输电线路塔-线体系风致响应仿真及监测方法研究

合集下载

输电塔塔线体系风振响应分析

输电塔塔线体系风振响应分析

随着社会经济 的发展 , 电力的需求大大增加 , 对 电
力工业 也 得 到 了迅 速发 展 , 年 来 , 造 了 大量 的输 电 近 建 塔 。输 电塔结 构 具 有 轻 质 、 柔 、 阻 尼 的 特 性 , 高 小 自振 频 率低 , 此 对 风 荷 载 的作 用 比较 敏 感 , 强 风 作 用 因 在
( ) 导线 :G 1 L J一6 0 5, 3 / 自重 2 0 g m, 径 .6k/ 外
图 1 输 电塔线体 系 A S S模型 NY
F g 1 AN YS mo e o a s s in tw rl e s se i. S d l f r n mis o e —i y t m t o n

第3 0卷第 7期




J OURNAL OF VI BRA ̄ ON AND HOCK S
输 电 塔 塔 线 体 系 风 振 响 应 分 析
谢华平 ,何敏娟
( .湘潭大学 土木工程 与力 学学 院 , 1 湘潭 4 10 ; .同济大学 建筑工程系 , 1 15 2 上海 20 9 ) 0 0 2
月“ 娜 ”台 风 在 浙 江 登 陆 , 坏 的 输 电 线 路 达 到 云 损 332k 20 4 m;05年 4月 , 于 江 苏 盯 胎 的 同 塔 双 回路 位
D vno 、 o e 等学者 I 对频域分 析方法进行 了 aepr H l s t m 9 研究 , 郭勇、 孙炳楠等 。 。 用频域方法分析了大跨越输电
wih u h s o dswe e a a y e t o tt o e l a r rn ;ta s si n twe - n y tm ;d n mi c aa tr t s y wo d : i d e gn e g r n mis o rl e s se i o i y a c h r ce i i ;wi d i d c d r s o s se n — u e e p n e n

大跨越输电塔线体系风振响应频域分析及风振控制

大跨越输电塔线体系风振响应频域分析及风振控制
5 5 4 4 3 3 g、避恒 2 2 l l
∞ 如∞如∞如∞如∞如0 -2400-1800.1200-600 0 600 1200 1800 2400
水平档距/m 圈3塔顶位移影响线 Fig.3 Influence Iine of tower
700
600
500
董400
摧300
200
loo
0 -2400.1800.1200一600
图2悬吊摆系统 Fig.2 Suspended mass pendulum system
悬吊摆系统的运动方程为:
Mp二c(t)十Cp主(£)+Kpz(£)=P(t)
(4)
式中:C口是悬吊摆系统的阻尼阵,应包含塔线体系的
结构阻尼和气动阻尼,体系的气动阻尼可以根据单位
周期内悬吊摆系统能量的耗散率进行计算[7]。Mp、K
第27卷第3期 2009年06月
空气动力学学报 ACTA AERODYNAMICA SINICA
文章编号:0258—1825(2009}03—0288—08
V01.27.No.3 Jurl.,2009
大跨越输电塔线体系风振响应频域分析及风振控制
郭 勇1,孙炳楠2”,叶 尹1,楼文娟2,沈国辉2
(1.浙江省电力设计院,浙江杭州 310014;2.浙江大学.浙江杭州310027, 3.浙江大学宁波理工学院,浙江宁波 315100)
定义顺导线向为z向,垂直导线向为y向,大跨 越工程整体为三跨四基塔结构。建立塔线体系的力 学模型时,两端耐张塔可视为固定端,跨越塔、悬挂绝 缘子和输电线分别采用动力等效的梁单元、空间杆单 元与悬链线索单元D3进行模拟。全部塔线体系的空 间有限元模型共有182个单元、181个节点,其中每

架空输电导线风致振动的监测分析方法研究

架空输电导线风致振动的监测分析方法研究

架空输电导线风致振动的监测分析方法研究摘要:随着我国电力事业的快速发展,架空输电线路已成为电力输送的主力军。

但是,架空输电导线正面临着自然气候和环境等因素的影响,导致风致振动成为制约输电可靠性、安全稳定运行的一个重要因素。

通过科学的监测技术和合理的管理措施,有效降低了输电线路风致振动的危害和对电力系统的影响,保障了输电线路的可靠运行和设备的安全性。

同时,还可以对不同的输电线路类型、不同的地形环境、不同的气候条件等进行深入的研究,以检验所提出的方法在不同工况下的适用性和参数设置的科学合理性。

关键词:输电导线;风致振动;监测分析架空输电线路是电力系统的重要组成部分,其稳定运行对于电网的正常运行和供电质量的保证具有重要意义。

然而,在运行过程中,由于悬挂导线的自身重量、风力作用等因素的影响,导线会发生振动现象,不仅存在一定安全隐患,而且会引起金具及杆塔构件松动,甚至出现导线断股、断线,对电网安全运行造成严重影响。

因此,针对架空输电导线的振动问题进行监测分析,对于确保电力系统的稳定运行和社会的和谐发展具有重要的意义。

本文旨在介绍当前常用的架空输电导线风致振动的监测分析方法,以期为相关领域的从业者和科研人员提供参考和帮助。

一、架空输电导线风致振动概念架空输电导线风致振动是指在输电线路运行过程中,受到气流和风的影响,导致导线发生周期性或随机性的振动现象。

在广东某220kV甲线2016年投运。

2022年例行飞行巡检发现N12塔两个悬垂金具线夹之间,三相导线的上子导线由于微风振动导致出现5-6根铝合金绞线断股,占铝合金11.1%-13.3%,现场图片见下图。

这种振动现象会对电力系统和周围环境产生一定的影响,严重情况下,会导致导线断裂、掉落等事故,危及安全性。

输电导线的振动主要包括横向振动、纵向振动和扭转振动三种类型。

其中,横向振动指导线在正常垂直方向上的振动,纵向振动指导线在沿着导线方向上的振动,扭转振动指导线在垂直和水平两个方向上同时发生的振动。

输电塔塔线体系风振响应分析

输电塔塔线体系风振响应分析

输电塔塔线体系风振响应分析摘要:输电塔线体系是国家重要的电力工程设施,也是保障人们生产生活有序进行的重要设备,输电塔线体系的稳定性和安全性直接关系到电网运行的可靠性,而风荷载是影响它们安全性的主要因素之一。

本文首先,简要介绍了我国超高压、特高压输电线路的发展前景。

接着,从输电塔线体系的分析模型、风振分析、风振控制三大块,对输电塔线体系抗风设计理论的发展进行了综述。

关键词:输电塔线体系;动力特性;风致动力响应;风致振动控制前言随着社会经济的发展以及人民物质生活水平的提高,人们在生产生活中对电力的需求大大增加,电力行业得到了迅速发展,作为电力能源输送的重要设备的输电塔如雨后春笋般建立起来,数量多而且重要性越来越高高。

输电塔线体系日趋呈现杆塔架构高、导线截面大、间隔长、负荷大、柔性强等特点。

由于铁塔柔性强、导地线和绝缘子串的几何非线性以及塔线之间、塔与基础之间的耦合作用,再加上而输电塔线体系对风与地震、恶劣天气变化和温度湿度等环境因素较为敏感,容易发生动力疲劳和失稳等现象[1]。

尤其是在强风作用下,容易发生塔架倒塌、损毁等事故。

因此,对输电塔风荷载进行研究具有重要的现实意义。

输电塔线体系是一种复杂的空间耦联体系,对其风振动力响应的分析具有一定的难度。

目前,在输电塔结构的设计中塔架和输电线是分开设计的,导线的荷载当作外力加在输电塔上,并不考虑塔线之间的耦合作用。

所以导线在脉动风作用下振动时,会产生变化的动张力。

同一输电塔两侧的动张力是不平衡的,该张力差使输电塔发生位移;而输电塔本身在风荷载的作用会移动,得导线内的张力进一步变化[2]。

如此一来,导线与输电塔形成复杂的动力耦合体系是相互影响,共同作用的。

1输电塔线体系的动力分析的模型输电塔线体系是由柔性强铁塔、导地线和绝缘子串的几何非线性以及塔线之间、塔与基础之间的一种复杂空间耦合体系。

其承受的动力作用主要是风荷载与地震作用。

输电塔线体系对风力作用极其敏感,易产生大的风致动力响应,导致动力疲劳和失稳破坏等现象。

输电塔的风振控制研究

输电塔的风振控制研究

本论文属于
保密□ ,在_____年解密后适用本授权书。 不保密□。
(请在以上方框内打“√”)
学位论文作者签名: 日期: 年 月 日
指导教师签名: 日期: 年 月 日
华 中 科 技 大 学 硕 士 学 位 论 文
1 绪
1.1 研究的目的及源问题日益成为经济与稳定持续发展的瓶 颈。为了适应国民经济持续发展的需要,国家电网公司规划建设交流 1000kV 特高压 电网,突破局部区域电力自我平衡的束缚,在更大范围内优化配置电力资源,以促 进大煤电基地、大水电基地、大核电基地的集约化开发,实现我国有限能源资源的 高效利用和开发。特高压交流电网被喻为电力输送的高速公路,1000kV 级特高压输 电线路是迄今为止世界上最高电压的交流输电线路,目前世界上仅俄罗斯和日本拥 有 1000kV 特高压交流电网,但均为短距离输电,在我国还是空白。我国规划拟建的 特高压交流电网,属长距离大容量输电,具有输电效率高、损耗低的优点。 特超高压工程是我国“十一五”期间最重大的工程之一,举世注目。它的建设 对我国经济的持续发展将产生重大作用,不容任何闪失。其中输电塔结构作为特高 压输电线路的支撑体,一旦破坏会导致整个供电系统的瘫痪,不仅严重影响人们生 产建设、生活秩序,关系到国际名声,而且还会产生火灾等次生灾害,给社会和人 民的生命财产造成严重的后果。输电塔是一种高耸高柔性结构,对动荷载,尤其是 风荷载比较敏感,易产生较大的静位移和动力响应。在我国,输电塔系统的破坏情 况比较严重,输电塔被风吹倒之事,几乎每年都有发生。因此对输电塔进行风振控 制研究成为电力工程与土木工程界的一个重要研究课题,它既有其重要的理论意义, 又有其重要的经济价值。 本课题以晋东南-南阳-荆门 1000kV 输电线路工程为研究背景, 结合工程的特点, 通过三维有限元仿真和风速场的数值模拟,研究了输电塔的动力特性、风致相应、 提出了相关的减振措施,可作为我国特高压输电塔的建设和安全运营的技术参考。

特高压输电塔线体系风振响应及风振疲劳性能研究的开题报告

特高压输电塔线体系风振响应及风振疲劳性能研究的开题报告

特高压输电塔线体系风振响应及风振疲劳性能研究的开题报告一、研究背景和意义特高压输电塔线体系是电力系统重要的输电通道,其安全可靠性对能源的供给和经济社会的发展具有至关重要的作用。

在输电线路建设中,传统的输电线路存在限制跨越河流、穿越城市等问题,而特高压输电线路以其覆盖范围广、线损小等优势逐步得到广泛应用。

特高压输电塔线体系的安全性、可靠性和经济性是保障输电线路正常运行的重要因素之一。

然而,特高压输电塔线体系的风振响应及风振疲劳性能却是制约其安全可靠性的重要因素。

风是导致输电线路掉线的主要原因之一。

在强风的作用下,特高压输电塔线体系会产生振动,设置在塔身上的导线也会因为受到风力的作用而发生“割线”现象,从而影响输电线路的正常运行。

因此,研究特高压输电塔线体系的风振响应及风振疲劳性能,对于提高其安全可靠性具有重要意义。

二、研究内容和目标本课题主要研究特高压输电塔线体系的风振响应及风振疲劳性能。

具体研究内容包括:1. 建立特高压输电塔的数学模型,考虑其结构和材料等因素,分析其振动特性和抗风能力。

2. 研究特高压输电塔线体系受风时的动力响应特性,包括振动加速度、位移等参数。

3. 建立特高压输电塔线体系风振疲劳计算模型,分析其疲劳损伤程度和可靠寿命。

4. 对比分析不同特高压输电塔的风振响应和风振疲劳性能,寻求设计和改进建议,加强输电塔线体系的抗风能力。

本课题旨在研究特高压输电塔线体系的风振响应及其疲劳性能,为输电塔的设计和改进提供科学依据,提高特高压输电塔线体系的安全可靠性。

三、研究方法和技术路线本课题主要采用数值模拟方法和实验测量方法,具体步骤如下:1. 建立特高压输电塔的数学模型,进行有限元分析,考虑其结构和材料等因素,确定其振动特性和抗风能力指标。

2. 构建特高压输电塔线体系的实验平台,进行风洞试验,测量塔体和导线等部位受风时的动力响应参数。

3. 基于测量数据,建立特高压输电塔线体系风振疲劳计算模型,分析其疲劳损伤程度和可靠寿命。

输电塔线体系风致覆冰脱落动力响应的

输电塔线体系风致覆冰脱落动力响应的
被动控制方法
通过改变输电线的结构、材料等,提高输电线的 抗冰能力,减少覆冰的形成和附着。
3
优化控制策略
根据不同的气候条件和输电线路特点,选择合适 的控制方法,并优化控制策略,以达到更好的控 制效果。
防护措施制定及实施
制定防护措施
针对不同的覆冰情况,制定相应的防护措施,如增加巡检次数、加强线路监测、 做好应急预案等。
存在的问题
目前的研究主要集中在覆冰形成机制和脱落现象的 描述上,而对输电塔线体系风致覆冰脱落动力响应 的研究尚不够深入,缺乏系统性的分析和研究。此 外,覆冰脱落过程中的复杂力学行为和影响因素仍 需进一步探讨。
研究内容和方法
研究内容
本研究旨在通过对输电塔线体系风致覆冰脱落动力响 应的研究,揭示其发生机制和影响因素,主要研究内 容包括:建立输电塔线体系的精细化模型;模拟和分 析不同风速、覆冰厚度等条件下的覆冰脱落现象;探 讨覆冰脱落过程中的力学行为和影响因素;提出相应 的防治措施和建议。
MATLAB
一款科学计算软件,可用 于输电塔线体系的简单模 型仿真和数据处理。
模拟参数设置及验证
01
风速
根据实测数据和规范 要求设定,需要考虑 风速随高度的变化。
02
覆冰厚度
根据实测数据和规范 要求设定,需要考虑 不同部位覆冰厚度的 差异。
03
塔线体系结构
根据实际工程进行建 模,需要考虑各部件 的物理特性和连接方 式。
04
验证方法
通过与实测数据进行 对比,验证数值模拟 方法的准确性和可靠 性。
04
输电塔线体系风致覆冰脱落动 力响应分析
Chapter
风致覆冰脱落过程分析
覆冰形成
在气温较低的环境下,水汽在输 电线路表面凝结,形成冰层。

《输电导线微风振动防振建模与仿真》范文

《输电导线微风振动防振建模与仿真》范文

《输电导线微风振动防振建模与仿真》篇一一、引言随着电力工业的快速发展,输电导线在微风作用下的振动问题日益突出。

微风振动虽为自然现象,但其对输电导线的危害不容忽视。

为提高电网的稳定性和可靠性,输电导线微风振动防振成为了一项重要课题。

本文针对输电导线微风振动问题,研究其防振建模与仿真,为实际应用提供理论依据和参考。

二、微风振动产生原因及危害输电导线在风的作用下产生的振动现象主要由两方面原因造成:一是风速的不稳定性;二是导线的自身特性。

微风振动会导致导线产生疲劳损伤,长期累积后可能导致断线事故,对电网的安全稳定运行造成严重影响。

三、防振建模针对输电导线微风振动问题,本文提出了一种基于有限元法的防振建模方法。

该模型考虑了导线的材料特性、结构特性以及风速等影响因素,通过建立微分方程来描述导线的振动过程。

在建模过程中,我们采用了多尺度分析方法,将导线的振动分为低频和高频两部分,以便更好地描述其振动特性。

四、仿真分析为了验证防振模型的准确性,我们进行了仿真分析。

仿真过程中,我们设置了不同的风速和导线参数,观察导线的振动情况。

通过对比仿真结果与实际观测数据,我们发现该模型能够较好地描述输电导线的微风振动现象。

此外,我们还分析了不同参数对导线振动的影响,为后续的优化设计提供了依据。

五、防振措施与建议根据仿真结果,我们提出以下防振措施与建议:一是采用抗风性能好的导线材料,以提高导线的抗振能力;二是优化导线结构,降低其固有频率,以减少振动幅度;三是安装防振装置,如阻尼器、减震器等,以抑制导线的振动。

此外,我们还建议对输电线路进行定期检测和维护,及时发现并处理潜在的安全隐患。

六、结论本文针对输电导线微风振动问题,研究了其防振建模与仿真。

通过建立基于有限元法的防振模型,并利用仿真分析验证了模型的准确性。

本文提出的防振措施与建议为实际应用提供了理论依据和参考。

未来,我们将继续深入研究输电导线的微风振动问题,以提高电网的稳定性和可靠性。

考虑SSI效应的特高压输电塔线体系风振响应研究

考虑SSI效应的特高压输电塔线体系风振响应研究

摘要高压输电塔是重要的生命线工程,属于高耸轻柔结构,对风荷载比较敏感,在输电塔的设计中风荷载往往起控制作用。

以往的分析设计通常按基础固支来处理,然而多数情况下地基并不是刚性的,按基础固支计算的结果可能与实际不符。

为了考虑弹性地基对输电塔风振响应的影响,本文对考虑SSI效应的输电塔线体系进行了一系列研究,主要研究内容包括以下几部分:①通过ANSYS有限元软件建立输电塔-线-基础-地基整体有限元模型,并进行了模态分析以及风振响应时程分析。

分析表明:考虑塔线耦联作用以及地基基础的影响后输电塔各阶频率均有不同程度的降低。

考虑SSI效应后,软土地基上采用独立基础的塔线体系塔顶位移响应最大值与均方根值均增大6%以上,塔顶加速度响应减小幅度较小,塔脚支反力峰值均减小,塔底主杆轴力峰值均增大。

当地基土为中软土或硬土时考虑SSI效应后塔顶位移及加速度响应变化均不明显,SSI效应可以忽略。

基础形式由独立基础改为桩基后,塔顶位移响应增大,塔顶加速度响应减小,塔脚上拔力峰值减小,塔底主要杆件轴力峰值减小。

②输电塔-线-基础-地基整体有限元模型能够真实模拟土与结构相互作用,但需耗费巨大的计算资源。

建立了能够考虑SSI效应的输电塔线体系风振响应分析的两种简化模型,一种是基于ANSYS的简化模型一,将地基土用一系列COMBIN14弹簧单元等效,均匀分布于基础周围;另一种是基于MATLAB的简化模型二,输电线简化为垂链模型,输电塔简化为集中质量模型,地基基础采用S-R 模型。

采用两种简化模型进行风振响应分析并与整体有限元模型的响应结果做比较分析。

分析表明:对于塔线体系,简化模型一的塔顶位移及加速度响应均具有较高的精度,迎风面塔脚的上拔力及塔底主杆轴力峰值误差在10%左右,背风面相应的响应值精度较高;简化模型二的塔顶位移响应误差在10%以内,塔顶加速度响应误差在20%以内。

两种简化模型在保证计算精度的同时大大提高了计算效率。

③基于提出的简化模型二,对考虑SSI效应的输电塔线体系风振响应进行了参数分析,分析了考虑SSI效应的输电塔线体系的风振响应与地基土的剪切波速、基础尺寸、塔脚间距、输电塔档距、风荷载大小、塔体刚度之间的关系。

输电塔塔线体系风振响应分析_谢华平

输电塔塔线体系风振响应分析_谢华平


要: 基于风洞试验得到的输电塔线性一阶广义荷载谱 , 推导了一般性的输电塔顺风向 、 横风向脉动风荷载功
率谱公式。利用此功率谱, 模拟了塔线体系顺风向 、 横风向脉动风荷载。对输电塔线体系及单塔的动力特性进行了分析 , 分析表明, 在远低于单塔同阶振型的自振频率时 , 塔线体系中的输电塔平面外振型就会与导地线振动耦合 。对单塔及输 电塔 - 线体系进行非线性动力时程分析 , 得到了位移、 加速度和内力等响应的时程 , 对比了有、 无横风向脉动风荷载的风 振响应, 并分析了风振响应的功率谱 。 关键词: 风工程; 输电塔线体系; 动力特性; 风振响应 中图分类号: TU392. 6 文献标识码: A
[16 ]
( 1) ( 2)
, 有: 2 F tpi ( t) = C pi ( 1 / 2 ) ρ a[ U i ( t) ] Ai
( 6)
C pi 、 Ui ( t ) 、 A i 分别为第 i 段的风荷载、 式中: F ( t) 、 压 力系数、 风速和构件投影面积; ρ a 为空气密度。 将风速 ( 1) 即 Ut ( t ) = Ut + 表示为 平 均 风 速 和 脉 动 风 速 之 和, u' i ( t) , 代入式( 6 ) 得: F tpi ( t) = C pi ( 1 / 2 ) ρ a[ U2 i + 2 U i u' i ( t) + u' i ( t) 2] Ai ( 7) u' i ( t) 相对比较小, 可以忽略, 故得到 i 段脉动风荷载 如下: F pi ( t) = C pi ρ a U i u' i ( t) A i ( 8)
2 2
图1
输电塔线体系 ANSYS 模型

特高压输电线路风振响应特性及塔线体系影响分析

特高压输电线路风振响应特性及塔线体系影响分析

特高压输电线路风振响应特性及塔线体系影响分析发布时间:2021-03-16T12:33:34.273Z 来源:《中国电业》2020年30期作者:姜然凇[导读] 登塔是输电线路施工、巡视和检修的重要技术手段,而特高压输电线路截面大且为高耸的塔线耦合的弱阻尼系统,姜然凇中国电力工程顾问集团东北电力设计院有限公司吉林长春 130021摘要:登塔是输电线路施工、巡视和检修的重要技术手段,而特高压输电线路截面大且为高耸的塔线耦合的弱阻尼系统,其风致振动特性及其对登塔作业人员的影响对确保作业和人员安全具有重要意义。

针对±800 kV 直流输电线路建立了输电线路塔线耦合体系有限元模型,基于风速随高度变化的 Kaimal 谱和谐波叠加法生成了 2 m 高风速分别为 6、8、10 m/s 的风速时程,应用模拟的风荷载对三塔两线体系在 A、B 两种地形下的风振响应进行了时域分析,并讨论了铁塔振动对登塔作业人员的影响。

结果表明:在 2 m 高风速为 6 m/s 时,A、B 塔线体系整体风速都没有超过 10 m/s,铁塔各部位风致振动的位移较小,典型作业位置处作业人员基本没有不舒适感;在 2 m 高风速为 10 m/s 时,铁塔横担以及地线支架处位移较大,作业人员的登塔作业人员感到极不舒适,存在高空坠落风险。

建议登塔作业人员测量风速时将地面测量的风速修正到作业位置高度处,修正值小于 10 m/s 再进行登塔作业。

关键词:塔线体系;有限元计算;谐波叠加法;风振响应;登塔作业引言特高压是中国远距离大容量电力输送网的骨架,其安全运行对确保电网和能源安全具有重要意义。

登塔巡视或检修作业是确保线路安全运行的重要技术手段,而登高作业过程中的触电、振动以及大风等因素可能导致作业人员失手而发生高空坠落。

GB 26859—2011 《电力安全工作规程-电力线路部分》以及电网公司安全作业规程中均对高空作业的风速给出了相应的规定要求,然而风速的测量高度以及适用的高度都没有给出明确的要求。

±800kV直流特高压输电塔线体系风洞试验与风振响应的开题报告

±800kV直流特高压输电塔线体系风洞试验与风振响应的开题报告

±800kV直流特高压输电塔线体系风洞试验与风振响应的开题报告一、研究背景和意义随着我国电力工业的快速发展,特高压输电成为全国电网建设的主要方向之一。

±800kV直流特高压输电线路具有传输大功率、远距离输电、中心城市内输电等优点,但同时也存在着电力传输中的风力因素对输电线路造成的威胁。

已有研究表明,输电塔线体受到气流的冲击和涡流的扰动时,会产生振动,这种振动会严重影响电力输送的正常工作。

因此压缩输电线路系统风振响应、改善输电线路的稳定性、提高其传输能力等问题,已成为当前最为紧迫的任务之一。

二、研究目的本研究旨在通过风洞试验方法,分析±800kV直流特高压输电塔线体系在风力作用下的动力学响应特性。

具体研究目的如下:1.确定不同风速下输电塔线体系的响应特性,包括振动振型、振动频率、振幅等指标;2.分析构成输电塔线体系的各个组成部分的影响因素,探究其对输电塔线体系的风振响应作用的贡献;3.通过理论计算和实验测量相结合的方法,提出抑制输电塔线体系风振响应、提高其稳定性和可靠性的方案。

三、研究内容和方法1. 研究内容(1)分析和梳理输电塔线体系的结构特点、受力情况和振动形态等信息;(2)根据实际工程情况,确定风洞实验模型的几何构型和实验参数,以及采用的传感器、数据采集器等实验设备;(3)进行风洞试验,对±800kV直流特高压输电塔线体系在不同风速下的受力情况、振动特征进行实验测量,并记录、分析和处理实验数据;(4)使用ANSYS工具对输电塔线体系进行有限元模拟计算,建立相应的计算模型,并通过计算分析和实验数据对比的方法,探究输电塔线体系结构参数对风振响应的影响;(5)在理论计算和实验测量的基础上,提出抑制输电塔线体系风振响应、改善其稳定性和可靠性的方案。

2. 研究方法在本研究中,将采用风洞试验和数值模拟计算相结合的方法,分析±800kV直流特高压输电塔线体系的动力学响应特性。

《2024年输电导线微风振动防振建模与仿真》范文

《2024年输电导线微风振动防振建模与仿真》范文

《输电导线微风振动防振建模与仿真》篇一一、引言随着电力系统的不断发展,输电导线在运行过程中经常面临各种挑战,其中之一就是微风振动问题。

微风振动对输电导线的长期安全运行带来很大隐患,可能引发疲劳损伤甚至断裂。

因此,针对输电导线微风振动的防振研究变得尤为重要。

本文将详细探讨输电导线微风振动的防振建模与仿真方法,旨在为实际工程提供理论支持和技术指导。

二、输电导线微风振动现象及影响因素输电导线在风力作用下会产生周期性振动,这种振动被称为微风振动。

微风振动的频率、振幅和方向等因素受到多种因素的影响,如风速、风向、导线张力、导线材料等。

这些因素共同作用,使得输电导线的振动情况变得复杂多变。

三、防振建模方法为了有效解决输电导线微风振动问题,需要建立相应的防振模型。

本文提出以下建模方法:1. 理论建模:基于流体力学、弹性力学等理论,建立输电导线微风振动的数学模型。

通过分析风速、风向、导线张力等参数对振动的影响,得出导线振动的规律和特点。

2. 实验建模:通过在实验室或现场进行实验,获取输电导线在不同风速、不同张力等条件下的振动数据。

利用这些数据,建立导线的振动模型,为后续的仿真分析提供依据。

3. 仿真建模:利用计算机仿真技术,将理论建模和实验建模的结果进行整合,建立输电导线微风振动的仿真模型。

通过调整模型参数,可以模拟不同条件下的导线振动情况,为防振措施的制定提供依据。

四、仿真分析在建立防振模型的基础上,进行仿真分析。

本文提出以下仿真步骤:1. 设定仿真参数:根据实际需求,设定风速、风向、导线张力等仿真参数。

2. 运行仿真:利用仿真软件,运行建立的防振模型,得到导线在不同条件下的振动情况。

3. 分析结果:对仿真结果进行分析,得出导线振动的规律和特点。

同时,对比不同防振措施的效果,为实际工程提供参考。

五、防振措施及优化根据仿真分析结果,提出以下防振措施及优化建议:1. 增加导线的刚度:通过改变导线材料、结构等方式,提高导线的刚度,降低振动幅度。

《输电导线微风振动防振建模与仿真》范文

《输电导线微风振动防振建模与仿真》范文

《输电导线微风振动防振建模与仿真》篇一一、引言随着电力工业的快速发展,输电导线在微风作用下的振动问题日益突出。

这种振动不仅可能对输电线路的稳定性和安全性造成威胁,还可能引发一系列的维护和检修问题。

因此,对输电导线微风振动防振进行建模与仿真研究,对于保障电网安全、稳定、高效运行具有重要意义。

本文旨在探讨输电导线微风振动的防振建模与仿真方法,以期为相关研究提供参考。

二、建模方法1. 物理模型针对输电导线的微风振动问题,首先需要建立物理模型。

该模型应包括输电导线的结构特性、气象条件(如风速、风向等)以及导线的振动特性。

其中,导线的结构特性包括导线的材料、直径、跨度等;气象条件则需要根据实际地理位置和气候条件进行设定;导线的振动特性则需考虑其在微风作用下的动态响应。

2. 数学模型在建立物理模型的基础上,需要进一步建立数学模型。

该模型应能够描述输电导线在微风作用下的振动过程,包括振动的幅度、频率、相位等。

同时,还需要考虑导线的阻尼、刚度等力学特性对振动的影响。

数学模型的建立需要运用力学、电磁学等相关知识,通过微分方程、差分方程等方式进行描述。

三、仿真方法仿真方法是验证建模正确性的重要手段。

在仿真过程中,需要运用计算机技术,根据建立的数学模型,模拟输电导线在微风作用下的振动过程。

仿真过程中需要考虑计算精度、计算速度以及模型的可扩展性等因素。

同时,还需要对仿真结果进行可视化处理,以便更直观地观察和分析导线的振动特性。

四、仿真结果与分析通过仿真实验,我们可以得到输电导线在微风作用下的振动特性。

首先,我们可以观察到导线的振动幅度和频率随着风速的增加而增加。

其次,导线的振动相位也会随着风速和风向的变化而发生变化。

此外,导线的阻尼和刚度等力学特性也会对振动产生影响。

通过对仿真结果的分析,我们可以得出一些结论:在特定条件下,可以通过调整导线的结构参数或采用防振措施来降低导线的振动幅度和频率。

五、防振措施与优化建议针对输电导线微风振动问题,可以采取一系列防振措施。

《2024年输电导线微风振动防振建模与仿真》范文

《2024年输电导线微风振动防振建模与仿真》范文

《输电导线微风振动防振建模与仿真》篇一一、引言随着电力工业的快速发展,输电导线在微风作用下的振动问题日益突出。

这种振动不仅可能对输电线路的稳定性和安全性造成威胁,还可能引起设备的损坏和事故的发生。

因此,针对输电导线微风振动的防振研究变得尤为重要。

本文将围绕输电导线微风振动的防振建模与仿真展开讨论,以期为实际工程应用提供理论依据和指导。

二、微风振动对输电导线的危害微风振动是指由自然风力引起的、低幅度的、连续的振动。

对于输电导线而言,这种振动可能会引起多种问题:1. 损伤导线的表面:长期的振动会磨损导线表面的绝缘层,降低导线的电气性能。

2. 加剧导线的疲劳损伤:频繁的振动会导致导线内部的金属材料疲劳,增加断裂的风险。

3. 引发设备的松动和脱落:振动可能导致线路上的附件和设备松动,甚至脱落,进一步引发安全事故。

三、防振建模与仿真针对上述问题,本文建立了输电导线微风振动的防振模型,并通过仿真进行了验证和分析。

1. 防振建模在建模过程中,考虑了导线的材料特性、结构特点、风力特性等因素。

通过建立数学模型,描述了导线在微风作用下的振动过程。

同时,还考虑了导线的防振措施,如阻尼器、防振锤等。

通过调整这些防振措施的参数,可以有效地抑制导线的振动。

2. 仿真分析利用仿真软件对建立的模型进行了仿真分析。

通过模拟不同风速、风向、导线长度等条件下的振动情况,可以观察到导线的振动幅度、频率等变化情况。

同时,还可以分析不同防振措施对导线振动的影响程度。

通过对比仿真结果和实际观测数据,可以验证模型的准确性和有效性。

四、仿真结果与讨论1. 仿真结果仿真结果表明,在微风作用下,输电导线会发生低幅度的连续振动。

通过调整防振措施的参数,可以有效地抑制导线的振动。

同时,仿真结果还表明,阻尼器和防振锤等防振措施在不同风速和风向条件下具有不同的防振效果。

2. 讨论根据仿真结果,可以得出以下结论:首先,针对不同地区和气候条件下的风力特性,应选择合适的防振措施;其次,应根据实际需要调整防振措施的参数,以达到最佳的防振效果;最后,定期对输电线路进行检测和维护,确保其稳定性和安全性。

塔线耦合作用对输电塔线风致响应的研究

塔线耦合作用对输电塔线风致响应的研究
of subsequent transmission tower line.
Key words:tower line couplingꎻtransmission tower lineꎻwind ̄induced responseꎻwind load
1 引言
2 风致响应的数值计算方式
由于输电铁塔具有横向结构的特征ꎬ因此当其
重要意义ꎮ
参考文献
[1] 刘孟龙ꎬ吕洪坤ꎬ罗坤ꎬ等. 真实山地地形条件下输电塔线体系
风致响应数值模拟[ J] . 振动与冲击ꎬ2020ꎬ39(24) :232 - 239.
[2] 吴田ꎬ张超ꎬ方春华ꎬ等. 特高压输电线路塔线体系风振响应特
性及对登塔人员影响分析[ J / OL] . 高压电器:1 - 11. [ 2021 - 03 -
conductor have a certain coupling effectꎬwhen the transmission tower line receives the wind loadꎬthe coupling effect
may have adverse effects on the transmission tower line. In order to solve the above problemsꎬthis paper focuses on
不利风向角为 30°ꎬ且此时 15° 的主材轴力大于 45°
的主材轴力ꎮ 由此可得ꎬ塔线耦合作用会对输电塔
线体系的风致响应产生影响ꎬ使主材轴力的最不利
溶解气体分析和判断导则[ S] . 北京:中国电力科学研究院ꎬ2001.
[11] 国家质量监督检验检疫总局. GB / T 7595—2017 运行中变压
Abstract:Due to the characteristics of long transmission line and easy to be affected by the surrounding environ ̄

输电杆塔阵风响应实测与准静态设计研究

输电杆塔阵风响应实测与准静态设计研究

振 动 与 冲 击第29卷第8期J OURNAL OF V IBRAT I ON AND SHOCKVo.l 29No .82010输电杆塔阵风响应实测与准静态设计研究基金项目:国家自然科学基金重点项目(50638010);教育部创新团队(I RT0518);高等学校博士点基金(20060141027)收稿日期:2009-04-17 修改稿收到日期:2009-06-17第一作者李宏男男,博士,教授,博士生导师,1957年生李宏男1,白海峰2,伊廷华1,任 亮1(1.大连理工大学海岸与近海工程国家重点实验室,大连 116024;2.大连交通大学土木与安全工程学院,大连 116028)摘 要:为分析输电塔的动力特性和阵风响应因子的变化规律,在现场风荷载条件下,对作用于新建输电塔的脉动风速及其各部位加速度和基底动应变响应进行了同步实测。

采用模态识别法和有限元法对输电塔的动力特性进行了对比分析;采用实测数据直接分析法和不同的准静态法分别计算了基于塔顶位移和基底弯矩的阵风响应因子。

结果表明,实测数据的模态识别法与有限元法得到的输电塔动力特性相吻合,有限元数值分析正确有效;实测数据分析法与准静态法得到的阵风响应因子的变化规律相同,且与脉动风速的均值和湍流强度相关;基于弯矩的阵风响应因子吻合较好,各种方法的计算值相差在5%以内;基于实测位移的阵风响应因子与准静态法差异较大,其原因有待于进一步试验研究的检验与识别。

关键词:输电杆塔;动态测试;模态识别;有限元分析;动力特性;阵风响应因子中图分类号:TU 34 文献标识码:A输电塔线体系是风荷载作用下动力响应的敏感结构,即对分析模型与荷载的不确定性反应敏感,且结构使用中的可靠性评价也存在着设计者难以预料的诸多困难。

造成这种现状的原因主要表现在两方面:一是输电线路一旦建成投入使用,结构系统就因其承载的高压电能而成为结构性能测试较困难的建筑物,使得输电塔线体系对随机性较高的环境荷载响应规律难以长期监测而得到深入的认知;其次是结构设计过程中,采用不同规范或特定试验所获得的设计参数本身具有局限性,对于结构系统的整体性而言具有不确定性。

输电塔线的风致振动响应与稳定性研究 毕业论文外文翻译

输电塔线的风致振动响应与稳定性研究  毕业论文外文翻译

外文原文Dynamic behavior and stability of transmission line towersunder wind forcesRonaldo C. Battista a,b, Rosângela S. Rodrigues a, Michèle S. Pfeil aa Civil Engineering Program,COPPE–Universidade Federal do Rio de Janeiro,CP 68506,Rio de Janeiro, CEP 21945-970, Brazilb COPPETEC Research, Consulting & Design,CP 68506, Rio de Janeiro, CEP 21945-970, BrazilAbstractA new analytical-numerical modelling for the structural analysis of transmission line towers (TLT) under wind action is presented and proposed as a rational procedure for stability assessment in a design stage. The numerical results obtained from a 3D finite element model are discussed in relation to the dynamic behavior and the mechanism of collapse of a typical TLT. A simplified two degree-of-freedom analytical model is also presented and shown to be a useful tool for evaluating the system fundamental frequency in early design stages. In order to reduce the TLT’s top horizontal along-wind displacements in the cross-line direction, nonlinear pendulum-like dampers (NLPD) installed on the towers are envisaged and their efficiency is demonstrated with the aid of comparisons between numerical results obtained from the controlled and the uncontrolled systems.© 2003 Elsevier Ltd. All rights reserved. Keywords: Transmission line; Stability; Dampers; Wind force; Dynamics; Steel tower1. IntroductionA new analytical-numerical modeling has been applied to a chosen type of steel transmission line towers (TLT): a conventional 32.86 m-high self-supporting tower. The structural modeling of the chosen TLT is based on observation of the system’s behavior and video images of some recent accidents in Brazil, when storm wind velocities reached values close to 100 km/h. The dynamic characteristics of the towers and the lateral movement of the electric cables have brought up the importance of fluid flow–cables–structure interaction when evaluating the towers behavior under the action of wind forces, leading to the new analytical-numerical modelling for the structural analysis of TLT’s, as originally proposed by Rodrigues [1] and Rodrigues et al. [2] and, almost simultaneously, by Yasui et al. [3] analyzing the differences in the behavior of power lines supported by tension- or suspension type transmission line towers. The overall results from the performed analyses were used to unveil the mechanism of collapse and envisage a remedial measure to attenuate top horizontal displacements and overall stresses, which is the installation of non-linear pendulum-like dampers (NLPD) on the top of the TLT, similar to the ones that have been proposed by Pinheiro [4], Battista et al. [5] and Battista and Pinheiro [6] for other slender and tall towers.2. Description of the structural modelFor simulating the actual behavior of the transmission lines and towers under wind action, the transmission line itself has to be included in the 3D finite element model (Fig. 1), which is composed of a central tower and adjacent spans of electric conductors and aerial wires for lightning protection.The tower structure and all cables were discretized with spatial frame elements. These elements instead of the most commonly adopted truss elements were used in the discretization of the tower structure to allow for the small bending stresses introduced by the rigid bolted connections which may be important in the evaluation of the ultimate structural strength. Although cables fundamental frequencies are not highly sensitive to the type of element used in their discretization, spatial frame elements with the actual bending stiffness of the cables were chosen to allow for numericalstability in situations where the cables experience very large displacement amplitudes and tension variations close to reversion of signal. This will be the case in the next step of this study when a non-linear dynamic analysis is to be performed.Fig. 1. 3D-FEM model of the structural system.The chain of insulators and the linkage of the tower to the lightning conductors were modelled as double-hinged suspension-rods, allowing for the actual mechanical behaviour. The neighbouring towers and the transmission line continuity, indicated by dashed lines in Fig. 1, are simulated in the model through adequate boundary conditions, involving elastic, inertial and kinematical characteristics.The dead weight and pre-tension loadings in the catenary cables and in the insulator’s suspension rods are considered in a geometric non-linear static analysis.Following the static equilibrium state, the time history response of the structure under wind action is obtained for the superposition of the n significant modes as follows:where m j is the modal mass, ξj is the modal damping ratio, ωj the circular frequency, r(t); ṙ(t)and ȑ(t); are respectively, the displacement, velocity and acceleration at time t, ϕj the vibration mode shape and ϕj T F wind is the generalized modal wind force.Mean wind forces were not considered for determining the frequencies and oscillation modes of the cables, as it can be shown [3] that frequencies have very close values independent if these forces are taken or not into account.3. Wind forcesThe wind velocity field is expressed in Eq. (2) only in terms of its horizontal component U in a system of cartesian coordinates (x; y; z), where x is the along-wind direction and z is the vertical direction:Referring to Eq. (2), Ū (z) is the mean wind velocity in the horizontal direction at z coordinate, i.e., Ū (z) is constant in direction and magnitude, and is a function of the height z: The small fluctuation of the mean wind velocity in the longitudinal direction u(y,z,t)—turbulence—is statistically determined as a function of the mean wind velocity Ū(z); the roughness length and the altitude above the ground level. The global wind force time history F wind; defined in terms of its component in the direction of the mean velocity—drag force—has the expression:where ρ is air density, A the effective area of the structure, C D(α) the drag coefficient corresponding to α angle of attack and U(t) is the flow velocity time history.The power spectral density function S u used in this work to characterize the energy distribution of the longitudinal fluctuating component u of the wind velocity (Eq. (2)) is the one suggested by Simiu and Scanlan [7].The cross-spectral density between the fluctuating velocities u1and u2 corresponding to two locations along the cable span is taken as the product of the spectrum S u and an exponential decaying function of the distance between the two location points [7].The generation of a field of uncorrelated fluctuating wind velocities υ(t) is performed by the autoregressive method, which consists of expressing the instantaneous value of υ(t) as a linear combination of some previous values of υ(t)plus a random impulse. The field of spatially correlated fluctuating wind velocities u(t) is obtained by pre-multiplying vðtÞto a matrix containing cross-correlation information between the generated signals given by the cross-spectral density function [8].3.1. Mean wind forcesThe map of basic wind velocities U0; given in the Brazilian design code ABNT/NBR6123 [9], indicates the value 50 m/s in the region in Brazil where the towers collapsed. This velocity is referred to a gust of 3 s time-duration, return period equal to 50 years, in open terrain at a height equal to 10 m. The design mean wind velocity (averaged over 10 min) was calculated according to where Ū (z) is the designmean wind speed at reference height z =10 m, U0 =50 m/s the basic wind speed, S1 = 1.00 is the topographical factor, S2 = 0.69 is the combined exposure factor and S3 ¼ 1:10 is the statistical factor (risk factor and service life required). The mean wind velocity profile along the height of the Delta tower, as depicted on Fig. 2, was constructed by the power law (Eq. (5)) using Ū (z ref) =Ū (10) and p, exponent related to the terrain roughness, equal to 0.15 (farmland, scattered trees and low buildings):3.2. Turbulence numerical simulation along the transmission line axisIn the auto-regressive method, the turbulence u(y, z, t) simulation is a linear combination of p values added to a zero-mean random impulse with variance σ2Nu.where ϕs are the auto-regressive parameters, p is the auto-regressive order and N(t) the zero-mean random process and variance equal to 1. According to Buchholdt et al. [8], the parameters ϕs are to be determined with a solution of an algebraic system ofFig. 2. Mean wind velocity—vertical profile.equations:where R u is the autocorrelation function of u(t) process, determined by the inverse Fourier transform of the energy spectrum S u(n). With σu2 as the u(t) variance, σNu2 inEq. (6), is given byUsing the procedure described above in a manner applied by Pfeil and Battista[10], 12 fluctuating wind velocity histories were generated associated to points alongthe transmission line axis, with longitudinal turbulence intensity equal to 0.14 androot mean square (RMS) value equal to 6.18 m/s.Then, the wind force time histories were determined according to Eq. (3), considering three angles of attack: α=0°(orthogonal to the transmission line axis), α=45°and α=30°,all in a horizontal plane. Equivalent nodal forces were applied according to influence lengths to the cables and chains of insulators and the drag coefficients, CD (α); were those given in the Brazilian design code [9].4. Self-supporting tower analysisThe self-supporting tower selected to be analysed is a Delta type (Fig. 3) with ASTM A36 and A572 steel angles, connected by bolts. It is part of a 230 kV transmission system designed for three simple Grosbeak type electric conductors(d =25.16 mm), two EHS lightning cables (d = 9.15 mm) and mean span equal to 450 m. The chains of glass pieces insulators are mounted on 2.90m length suspension-rods. 4.1. Soil–structure interactionThe soil–structure interaction was performed taking into account two types of soil: medium sand and clay soil. Linear elastic springs and rigid elements were used to simulate, respectively, the soil reaction and the reinforced concrete footings. The study of the structural dynamic characteristics has shown that, whichever is the type of soil selected, the first 10 lower value natural oscillation frequencies do not change.This was an expected result since the relevant design factor of a transmission line tower foundation is the overturning moment arising from the action of wind. Footings designed for this type of tower and load result in low tension and compression stresses on the soil and consequent very small settlements. This was an expected result since the relevant design factor of a transmission line tower foundation is the overturning moment arising from the action of wind. Footings designed for this type of tower and load result in low tension and compression stresses on the soil and consequent very small settlements.Fig. 3. Delta tower—silhouette and frontal view.4.2. Free vibration analysisThe result from a free vibration analysis of the structural system under initial stresses is shown in Table 1, together with a few of the modal shapes depicted in Figs.4 and 5. These results serve readily to give emphasis to the most important aspect of the structural system behavior: the electric cables lateral oscillation under the action of wind excites the tower’s dominant vibration modes. The fundamental period equal to 6.34 s (i.e., low frequency, f = 0.158 Hz) means that, when exposed to the dynamic effects of the atmospheric turbulence, the fluctuating response of the low damped tower-cables coupled system in the along-wind and across-wind directions can be significant.Table 1Natural vibration periods and frequencies and modal shapes descriptionTw=Tower, EC=Electric Conductor, LC=Lightning Conductor.Fig. 4. Mode shape 1—lateral oscillation (T =6.34 s).Fig. 5. Mode shape 7—lateral oscillation (T=2.08 s).4.3. Time domain analysisThe 3D-FEM model was analysed in the time domain (total time interval, T max, 840 s), considering the first 10 vibration modes in the response calculation. The wind forces transverse to the transmission line axis (α=0°), coinciding with the fundamental vibration mode direction, was the most unfavourable loadcase.The maximum horizontal displacement at the free end of the flexible cantilevered truss (Fig. 6) resulted equal to 1.26m in the along-wind direction, while in the vertical direction resulted in 1.34 m, both at time t =408 s. It should be noticed that these large amplitude displacements are not expected from the conventional design calculations for this kind of structure.The structural response under wind action can be assumed to be a stationary Gaussian process. In that case, the probability density function for maxima converges to the Cartwright and Lonquet-Higgins probability density function (Eq. (9)) and the mean, ƞe and the standard deviation, σƞe ; of the extreme values are given [11] by Eqs. (10a) and (10b):where υ is the zero-crossing frequency, T is the time duration, σ is the standard de viation of the sample and γ=0.5772 is the Euler’s constant.Hence by using Eqs. (10) and taking into account just the fluctuating part of the displacements in the along-wind and vertical directions, the mean and the standard deviation of the extreme values of the displacements at node 1 (Table 2) are determined for each direction. The across-wind direction was omitted, since the related displacements are negligible.4.4. Frequency domain analysisHaving determined the displacements at nodal point 1 in the time domain (Fig. 7), the density spectra S x and S z are obtained with the application of the fast Fourier transform algorithm to the displacements time histories. The resultant response spectra displayed in detail in Fig. 8, for a frequency range 0–0.24 Hz, show the three peaks corresponding to the vibration mode shapes 1, 2 and 3 (see Table 1).Fig. 6. Detail of the flexible cantilevered truss (nodal point 1).Fig. 7. Time histories—displacements at node 1.Working strictly in the frequency domain, Eq. (11) expresses the transfer relation between power spectra density functions of the stationary random excitation and response x(t),in the along-wind direction:where S fwind(ω) and Sx(ω) denote, respectively, the modal power spectra density functions of the excitation force and displacement amplitude and H(ω) is the modal complex-frequency-response function.Applying this formulation to a system with a single generalized degree of freedom (any of the lateral oscillation modal shapes) with frequency ωj , stiffness k j and damping ratio ξj ; subjected to a forcing excitation with frequency ω; the complex frequency-response function takes the form:Fig. 8. Response spectra—displacements at node 1.The maxima of modal responses may be determined by considering the excitation as a sinusoidal force with the same magnitude as the modal generalized force F mj in the natural frequency ωj, applied in direction X at the free end of the flexible cantilevered truss (Node 1 in Fig. 6).In the case of the structural system analysed herein, the first 10 natural frequencies are sufficiently close and the modal damping factors are low, leading to coupling of the vibration modes. It is then possible to apply the square root of the sum of the squares (SRSS) method to the modal responses presented in Table 3, which yields a displacement amplitude x =1.389m in the along wind direction (X direction) at El. 31.00m (Node 1 in Fig. 6):When the contributing modes have very close frequencies, the response amplitude may be also calculated by combining the modal responses (Table 3) in accordance to the complete quadratic combination method (CQC), in order to take into account the contribution of the other modes through the cross terms.The displacement amplitude at node 1 in the along wind direction (X) was then determined by the CQC method, resulting in x=1.392 m; a result which, as expected, is very close to that given by the SRSS method. In the CQC method, as the dampingratios are the same for all modes, ξj= 2%, the cross-correlation coefficients ρnm between modes m and n were calculated according to Eq. (14); themodal damping ratios in this case were taken as nearly mass proportional:where r =ωn/ωm and ωm >ωn.4.5. Tower and cables strength analysisChecking the interaction equations for the load and resistance factor design criteria (LRFD), in accordance with the design codes for steel structures—as for example ABNT/NBR8800 (1986), or the ASCE or yet the EUROCODE recommendations—the angle sections of those members connected to the foundation have exceeded the prescribed limit values, whichever limit state was verified: safety or serviceability. Other members, around level 28.00 m, were also ill-proportioned. These calculations were made by taking the stress resultants at one instant of time where a peak in time history occurred for the axial force in these angle section members.As indicated by the envelope of tension forces in the cables (Table 4), the limit tension ratio for maximum wind velocity recommended by the Brazilian code for transmission lines was not surpassed. The analysis resulted in working ratios equal to 24% for the electric conductors and 20% for the lightning conductors; in both cases not greater than the recommended limit, 50% of the nominal cable strength. These results rule out the possibility that the collapse of these transmission line towers had been caused by rupture of cables under the action of wind.The existing damping devices (Stockbridge) were not included in the 3D-FEMmodel. They are useful to attenuate high frequency small amplitude movements that result from low speed winds that may lead to rupture caused by fatigue. Conversely, in the present analysis the movements are of another nature; they are of low frequency and considerable large amplitude.It is important to emphasize here that the linear dynamic analysis carried out with the tower–cables coupled model is just a preliminary step of a complete appraisal of this aerodynamic problem. Further steps should be taken with a non-linear dynamic analysis, in order to take into account adequately the large displacements of the cables that are allowed by large angular displacements of the suspension-rods.Fig. 9. Double pendulum behavior—comparison.5. The important dynamic effect of the suspension-rodsAn important conclusion from this study is the fundamental role the suspension rods play in the coupled tower–transmission line system; the height of the chain of insulators (or of the suspension-rod) defines the dynamic characteristics of the tower–cables coupled model. The system has the tendency to behave like a doublependulum in the orthogonal direction to the transmission line axis, and a preliminary evaluation of the system fundamental frequency can be made with a two-degree-of freedom model (Fig. 9).Taking the following transmission line characteristics as used in the 3D model:(a) medium span: L =450 m;(b) chain of insulators: height=2.65m→ suspension-rod height L1=2.90 m;(c) electric conductors: Grosbeak (weight: μ=13.0 N/m, maximum tension: T rmax =31500 N);(d) and the sag s of cables hanging in catenary shape under the action of their own weight as given by Eq. (15) (where T r0 is equal to the tension at the middle of the span):where s ¼ 10:45m was obtained by considering that T r0 =Tr max; when the suspension points are at the same level and thus the tension variation is very small.The fundamental frequency can be estimated with the double pendulum model as given by Eq. (16), where L1 is the suspension-rod height and g is the acceleration of gravityThe length L2corresponds to the vertical distance between the straight line passing through the tips of two consecutive suspension-rods and the catenary centre of mass, i.e., L2 =2s=3:The model fundamental frequency based on the double pendulum linearized model (Fig. 10a) results in f dp= 0.175 Hz which may be considered a simple and close estimation of f1 at a preliminary design stage, compared to the result from the 3D-FEM analysis, f1 = 0.158 Hz.For the 3D-FEM Delta tower model with the tips of the suspension-rods restrained (Fig. 10b) each one of the swinging cables behaves like a simple pendulum and yields a fundamental frequency f1 = 0.168 Hz, which may be approximated by thefrequency given by the simple pendulum model, f p =0.189 Hz.The oscillation frequencies and mode shapes obtained for the 3D-FEM model considering the suspension-rods restrained are compared in Table 5 to those found with the new proposed model (free suspension-rods). As one can see, the values of frequencies are reasonably close for the two models. The main difference between these two models is that the tower is much more mobilized when the suspension-rods are free to swing and, as a consequence, it experiences larger amplitudes of the lateral top displacement. For restrained suspension-rods, the cables behavior begins to approach the one displayed by a simple pendulum with smaller oscillation amplitudes. This latter 3D model is close to that used in design practice, in which tower and cables are not coupled as in the 3D-FEM model, and the resultant of theFig. 10. Pendulum formulation—results.Table 5Natural frequencies and mode shapes considering suspension-rods effectsTw=Tower, EC=Electric Conductor, LC=Lightning Conductor.wind forces acting on electric and lightning conductors as well as on chains of insulators are applied to the tower’s linkage nodes.Table 6 summarizes and compares the results obtained with different models for the transverse displacements at the free end of the flexible cantilevered truss (Node 1, Fig. 6), considering the wind direction transverse to the transmission line axis. The models used for such comparison are the following:1. design practice (static analysis): The electric cables are not discredited; the wind design dynamic pressure q =2.4 kN/m2 is uniformly distributed along electric cables and the height of the tower, considering the obstruction effective area. The resultant of the wind forces on the cables are applied to the tower’s linkage nodes.2. equivalent cable-tower coupled model (static analysis): The new proposed model considering the mean wind velocity only, without turbulence.3. simplified cable-tower coupled model (time-history analysis for turbulent wind): The new proposed model with the suspension-rods restrained.4. cable-tower coupled model (time history analysis for turbulent wind): The new proposed model.6. Non-linear pendulum-like dampers as a solution for the problemSince the kinetic mechanism that leads to structural collapse has been identified, the next step is to attenuate the amplitudes of the tower’s top horizontal cross-line displacements in the along-wind direction, by means of an auxiliary dynamic device.Based on the works by Pinheiro [4] and Battista and Pinheiro [6], on dynamic control of slender towers under environmental loadings, the proposed remedial measure is to install non-linear pendulum-like dampers (NLPD), as depicted in Fig. 11, to reduce the amplitudes of horizontal cross-lines displacements at the towers due to the sway motion of the transmission lines induced by wind. The dimensions proposed on Fig.11 were determined with the solution of the non-linear two-degree-of-freedom system which formulation is summarized in the following section.Table 6Displacements response at the free end of the flexible cantilevered truss (node 1, Fig.6) of the tower for α=0°wind direction6.1. Equations of controlled motionIt is possible to design NLPDs to attenuate the amplitudes of vibration in the dominant fundamental mode by applying the 2D modal equations (Eq. (17)) for the simple model illustrated in Fig. 12, where subscript p stands for the pendulum’s properties. For that, the related modal properties (modal mass M; force F; stiffness K and/or frequency Ω) have to be extracted from the 3D-FEM model proposed herein. The Runge–Kutta method was used in the solution of the nonlinear system of equations:where (sin θ)” =θcosθ-θ2sinθ.The comparisons between the controlled and uncontrolled systems as well as the angular amplitude of the NLPD are shown in Fig. 13, for NLPD having damping ratioξp = 5% and stiffness k p =1 kN m/rad.The reduction of the horizontal cross-line displacements in the along-wind direction in the first mode of vibration reaches an efficiency rate over 90% when the NLPD system is designed to work almost in resonance with the first mode of the structural system under wind action. Because of the lack of space, the presentation and discussion of results from parametric and sensitivity analyses are herewith prohibitive.Fig. 11. The delta tower and the non-linear pendulum-like dampers.Fig. 12. Tower with NLPD and analogous simplified mechanical system.Fig. 13. Controlled and uncontrolled structure responses for ωe/ω1= 0.9 and ωe/ω1=0.97. ConclusionsA 3D-FEM model was constructed for analysing the dynamic coupled behavior of transmission lines and towers under the action of wind. The distinguishing feature of this model is its ability to account for the inertia forces which arise in the towers dynamics with the wind induced sway motion of the electric cables. The suspensionrods formed by the chains of insulators were identified as the most important component of the system when it comes to the analysis of wind flow and tower-lines coupled model interactive dynamic behavior and response. To attenuate the towers’s top horizontal cross-line displacements in the along-wind direction, NLPDs were envisaged leading to an efficiency rate around 90% when the NLPD system is designed to work almost in resonance with the wind-induced motion in the first mode of oscillation of the coupled structural system under wind action.The authors realize that the presented results obtained with the proposed new modelling are just a preliminary step for the better understanding of the mechanical behavior of transmission line towers under the action of wind. The proposed model has yet to be augmented with appropriate non-linear dynamics to allow for very large angular displacements of the suspension-rods and cables to better describe what seems to be its actual interactive mechanical behavior. Very recent preliminary results, which have been obtained by the authors from a non-linear model, seem very promising and shall be reported in the near future.References[1] R.S. Rodrigues, Collapse of transmission line towers under the action of wind, M.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, April, 1999 (in Portuguese).[2] R.S. Rodrigues, R.C. Battista, M.S. Pfeil, Unveiling the dynamic mechanism of collapse of transmission line towers under wind forces, XXIX Jornadas Sudamericanas de Ingenieria Estructural—Jubileo Prof. Julio Ricaldoni, Punta del Este, 2000, (in Portuguese).[3] H. Yasui, H. Marukawa, Y. Momomura, T. Ohkuma, Analytical study on wind-induced vibration of power transmission towers, J. Wind Eng. Ind. Aerodyn. 83 (1999) 431–441.[4] M.A.S. Pinheiro, Non-linear pendulum absorber of lateral vibrations in slender towers, M.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro February, 1997 (in Portuguese).[5] R.C. Battista, N.F.F. Ebecken, L. Bevilacqua, Dynamical analysis of an offshore platform with vibration absorbers, IUTAM-Symposium on Recent Developments in Nonlinear Oscillations of Mechanical Systems, Vietnan, 1999.[6] R.C. Battista, M.A.S. Pinheiro, Oscillations reduction of compliant structures of offshore platforms, Proceedings of the 21st Iberian Latin American Congress on Computational Methods in Engineering, Rio de Janeiro, 2000 (in Portuguese).[7] E. Simiu, R.H. Scanlan, Wind Effects on Buildings, Wiley, New York, 1996.[8] H.A. Buchholdt, S. Moossavinejad, A. Iannuzzi, Non-linear dynamic analysis of guyed masts subjected to wind and guy ruptures, Proc. Inst. Civ. Eng. September (Part 2) 81 (1986) 353–359.[9] ABNT. NBR 6123 Wind forces on buildings, ABNT, Rio de Janeiro (Brazilian Code) (in Portuguese).[10] M.S. Pfeil, R.C. Battista, Aerodynamics stability analysis of cable stayed bridges, J. Struct. Eng. 121(12) (1995) 1784–1788.[11] R.W. Clough, J. Penzien, Dynamics of Structures, McGraw-Hill Books Co, Singapore, 1993 (Chapter 2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

输电线路塔-线体系风致响应仿真及监测方法研究
输电线路塔-线体系风致响应仿真及监测方法研究
摘要:
输电线路塔-线体系是电力系统中起关键作用的重要组成部分。

由于长期受到气象条件和外部环境的影响,输电线路塔-线体
系易发生疲劳破坏、振动和倾斜等问题,直接影响电网的正常运行和安全性。

本研究旨在通过建立输电线路塔-线体系风致
响应的数学模型,并提出一种基于监测技术的方法,实现对其风致响应的仿真和实时监测。

通过本研究,可以为输电线路塔-线体系的安全运行和维护提供科学的依据。

关键词:输电线路塔-线体系;风致响应;仿真;监测方

1. 引言
输电线路塔-线体系是电力系统中承担输电任务的重要组成部分,其稳定性和安全性直接影响电力系统的可靠运行。

然而,长期受到气象和外部环境的影响,输电线路塔-线体系易出现
结构疲劳、振动和倾斜等问题,严重威胁电力系统的安全运行。

因此,研究输电线路塔-线体系的风致响应特性,提出相应的
仿真和监测方法,具有重要的科学意义和实际应用价值。

2. 输电线路塔-线体系风致响应仿真
2.1 输电线路塔-线体系风场模拟
为了实现输电线路塔-线体系风致响应的仿真研究,首先需要
获取准确的输电线路塔-线体系所在地的风场数据。

可以利用
气象站观测数据,结合插值法和格点法,对输电线路塔-线体
系所在地的风场进行模拟和重构。

2.2 输电线路塔-线体系风致响应数学模型
基于输电线路塔-线体系的力学特性和风场数据,可以建立输电线路塔-线体系风致响应的数学模型。

该模型可以考虑输电线路塔-线体系的结构刚度、风荷载和振动特性,利用有限元方法进行仿真计算,预测输电线路塔-线体系在不同风速下的响应变化。

3. 输电线路塔-线体系风致响应监测方法
3.1 监测装置的选择与布置
为了实现输电线路塔-线体系的风致响应实时监测,需要选择合适的监测装置,并合理布置在输电线路塔-线体系上。

常用的监测装置包括振动传感器、位移传感器、应变传感器等。

3.2 监测数据的采集与处理
通过监测装置采集到的数据,可以进行数据处理和分析,得到输电线路塔-线体系在不同风速下的响应情况。

可以利用频谱分析、小波分析等方法,提取关键的频率成分和振动模态,为输电线路塔-线体系的健康状况评估和故障诊断提供参考。

4. 结论与展望
通过对输电线路塔-线体系风致响应仿真及监测方法的研究,可以实现对输电线路塔-线体系风致响应的准确预测和实时监测。

这对于保障输电线路塔-线体系的正常运行、提高电网安全性具有重要意义。

未来的研究可以进一步完善数学模型和监测方法,提升仿真和监测的精度和可靠性。

综上所述,通过建立输电线路塔-线体系风致响应的数学模型,并利用有限元方法进行仿真计算,可以预测输电线路塔-线体系在不同风速下的响应变化。

同时,选择合适的监测装置并合理布置在输电线路塔-线体系上,可以实时监测其风致响应。

通过采集和处理监测数据,可以评估输电线路塔-线体
系的健康状况和进行故障诊断。

这些研究对于保障输电线路塔-线体系的正常运行和提高电网安全性具有重要意义。

未来的研究可以进一步完善数学模型和监测方法,提升预测和监测的精度和可靠性。

相关文档
最新文档