在4个空位中任选2个,插入挡板,有246C =种情况, 即有6种不同的分法;(2)根据题意,若5本书都不相同,每本书可以分给3人中任意1人,都有3种分法, 则5本不同的书有5333333243⨯⨯⨯⨯==种; (3)根据题意,分2步进行分析: ①将5本书分成3组,若分成1、1、3的三组,有31522210C C A =种分组方法, 若分成1、2、2的三组,有1225422215C C C A =种分组方法, 则有101525+=种分组方法;②将分好的三组全排列,对应3名学生,有336A =种情况,则有256150⨯=种分法. 【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,难度一般. 解答时注意挡板法、分组分配问题等的应用,注意分类讨论思想的运用. 22.(1)129(2)8256(3)-8128 【分析】(1)利用赋值法令0x =得0a ,再令1x =即可得到结果. (2)令1x =和1x =-,将得到的两个式子作差可得结果. (3)令1x =和1x =-,将得到的两个式子相加可得结果. 【详解】(1)令0x =,则01a =-,令1x =,则128270167==++++a a a a .∴129721=+++a a a .(2)令1x =,则128270167==++++a a a a . 令1x =-,则701234567)4(-=+-+-+-+-a a a a a a a a ,两式相减得:()713572128(4)16512a a a a +++=--=,则1357=8256a a a a +++.(3)令1x =,则128270167==++++a a a a . 令1x =-,则701234567)4(-=+-+-+-+-a a a a a a a a ,两式相加得:()02462=a a a a +++()7128416256+-=-,则02468128a a a a +++=- 【点睛】本题考查赋值法求二项展开式的各项系数和,考查计算能力,属于基础题. 23.(1)5358T =;(2)1256;(3)见解析. 【解析】分析:(1)依题意知展开式中的二项式系数的和为2256n =,由此求得n 的值,则展开式中的二项式系数最大的项为中间项,即第五项,从而求得结果. (2)令二项式中的1x =,可得二项展开式中各项的系数和; (3)由通项公式及08r ≤≤且r Z ∈得当1,4,7r =时为有理项; 详解:因为二项式n的二项式系数和为256,所以2256n =, 解得8n =.(1)∵8n =,则展开式的通项818rrr T C-+=⋅ 823812r rr C x --⎛⎫=⋅⋅ ⎪⎝⎭. ∴二项式系数最大的项为445813528T C ⎛⎫=-= ⎪⎝⎭; (2)令二项式中的1x =,则二项展开式中各项的系数和为88111122256⎛⎫⎛⎫-==⎪ ⎪⎝⎭⎝⎭. (3)由通项公式及08r ≤≤且r Z ∈得当1,4,7r =时为有理项;系数分别为118142C ⎛⎫-=- ⎪⎝⎭,44813528C ⎛⎫-= ⎪⎝⎭,77811216C ⎛⎫-=- ⎪⎝⎭. 点睛:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于中档题. 24.(1)5;(2)32;(3)见解析 【分析】(1)根据展开式中的第二项和第三项的系数相等,列出方程求出n 的值; (2)利用展开式中所有二项式系数的和为2n ,即可求出结果; (3)根据二项式展开式的通项公式,求出展开式中所有的有理项【详解】二项式nx ⎛ ⎝展开式的通项公式为32112r rr n r n r r r n n T C x C x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭ (r=0,1,2,…,n );(1)根据展开式中的第二项和第三项的系数相等,得2121122nn C C ⎛⎫⋅=⋅ ⎪⎝⎭,即()111242n n n -=⋅ 解得n=5; (2)展开式中所有二项式系数的和为0123455555555232C C C C C C +++++==(3)二项式展开式的通项公式为355215512r rr r r r r T C x C x--+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭(r=0,1,2,…,5);当r=0,2,4时,对应项是有理项, 所以展开式中所有的有理项为0551512T C x x ⎛⎫=⋅⋅= ⎪⎝⎭22532351522T C x x -⎛⎫=⋅⋅= ⎪⎝⎭44565515216T C x x -⎛⎫=⋅⋅= ⎪⎝⎭. 【点睛】注意区别,展开式的“二项式系数”与“二项展开式的系数”,如本题中二项展开式的系数为:12rr nC ⎛⎫⋅ ⎪⎝⎭,而二项式系数为rn C ;二项展开式(a+b )n 的第(r+1)项,其通项公式为1rn r r r n T C a b -+=⋅⋅( r ∈{0,1,2,3,…,n}).25.(1)8n =;(2)7. 【分析】(1)利用二项展开式的通项公式求出展开式的前3项,利用等差数列得到关系式,即可求出n 的值.(2)利用通项,令x 的指数为4,求出r ,然后求出所求结果. 【详解】(1)211122rr r n r r n n rT C C x x -+⎛⎫== ⎪⎝⎭, 由题知210211222n n n C C C ⎛⎫⎛⎫⨯=+ ⎪ ⎪⎝⎭⎝⎭,故2980n n -+=,从而1n =或8n =,由于2n ≥,故8n =.(2)由上知其通项公式为81812r r rr T C x x -+⎛⎫= ⎪⎝⎭,即821812rr rr T C x -+⎛⎫= ⎪⎝⎭令824r -=得2r,故4x 项的系数为228172C ⎛⎫= ⎪⎝⎭. 【点睛】本题考查二项式定理及其应用,注意项的系数的讨论关键是弄清楚二项展开式的通项,本题属于中档题.26.(1)-1 (2)180 【分析】(1)先求出n 的值,再求二项展开式的系数之和;(2)根据已知求出n 的值,再求出展开式中的常数项. 【详解】 (1)二项式)22nx--的展开式的通项为5221(2)(2)n r r n rr rr r nnTC x C x---+=-=-,所以第二项系数为1(2)n C -,第四项系数为33(2)n C -,所以13(2)188n n C C -=-,所以5n =.所以二项展开式的系数之和)52211-⨯=-.(2)因为展开式中只有第6项的二项式系数最大, 所以展开式有11项,所以10.n = 令1050,22rr -=∴=. 所以常数项为2210(2)180C -=.【点睛】本题主要考查二项式展开式的系数问题,考查指定项的求法,意在考查学生对这些知识的理解掌握水平.。
(易错题)高中数学选修三第一单元《计数原理》检测题(有答案解析)(2)
一、选择题1.若1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是 A .462- B .462 C .792D .792-2.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种B .48种C .60种D .72种3.()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项是( ) A .15B .-15C .7D .-74.关于6212x x ⎛⎫- ⎪⎝⎭的展开式,下列说法中正确的是( ) A .展开式中二项式系数之和为32B .展开式中各项系数之和为1C .展开式中二项式系数最大的项为第3项D .展开式中系数最大的项为第4项5.已知()52x a x x ⎛⎫+- ⎪⎝⎭的展开式中所有项的系数和为2-,则展开式中的常数项为( )A .80B .80-C .40D .40-6.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12967.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有 A .96种 B .124种 C .130种D .150种8.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( ) A .7种 B .6种C .5种D .4种9.若()352()x x a -+的展开式的各项系数和为32,则实数a 的值为( )A .-2B .2C .-1D .110.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( ) A .48B .72C .84D .16811.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为 A .18B .200C .2800D .3360012.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134********+=),则称(),m n 为“简单的”有序对,而m n +称为有序数对(),m n 的值,那么值为2964的“简单的”有序对的个数是( ) A .525B .1050C .432D .864二、填空题13.有7人站成一排照相,要求A ,B 两人相邻,C ,D ,E 三人互不相邻,则不同的排法种数为______.14.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则该展开式中4x 的系数为___________.15.已知()2311nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*N n ∈且58n ≤≤,则n =______. 16.已知x 、y 满足组合数方程21717x yC C =,则xy 的最大值是_____________.17.设集合{}{}12310(,,,...,)1,0,1,1,2,3,...,10i A x x x x x i =∈-=,则集合A 中满足条件“123101+9x x x x ≤+++≤…”的元素个数为_____.18.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______. 19.已知(12)n x +展开式中只有第4项的二项式系数最大,则21(1)(12)n x x++展开式中常数项为_______.20.若二项式nx⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________. 三、解答题21.已知nx⎛+ ⎝的展开式中只有第五项的二项式系数最大.(1)求该展开式中有理项的项数; (2)求该展开式中系数最大的项.22.计算:(1)2490n n A A =;(2)383321nn nn C C -++.23.计算:(1)()2973100100101CC A +÷ (2)3333410C C C +++. 24.已知()23*23n n A C n N =∈.(1)求n 的值;(2)求12nx x ⎛⎫- ⎪⎝⎭展开式中2x 项的系数.25.若7270127(2)x a a a x a x a x -=++++,且4560a =-.(Ⅰ)求实数a 的值; (Ⅱ)求372126222a a a a ++++的值.26.已知n的展开式中的二项式系数之和比各项系数之和大255(1)求展开式所有的有理项; (2)求展开式中系数最大的项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =.121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211C r r r r T x -+=-,令1222r -=,得5r =. ∴展开式中含2x 项的系数是()12551C 792-=-,故选D . 【名师点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项,可依据条件写出第1r +项,再由特定项的特点求出r 值即可; (2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.2.A解析:A【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
(常考题)人教版高中数学选修三第一单元《计数原理》检测卷(含答案解析)(2)
一、选择题1.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种B .48种C .60种D .72种2.二项式2()nx x-的展开式中,第3项的二项式系数比第2项的二项式系数大9,则该展开式中的常数项为( ) A .160-B .80-C .80D .1603.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960-B .960C .1120D .16804.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中1,3至少选一个,若1,3都选则0不选,这样的五位数中偶数共有( ) A .144个B .168个C .192个D .196个5.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C6.从0,2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ) A .24B .27C .30D .367.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形(每次旋转90°仍为L 形的图案),那么在56⨯个小方格组成的方格纸上可以画出不同位置的L 形需案的个数是()A .36B .64C .80D .968.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种 A .27 B .81 C .54 D .1089.如果21()2nx x-的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数和是( )A .0B .256C .64D .16410.()6232x x ++展开式中x 的系数为( ) A .92B .576C .192D .38411.1231261823n nn n n n C C C C -+++⋯+⨯=( )A .2123n +B .()2413n- C .123n -⨯ D .()2313n- 12.在622x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( ) A .15-B .15C .60-D .60二、填空题13.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.14.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种.15.若348,n n A C =则n 的值为_______.16.设n 为正整数,32nx x ⎛⎫- ⎪⎝⎭展开式中仅有第5项的二项式系数最大,则展开式中的常数项为__________.17.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)18.()6221x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为______.19.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______. 20.用0,1,2,3,4,5这六个数字组成没有重复数字的三位数,且是偶数,则这样的三位数有______个.三、解答题21.求值:(1)333364530C C C C +++⋅⋅⋅+; (2)12330303030302330C C C C +++⋅⋅⋅+.22.已知2nx ⎫⎪⎭的展开式中,第3项和第10项的二项式系数相等. (1)求n ;(2)求展开式中4x 项的系数. 23.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法; (2)如果女生必须全分开,有多少种不同的排法. 24.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:iiiim n n A m A <; (2)证明:(1)(1)m n n m +<+.25.已知4530n n A C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.26.在①只有第6项的二项式系数最大,②第4项与第8项的二项式系数相等,③所有二项式系数的和为102,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知()123012321nn n x a a x a x a x a x -=++++⋅⋅⋅+(n *∈N ),若()21nx -的展开式中,______. (1)求n 的值;(2)求123n a a a a +++⋅⋅⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
(常考题)人教版高中数学选修三第一单元《计数原理》测试(包含答案解析)(2)
一、选择题1.若1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是 A .462- B .462 C .792 D .792-2.已知(a x)5的展开式中,常数项为10,则a =( ) A .﹣1B .1C .﹣2D .23.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a 、b 、c 三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有 A .96种 B .124种 C .130种D .150种4.在某次体检中,学号为i (1,2,3,4i =)的四位同学的体重()f i 是集合{45,48,52,57,60}kg kg kg kg kg 中的元素,并满足(1)(2)(3)(4)f f f f ≤≤≤,则这四位同学的体重所有可能的情况有( ) A .55种B .60种C .65种D .70种5.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中1,3至少选一个,若1,3都选则0不选,这样的五位数中偶数共有( ) A .144个B .168个C .192个D .196个6.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( ) A .35种 B .38种C .105种D .630种7.411()x y x y+--的展开式的常数项为( ) A .36B .36-C .48D .48-8.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5009.若0,0a b >>,二项式6()ax b +的展开式中3x 项的系数为20,则定积分22abxdx xdx +⎰⎰的最小值为( )A .0B .1C .2D .310.设40cos2t xdx π=⎰,若20182012(1)x a a x a x t-=++20182018a x ++,则1232018a a a a +++=( )A .-1B .0C .1D .25611.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134********+=),则称(),m n 为“简单的”有序对,而m n +称为有序数对(),m n 的值,那么值为2964的“简单的”有序对的个数是( ) A .525 B .1050C .432D .86412.设(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x+a 2x 2+…+a n x n ,当a 0+a 1+a 2+…+a n =254时,n 等于( ) A .5B .6C .7D .8二、填空题13.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则该展开式中4x 的系数为___________.14.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域(有公共边)的颜色不同,则不同的染色方法有______种.15.已知集合{}08A C =,{}1288,B C C =,{}456888,,C C C C =,若从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定不同点的个数为___________.16.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)17.已知33210n n A A =,那么n =__________.18.若()5234501234512x a a x a x a x a x a x +=+++++,则024a a a ++=__________. 19.从6男2女共8名学生中选出队长1人,副队长1人,普通队员3人,组成5人服务队,要求服务队中至少有1名女生,共有________种不同的选法(用数字作答) 20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.在二项式32(*)nx n N x ⎛⎫+∈ ⎪⎝⎭的展开式中,第三项的系数与第四项的系数相等. (1) 求n 的值,并求所有项的二项式系数的和;(2) 求展开式中的常数项.22.设()52501252x 1a a x a x a x -=++++,求:(1)015a a a +++;(2)015a a a +++;(3)135a a a ++;(4)()()22024135a a a a a a ++-++.23.在2(n x+的展开式中,第4项的系数与倒数第4项的系数之比为12.(1)求n 的值;(2)求展开式中所有的有理项; (3)求展开式中系数最大的项.24.现有大小相同的7只球,其中2只不同的红球,2只不同的白球,3只不同的黑球. (1)将这7只球排成一列且相同颜色的球必须排在一起,有多少种排列的方法?(请用数字作答)(2)将这7只球分成三堆,三堆的球数分别为:1,3,3,共有多少种分堆的方法?(请用数字作答)(3)现取4只球,求各种颜色的球都必须取到的概率.(请用数字作答)25.已知二项式10x⎛⎝的展开式.(1)求展开式中含4x 项的系数;(2)如果第3r 项和第2r +项的二项式系数相等,求r 的值.26.(1)求(-x +12x)6的展开式的各项系数之和及展开式的常数项. (2)4位男同学与3位女同学任意排成一排照相. ①求3位女同学站在一起的概率; ②求4位男同学互不相邻的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【解析】∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =.121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211C r r r r T x -+=-,令1222r -=,得5r =. ∴展开式中含2x 项的系数是()12551C 792-=-,故选D . 【名师点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项,可依据条件写出第1r +项,再由特定项的特点求出r 值即可; (2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.2.A解析:A 【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值,再根据常数项为10,求得a 的值. 【详解】5()a x x x -的展开式中,通项公式为15552155()()()rr r r r rr a T C x x C a x x--+==--,令15502r-=,求得3r =, 可得常数项为335()10C a -=,求得1a =-. 故选:A 【点睛】本题主要考查二项式定理的应用,考查根据展开式的某一项求参数的值,意在考查学生对这些知识的理解掌握水平.3.D解析:D 【分析】根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案. 【详解】根据题意,分2步进行分析:①、五个参会国要在a 、b 、c 三家酒店选择一家,且这三家至少有一个参会国入住, ∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2 当按照1、1、3来分时共有C 53=10种分组方法;当按照1、2、2来分时共有22532215C C A = 种分组方法;则一共有101525+= 种分组方法;②、将分好的三组对应三家酒店,有336A = 种对应方法;则安排方法共有256150⨯= 种; 故选D . 【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.4.D解析:D 【分析】根据(1)(2)(3)(4)f f f f ≤≤≤中等号所取个数分类讨论,利用组合知识求出即可. 【详解】解:当(1)(2)(3)(4)f f f f ≤≤≤中全部取等号时,情况有155C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有两个取等号,一个不取等号时,情况有215330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中有一个取等号,两个不取等号时,情况有315330C C =种;当(1)(2)(3)(4)f f f f ≤≤≤中都不取等号时,情况有455C =种;共560+60+5=70+种. 故选:D. 【点睛】本题考查分类讨论研究组合问题,关键是要找准分类标准,是中档题.5.B解析:B 【分析】根据条件分选1不选3、选3不选1、选1和3三种情况分别计算五位数中偶数的个数. 【详解】解:当选1不选3时,五位数中偶数有4113432360A C C A +=个; 当选3不选1时,五位数中偶数有4113432360A C C A +=个; 当选1和3时,五位数中偶数有142448C A =个, 所以这样的五位数中偶数共有60+60+48=168个. 故选:B . 【点睛】本题考查了排列、组合与简单的计算原理,考查了分类讨论思想,属中档题.6.C解析:C 【分析】根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果. 【详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有23C 种抽取方法,;②.从7件正品中抽取3件正品,有37C 种抽取方法, 则抽取的5件产品中恰好有2件次品的抽法有2337105C C ⨯=种; 故选:C .【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.7.A解析:A 【分析】先对多项式进行变行转化成441()1x y xy ⎛⎫+- ⎪⎝⎭,其展开式要出现常数项,只能第1个括号出22x y 项,第2个括号出221x y 项. 【详解】∵4444111()1x y x y x y x y x y xy xy ⎛⎫⎛⎫⎛⎫++--=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴411x y x y ⎛⎫+-- ⎪⎝⎭的展开式中的常数项为22244222(C (C 361))x y x y ⨯=.故选:A. 【点睛】本题考查二项式定理展开式的应用,考查运算求解能力,求解的关键是对多项式进行等价变形,同时要注意二项式定理展开式的特点.8.A解析:A 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数. 【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式取1x =得到4n M = 二项式系数之和为2n N =429925n n M N n -=-=⇒=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=- 取3r = 值为-250故答案选A 【点睛】本题考查了二项式定理,计算出n 的值是解题的关键.9.C解析:C 【分析】由二项式定理展开项可得1ab =,再22022abxdx xdx a b +=+⎰⎰利用基本不等式可得结果.【详解】二项式()6ax+b 的展开式的通项为6616r r r rr T C a b x --+= 当63,3r r -==时,二次项系数为3336201C a b ab =∴=而定积分2202222abxdx xdx a b ab +=+≥=⎰⎰当且仅当a b =时取等号 故选C 【点睛】本题考查了二项式定理,定积分和基本不等式综合,熟悉每一个知识点是解题的关键,属于中档题.10.B解析:B 【解析】分析:先求定积分,再求()()()()12320181,010f f a a a a f f +++=-,详解:4400111cos22|02222t xdx sin x sin πππ===-=⎰,故设()(f x =1-2x 2018),所以()()11,01f f ==,()()1232018100a a a a f f +++=-=,故选B点睛:求复合函数的定积分要注意系数能够还原,二项式定理求系数和的问题,采用赋值法.11.B解析:B 【分析】由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种取法,从0,1,2,3,4,5,6,7,8,9 ,第三位有7种取法,从0,1,2,3,4,5,6取一个数字,第四为有5种,从0,1,2,3,4取一个数字,根据分步计数原理得到结果. 【详解】由题意知本题是一个分步计数原理, 第一位取法3种为0,1, 2,第二位有10种为0,1,2,3,4,5,6,7,8,9 , 第三位有7种为0,1,2,3,4,5,6, 第四为有5种为0,1,2, 3,4根据分步计数原理知共有3×10×7×5=1050个 故选:B. 【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.12.C解析:C 【解析】试题分析:观察已知条件a 0+a 1+a 2+…+a n =254,可令(1+x )+(1+x )2+(1+x )3+…+(1+x )n=a 0+a 1x+a 2x 2+…+a n x n 中的x=1,可得254=2n+1﹣2,解之即可.解:∵(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x+a 2x 2+…+a n x n ∴令x=1得2+22+23+…+2n =a 0+a 1+a 2+…+a n , 而a 0+a 1+a 2+…+a n =254==2n+1﹣2,∴n=7 故答案为C考点:数列的求和;二项式定理的应用.二、填空题13.-48【分析】令x=1解得a=1再利用的通项公式进而得出【详解】令x=1=2解得a=1又的通项公式令5−2r=35−2r=5解得r=1r=0∴该展开式中的系数为=−80+32=−48故答案为:−48解析:-48 【分析】令x =1,解得a =1,再利用512x x ⎛⎫- ⎪⎝⎭的通项公式,进而得出. 【详解】令x =1,()()5112a +-=2,解得a =1.又512x x ⎛⎫- ⎪⎝⎭的通项公式()5521512r r rr r T C x --+=-⋅,令5−2r =3,5−2r =5. 解得r =1,r =0.∴该展开式中4x 的系数为()()141505512+12C C --=−80+32=−48, 故答案为:−48. 【点睛】本题考查二项式定理的应用,根据通项公式求系数,属于中等题.14.30【分析】由题意按照分类分步计数原理可逐个安排注意相邻不同即可【详解】对于1有三种颜色可以安排;若2和3颜色相同有两种安排方法4有两种安排5有一种安排此时共有;若2和3颜色不同则2有两种3有一种当解析:30 【分析】由题意按照分类分步计数原理,可逐个安排,注意相邻不同即可. 【详解】对于1,有三种颜色可以安排;若2和3颜色相同,有两种安排方法,4有两种安排,5有一种安排,此时共有322112⨯⨯⨯=;若2和3颜色不同,则2有两种,3有一种.当5和2相同时,4有两种;当5和2不同,则4有一种,此时共有()322118⨯⨯+=⎡⎤⎣⎦, 综上可知,共有121830+=种染色方法. 故答案为:30. 【点睛】本题考查了排列组合问题的综合应用,分类分步计数原理的应用,染色问题的应用,属于中档题.15.【分析】由组合数的性质得出先求出无任何限制条件下所确定的点的个数然后考虑坐标中有两个相同的数的点的个数将两数作差可得出结果【详解】由组合数的性质得出不考虑任何限制条件下不同点的个数为由于坐标中同时含 解析:33【分析】由组合数的性质得出2688C C =,先求出无任何限制条件下所确定的点的个数,然后考虑坐标中有两个相同的数的点的个数,将两数作差可得出结果. 【详解】由组合数的性质得出2688C C =,不考虑任何限制条件下不同点的个数为11323336C C A =, 由于2688C C =,坐标中同时含28C 和68C 的点的个数为133C =,综上所述:所求点的个数为36333-=,故答案为33.【点睛】本题考查排列组合思想的应用,常用的就是分类讨论和分步骤处理,本题中利用总体淘汰法,可简化分类讨论,考查分析问题和解决问题的能力,属于中等题.16.【解析】分析:根据排列定义求结果详解:将5家招聘员工的公司看作5个不同的位置从中任选3个位置给3名大学毕业生则本题即为从5个不同元素中任取3个元素的排列问题所以不同的招聘方案共有=5×4×3=60( 解析:60【解析】分析:根据排列定义求结果.详解:将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A =5×4×3=60(种).点睛:本题考查排列定义,考查基本求解能力.17.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=-- ()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.18.【分析】分别令和再将两个等式相加可求得的值【详解】令则;令则上述两式相加得故答案为:【点睛】本题考查偶数项系数和的计算一般令和通过对等式相加减求得考查计算能力属于中等题 解析:121【分析】分别令1x =和1x =-,再将两个等式相加可求得024a a a ++的值. 【详解】令1x =,则50123453a a a a a a +++++=;令1x =-,则0123451a a a a a a -+-+-=-.上述两式相加得5024311212a a a -++==.故答案为:121. 【点睛】本题考查偶数项系数和的计算,一般令1x =和1x =-,通过对等式相加减求得,考查计算能力,属于中等题.19.1000【分析】根据题意分为1女4男和2女3男再利用排列组合求解每类的种数结合计数原理即可求解【详解】由题意可分为两类:第一类:先选1女4男有种再在这5人中选2人作为队长和副队长有种所以共有;第二类解析:1000 【分析】根据题意,分为1女4男和2女3男,再利用排列、组合求解每类的种数,结合计数原理,即可求解. 【详解】由题意,可分为两类:第一类:先选1女4男,有142630C C =种,再在这5人中选2人作为队长和副队长有2520A =种,所以共有3020600⨯=; 第二类:先选2女3男,有232620C C =种,再在这5人中选2人作为队长和副队长有2520A =种,所以共有2020400⨯=,根据分类计数原理,共有6004001000+=种不同的选法. 故答案为:1000 【点睛】本题主要考查了分类计数原理和分步计数原理,以及排列、组合的综合应用,其中解答中认真审题,合理分类,结合排列、组合的知识求得每类的种数是解答的关键,着重考查了分析问题和解答问题的能力.20.0【分析】根据题意给自变量赋值取和两个式子相减得到的值用二项展开式可以看出被12整除的结果得到余数【详解】在已知等式中取得取得两式相减得即因为能被12整除所以则被12整除余数是0故答案为:0【点睛】解析:0 【分析】根据题意,给自变量x 赋值,取1x =和1x =-,两个式子相减,得到1352019a a a a +++的值,用二项展开式可以看出被12整除的结果,得到余数.【详解】在已知等式中,取1x =得202001220205a a a a ++++=,取1x =-得01220201a a a a -+-+=, 两式相减得202013520192()51a a a a +++=-,即()202013520191512a a a a +++=⨯-,因为()()()1010202010101111512512412222⨯-=⨯-=⨯+- ()01010110091010101010101010101124242422C C C C =⨯++++-()0101011009110101010101012424242C C C =⨯+++能被12整除,所以则1352019a a a a ++++被12整除,余数是0.故答案为:0. 【点睛】本题考查二项式定理的应用和带余除法,本题解题的关键是利用赋值的方法、利用二项式定理得到式子的结果,属于中等题.三、解答题21.(1)8,256;(2)1792. 【分析】(1)由题意利用二项展开式的通项公式,求出n 的值,可得所有项的二项式系数的和;(2)在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项. 【详解】(1) ∵ 二项式32(*)nx n N x ⎛⎫+∈ ⎪⎝⎭的展开式的通项公式为()312n rrr r nT C x x -+⎛⎫= ⎪⎝⎭,由已知得332222n n n n C C --=,即322n n C C =,解得8n =,所有二项式系数的和为012825622nn n n n n C C C C ++++===;(2)展开式中的通项公式()838838481888222rrr r r r r r r r r T C x C x x C x x -----+⎛⎫=== ⎪⎝⎭,若它为常数项时480,2r r -==.所以常数项是263821792.T C ==【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.22.(1)1;(2)243;(3)122;(4)243- 【分析】(1)令x=1即得015a a a +++的值;(2)在521x +()中,令1x =得解;(3) 先求出f(1)-f(-1)即得解;(4)求f(1)·f(-1)即得解. 【详解】∵()52501232x 1a a x a x a x -=++++, (1)令1x =,可得015a a a 1+++=;(2)在521x +()中,令1x =,可得015a a a 243+++=;(3)令f(x)=()5250125 2x 1a a x a x a x -=++++,f(1)=015 a a a 1+++=,所以f(-1)=012345243a a a a a a -+-+-=-, 所以f(1)-f(-1)=2135()244a a a ++=, 所以135122a a a ++=.(4)22024135a a a a a a ++-++()()012345012345a a a a a a a a a a a a =+++++-+-+-()()1?11243243f f =-=⨯-=-.【点睛】本题主要考查二项式展开式的系数的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.(1)7n =; (2)14x ,984x ,4560x ,1448x -; (3)32672x . 【分析】(1)由二项展开式的通项公式分别求出第4项的系数与倒数第4项的系数,然后计算出结果 (2)由通项公式分别计算当0246r =、、、时的有理项 (3)设展开式中第1r +项的系数最大,列出不等式求出结果 【详解】 (1)由题意知:52212n rr rr nTC x-+=,则第4项的系数为332n C ,倒数第4项的系数为332n n nC --, 则有33332122n n n n C C --=即61122n -=,7n ∴=.(2)由(1)可得()51421720,1,,7rr rr TC xr -+==,当0,2,4,6r =时所有的有理项为1357,,,T T T T即001414172T C x x ==,229937284T C x x ==, 4444572560T C x x ==,6611772448T C x x --==.(3)设展开式中第1r +项的系数最大,则117711772222r r r r r r r r C C C C ++--⎧≥⇒⎨≥⎩ ()()12728r r r r ⎧+≥-⎪⎨-≥⎪⎩ 131633r ⇒≤≤,5r ∴=,故系数最大项为335522672672T C x x ==.【点睛】本题考查了二项式定理的展开式,尤其是通项公式来解题时的运用一定要非常熟练,针对每一问求出结果,需要掌握解题方法. 24.(1)144种;(2)70种;(3)2435. 【分析】(1)用捆绑法求解;(2)运用不平均分组问题的方法求解;(3)针对取出2个红球,1个不同的白球,1个的黑球;1个红球,2个白球,1个黑球;1个红球,1个白球,2个黑球三种情况讨论. 【详解】解:(1)7只球排成一列且相同颜色的球必须排在一起,共有33223322144A A A A =种方法;(2)将这7只球分成三堆,三堆的球数分别为:1,3,3,共有13762270C C A =种分法; (3)当取出2个红球,1个的白球,1个的黑球时,211223147C C C p C =; 当取出1个红球,2个白球,1个黑球时,121223247C C C p C =; 当取出1个红球,1个白球,2个黑球时,112223347C C C p C =; 211121112223223223123472435C C C C C C C C C p p p p C ++=++==. 故各种颜色的球都必须取到的概率为2435. 【点睛】本题考查排列与组合、古典概型概率的计算问题,难度一般.一般地,解答排列问题时要注意一些模型的应用,如捆绑法、插空法、分组分配问题等. 25.(1)3360;(2)1 【分析】(1)写出二项展开式的通项公式,当x 的指数是4时,可得到关于k 方程,解方程可得k 的值,从而可得展开式中含4x 项的系数;(2)根据上一问写出的通项公式,利用第3r 项和第2r +项的二项式系数相等,可得到一个关于r 的方程,解方程即可得结果. 【详解】(1)设第k +1项为T k +1=令10-k =4,解得k =4,故展开式中含x 4项的系数为()441023360C =-.(2)∵第3r 项的二项式系数为,第r +2项的二项式系数为,∵=,故3r -1=r +1或3r -1+r +1=10,解得r =1或r =2.5(不合题意,舍去),∴r =1. 26.(1)各项系数之和为:164,常数项为:52- ;(2)①17;②135 . 【分析】(1)根据二项式定理的通项公式以及系数之和的性质进行求解即可. (2)利用古典概型的概率公式以及排列公式进行计算即可. 【详解】解:(1)令1x =得各项系数之和为611(1)264-+=,展开式的通项公式666216611()()(1)()22k kk kk k k k T C x C x x ---+=-=-, 由620k -=得3k =,则常数项为333615(1)()22C -=-.(2)①把3位女生当作一个元素,则有5353A A 种排法,则对应的概率53537717A A P A ==. ②4位男同学互不相邻,则先排女生,女生之间有4个空隙,然后在空隙中排男生有3434A A .则对应概率343477135A A P A ==. 【点睛】本题主要考查二项式定理的应用以及古典概型的计算,利用二项式定理的通项公式以及排列公式是解决本题的关键.难度不大.。
(常考题)人教版高中数学选修三第一单元《计数原理》检测(含答案解析)(2)
一、选择题1.关于6212x x ⎛⎫- ⎪⎝⎭的展开式,下列说法中正确的是( ) A .展开式中二项式系数之和为32B .展开式中各项系数之和为1C .展开式中二项式系数最大的项为第3项D .展开式中系数最大的项为第4项 2.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12963.在二项式(1)n x +的展开式中,存在系数之比为2:3的相邻两项,则指数*()n n N ∈的最小值为( ) A .6B .5C .4D .34.已知(1)n x λ+展开式中第三项的二项式系数与第四项的二项式系数相等,2012(1)n n n x a a x a x a x λ+=++++,若12242n a a a ++⋅⋅⋅=,则012(1)n n a a a a -+-⋅⋅⋅+-的值为( )A .1B .-1C .8lD .-815.若()352()x x a -+的展开式的各项系数和为32,则实数a 的值为( )A .-2B .2C .-1D .16.如图中每个小方格均为面积相等的正方形,则该图中正方形共有( )个A .30B .32C .36D .247.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4808.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为() A .6 B .7 C .8 D .99.若从1,2,3,...,9这9个整数中同时取3个不同的数,其和为奇数,则不同的取法种数为( ) A .10 B .30C .40D .6010.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或611.疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( ) A .60种B .90种C .150种D .240种12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足和医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援. 若将5名医生志愿者分配到两家医院(每人去一家医院,每家医院至少去1人),则共有_______种分配方案.(用数字作答)14.设06126201262m m m m x a x a x a x a x x ⎛⎫-=++++ ⎪⎝⎭,则0126m m m m ++++=_________________.15.已知()2n1(2x )n N*x-∈的展开式中各项的二项式系数之和为128,则其展开式中含1x项的系数是______.(结果用数值表示) 16.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科学科,3门文科学科)中选择3门学科参加等级考试,小丁同学理科成绩较好,决定至少选择两门理科学科,那么小丁同学的选科方案有__________种.17.已知33210n n A A =,那么n =__________.18.若()*212nx n x ⎛⎫-∈ ⎪⎝⎭N 的展开式中所有项的二项式系数之和为64,则展开式中的常数项是__________.19.若()()7280128112x x a a x a x a x +-=++++,则127a a a +++的值为__.20.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______. 三、解答题21.已知nx ⎛⎝的展开式中,奇数项的二项式系数的和等于128. (1)求展开式中所有项的系数和; (2)求展开式中所有的有理项.22.已知()2*12n x n N x ⎛⎫-∈ ⎪⎝⎭的展开式中所有偶数项的二项式系数和为64. (1)求展开式中二项式系数最大的项;(2)求221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式中的常数项. 23.(1)3个人坐在有八个座位的一排椅子上,若每个人的左右两边都要有空位,则不同坐法的种数为多少?(2)某高校现有10个保送上大学的名额分配给7所高中学校,若每所高中学校至少有1个名额,则名额分配的方法共有多少种?24.已知n+的展开式中前三项的系数为等差数列. (1)求二项式系数最大项; (2)求展开式中系数最大的项.25.已知57A 56C n n =,且()23012312nn n x a a x a x a x a x -=+++++.(1)求n 的值; (2)求122222nna a a +++的值. 26.已知n(其中15n <,*n ∈N )的展开式中第9项、第10项、第11项的二项式系数成等差数列. (1)求n 的值;(2)写出展开式中的所有有理项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用二项式展开式的应用求出结果. 【详解】 解:关于621(2)x x -的展开式,根据二项式的展开式的应用:61621(2)()r rr r T C x x -+=-, 对于选项A :展开式中二项式系数之和6264=,故错误.对于选项B :利用赋值法的应用,当1x =时,各项的系数的和为6(21)1-=,故正确.对于选项C :展开式中二项式系数最大的项为第4项3620C =,故错误. 对于选项D :展开式中系数最大的项为第2项,系数为2462240C ⨯=.故错误.故选:B . 【点睛】本题考查的知识要点:二项展开式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.2.B解析:B 【分析】依据回文数对称的特征,可知有两种情况:1、在6个数字中任取1个组成16C 个回文数;2、在6个数字中任取2个26C 种取法,又由两个数可互换位置22A 种,即2262C A 个回文数;结合两种情况即可求出组成4位“回文数”的个数 【详解】由题意知:组成4位“回文数”∴当由一个数组成回文数,在6个数字中任取1个:16C 种 当有两组相同的数,在6个数字中任取2个:26C 种又∵在6个数字中任取2个时,前两位互换位置又可以组成另一个数 ∴2个数组成回文数的个数:22A 种故,在6个数字中任取2个组成回文数的个数:2262C A综上,有数字1,2,3,4,5,6可以组成4位“回文数”的个数为:2262C A +16C =36 故选:B 【点睛】本题考查了排列组合,根据回文数的特征—对称性,先由分类计数得到取数的方法数,再由分步计数得到各类取数中组成回文数的个数,最后加总即为所有组成4位“回文数”的个3.C解析:C 【分析】利用二项式定理的展开式写出满足题意的表达式,然后即可求出指数*()n n N ∈的最小值.【详解】解:由题意知:123k n k n C C -=或者132k n k n C C -=.即123n k k -+= 或132n k k -+= 解得,533k n -= 或522k n -=.当533k n -=时,当3k =时,min 4n =; 当522k n -=时,当2k =时,min 4n =.综上所述: min 4n =. 故选:C. 【点睛】本题考查了二项式定理的应用.本题的易错点是未进行分类讨论.4.B解析:B 【分析】根据二项式系数的性质,可求得n ,再通过赋值求得0a 以及结果即可. 【详解】因为(1)nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等, 故可得5n =,令0x =,故可得01a =, 又因为125242a a a +++=,令1x =,则()501251243a a a a λ+=++++=, 解得2λ=令1x =-,则()()5501251211a a a a -=-+-+-=-.故选:B. 【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.5.D解析:D 【分析】根据题意,用赋值法,在()352()x x a -+中,令1x =可得()521(1)32a -+=,解可得a的值,即可得答案. 【详解】根据题意,()352()xx a -+的展开式的各项系数和为32,令1x =可得:()521(1)32a -+=, 解可得:1a =, 故选:D . 【点睛】本题考查二项式定理的应用,注意特殊值的应用.6.A解析:A 【分析】设方格纸上的小方格的边长为1,按正方形的边长进行分类讨论,求出每种情况下正方形的个数,由加法原理即可得答案. 【详解】设方格纸上的小方格的边长为1,当正方形的边长为1时,有4×4=16个正方形, 当正方形的边长为2时,有3×3=9个正方形, 当正方形的边长为3时,有2×2=4个正方形, 当正方形的边长为4时,有1×1=1个正方形, 则有16+9+1+4=30个正方形; 故选:A . 【点睛】本题涉及分类计数原理的应用,属于基础题,进行分类讨论是解题的关键.7.C解析:C 【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A =(种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.8.C解析:C 【分析】根据古典概型概率计算公式列出不等式,利用组合数公式进行计算,由此求得至少抽取的产品件数. 【详解】设抽取x 件,次品全部检出的概率为2228100.6x xC C C ->,化简得()154x x ->,代入选项验证可知,当8x =时,符合题意,故选C. 【点睛】本小题主要考查古典概型概率计算,考查组合数的计算,属于基础题.9.C解析:C 【解析】分析:分两种情况讨论:先在1,3,5,7,9五个数中取出三个个奇数,再在1,3,5,7,9五个数中取出一个奇数在2,4,6,8四个偶数中取出两个偶数,由分类计数加法原理结合分步计数乘法原理可得结果.详解:根据题意,从1到9的正整数正任意抽取3个数相加, 若所得的和为奇数,则取出的数为3个奇数或1奇数2个偶数,在1,3,5,7,9五个数中取出1个奇数,有155C =种取法.在2,3,6,8四个偶数中取出2个偶数,有246C =种取法. 则1奇数,2个偶数的取法有5630⨯=种, 在1,3,5,7,9五个数中取出3个奇数,有3510C =种取法 即所得的和为奇数的不同情形种数是301040+=,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.10.D解析:D 【解析】 因为2132020x x C C -+=,所以213x x -=+ 或21320x x -++=,所以4x = 或6x =,选D.11.C解析:C 【分析】先分组1,2,2和1,1,3再安排得解 【详解】5名专家到3个不同的区级医院,分为1,2,2和1,1,3两种情况;分为1,2,2时安排有1223542322C C C A A ;分为1,1,3时安排有1133543322C C C A A 所以一共有12211333542543332222150C C C C C C A A A A += 故选:C 【点睛】本题考查排列组合问题,先分组再安排是解题关键.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解. 【详解】有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.30【分析】根据题意先将5名医生分成2组再分配的两家医院即可求得分配方案的种数分组时有和两种分组方法结合组合的运算集合求出结果【详解】解:由题可知先将5名医生分成2组有种再分配的两家医院有种即有30解析:30 【分析】根据题意,先将5名医生分成2组,再分配的两家医院即可求得分配方案的种数,分组时有14+和23+两种分组方法,结合组合的运算集合求出结果. 【详解】解:由题可知,先将5名医生分成2组,有1423545351015C C C C ⋅+⋅=+=种, 再分配的两家医院有221530A =种,即有30种分配方案.【点睛】本题考查排列和组合的运算和应用,考查了先选再排的技巧,分组时要注意分类讨论.14.21【分析】由二项式定理得出的展开式的通项进而得出的展开式即可得出答案【详解】的展开式的通项为则故答案为:【点睛】本题主要考查了二项式定理的应用属于中档题解析:21 【分析】由二项式定理得出622x x ⎛⎫- ⎪⎝⎭的展开式的通项,进而得出622x x ⎛⎫- ⎪⎝⎭的展开式,即可得出答案. 【详解】622x x ⎛⎫- ⎪⎝⎭的展开式的通项为()621231662(2)rrrr r rr T C x C xx --+⎛⎫=-=- ⎪⎝⎭则622x x ⎛⎫- ⎪⎝⎭ 00121192263334405536666666666(2)(2)(2)(2)(2)(2)(2)C x C x C x C x C x C x C x --+++++=-+------0126129630(3)(6)21m m m m ∴+++⋯+=+++++-+-=故答案为:21 【点睛】本题主要考查了二项式定理的应用,属于中档题.15.-84【分析】由已知求得n 写出二项展开式的通项由x 的指数为求得r 则答案可求【详解】由题意得其二项展开式的通项由得展开式中含项的系数是故答案为【点睛】本题考查二项式定理关键是熟记二项展开式的通项是基础题解析:-84 【分析】由已知求得n ,写出二项展开式的通项,由x 的指数为1-求得r ,则答案可求. 【详解】由题意,n 2128=,得n 7=.2n 2711(2x )(2x )x x∴-=-,其二项展开式的通项r27rr r 7r r143r r 1771T C (2x )()(1)2C x x---+=⋅⋅-=-⋅⋅⋅.由143r 1-=-,得r 5=.∴展开式中含1x项的系数是574C 84-⨯=-.【点睛】本题考查二项式定理,关键是熟记二项展开式的通项,是基础题.16.10【分析】分类讨论:选择两门理科学科一门文科学科;选择三门理科学科即可得出结论【详解】选择两门理科学科一门文科学科有种;选择三门理科学科有1种故共有10种故答案为10【点睛】本题考查计数原理的应用解析:10 【分析】分类讨论:选择两门理科学科,一门文科学科;选择三门理科学科,即可得出结论. 【详解】选择两门理科学科,一门文科学科,有2133C C 9=种;选择三门理科学科,有1种,故共有10种. 故答案为10. 【点睛】本题考查计数原理的应用,考查学生的计算能力,比较基础.17.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=-- ()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.18.240【解析】分析:利用二项式系数的性质求得n 的值再利用二项展开式的通项公式求得展开式中的常数项详解:的展开式中所有二项式系数和为则;则展开式的通项公式为令求得可得展开式中的常数项是故答案为240点解析:240 【解析】分析:利用二项式系数的性质求得n 的值,再利用二项展开式的通项公式,求得展开式中的常数项.详解:212nx x ⎛⎫- ⎪⎝⎭的展开式中所有二项式系数和为264n =,,则6n = ;则6221122n x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭展开式的通项公式为626631661212r r r r r rr r r T C x x C x ----+=⋅-⋅⋅=⋅-⋅⋅()()(),令630r -=,求得2r ,可得展开式中的常数项是224612240C ⋅-⋅=(), 故答案为240.点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.19.125【解析】分析:令可得;令可得;又故可得的值详解:在中令可得;令可得;又∴点睛:对形如(ax +b)n(ax2+bx +c)m(ab ∈R)的式子求其展开式的各项系数之和常用赋值法只需令x =1即可;对解析:125 【解析】分析:令0x =可得01a =;令1x =,可得01282a a a a ++++=-;又78(2)a =-128=-,故可得127a a a +++的值.详解:在()()7280128112x x a a x a x a x +-=++++中,令0x =,可得01a =; 令1x =,可得01282a a a a ++++=-;又78(2)128a =-=-,∴12721281125a a a +++=-+-=.点睛:对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R)的式子求其展开式各项系数之和,只需令x =y =1即可.解题时如何赋值,要观察所求和式与差式的特点,根据所求值的式子的特征选择适合的方法.20.【分析】先求出展开式中的常数项与含的系数再求展开式中的常数项【详解】展开式的通项公式为: 令解得 令解得 展开式中常数项为: 故答案为:【点睛】本题考查二项展开式常数项的求解属于基础题 解析:25-【分析】先求出61x x ⎛⎫- ⎪⎝⎭展开式中的常数项与含21x 的系数,再求()6212x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项. 【详解】61x x ⎛⎫- ⎪⎝⎭展开式的通项公式为: 6621661(1)rr r r rr r T C x C x x --+⎛⎫=⋅⋅-=-⋅⋅ ⎪⎝⎭, 令620r -=,解得3r =,33316(1)20T C +∴=-⋅=-,令622r -=-,解得4r =,444162211(1)15T C x x+∴=-⋅⋅=⋅, ()6212x x x ⎛⎫∴+- ⎪⎝⎭展开式中常数项为: 2(20)1525⨯-+=-.故答案为:25-. 【点睛】本题考查二项展开式常数项的求解,属于基础题.三、解答题21.(1)1256;(2)716. 【分析】(1)先利用二项式系数的性质,求出n 的值,然后令1x =,即可求出展开式中所有项系数的和.(2)求出通项,然后令x 的指数为整数,即可求出所有的有理项. 【详解】解:(1)由已知得02412128n n n n C C C -+++==,故8n =.在nx ⎛ ⎝中,令1x =可得展开式中各项系数的和为8112256⎛⎫= ⎪⎝⎭. (2)展开式的通项为4831812kk k k T C x -+⎛⎫=- ⎪⎝⎭,∵08k ≤≤,k ∈N ,令0k =,3,6,得4883r-=,4,0. 所以有理项为:81T x =,447T x =-,7716T =. 【点睛】本题考查利用二项展开式的通项研究系数、特定项的问题,同时考查学生运用转化思想解决问题的意识及计算能力.属于中档题. 22.(1)54500T x =-,25280T x =(2)112 【分析】(1)由偶数项二项式系数可得7n =,可知展开式中间两项二项式系数最大,利用展开式通项公式求解;(2)由(1)利用展开式通项公式求含1x -和2x 项,结合与212x x ⎛⎫+ ⎪⎝⎭相乘即可求解. 【详解】(1)由展开式中所有的偶数项二项式系数和为64,得1264n -=, 所以7n =所以展开式中二项式系数最大的项为第四项和第五项.因为7212x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()()()72714317712121rrrr r r rr r T C xC x x ---+⎛⎫=-=- ⎪⎝⎭, 所以()f x 的展开式中二项式系数最大的项为54500T x =-,25280T x =(2)由(1)知7n =,且7212x x ⎛⎫- ⎪⎝⎭的展开式中1x -项为684T x =-, 2x 项为25280T x =,所以221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式的常数项为()2841280112⨯-+⨯=, 【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.23.(1)24;(2)84 【分析】(1)根据题意,使用插空法,把3个人看成是坐在座位上的人,往5个空座的空档插,由组合知识,分析可得答案;(2)分析题意,可将原问题转化为10个元素之间有9个间隔,要求分成7份,每份不空,使用插空法,相当于用6块档板插在9个间隔中,计算可得答案. 【详解】解:(1)由题意知有5个座位都是空的,我们把3个人看成是坐在座位上的人,往5个空座的空档插, 由于这5个空座位之间共有4个空,3个人去插,共有3424A =(种).(2)根据题意,将10个名额,分配给7所学校,每校至少有1个名额, 可以转化为10个元素之间有9个间隔,要求分成7份,每份不空; 相当于用6块档板插在9个间隔中,共有6984C =种不同方法.所以名额分配的方法共有84种. 【点睛】本题考查排列、组合的综合运用,要求学生会一些特殊方法的使用,如插空法、倍分法等;但首先应该会转化为对应问题的模型. 24.(1)358x ;(2)747x 和527x .【分析】(1)根据二项式定理展开式,前三项的系数为等差数列,计算求解n 的取值,再根据展开式求解二项式系数最大项;(2)由(1)中展开式,求解系数最大的项. 【详解】(1)由题意,n的展开式是1rn rrr n T C -+=, 化简得23244122n r r n r r rr rr nnTC xxC x-----+=⋅=⋅⋅则02211n n nT C x x =⋅=⋅,23231144222n n nn T C x x---=⋅⋅=⋅,()3322223128n n nn n T C xx----=⋅⋅=⋅因为,前三项的系数为等差数列,则有()12128n n n-⋅=+,解得8n =或1n =(舍去) 则8n =,则8的展开式是1634182r r r r T C x --+=⋅⋅ 二项式系数是8rC ,当4r =时,二项式系数最大,则1612444583528T C xx --=⋅⋅=(2)由(1)得,8的展开式是1634182r r r r T C x --+=⋅⋅ 根据组合数性质,48C 最大,而2r -随着r 的增大而减小,且21r -<, 则计算0441821T C x x =⋅⋅=⋅,131311442824T C x x -=⋅⋅=⋅,5522223827T C x x -=⋅⋅=⋅,7733444827T C x x -=⋅⋅=⋅,44583528T C x x -=⋅⋅=⋅ 则当2r或3r =时,系数最大,则系数最大项是747x 和527x【点睛】本题考查二项式定理(1)二项式系数最大项(2)系数最大项;考查计算能力,注意概念辨析,属于中等题型. 25.(1)15.(2)1- 【分析】(1)根据!!,()!!()!mm n n n n A C n m m n m ==--,即可求解57A 56C n n =,即可求得答案;(2)采用赋值法,令1x =求出所有项系数的和,再令0x =,求0a ,即可求得答案. 【详解】 (1)57A 56C n n =()()()()()()()()()()1234561234567654321n n n n n n n n n n n n ------∴----=⋅⋅⋅⋅⋅⋅整理可得:(5)(6)190n n --=即211600n n --=, 故(15)(4)0n n -+=解得:15n =或4n =-(舍去) (2)由(1)15n =152315012315(12)x a a x a x a x a x -=++++⋯⋯+令0x =,可得01a =令12x =,可得15101515221(12)2222a a a a -⋅=++++∴101512522202a a aa ++++= 可得12215151222a a a +++=- 【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,属于基础题.26.(1)14n =. (2)077114T C x x ==,66714T C x =,1255131491T C x x ==. 【解析】分析:(1)利用二项式展开式的通项公式求出各项的二项式系数,利用等差数列的定义列出方程可得结果;(2)先求得展开式的通项公式,在通项公式中令x 的幂指数为有理数,求得r 的值,即可求得展开式中有理项.详解:(1)因为n(其中15n <,*n N∈)的展开式中第9项、第10项、第11项的二项式系数分别为8n C ,9n C ,10n C .依题意得81092n n n C C C +=.可化为()()()!!!=28!810!109!9n n n n n n +⋅---!!!,化简得2373220n n -+=,解得14n =或23n =, ∵15n <,∴14n =.(2)展开式的通项1432114r r r r TC xx -+=,所以展开式中的有理项当且仅当r 是6的倍数, 又014r ≤≤,*r N ∈,∴0r =或6r =或12r =,∴展开式中的有理项共3项是077114T C x x ==,66714T C x =,1255131491T C x x ==.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用..。
(压轴题)高中数学选修三第一单元《计数原理》检测卷(包含答案解析)
一、选择题1.4(1)x +的展开式中2x 的系数是( )A .8B .7C .6D .42.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午课程安排如表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有( )A .8种B .10种C .12种D .14种 3.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144B .120C .72D .244.已知(1)n x λ+展开式中第三项的二项式系数与第四项的二项式系数相等,2012(1)n n n x a a x a x a x λ+=++++,若12242n a a a ++⋅⋅⋅=,则012(1)n n a a a a -+-⋅⋅⋅+-的值为( )A .1B .-1C .8lD .-815.已知8281239(1)x a a x a x a x +=++++,若数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,则k 的最大值是( ) A .6B .5C .4D .36.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( ) A .7种B .6种C .5种D .4种7.对任意正整数n ,定义n 的双阶乘!!n 如下:当n 为偶数时,()()!!24642n n n n =--⨯⨯;当n 为奇数时,()()!!24531n n n n =--⨯⨯.现有四个命题:①()()2009!!2008!!2009!=;②2008!!21004!=⨯;③2008!!个位数为0;④2009!!个位数为5.其中正确的个数为( ) A .1 B .2 C .3 D .48.设2019220190122019(12)x a a x a x a x -=+++⋅⋅⋅+,则201920182017012201820192222a a a a a ⋅+⋅+⋅+⋅⋅⋅+⋅+的值为( )A .20192B .1C .0D .-19.已知()()()()1521501215111x a a a x a x a x +=+-+-+⋅⋅⋅+-中0a >,若13945a =-,则a 的值为()A .2B .3C .4D .510.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .16511.在二项式3nx ⎫⎪⎭的展开式中,各项系数之和为A ,二项式系数之和为B ,若72A B +=,则n =( )A .3B .4C .5D .612.本周日有5所不同的高校来我校作招生宣传,学校要求每位同学可以从中任选1所或2所去咨询了解,甲、乙、丙三位同学的选择没有一所是相同的,则不同的选法共有( ) A .330种B .420种C .510种D .600种二、填空题13.代数式2521(2)(1)x x+-的展开式的常数项是________(用数字作答) 14.若二项式(xn 的展开式中只有第5项的二项式系数最大,则展开式中含x 2项的系数为__.15.设06126201262m m m m x a x a x a x a x x ⎛⎫-=++++ ⎪⎝⎭,则0126m m m m ++++=_________________.16.市扶贫工作组从4男3女共7名成员中选出队长1人,副队长1人,普通队员2人组成4人工作小组下乡,要求工作组中至少有1名女同志,且队长和副队长不能都是女同志,共有______种安排方法.17.若()*212nx n x ⎛⎫-∈ ⎪⎝⎭N 的展开式中所有项的二项式系数之和为64,则展开式中的常数项是__________.18.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有____个.19.某市抽调两个县各四名医生组成两个医疗队分别去两个乡镇开展医疗工作,每队不超过五个人,同一个县的医生不能全在同一个队,且同县的张医生和李医生必须在同一个队,则不同的安排方案有______种.参考答案20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.求值:(1)333364530C C C C +++⋅⋅⋅+; (2)12330303030302330C C C C +++⋅⋅⋅+.22.在13nx ⎫⎪⎭(*n N ∈)的展开式中所有二项式系数之和为256.(1)求展开式中的常数项;(2)求展开式中二项式系数最大的项.23.已知在n 的展开式中第5项为常数项.(1)求n 的值;(2)求展开式中含有2x 项的系数; (3)求展开式中所有的有理项. 24.在2(n x+的展开式中,第4项的系数与倒数第4项的系数之比为12.(1)求n 的值;(2)求展开式中所有的有理项; (3)求展开式中系数最大的项.25.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数? (1)比21034大的偶数;(2)左起第二、四位是奇数的偶数.26.在n的展开式中,前3项的系数的和为73. (1)求n 的值及展开式中二项式系数最大的项;(2)求展开式中的有理项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二项式定理展开式的通项公式,令2r 即可得出答案.【详解】4(1)x +的展开式中,14,(0,1,2,3,4)r r r r T x +==,令2r ,2x ∴的系数为246C =.故选:C . 【点睛】本题考查二项式定理的应用,考查推理能力与计算能力,属于基础题.2.B解析:B 【分析】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3节,而自习课可以上任意一节.故以生物课(或政治课)进行分类,再分步排其他科目.由计数原理可得张毅同学不同的选课方法. 【详解】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3、4节,而自习课可以上任意一节.若生物课排第2节,则其他课可以任意排,共有336A =种不同的选课方法.若生物课排第3节,则政治课有12C 种排法,其他课可以任意排,有22A 种排法,共有12224C A =种不同的选课方法.所以共有6410+=种不同的选课方法. 故选:B . 【点睛】本题考查两个计数原理,考查排列组合,属于基础题.3.D解析:D 【解析】试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有3424A =种考点:排列、组合及简单计数问题4.B解析:B 【分析】根据二项式系数的性质,可求得n ,再通过赋值求得0a 以及结果即可. 【详解】因为(1)nx λ+展开式中第三项的二项式系数与第四项的二项式系数相等, 故可得5n =,令0x =,故可得01a =, 又因为125242a a a +++=,令1x =,则()501251243a a a a λ+=++++=,解得2λ=令1x =-,则()()5501251211a a a a -=-+-+-=-.故选:B. 【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.5.B解析:B 【分析】可得结论.写出各项的系数,由组合数性质知123456789a a a a a a a a a <<<<>>>>,结合数列123,,,,k a a a a ⋅⋅⋅是一个单调递增数列,可得结论. 【详解】由二项式定理,得98ii a C -=()*19,i i N≤≤∈,所以根据组合数性质知123456789a a a a a a a a a <<<<>>>>, 又数列()*123,,,,19,k a a a a k k N ⋅⋅⋅≤≤∈是一个单调递增数列,所以k 的最大值为5. 故选:B 【点睛】本题主要考查二项式定理的运用,考查学生分析解决问题的能力,属于基础题.6.B解析:B 【分析】根据题意可得选出的2人必为一男—女,分别求出选出1名男性党员和1名女性党员的选法数目,由分步乘法计数原理计算可得答案. 【详解】根据题意,选出的2人中既有男性又有女性,必为一男一女,在3名男性党员中任选1人,有3种选法,在2名女性党员中任选1人,有2种选法,则既有男性又有女性的不同选法有3×2=6种, 故选:B 【点睛】本题主要考查排列组合的应用,涉及分步乘法计数原理的应用,属于基础题.7.C解析:C 【分析】利用双阶乘的定义以及阶乘的定义可判断①的正误;化简2008!!可判断②的正误;由2008!!能被10整除可判断③的正误;由2009!!能被5整除且为奇数可判断④的正误.综合可得出结论. 【详解】对于命题①,由双阶乘的定义得2009!!1352009=⨯⨯⨯⨯,2008!!2462008=⨯⨯⨯⨯,所以,()()2009!!2008!!1234200820092009!=⨯⨯⨯⨯⨯⨯=,命题①正确;对于命题②,()()()()2008!!246200821222321004=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯100421004!=⨯,命题②错误;对于命题③,2008!!2468102008=⨯⨯⨯⨯⨯⨯,则2008!!能被10整除,则2008!!的个位数为0,命题③正确; 对于命题④,2009!!1352009=⨯⨯⨯⨯能被5整除,则2009!!的个位数为0或5,由于2009!!为奇数,所以,2009!!的个位数为5,命题④正确.故选:C. 【点睛】本题考查双阶乘的新定义,考查计算能力,属于中等题.8.C解析:C 【分析】首先采用赋值法,令12x =,代入求值201932019120232019112 (022222)a a a a a ⎛⎫-⨯=+++++= ⎪⎝⎭,通分后即得结果. 【详解】 令12x =, 201932019120232019112 (022222)a a a a a ⎛⎫-⨯=+++++= ⎪⎝⎭, 20192018201732019012201820191202320192019222...2...022222a a a a a a a a a a ⋅+⋅+⋅++⋅++++++==,∴ 2019201820170122018201922220a a a a a ⋅+⋅+⋅+⋅⋅⋅+⋅+=.故选C 【点睛】本题考查二项式定理和二项式系数的性质,涉及系数和的时候可以采用赋值法求和,本题意在考查化归转化和计算求解能力,属于中档题型.9.A解析:A 【分析】根据()1515[(1)(1)]x a a x +=--++-利用二项展开式的通项公式、二项式系数的性质、以及13945a =-,即可求得a 的值,得到答案. 【详解】由题意,二项式()()()()1521501215111x a a a x a x a x +=+-+-+⋅⋅⋅+-, 又由()1515[(1)(1)]x a a x +=--++-,所以()()()2151501215[(1)(1)]111a x a a x a x a x --++-=+-+-+⋅⋅⋅+-, 其中0a >,由13945a =-,可得:1321315[(1)]945a C a =-⋅-+=-,即2105(1)945a -+=-,即2(1)9a +=,解得2a =, 故选A . 【点睛】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,其中解答中熟记二项展开式的通项及性质是解答的关键,着重考查了推理与运算能力,属于中档试题.10.D解析:D 【解析】分析:由题意可得展开式中含2x 项的系数为222223410C C C C +++⋯+ ,再利用二项式系数的性质化为 311C ,从而得到答案.详解:()()()2310111x x x ++++⋅⋅⋅++的展开式中含2x 项的系数为222232341011 165.C C C C C +++⋯+==故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.11.A解析:A 【解析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得B ,最后根据72B +=解出.n详解:因为各项系数之和为(13)4nn+=,二项式系数之和为2n , 因为72A B +=,所以4272283n n n n +=∴=∴=, 选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b R +++∈的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)n ax by a b +∈R 的式子求其展开式各项系数之和,只需令1x y ==即可.12.A解析:A 【解析】种类有(1)甲1,乙1,丙1,方法数有35A 60=;(2)甲2,乙1,丙1;或甲1,乙2,丙1;或甲1,乙1,丙2——方法数有2115323C C C 180⨯=;(3)甲2,乙2,丙1;或甲1,乙2,丙2;或甲2,乙1,丙2——方法数有22533C C 90⨯⋅=.故总的方法数有6018090330++=种.【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.二、填空题13.3【解析】的通项公式为令得;令得∴常数项为故答案为点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项可依据条件写出第项再由特定项的特点求出值即可(2)已知展开式的某项求特定项的系解析:3 【解析】5211x ⎛⎫- ⎪⎝⎭的通项公式为521015521()(1)(1)r r r r r r r T C C x x --+=-=-.令2102r -=-,得4r =;令2100r -=,得=5r .∴常数项为445555(1)2(1)523C C -+-=-=故答案为3.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.14.1120【解析】由题意可得:n=8∴通项公式令=2解得r=4∴展开式中含x2项的系数为故答案为1120点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项可依据条件写出第r +1项再解析:1120【解析】 由题意可得:n =8. ∴通项公式3882188((2)r r rr r rr T C x C x --+==-,令382r -=2,解得r =4. ∴展开式中含x 2项的系数为448(2)C -.故答案为1120.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.15.21【分析】由二项式定理得出的展开式的通项进而得出的展开式即可得出答案【详解】的展开式的通项为则故答案为:【点睛】本题主要考查了二项式定理的应用属于中档题解析:21 【分析】由二项式定理得出622x x ⎛⎫- ⎪⎝⎭的展开式的通项,进而得出622x x ⎛⎫- ⎪⎝⎭的展开式,即可得出答案. 【详解】622x x ⎛⎫- ⎪⎝⎭的展开式的通项为()621231662(2)rrrr r rr T C x C xx --+⎛⎫=-=- ⎪⎝⎭则622x x ⎛⎫- ⎪⎝⎭ 00121192263334405536666666666(2)(2)(2)(2)(2)(2)(2)C x C x C x C x C x C x C x --+++++=-+------0126129630(3)(6)21m m m m ∴+++⋯+=+++++-+-=故答案为:21 【点睛】本题主要考查了二项式定理的应用,属于中档题.16.348【分析】将参加工作小组女生的人数分3种情况讨论每种情况先计算4人的选取方法在计算队长副队普通队员的分配情况数目由分类计数加法原理可得出结果【详解】第一类:当选出1女3男时有种这4人作为队长和副解析:348 【分析】将参加工作小组女生的人数分3种情况讨论,每种情况先计算4人的选取方法,在计算队长、副队、普通队员的分配情况数目,由分类计数加法原理可得出结果. 【详解】第一类:当选出1女3男时,有133412C C =种,这4人作为队长和副队有2412A =种,故有1212144⨯=种;第二类:当选出2女2男时,有223418C C =种,2个女成员当选队长和副队时,有222A =种,则这4人中队长和副队长不能都是女同志的有224210A A -=种,故有1810180⨯=种;第三类:当选出3女1男时,有31344C C =种,根据题意,这名男成员只能为队长或副队,则这4人中队长和副队长不能都是女同志的有1326A =种,故有4624⨯=种由分类计数加法原理得:工作组中至少有1名女同志,且队长和副队长不能都是女同志,共有14418024348++=种安排方法. 故答案为:348 【点睛】本题主要考查了分类计数加法原理等,属于中档题.17.240【解析】分析:利用二项式系数的性质求得n 的值再利用二项展开式的通项公式求得展开式中的常数项详解:的展开式中所有二项式系数和为则;则展开式的通项公式为令求得可得展开式中的常数项是故答案为240点解析:240 【解析】分析:利用二项式系数的性质求得n 的值,再利用二项展开式的通项公式,求得展开式中的常数项.详解:212nx x ⎛⎫- ⎪⎝⎭的展开式中所有二项式系数和为264n =,,则6n = ; 则6221122n x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭展开式的通项公式为626631661212r r r r r rr r r T C x x C x ----+=⋅-⋅⋅=⋅-⋅⋅()()(),令630r -=,求得2r ,可得展开式中的常数项是224612240C ⋅-⋅=(), 故答案为240.点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.18.14【解析】由题意得必有则具体的排法列表如下:由图可知不同的规范01数列共有14个故答案为14解析:14 【解析】由题意,得必有10a =,81a =,则具体的排法列表如下:由图可知,不同的“规范01数列”共有14个. 故答案为14.19.【分析】设两个乡镇分别为甲乡镇和乙乡镇对甲乡镇派遣的医生人数进行分类讨论并计算出每种情况下的安排方案种数利用分类加法计数原理可得结果【详解】设两个乡镇分别为甲乡镇和乙乡镇若甲乡镇派遣三名医生则共有种 解析:68【分析】设两个乡镇分别为甲乡镇和乙乡镇,对甲乡镇派遣的医生人数进行分类讨论,并计算出每种情况下的安排方案种数,利用分类加法计数原理可得结果. 【详解】设两个乡镇分别为甲乡镇和乙乡镇,若甲乡镇派遣三名医生,则共有112214242420C C C C C +⋅+⋅=种方案;若甲乡镇派遣四名医生,则共有211132224242420428C C C C C C C C ⋅+⋅+⋅+⋅=种方案; 若甲乡镇派遣五名医生,则共有03122324242420C C C C C C ⋅+⋅+⋅=种方案.综上可得,不同的派遣方案有20282068++=种. 故答案为:68. 【点睛】本题考查人员的分配问题,考查分类讨论基本思想的应用,考查计算能力,属于中等题.20.0【分析】根据题意给自变量赋值取和两个式子相减得到的值用二项展开式可以看出被12整除的结果得到余数【详解】在已知等式中取得取得两式相减得即因为能被12整除所以则被12整除余数是0故答案为:0【点睛】解析:0 【分析】根据题意,给自变量x 赋值,取1x =和1x =-,两个式子相减,得到1352019a a a a +++的值,用二项展开式可以看出被12整除的结果,得到余数.【详解】在已知等式中,取1x =得202001220205a a a a ++++=,取1x =-得01220201a a a a -+-+=, 两式相减得202013520192()51a a a a +++=-,即()202013520191512a a a a +++=⨯-,因为()()()1010202010101111512512412222⨯-=⨯-=⨯+- ()01010110091010101010101010101124242422C C C C =⨯++++- ()0101011009110101010101012424242C C C =⨯+++能被12整除,所以则1352019a a a a ++++被12整除,余数是0.故答案为:0. 【点睛】本题考查二项式定理的应用和带余除法,本题解题的关键是利用赋值的方法、利用二项式定理得到式子的结果,属于中等题.三、解答题21.(1)31464;(2)29302⋅. 【分析】(1)根据组合数性质11m m mn n n C C C -++=即可得结果; (2)根据组合数性质0122n n n n n n C C C C ++++=即可得结果;【详解】(1)333343333456304456301C C C C C C C C C +++⋅⋅⋅+=++++⋅⋅⋅+-4311C =-31464=(2)()12330012293030303029292929233030C C C C C C C C +++⋅⋅⋅+=+++⋅⋅⋅+29302=⋅ 【点睛】本题主要考查了通过组合数的性质计算式子的值,熟练掌握运算性质是解题的关键,属于中档题.22.(1)289;(2)837081x -【分析】(1)由题意利用二项式系数的性质,求得n 的值,再利用二项式展开式的通项公式,求得展开式中的常数项.(2)由题意利用二项式系数的性质,二项式展开式的通项公式,求得二项式系数最大的项. 【详解】解:(1)*31()3nx n N x ⎛⎫+∈ ⎪⎝⎭的展开式中所有二项式系数之和为2256n =,8n ∴=,故展开式的通项公式为8431813rr r r T C x-+⎛⎫= ⎪⎝⎭.令8403r-=,求得2r ,故展开式中的常数项为2812899C =. (2)由于8n =,故当4r =时,二项式系数最大,故二项式系数最大的项为48843358170381T C x x --⎛⎫== ⎪⎝⎭. 【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题.23.(1)8;(2)4-;(3)24x -,358,2116x - 【分析】(1)先写出展开式的通项公式2311()2n rr r r nT C x -+=-,由展开式中第5项为常数项,则当4r =时,有203n r-=,从而求出n 出的值. (2)由(1)中得到8n =,则含有2x 项,即8223r-=,得到1r =,从而求出答案. (3)展开式中所有的有理项,则82308r r r Z -⎧∈Z ⎪⎪≤≤⎨⎪∈⎪⎩,可得r 可取1,4,7,可得到答案.【详解】(1)展开式的通项公式为2311(()2n rr n rrr r r nnT C C x --+==-.因为第5项为常数项. 所以4r =时,有203n r-=,解得8n =. (2)令223n r-=,由(1)8n =,解1r =,故所求系数为181()42C -=-(3)有题意得,82308r r r Z -⎧∈Z ⎪⎪≤≤⎨⎪∈⎪⎩,令82()3r k k Z -=∈,则833422k r k -==- 所以k 可取2,0,2-,即r 可取1,4,7它们分别为24x -,358,2116x -. 【点睛】本题考查二项式展开式的通项公式应用,求展开式中某项的系数,属于中档题. 24.(1)7n =; (2)14x ,984x ,4560x ,1448x -; (3)32672x . 【分析】(1)由二项展开式的通项公式分别求出第4项的系数与倒数第4项的系数,然后计算出结果 (2)由通项公式分别计算当0246r =、、、时的有理项 (3)设展开式中第1r +项的系数最大,列出不等式求出结果 【详解】 (1)由题意知:52212n rr rr nTC x-+=,则第4项的系数为332n C ,倒数第4项的系数为332n n nC --, 则有33332122n n n n C C --=即61122n -=,7n ∴=.(2)由(1)可得()51421720,1,,7rr rr TC xr -+==,当0,2,4,6r =时所有的有理项为1357,,,T T T T即001414172T C x x ==,229937284T C x x ==, 4444572560T C x x ==,6611772448T C x x --==.(3)设展开式中第1r +项的系数最大,则117711772222r r r r r r r r C C C C ++--⎧≥⇒⎨≥⎩ ()()12728r r r r ⎧+≥-⎪⎨-≥⎪⎩ 131633r ⇒≤≤, 5r ∴=,故系数最大项为335522672672T C x x ==.【点睛】本题考查了二项式定理的展开式,尤其是通项公式来解题时的运用一定要非常熟练,针对每一问求出结果,需要掌握解题方法.25.(1)30(2)39(3)8 【解析】试题分析:(1)合理分类或分步,做到不重不漏; (2)正难则反,注意间接法的应用. 试题(1)可分五类,当末位数字是0,而首位数字是2时,有6个五位数; 当末位数字是0,而首位数字是3或4时,有C A =12个五位数; 当末位数字是2,而首位数字是3或4时,有C A =12个五位数; 当末位数字是4,而首位数字是2时,有3个五位数; 当末位数字是4,而首位数字是3时,有A =6个五位数; 故共有6+12+12+3+6=39个满足条件的五位数.(2)可分为两类:末位数是0,个数有A ·A =4;末位数是2或4,个数有A ·C =4; 故共有A ·A +A ·C =8个满足条件的五位数. 26.(1)6n =,34160x;(2)3x 和240. 【分析】(1)根据前3项系数和,建立方程求出n ,结合二项式系数的性质进行求解即可. (2)求出展开式的通项公式,结合x 的次数进行求解即可. 【详解】 (1)依题意得:0122473n n n C C C ++=,即22173n +=,得236n =6n ∴=-或6n = *n N ∈∴6n =.∴展开式中二项式系数最大的项为第四项,即33334464=))160T C x x x=.(2)展开式的通项公式为:33416=2(),(0,1,...,6)r r rr TC x r -+=,展开式的通项公式为:61664()(2k k k kk T C x C x-+==334k k x -,当0k =时,3334k-=,此时为有理项31T x =, 当1k =时,39344k -=,此时不是有理项, 当2k =时,33342k -=,此时不是有理项, 当3k =时,33344k -=,此时不是有理项,当4k =时,3304k-=,此时为有理项5240T =, 当5k =时,33344k -=-,此时不是有理项, 当6k =时,33342k -=-,此时不是有理项, ∴展开式中的有理项为3x 和240.【点睛】本题主要考查二项式定理、有理项等基础知识,考查观察能力、运算求解能力、推理能力和函数与方程思想,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40- B .25- C .25 D .552.若2021220210122021(12)x a a x a x a x -=++++,则1232021a a a a ++++=( )A .1B .1-C .2D .2-3.已知231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*n N ∈,则n 的值可以是( ) A .5 B .6 C .7 D .84.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .15.如图中每个小方格均为面积相等的正方形,则该图中正方形共有( )个A .30B .32C .36D .246.若0k m n ≤≤≤,且,,m n k N ∈,则0mn mk n k n k CC --==∑( )A .2m n +B .2mn m CC .2n mn C D .2m mn C7.若4()(1)a x x ++的展开式关于x 的系数和为64,则展开式中含3x 项的系数为( ) A .26B .18C .12D .98.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5009.设5nx x ⎛- ⎝的展开式的各项系数之和为M ,二项式系数之和为N ,若M N -=240,则展开式中x 的系数为( )A .300B .150C .-150D .-30010.已知自然数k ,则(18)(19)(20)(99)k k k k ----…等于( ) A .1899kk C -- B .8299k C -C .1899kk A --D .8299k A -11.如果21()2nx x-的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数和是( )A .0B .256C .64D .16412.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134********+=),则称(),m n 为“简单的”有序对,而m n +称为有序数对(),m n 的值,那么值为2964的“简单的”有序对的个数是( ) A .525B .1050C .432D .864二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.15.已知()()()()()23n2012111...+1...*n n x x x x a a x a x a x n N +++++++=++++∈,且012126n a a a a +++⋯+=,那么nx x ⎛⎪⎝⎭-的展开式中的常数项为______.16.已知(12)n x +展开式中只有第4项的二项式系数最大,则21(1)(12)nx x++展开式中常数项为_______.17.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)18.现有红、黄、蓝三种颜色,对如图所示的正五角星的内部涂色(分割成六个不同部分),要求每个区域涂一种颜色且相邻部分(有公共边的两个区域)的颜色不同,则不同的涂色方案有________种.(用数字作答).19.()6221x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为______. 20.某市抽调两个县各四名医生组成两个医疗队分别去两个乡镇开展医疗工作,每队不超过五个人,同一个县的医生不能全在同一个队,且同县的张医生和李医生必须在同一个队,则不同的安排方案有______种.参考答案三、解答题21.(1)求证:当n *∈N 时,((11nn+为偶数;(2)当n *∈N 时,(3n的整数部分是奇数,还是偶数?请证明你的结论.22.用0,1,2,3,4,5这六个数字,完成下面三个小题. (1)若数字允许重复,可以组成多少个不同的五位偶数;(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;(3)若直线方程0ax by +=中的a ,b 可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条? 23.在2(n x+的展开式中,第4项的系数与倒数第4项的系数之比为12.(1)求n 的值;(2)求展开式中所有的有理项; (3)求展开式中系数最大的项.24.已知二项式n⎛⎝的展开式中各项二项式系数的和为256,其中实数a 为常数.(1)求n 的值;(2)若展开式中二项式系数最大的项的系数为70,求a 的值.25.已知4530nnA C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.26.在n的展开式中,前3项的系数的和为73. (1)求n 的值及展开式中二项式系数最大的项;(2)求展开式中的有理项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.2.D解析:D 【分析】分别令0x =和1x =,即可解出所求. 【详解】解:由2021220210122021(12)x a a x a x a x -=+++⋯+, 令0x =得01a =;令1x =得01220211a a a a -=+++⋯+, 1220212a a a ∴++⋯+=-.故选:D . 【点睛】本题考查赋值法在研究二项展开式中系数的问题,同时考查方程思想在解题中的作用.属于中档题.3.C解析:C 【分析】将条件转化为31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项,然后写出31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项,即可分析出答案. 【详解】因为231(1)nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,所以31nx x ⎛⎫+ ⎪⎝⎭的展开式中不含常数项,不含x 项,不含2x 项 31nx x ⎛⎫+ ⎪⎝⎭的展开式的通项为:4131,0,1,2,,rr n r r n r r n n T C x C x r n x --+⎛⎫=== ⎪⎝⎭所以当n 取5,6,7,8时,方程40,41,42n r n r n r -=-=-=无解检验可得7n = 故选:C 【点睛】本题考查的是二项式定理的知识,在解决二项式展开式的指定项有关的问题的时候,一般先写出展开式的通项.4.B解析:B 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.5.A解析:A 【分析】设方格纸上的小方格的边长为1,按正方形的边长进行分类讨论,求出每种情况下正方形的个数,由加法原理即可得答案. 【详解】设方格纸上的小方格的边长为1,当正方形的边长为1时,有4×4=16个正方形, 当正方形的边长为2时,有3×3=9个正方形, 当正方形的边长为3时,有2×2=4个正方形, 当正方形的边长为4时,有1×1=1个正方形, 则有16+9+1+4=30个正方形; 故选:A . 【点睛】本题涉及分类计数原理的应用,属于基础题,进行分类讨论是解题的关键.6.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.7.B解析:B 【分析】取1x =解得3a =,展开式中含3x 项有两种情况,相加得到答案. 【详解】令1x =得4(1)264a +⋅=,所以3a =.所以4(3)(1)x x ++展开式中含3x 项为33223443C C 18x x x x ⋅+⋅=,所以展开式中含3x 项的系数为18, 故选B . 【点睛】本题考查了二项式定理,把握展开式中含3x 项的两种情况是解题的关键.8.A解析:A 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数. 【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式取1x =得到4n M = 二项式系数之和为2n N =429925n n M N n -=-=⇒=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=- 取3r = 值为-250故答案选A 【点睛】本题考查了二项式定理,计算出n 的值是解题的关键.9.B解析:B 【分析】分别求得二项式展开式各项系数之和以及二项式系数之和,代入240M N -=,解出n 的值,进而求得展开式中x 的系数. 【详解】令1x =,得4n M =,故42240n n M N -=-=,解得4n =.二项式为45x⎛⎝,展开式的通项公式为()()134442244515rr r r r r r C x x C x ----⎛⎫⋅⋅-=-⋅⋅⋅ ⎪⎝⎭,令3412r -=,解得2r,故x 的系数为()2422415150C --⋅⋅=.故选B. 【点睛】本小题主要考查二项式展开式系数之和、二项式展开式的二项式系数之和,考查求指定项的系数,属于中档题.10.D解析:D 【解析】分析:直接利用排列数计算公式即可得到答案. 详解:()()()()()()829999!181920...9917!k k k k k k A k ------==-.故选:D.点睛:合理利用排列数计算公式是解题的关键.11.D解析:D 【解析】分析:先确定n 值,再根据赋值法求所有项的系数和.详解:因为展开式中只有第4项的二项式系数最大,所以n =6.令x =1,则展开式中所有项的系数和是611(1)264-=, 选D.点睛:二项式系数最大项的确定方法①如果n 是偶数,则中间一项(第12n+ 项)的二项式系数最大; ②如果n 是奇数,则中间两项第12n +项与第1(1)2n ++项的二项式系数相等并最大. 12.B解析:B 【分析】由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种取法,从0,1,2,3,4,5,6,7,8,9 ,第三位有7种取法,从0,1,2,3,4,5,6取一个数字,第四为有5种,从0,1,2,3,4取一个数字,根据分步计数原理得到结果. 【详解】由题意知本题是一个分步计数原理, 第一位取法3种为0,1, 2,第二位有10种为0,1,2,3,4,5,6,7,8,9 , 第三位有7种为0,1,2,3,4,5,6, 第四为有5种为0,1,2, 3,4根据分步计数原理知共有3×10×7×5=1050个 故选:B. 【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.二、填空题13.【分析】首先由二项式系数相等求再根据通项公式求指定项的系数【详解】由条件可知所以所以的通项公式是令解得:所以函数的系数是故答案为:-4【点睛】易错点睛:本题考查二项式定理求指定项系数其中二项式系数与 解析:4-【分析】首先由二项式系数相等求n ,再根据通项公式求指定项的系数. 【详解】由条件可知57n n C C =,所以5712n =+=,所以1213x x ⎛⎫- ⎪⎝⎭的通项公式是12122112121133r rr r r rr T C x C x x --+⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令12210r -=,解得:1r =, 所以函数10x 的系数是112143C ⎛⎫-⋅=- ⎪⎝⎭. 故答案为:-4 【点睛】易错点睛:本题考查二项式定理求指定项系数,其中二项式系数与项的关系是第1r +项的系数是rn C ,这一点容易记错,需注意.14.84【分析】通过求出各项二项展开式中项的系数利用组合数的性质求出系数和即可得结果【详解】的展开式中含项的系数为:故答案是:84【点睛】该题考查的是有关二项式对应项的系数和的问题涉及到的知识点有指定项解析:84 【分析】通过求出各项二项展开式中2x 项的系数,利用组合数的性质求出系数和即可得结果. 【详解】()()()238111x x x ++++++的展开式中,含2x 项的系数为:2222222322222223456783345678C C C C C C C C C C C C C C ++++++=++++++399878432C ⨯⨯===⨯, 故答案是:84. 【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.15.-20【分析】由题意令x =1可得n =6再利用二项展开式的通项公式求得展开式中的常数项【详解】∵已知且∴令可得∴那么的展开式的通项公式为令求得可得展开式中的常数项为故答案为﹣20【点睛】本题主要考查二解析:-20 【分析】由题意令x =1,可得n =6,再利用二项展开式的通项公式,求得展开式中的常数项. 【详解】∵已知()()()()()232*0121111nnn x x x x a a x a x a x n N++++++⋯++=+++⋯+∈,且012126n a a a a +++⋯+=,∴令1x =,可得()210122122222212612n n n n a a a a +-+++⋯+=++⋯+==-=-,∴6n =,那么6n=的展开式的通项公式为()3161rr rrT C x-+=⋅-⋅,令30r-=,求得3r=,可得展开式中的常数项为3620C-=-,故答案为﹣20.【点睛】本题主要考查二项式定理的应用,赋值法,求展开式的系数和,项的系数,准确计算是关键,属于基础题.16.61【解析】分析:根据题设可列出关于的不等式求出代入可求展开式中常数项为详解:的展开式中只有第4项的二项式系数最大即最大解得又则展开式中常数项为点睛:在二项展开式中有时存在一些特殊的项如常数项有理项解析:61【解析】分析:根据题设可列出关于n的不等式,求出6n=,代入可求21(1)(12)nxx++展开式中常数项为61.详解:(12)nx+的展开式中,只有第4项的二项式系数最大,即3nC最大,3234n nn nC CC C⎧>∴⎨>⎩,解得57n<<,又*,6n N n∈∴=,则21(1)(12)nxx++展开式中常数项为02266261C C+⋅=.点睛:在二项展开式中,有时存在一些特殊的项,如常数项、有理项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式1r T+.17.8【解析】当在最右边位置时由种排法符合条件;当在从右数第二个位置时由种排法符合条件把件不同的产品摆成一排若其中的产品与产品都摆在产品的左侧则不同的摆法有种故答案为解析:8【解析】当C在最右边位置时,由336A=种排法符合条件;当C在从右数第二个位置时,由222A=种排法符合条件,把4件不同的产品摆成一排.若其中的产品A与产品B都摆在产品C的左侧,则不同的摆法有6+2=8种,故答案为8.18.【分析】根据题意假设正五角星的区域依此为分析6个区域的涂色方案数再根据分步计数原理计算即可【详解】根据题意假设正五角星的区域依此为如图所示:要将每个区域都涂色才做完这件事由分步计数原理先对区域涂色有解析:96【分析】根据题意,假设正五角星的区域依此为A 、B 、C 、D 、E 、F ,分析6个区域的涂色方案数,再根据分步计数原理计算即可. 【详解】根据题意,假设正五角星的区域依此为A 、B 、C 、D 、E 、F ,如图所示:要将每个区域都涂色才做完这件事,由分步计数原理,先对A 区域涂色有3种方法,B 、C 、D 、E 、F 这5个区域都与A 相邻,每个区域都有2种涂色方法,所以共有32222296⨯⨯⨯⨯⨯=种涂色方案. 故答案为:96 【点睛】方法点睛:涂色问题常用方法:(1)根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法; (2)根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数;(3)根据某两个不相邻区域是否同色分类讨论.从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数.19.80【分析】先求出展开式中的常数项与含的系数再求展开式中的常数项【详解】展开式的通项公式为: 令解得 令解得 展开式中常数项为: 故答案为:80【点睛】本题考查二项展开式常数项的求解属于基础题解析:80 【分析】先求出62x x ⎛⎫- ⎪⎝⎭展开式中的常数项与含21x 的系数,再求()6221x x x ⎛⎫+- ⎪⎝⎭展开式中的常数项. 【详解】62x x ⎛⎫- ⎪⎝⎭展开式的通项公式为: 662166(2)2rr r r rr r T C x C x x --+⎛⎫=⋅⋅-=-⋅⋅ ⎪⎝⎭, 令620r -=,解得3r =,33316(2)160T C +∴=-⋅=-,令622r -=-,解得4r =,444162211(2)240T C x x+∴=-⋅⋅=⋅,()6212x x x ⎛⎫∴+- ⎪⎝⎭展开式中常数项为: (160)24080-+=.故答案为:80. 【点睛】本题考查二项展开式常数项的求解,属于基础题.20.【分析】设两个乡镇分别为甲乡镇和乙乡镇对甲乡镇派遣的医生人数进行分类讨论并计算出每种情况下的安排方案种数利用分类加法计数原理可得结果【详解】设两个乡镇分别为甲乡镇和乙乡镇若甲乡镇派遣三名医生则共有种 解析:68【分析】设两个乡镇分别为甲乡镇和乙乡镇,对甲乡镇派遣的医生人数进行分类讨论,并计算出每种情况下的安排方案种数,利用分类加法计数原理可得结果. 【详解】设两个乡镇分别为甲乡镇和乙乡镇,若甲乡镇派遣三名医生,则共有112214242420C C C C C +⋅+⋅=种方案;若甲乡镇派遣四名医生,则共有211132224242420428C C C C C C C C ⋅+⋅+⋅+⋅=种方案; 若甲乡镇派遣五名医生,则共有03122324242420C C C C C C ⋅+⋅+⋅=种方案.综上可得,不同的派遣方案有20282068++=种. 故答案为:68. 【点睛】本题考查人员的分配问题,考查分类讨论基本思想的应用,考查计算能力,属于中等题.三、解答题21.(1)证明见详解;(2)奇数,证明见详解. 【分析】(1)根据二项展开式的通项公式,将(1n +和(1n-写出二项展开式的形式,分别讨论n 为正奇数和n 为正偶数两种情况,即可证明结论成立;(2)同(1)利用分类讨论法,先判断((33nn+为偶数,根据(031n<-<,即可得出结果.【详解】(1)因为(120121nnn nnnnCC C C +=+++⋅⋅⋅+,(((((0120121nnn nnnnCC C C -=+++⋅⋅⋅+,当n 为正奇数时,((121210212112233n nnn n n nnnn n n C CCC C C ----⎛⎫⎡⎤+=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎢⎥⎣⎦⎝⎭,而1021233n n nnnC C C --++⋅⋅⋅+显然为正整数,所以((1021211233n nnn n n n C C C --⎛⎫+=++⋅⋅⋅+ ⎪⎝⎭为偶数; 当n 为正偶数时,((0202022112233nnnnn n nnnn n n C CCC C C ⎛⎫⎡⎤+=++⋅⋅⋅+=++⋅⋅⋅+ ⎪⎢⎥⎣⎦⎝⎭,而02233nn n n n C C C ++⋅⋅⋅+显然为正整数,所以((02211233nnnn n n n C C C ⎛⎫+=++⋅⋅⋅+ ⎪⎝⎭为偶数;综上,当n *∈N 时,((11nn+为偶数;(2)因为(0120112233333nnnn n n nnnnC C C C --=⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅, (((((0120112233333nnnn n n nnnnC C C C --=⋅⋅+⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,当n 为正奇数时,((212211332333nnn n n n n n n C C C ---⎡⎤+=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦,其中0212211333n n n n n nnC C C---⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅显然为正整数,所以((0212211332333nnn n n n n nnC C C---⎡⎤++-=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦为偶数,记0212211333n n n n n n n k C C C ---=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,则((32113nnk =-+-,因为031<-<,则(031n <-<,因此(0131n<-<,所以(3n的整数部分是21k -,为奇数; 当n 为正偶数时,((2220332333nnnn n nn n n C C C -⎡⎤+=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦,其中222333nnn nnnnC C C -⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅显然为正整数,所以((0222332333nnnn n n n nnC C C -⎡⎤++=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅⎢⎥⎣⎦为偶数,记02220333nn n nn n n m C C C -=⋅⋅+⋅⋅+⋅⋅⋅+⋅⋅,则((32113nnm =-+--,因为(0131n<-<,所以(3n的整数部分是21m -,为奇数;综上,当n *∈N 时,(3n的整数部分是奇数. 【点睛】 关键点点睛:求解本题的关键在于利用二次展开式的通项公式,将二项式展开,再讨论n 为正奇数和n 为正偶数两种情况,即可结合题中条件求解. 22.(1)3240个(2)174个(3)20条 【分析】(1)根据分步计数原理和题设条件,即可求得组成的不同的五位偶数;(2)依据能被5整除的数,其个位是0或5,分两类,利用分类计数原理,即可求解; (3)根据数字0,分为两类:当,a b 都不取0和当,a b 中有一个取0,结合分类计数原理,即可求解. 【详解】(1)由题意,数字允许重复,根据分步计数原理, 可得不同的五位偶数共有:566633240⨯⨯⨯⨯=(个).(2)当首位数字是5,而末位数字是0时,有233118A A =(个);当首位数字是3,而末位数字是0或5时,有132448A A =(个);当首位数字是1或2或4,而末位数字是0或5时,有11123233108A A A A =(个);故共有1848108174++=(个).(3)分两类:第一类:当,a b 都不取0时,有2520A =(条);当1,2a b ==与2,4a b ==重复, 当2,1a b ==与4,2a b ==重复, 所以此时共有18条不同的直线;第二类:当,a b 中有一个取0时,则不同的直线仅有0x =和0y =,有2条; 由分类计数原理,可得共有18220+=(条). 【点睛】本题主要考查了分类计数原理和分布计算原理,以及排列与排列数的应用,其中解答中认真审题,合理分类、分步求解是解答的关键,着重考查了分析问题和解答问题的能力. 23.(1)7n =; (2)14x ,984x ,4560x ,1448x -; (3)32672x .【分析】(1)由二项展开式的通项公式分别求出第4项的系数与倒数第4项的系数,然后计算出结果 (2)由通项公式分别计算当0246r =、、、时的有理项 (3)设展开式中第1r +项的系数最大,列出不等式求出结果 【详解】 (1)由题意知:52212n rr rr nTC x-+=,则第4项的系数为332n C ,倒数第4项的系数为332n n nC --, 则有33332122n n n n C C --=即61122n -=,7n ∴=.(2)由(1)可得()51421720,1,,7rr r r TC xr -+==,当0,2,4,6r =时所有的有理项为1357,,,T T T T即001414172T C x x ==,229937284T C x x ==,4444572560T C x x ==,6611772448T C x x --==.(3)设展开式中第1r +项的系数最大,则117711772222r r r r r r r r C C C C ++--⎧≥⇒⎨≥⎩ ()()12728r r r r ⎧+≥-⎪⎨-≥⎪⎩ 131633r ⇒≤≤, 5r ∴=,故系数最大项为335522672672T C x x ==.【点睛】本题考查了二项式定理的展开式,尤其是通项公式来解题时的运用一定要非常熟练,针对每一问求出结果,需要掌握解题方法. 24.(1)8n =;(2)12a =±. 【分析】(1)根据二项式系数和列方程,解方程求得n 的值.(2)根据二项式系数最大项为70,结合二项式展开式的通项公式列方程,解方程求得a 的值. 【详解】(1)由题知,二项式系数和1202256n n n n n n C C C C ++++==,故8n =;(2)二项式系数分别为01288888,,,,C C C C ,根据其单调性知其中48C 最大,即为展开式中第5项,∴44482()70C a -⋅⋅=,即12a =±. 【点睛】本小题主要考查二项式展开式有关计算,属于中档题. 25.(Ⅰ)8n =;(Ⅱ)728T .【分析】(Ⅰ)利用排列数,组合数公式化简4530n n A C =即可得n 的值.(Ⅱ)写出()f x 的展开式的通项公式,令x 的指数为0即可得到常数项. 【详解】(Ⅰ)由已知4530nn A C =得:!30!4!5!5!n n n n ,!30!45!1205!n n nn n解得:8n =.(Ⅱ)8x ⎛⎝展开式的通项为488318831kk kkkk k T C xCxx由4803k 得6k =,即()f x 的展开式中的常数项为728T .【点睛】本题考查排列数组合数公式的应用,考查求解二项展开式中的常数项,考查计算能力,属于基础题. 26.(1)6n =,34160x ;(2)3x 和240.【分析】(1)根据前3项系数和,建立方程求出n ,结合二项式系数的性质进行求解即可. (2)求出展开式的通项公式,结合x 的次数进行求解即可. 【详解】 (1)依题意得:0122473n n n C C C ++=,即22173n +=,得236n =6n ∴=-或6n = *n N ∈∴6n =.∴展开式中二项式系数最大的项为第四项,即3333446=160T C x =.(2)展开式的通项公式为:33416=2(),(0,1,...,6)r r rr TC x r -+=,展开式的通项公式为:61662k k k kk T C C -+==334k k x -,当0k =时,3334k-=,此时为有理项31T x =, 当1k =时,39344k -=,此时不是有理项, 当2k =时,33342k -=,此时不是有理项, 当3k =时,33344k -=,此时不是有理项,当4k =时,3304k-=,此时为有理项5240T =, 当5k =时,33344k -=-,此时不是有理项, 当6k =时,33342k -=-,此时不是有理项, ∴展开式中的有理项为3x 和240.【点睛】本题主要考查二项式定理、有理项等基础知识,考查观察能力、运算求解能力、推理能力和函数与方程思想,属于中档题.。