数列知识点及常用解题方法归纳总结

合集下载

数列知识点总结及题型归纳

数列知识点总结及题型归纳

数列一、数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。

记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。

例如:①:1 ,2 ,3 ,4, 5 ,…②:514131211,,,,…说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。

例如,n a = (1)n-=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。

例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,…(5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn Sn a S S n -=⎧=⎨-⎩≥二、等差数列(一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

数列大题知识点归纳总结

数列大题知识点归纳总结

数列大题知识点归纳总结数列是数学中一个重要的概念,数列大题是考察数列相关知识的一种形式。

本文将对数列的相关知识点进行归纳总结。

一、等差数列等差数列是指数列中的相邻两项之差都相等的数列。

常用的表示方法为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

等差数列的通项公式为an=a1+(n-1)d,第n项的值等于首项加上项数减1再乘以公差。

在计算等差数列时,可以利用常用公式:等差数列前n项和Sn=n/2(a1+an),等差数列的前n项和等于项数乘以首项和末项的和再除以2。

二、等比数列等比数列是指数列中的相邻两项之比都相等的数列。

常用的表示方法为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

等比数列的通项公式为an=a1*r^(n-1),第n项的值等于首项乘以公比的n-1次方。

在计算等比数列时,可以利用常用公式:等比数列前n项和Sn=a1*(1-r^n)/(1-r),等比数列的前n项和等于首项乘以1减去公比的n 次方,再除以1减去公比。

三、求和公式在一般的数列中,求解前n项和的问题较为复杂。

但对于等差数列和等比数列,可以利用求和公式快速计算前n项和。

等差数列的前n项和公式为Sn=n/2(a1+an),等差数列的前n项和等于项数乘以首项和末项的和再除以2。

等比数列的前n项和公式为Sn=a1*(1-r^n)/(1-r),等比数列的前n项和等于首项乘以1减去公比的n次方,再除以1减去公比。

四、常用性质在数列的研究中,常用的一些性质也很重要。

1. 首项与末项之和等于相邻两项之和的一半。

即a1+an=an-1+an。

2. 首项与末项之和等于中间任意两项之和的一半。

即a1+an=ak+ak+1。

3. 对于等差数列,如果求出了它的前n项和Sn,那么其后m项和Sm等于Sn减去前m项的和。

即Sm=Sn-(S1+S2+...+Sm-1)。

4. 对于等比数列,如果求出了它的前n项和Sn,那么其后m项和Sm等于Sn乘以公比的m次方减去1,再除以公比减去1。

数列知识点总结大全

数列知识点总结大全

数列知识点总结大全一、数列的概念与定义1. 数列的概念:数列是按照一定规律排列的一组数的集合,数列中的每个数称为数列的项。

2. 数列的定义:数列可以用一个通项公式或者递推公式来表示,通项公式指明了数列的第n个项与n的关系,递推公式则指明了数列的第n+1项与第n项的关系。

二、常见的数列类型1. 等差数列:如果一个数列中任意相邻两项的差都相等,那么这个数列就是等差数列。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。

2. 等比数列:如果一个数列中任意相邻两项的比值都相等,那么这个数列就是等比数列。

等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。

3. 调和数列:如果一个数列中任意相邻两项的倒数之差都相等,那么这个数列就是调和数列。

调和数列的通项公式为an=1/(1+d(n-1)),其中d为公差。

三、数列的性质1. 有限数列与无限数列:有限数列指数列中的项是有限个,无限数列指数列中的项是无限个。

2. 数列的奇偶性:如果数列的每一项的奇偶性相同,则称该数列为奇数列或偶数列。

3. 数列的首项和公差:首项指数列中的第一个元素,公差指等差数列中相邻两项之差。

4. 数列的前n项和:数列的前n项和可以用求和公式来表示,对于等差数列和等比数列有相应的公式。

5. 数列的递推公式:递推公式指明了数列的第n+1项与第n项的关系,可以通过递推公式求出数列的任意一项。

四、数列的应用1. 等差数列与等比数列的求和:等差数列和等比数列的前n项和在数学和物理问题中有广泛的应用,它们可以帮助我们简化复杂的计算。

2. 数学归纳法:数学归纳法是证明数学命题的一种方法,在数列中的应用尤其广泛。

3. 数列的模型应用:数列模型可以用来描述自然界和社会现象中的变化规律,比如人口增长、物种演化等。

五、数列的判断与证明1. 数列的判断:如何判断一个数列是等差数列、等比数列、调和数列等,需要根据数列的性质和通项公式进行分析。

数列知识点归纳总结讲义

数列知识点归纳总结讲义

数列知识点归纳总结讲义数列是数学中常见的一个概念,它在各个领域都有广泛的应用。

正如其名称所示,数列是一系列按照特定规律排列的数的集合。

在学习和应用数列时,我们需要了解一些基本概念和常见的数列类型。

本文将对数列的知识点进行归纳总结,帮助读者更好地理解和掌握相关概念。

一、数列的基本概念1. 数列的定义:数列是按照一定的规律排列的一组数,用字母表示为{a₁,a₂,a₃,...}。

2. 项与序号:数列中的每个数称为项,对应的位置称为序号。

第一项为a₁,第二项为a₂,以此类推。

3. 通项公式:数列中每个项与它所在的序号之间存在着一定的关系,这种关系用通项公式来表示,通常用aₙ表示第n个项的值。

4. 数列的有穷与无穷:当数列中的项有限个时,称其为有穷数列;当数列中的项无限多时,称其为无穷数列。

二、常见的数列类型1. 等差数列:等差数列是一种最为常见的数列类型,其特点是每个项之间的差值相等。

通项公式:aₙ = a₁ + (n - 1)d其中,a₁为首项,d为公差,n为项数。

例如:2,5,8,11,14...就是一个以3为公差的等差数列。

2. 等比数列:等比数列是指数列中每个项与它前一项的比值相等的数列。

通项公式:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比,n为项数。

例如:1,2,4,8,16...就是一个以2为公比的等比数列。

3. 斐波那契数列:斐波那契数列是指从第3项开始,每个项都是前两项的和。

通项公式:aₙ = aₙ₋₂ + aₙ₋₁其中,a₁和a₂为斐波那契数列的前两项。

例如:1,1,2,3,5,8,13...就是一个斐波那契数列。

4. 平方数列:平方数列是指数列中每个项都是某个整数的平方。

通项公式:aₙ = n²其中,n表示项数。

例如:1,4,9,16,25...就是一个平方数列。

5. 等差数列与等比数列混合:有时数列中既存在等差关系,又存在等比关系,称其为等差数列与等比数列混合数列。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

数列知识点和常用解题方法归纳总结

数列知识点和常用解题方法归纳总结

数列知识点和常用解题方法归纳总结引言数列是数学中的一个重要概念,它描述了按照一定顺序排列的一列数。

数列的知识点广泛,解题方法多样,本文旨在对数列的基本知识点和常用解题方法进行归纳和总结。

数列的基本概念数列的定义数列是一系列按照一定顺序排列的数,可以是有限的,也可以是无限的。

通项公式数列中每一项与它的位置(即序号)之间的关系,通常用 ( a_n ) 表示第 ( n ) 项。

递推关系递推关系描述了数列中某一项与其前一项或几项之间的关系,常用于递推数列。

数列的基本类型等差数列等差数列的每一项与其前一项的差是一个常数,即 ( a_n - a_{n-1} = d )。

等比数列等比数列的每一项与其前一项的比是一个常数,即( \frac{a_n}{a_{n-1}} = r )。

调和数列调和数列的每一项是其序号的倒数,即 ( a_n = \frac{1}{n} )。

几何数列几何数列的每一项是前一项的 ( r ) 倍,即 ( a_n = a_1 \cdot r^{n-1} )。

数列的性质单调性数列的单调性指的是数列的项是单调递增、单调递减还是保持不变。

有界性有界性指的是数列的所有项都位于某个区间内。

收敛性收敛性指的是数列的项随着序号的增加无限接近于某个固定值。

数列求和等差数列求和等差数列的前 ( n ) 项和可以用公式 ( S_n = \frac{n(a_1 +a_n)}{2} ) 计算。

等比数列求和等比数列的前 ( n ) 项和可以用公式 ( S_n = a_1 \frac{1 -r^n}{1 - r} ) 计算(对于 ( r \neq 1 ))。

分组求和对于复杂的数列,可以将其分组后分别求和。

裂项求和裂项求和是一种将数列的项分解为几个部分,然后进行求和的方法。

常用解题方法定义法根据数列的定义,直接求解数列的项或和。

公式法利用等差数列、等比数列等的求和公式直接求解。

归纳法通过观察数列的前几项,归纳出数列的通项公式或求和公式。

数列知识点归纳总结

数列知识点归纳总结

数列是数学中的一个重要概念,它是由一系列按照一定规律排列的数组成的。

数列知识点归纳总结如下:一、数列的定义1. 数列是由有限个或无限个数字组成的序列。

2. 数列中的数字按照一定的顺序排列。

3. 数列中的每个数字都有一个对应的位置或项数。

二、数列的分类1. 按项数分类:有限数列和无限数列。

2. 按项的性质分类:整数数列、实数数列、复数数列等。

3. 按项的规律分类:等差数列、等比数列、斐波那契数列等。

三、等差数列1. 等差数列是指从第二项起,每一项与它的前一项的差都相等的数列。

2. 等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。

3. 等差数列的求和公式为:Sn = n/2 * (a1 + an),其中Sn表示前n项和。

四、等比数列1. 等比数列是指从第二项起,每一项与它的前一项的比都相等的数列。

2. 等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比。

3. 等比数列的求和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。

五、斐波那契数列1. 斐波那契数列是指从第三项起,每一项都是前两项之和的数列。

2. 斐波那契数列的前几项为:1, 1, 2, 3, 5, 8, 13, ...3. 斐波那契数列没有通项公式,但可以用递归或循环的方式生成。

六、递推关系与通项公式1. 递推关系是指数列中相邻两项之间的关系。

2. 递推关系可以用来推导出数列的通项公式。

3. 通项公式是用来表示数列中任意一项的公式。

4. 通项公式可以通过递推关系、图形法、矩阵法等方式推导得出。

七、数列的应用1. 数列在数学中有广泛的应用,如级数求和、概率计算、线性方程组求解等。

2. 数列在自然科学、经济学、计算机科学等领域也有重要的应用。

八、数列的极限1. 数列的极限是指当项数趋向无穷大时,数列的项趋向于一个确定的数值。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。

数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。

下面对数列题型及解题方法进行归纳总结。

一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。

2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。

通常用a1表示首项,d表示公差。

3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。

通常用a1表示首项,r表示公比。

二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。

使用通项公式a_n = a1 + (n-1)d。

(2)已知相邻两项的值,求公差。

根据 a_(n+1) - a_n = d,解方程即可。

(3)已知首项和第n项的值,求公差。

根据 a_n = a1 + (n-1)d,解方程即可。

2. 找前n项和:(1)已知首项、公差和项数,求前n项和。

使用公式S_n= (n/2)(a1 + a_n)。

(2)已知首项、末项和项数,求公差。

由于S_n =(n/2)(a1 + a_n),可以列方程求解。

(3)已知首项、公差和前n项和,求项数。

可以列方程并解出项数。

3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。

可以列方程,并解出项数。

三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。

使用通项公式a_n = a1 * r^(n-1)。

(2)已知相邻两项的值,求公比。

根据 a_n / a_(n-1) = r,解方程即可。

(3)已知首项和第n项的值,求公比。

根据 a_n = a1 * r^(n-1),解方程即可。

2. 找前n项和:(1)已知首项、公比和项数,求前n项和。

使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。

数列详细知识点归纳总结

数列详细知识点归纳总结

数列详细知识点归纳总结一、数列的定义数列是指按一定的顺序排列的一组数字的有限序列或无限序列。

具体地说,如果给定一个数集合{a1, a2, a3, ... },那么这个数集合就可以构成一个数列,其中a1、a2、a3...就是数列的项,而它们的下标1、2、3...就是自然数的序列。

在数列中,通常用{an}或a1, a2, a3, ...表示。

其中an称为数列的通项,表示数列中第n项的具体数值。

如果数列有限项,那么它就是一个有限数列,如果数列项数为无穷多,那么它就是一个无穷数列。

二、常见数列1.等差数列如果一个数列中任意两个相邻的项之间的差是一个常数d,那么这个数列就是等差数列。

等差数列的通项公式为an = a1 + (n-1)d,其中n为项号,a1为首项,d为公差。

2.等比数列如果一个数列中任意两个相邻的项之间的比是一个常数q,那么这个数列就是等比数列。

等比数列的通项公式为an = a1*q^(n-1),其中n为项号,a1为首项,q为公比。

3.斐波那契数列斐波那契数列是一个非常有趣的数列,它的定义是f(1) = 1, f(2) = 1, f(n) = f(n-1) + f(n-2) (n > 2)。

即从第三项开始,每一项都是前两项之和。

4.调和数列调和数列是指数列an=1/n,其中n为自然数。

它的通项公式为an=1/n,调和数列是一个无穷数列。

5.几何级数几何级数是指等比数列的前n项和,也就是Sn = a1*(1-q^n)/(1-q),其中a1为首项,q为公比。

对于几何级数来说,只有在|q|<1的时候,级数的前n项和才有极限,也即收敛。

三、数列的性质1.有界性数列的有界性是指数列的各项都被一个常数M所限制。

如果数列的绝对值|an|对任意n都小于或等于M,那么数列就是有界的。

数列的单调性是指数列的项是单调递增或单调递减的。

如果对于所有的n,an+1>=an或者an+1<=an,则数列是单调的。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

数列所有知识点归纳总结

数列所有知识点归纳总结

数列所有知识点归纳总结数列在数学中是一个重要的概念,它是由一系列按特定规律排列的数所组成的序列。

在数列的学习中,我们需要了解其基本概念、性质和常见的分类种类。

本文将对数列的各个知识点进行归纳总结,帮助读者更好地理解和掌握这一部分的数学知识。

一、数列的基本概念1. 数列的定义:数列是由一系列按照一定规律排列的数所组成的序列。

2. 项与序号:数列中的每个数称为项,用a₁,a₂,a₃,...表示;项所对应的位置称为序号,用n表示。

3. 数列的通项公式:数列中每一项与其序号之间存在着一定的关系,可以用一个公式表示,称为数列的通项公式。

二、数列的性质1. 数列的有界性:数列可能是有界的(存在上界或下界),也可能是无界的(既没有上界也没有下界)。

2. 数列的单调性:数列可以是递增的或递减的,也可以是常数列(即所有项相等)。

3. 数列的有限性:数列可以是有限的(只有有限个项),也可以是无限的(有无穷个项)。

4. 数列的周期性:部分数列具有周期性,即从某一项开始,每隔一定项都重复出现相同的数列。

三、常见数列的分类1. 等差数列:数列中每一项与前一项之差都相等的数列,通项公式为an = a₁ + (n-1)d,其中a₁为首项,d为公差。

2. 等比数列:数列中每一项与前一项之比都相等的数列,通项公式为an = a₁ * r^(n-1),其中a₁为首项,r为公比。

3. 斐波那契数列:数列中每一项是前两项之和的数列,通项公式为an = a(n-1) + a(n-2),其中a₁ = 1,a₂ = 1。

4. 幂次数列:数列中每一项都是一定的幂的数列,通项公式为an = a₁ * (n^p),其中a₁为首项,p为幂次。

四、数列求和1. 等差数列的求和:对于公差为d的等差数列,其前n项和为Sn = (n/2)(a₁ + an) = (n/2)(2a₁ + (n-1)d)。

2. 等比数列的求和:对于公比为r的等比数列(r≠1),其前n项和为Sn = a₁(1 - r^n) / (1 - r)。

数列基础知识点和方法归纳

数列基础知识点和方法归纳

数列基础知识点和方法归纳 1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-,推论公式:等差中项:x A y ,,成等差数列2A x y ⇔=+,等差数列前n 项和:()()11122n na a n n n S nad +-==+性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(下标和定理) 注意:要求等式左右两边项数相等 (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,,; (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --=; (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇, .1-=n n S S 偶奇2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=.推论公式:等比中项:x G y 、、成等比数列2G xy ⇒=,或G xy=±.等比数列中奇数项同号,偶数项同号等比数列前n 项和公式:性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =··(下标和定理) 注意:要求等式左右两边项数相等。

数列知识点归纳总结笔记

数列知识点归纳总结笔记

数列知识点归纳总结笔记一、数列的概念1. 数列的定义数列是由一系列有序的数按照一定的规律排列而成的。

我们通常用{n}来表示一个数列,其中n为自然数。

2. 数列的常见表示方式(1)通项公式表示:数列的一般形式为a₁,a₂,a₃,......,aₙ,其中aₙ是第n项的值。

数列的通项公式通常是一种算式,可以用来表示数列的第n项。

(2)递推关系表示:数列的第n项与它的前几项之间存在某种关系,这种关系称为数列的递推关系,通常用递归的方式表示。

3. 数列的分类(1)等差数列:数列中任意两项之间的差是常数,这种数列称为等差数列。

(2)等比数列:数列中任意两项之间的比是常数,这种数列称为等比数列。

(3)等差-等比混合数列:数列中既存在等差关系,又存在等比关系,这种数列称为等差-等比混合数列。

(4)等差-等比-等比差混合数列:数列中既存在等差关系,又存在等比关系,同时等差项间的差也构成等差数列,这种数列称为等差-等比-等比差混合数列。

二、数列的性质1. 数列的有界性(1)有界数列:如果一个数列存在一个上界和一个下界,那么该数列称为有界数列。

(2)无界数列:如果一个数列不存在上界或下界,那么该数列称为无界数列。

2. 数列的单调性(1)单调递增数列:如果数列的每一项都大于等于前一项,那么该数列称为单调递增数列。

(2)单调递减数列:如果数列的每一项都小于等于前一项,那么该数列称为单调递减数列。

3. 数列的极限(1)数列的极限定义:对于一个数列{aₙ},如果对于任意给定的ε>0,存在N∈N,对于所有n>N,有|aₙ-L|<ε成立,则称数列{aₙ}的极限为L,记为lim⁡(n→∞) aₙ=L。

(2)数列的极限存在性:一个数列未必存在极限,但只要该数列有上界和下界,则该数列一定存在极限。

4. 数列的和(1)数列的部分和:对于数列{aₙ},它的前n项的和称为数列的部分和,用Sₙ表示。

(2)数列的无穷和:如果lim⁡(n→∞) Sₙ=L,那么L称为数列{aₙ}的无穷和,即∑ aₙ=L。

高中数学数列知识点归纳整理总结

高中数学数列知识点归纳整理总结

高中数学数列知识点归纳整理总结数列是数学中的重要概念,它是指按照一定规律排列的一系列数的集合。

在高中数学中,数列是一个重要的考点,掌握数列的性质和求解方法是学好数学的基础。

本文将对高中数学数列知识点进行归纳整理总结,帮助学生更好地理解和掌握这一部分知识。

一、数列的定义和性质1. 数列的定义:数列是由一系列按照一定规律排列的数所组成的集合,用字母表示一般项,如a₁, a₂, a₃...2. 数列的一般形式:数列可以是有规律的,也可以是无规律的。

有规律的数列可以用以下三种形式表示:- 通项公式:根据数列的规律,得出每一项与项号之间的关系,以求解任意项和通项公式。

- 递推公式:通过前一项与后一项之间的关系,表示出数列中任意一项与它的前一项的关系。

- 递归式:通过前一项与后一项之间的关系,表示出数列中任意一项与它的前一项和初始条件的关系。

二、常见的数列类型1. 等差数列:等差数列是指数列中任意两项之间的差值都相等的数列。

等差数列的通项公式为an = a₁ + (n - 1)d,其中a₁为首项,d为公差,n为项号。

- 求和公式:等差数列的前n项和公式为Sn = (n/2)[2a₁ + (n - 1)d]。

2. 等比数列:等比数列是指数列中任意两项之间的比值都相等的数列。

等比数列的通项公式为an = a₁ * r^(n-1),其中a₁为首项,r为公比,n为项号。

- 求和公式:等比数列的前n项和公式为Sn = a₁ * (1 - r^n) / (1 - r),其中|r| < 1。

3. 斐波那契数列:斐波那契数列是指数列中每一项都等于前两项之和的数列。

斐波那契数列的通项公式为an = an-1 + an-2,其中a₁= 1,a₂ = 1。

三、数列求解方法1. 已知数列的前n项,求通项公式:根据已知的前n项,可以通过构造方程组求解出通项公式。

- 样例:已知等差数列的前n项和Sn = 3n² - 2n,求该数列的通项公式。

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结

数列题型及解题方法归纳总结数列在数学中是一个非常重要的概念,它在各种数学问题中都有着重要的应用。

在学习数列的过程中,我们需要了解不同的数列题型及相应的解题方法,这样才能更好地掌握数列的知识,提高解题能力。

下面,我们将对数列题型及解题方法进行归纳总结,希望能对大家的学习有所帮助。

一、等差数列。

等差数列是最基本的数列之一,它的通项公式为:$a_n = a_1 + (n-1)d$。

在解等差数列的问题时,我们需要注意以下几种情况:1. 求前n项和,$S_n = \frac{n}{2}(a_1 + a_n)$;2. 求首项、公差或项数,$a_n = a_1 + (n-1)d$;3. 已知前几项求第n项,$a_n = a_m + (n-m)d$。

二、等比数列。

等比数列也是常见的数列类型,它的通项公式为:$a_n = a_1 \cdot q^{n-1}$。

解等比数列的问题时,需要注意以下几点:1. 求前n项和,$S_n = \frac{a_1(1-q^n)}{1-q}$;2. 求首项、公比或项数,$a_n = a_1 \cdot q^{n-1}$;3. 已知前几项求第n项,$a_n = a_m \cdot q^{n-m}$。

三、特殊数列。

除了等差数列和等比数列外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。

在解题时,需要根据具体情况选择合适的方法,不能生搬硬套。

四、解题方法。

在解数列题时,我们可以采用以下几种方法:1. 找规律法,观察数列的前几项,找出它们之间的规律,从而得出通项公式或前n项和的表达式;2. 递推法,根据数列的递推关系,逐步求解出数列的各项;3. 通项公式法,如果数列是等差数列或等比数列,可以直接利用其通项公式进行求解;4. 常用公式法,对于常见的数列题型,可以直接利用其前n项和的公式进行求解。

五、总结。

通过以上的归纳总结,我们可以看出,数列题型及解题方法是一个比较系统的知识体系,需要我们掌握一定的基本原理和方法。

数列知识点与常用解题方法归纳总结

数列知识点与常用解题方法归纳总结

数列知识点及常用解题方法归纳总结一、等差数列的定义与性质定义: a n 1 a n d ( d为常数 ) , an a1n 1 d等差中项: x,A , y成等差数列2A x ya1a n n n n1前 n项和 S n na12d2性质:a n是等差数列(1)若 m n p q,则 a m a n a p a q;( 2)数列a2 n 1, a2 n, ka n b 仍为等差数列;S n,S2 n S n,S3n S2n⋯⋯仍为等差数列;( 3)若三个数成等差数列,可设为 a d,a,a d;( 4)若 a n, b n是等差数列 S n, T n为前 n项和,则amS2m1;b mT2 m1( 5) a n为等差数列S n an2bn( a, b为常数,是关于n的常数项为0的二次函数)S n的最值可求二次函数S n an2bn的最值;或者求出 a n中的正、负分界项,即:当a10, da n00,解不等式组可得 S n达到最大值时的 n值。

a n10当a10, d0,由a n0可得 S n达到最小值时的 n值。

a n10如:等差数列 a n, S n18,a n an 1an 23,S31,则 n(由 a n an 1an 2 3 3a n 13,∴ a n 11又 S a1a3 · 3 3a2,∴a21313 211 na 1a n n a 2an 1· n318n 27)∴ S n222二、等比数列的定义与性质定义: an1q ( q 为常数, q0), a n a 1 q n 1a n等比中项: x 、G 、 y 成等比数列G 2 xy ,或 Gxyna 1 (q 1)前n 项和: S na 1 1q n 1)(要注意 ! )1(qq性质: a n 是等比数列(1)若 m n p q ,则 a m · a na p ·a q( 2)S n ,S 2n S n , S 3 n S 2 n ⋯⋯仍为等比数列三、求数列通项公式的常用方法1、公式法2、 由S n 求a n ;(n1时, a 1 S 1 ,n2时, a nS n S n 1)3、求差(商)法如: a n 满足 1a 112 a 2⋯⋯1n a n2n 512 221解: n1时, 2a12 1 5,∴ a 114n 2 时,11 a 2⋯⋯1an 12n 1 522a1222 n 112 得:1a n 2 , ∴ a n2n 1, ∴ a n14 (n 1)2n 1(n2)2 n[练习]数列 a n 满足 S nS n 15a n 1 , a 14,求 a n3(注意到 a n 1S n 1 S n 代入得:S n 14S n又 S 1 4,∴ S n 是等比数列, S n4 n24、叠乘法例如:数列 a n 中, a 1an 1n3,a nn ,求 a n1解: a 2 · a 3 ⋯⋯ a n1 ·2 ⋯⋯ n 1 ,∴ a n1a 1a 2an 123na 1 n又 a 13,∴ a n3 n5、等差型递推公式由a na n 1 f (n) ,a 1 a 0 ,求 a n ,用迭加法n 2时, a 2a 1 f (2)a 3 a 2f (3) 两边相加,得:⋯⋯⋯⋯a na n1f (n)a n a 1 f (2) f ( 3) ⋯⋯ f ( n)∴a na 0f (2) f (3) ⋯⋯f (n)[练习]数列 a n , a 1 1, a n 3n 1a n 1 n 2 ,求 a n( a n13n1 )26、等比型递推公式a n ca n 1d c 、 d 为常数, c0, c 1, d 0可转化为等比数列,设 a n xc a n 1xa n ca n 1 c 1 x令 (c 1)xd ,∴ xdc 1∴ a ndd1是首项为 a 1, c 为公比的等比数列cc 1∴ a nd a 1c d · c n 1c 11∴ a na 1d c n 1d[练习]数列 a n 满足 a 19, 3a n 1a n 4,求 a n4n 1(a n81)37、倒数法例如: a 11, a n 12a n,求 a n1a n 2 1 1 a n, 由已知得:2 a n2a n 12a n11 1 ,1为等差数列,1,公差为1a n2a na 12an 11 1 n 1 ·1 1n 1, ∴ a n2n1a n2 2 三、 求数列前 n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

(完整版)数列题型及解题方法归纳总结.doc

(完整版)数列题型及解题方法归纳总结.doc

文德教育知识框架求和公式及性质, 掌握了典型题型的解法和数学思想法的应用, 就有可 数列的分类能在高考中顺利地解决数列问题。

数列 函数角度理解一、典型 的技巧解法数列的通项公式1、求通 公式的概念数列的递推关系( 1) 察法。

(2)由 推公式求通 。

等差数列的定义 a n a nd ( n 2)1于由 推公式所确定的数列的求解,通常可通 推公式的 化成等等差数列的通项公式a na 1 ( n 1)d差数列或等比数列 。

等差数列S nn ( a 1 a n ) na 1 n(n 1)d (1) 递推式为 a n+1=a n +d 及 a n+1=qa n (d , q 为常数)等差数列的求和公式2 2 例 1、 已知 {a } 足 a =a +2,而且 a =1。

求 a 。

nn+1n1 n等差数列的性质 a n a m a p a q ( mn p q)例 1、解∵a n+1-a n =2 常数∴ {a n } 是首1,公差 2 的等差数列两个基a nnnq( n2) ∴ a =1+2( n-1 )即 a =2n-1等比数列的定义1本数列a n1例 2、已知 {} 足,求 an 1a n a n 1a n ,而 a 1 2 ?等比数列的通项公式a na 1 q n =2等比数列a 1 a n q a 1 (1 q n )1)数列S n1q1 ( q等比数列的求和公式qna 1 ( q 1)等比数列的性质a n a m a p a q ( m npq)公式法 分组求和错位相减求和数列 裂项求和求和倒序相加求和 累加累积 归纳猜想证明分期付款 数列的应用其他( 2) 递推式为 a n+1=a n +f (n )例 3、已知 { a n } 中 a1a1,求 a n ., an 112n4n 2 1解: 由已知可知 a n 1a n(2n11 (1 1 )1)( 2n 1)2 2n 1 2n 1令 n=1, 2,⋯,( n-1 ),代入得( n-1 )个等式累加,即(a 2-a 1) +( a 3-a 2) +⋯+( a -a n-1 )n掌握了数列的基本知识, 特别是等差、等比数列的定义、 通项公式、a nb n 3( 1)n2( 1) na na 11(1 1 ) 4n 3 2n2322n 1 4n2★ 明 只要和f ( 1) +f ( 2) +⋯ +f ( n-1 )是可求的,就可以由a n+1=a n +f ( n )以 n=1,2,⋯,( n-1 )代入,可得 n-1 个等式累加而求 a n 。

(完整版)数列题型及解题方法归纳总结,推荐文档

(完整版)数列题型及解题方法归纳总结,推荐文档

建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n
n
1
,求a
n
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
(1)公式法:①等差数列求和公式;②等比数列求和公式。
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类
项”先合并在一起,再运用公式法求和。
(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项
与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这
an=3(an-an-1)
因此数列{an+1-an}是公比为 3 的等比数列,其首项为 a2-a1=(3×1+2)-
1=4
∴an+1-an=4·3n-1
∵an+1=3an+2 ∴3an+2-an=4·3n-1

an=2·3n-1-1 解法二: 上法得{an+1-an}是公比为 3 的等比数列,于是有:a2-a1=4,a3-
⑵已知 Sn (即 a1 a2 an f (n) )求 an ,用作差法:
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列知识点及常用解题方法归纳总结一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 11000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144==n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

{}如:是公差为的等差数列,求a d a a n k k k n111+=∑ 解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠∴11111111a a d a a k k k nk k k n+=+=∑∑=-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥=-⎛⎝ ⎫⎭⎪++11111111111223111d a a a a a a d a a n n n ……[练习] 求和:…………111211231123+++++++++++n(…………,)a S n n n ===-+2113、错位相减法:{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n{}和,可由求,其中为的公比。

S qS S q b n n n n -如:……S x x x nxn n =+++++<>-12341231()x S x x x x n x nx n n n ·……=+++++-+<>-234122341()<>-<>-=++++--121121:……x S x x xnx n n n ()()x S x x nx xnnn≠=----11112时,()x S n n n n ==++++=+112312时,……4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

S a a a a S a a a a n n n n n n =++++=++++⎫⎬⎪⎭⎪--121121…………相加()()()21211S a a a a a a n n n n =++++++-………… [练习]已知,则f x x x f f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=2211212313414(由f x f x x x x x x x x ()+⎛⎝ ⎫⎭⎪=++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=+++=1111111112222222 ∴原式=++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥f f f f f f f ()()()()1212313414=+++=12111312)例1设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为( )A .128B .80C .64D .56 (福建卷第3题)略解:∵ a 2 +a 7= a 1+a 8=16,∴{a n }前8项的和为64,故应选C .例2 已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .243 (全国Ⅰ卷第7题)答案:A .例3 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( )A .30B .45C .90D .186 (北京卷第7题)略解:∵a 5-a 2=3d=9,∴ d=3,b 1=26a =,b 5=a 10=30,{}n b 的前5项和等于90,故答案是C .例4 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( )A .2B .3C .6D .7 (广东卷第4题) 略解:∵422412,3S S S d d --===,故选B. 例5在数列{}n a 中,542n a n =-,212n a a a an bn +++=+L ,*n N ∈,其中,a b 为常数,则ab = .(安徽卷第15题)答案:-1.例6 在数列{}n a 中,12a =, 11ln(1)n n a a n+=++,则n a =( )A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++(江西卷第5题) 答案:A .例7 设数列{}n a 中,112,1n n a a a n +==++,则通项n a = ___________.(四川卷第16题)此题重点考查由数列的递推公式求数列的通项公式,抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口.略解:∵112,1n n a a a n +==++ ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,K ,3221a a =++,2111a a =++,1211a ==+.将以上各式相加,得()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L ()()111122n n n n n -+=++=+,故应填(1)2n n ++1. 例8 若(x +12x)n 的展开式中前三项的系数成等差数列,则展开式中x 4项的系数为( )A .6B .7C .8D .9 (重庆卷第10题) 答案:B .使用选择题、填空题形式考查的文科数列试题,充分考虑到文、理科考生在能力上的差异,侧重于基础知识和基本方法的考查,命题设计时以教材中学习的等差数列、等比数列的公式应用为主,如,例4以前的例题.例5考查考生对于等差数列作为自变量离散变化的一种特殊函数的理解;例6、例7考查由给出的一般数列的递推公式求出数列的通项公式的能力;例8则考查二项展开式系数、等差数列等概念的综合运用.重庆卷第1题,浙江卷第4题,陕西卷第4题,天津卷第4题,上海卷第14题,全国Ⅱ卷第19题等,都是关于数列的客观题,可供大家作为练习.例9 已知{a n }是正数组成的数列,a 1=1,且点(1,n n a a +)(n ∈N*)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (福建卷第20题) 略解:(Ⅰ)由已知,得a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列.故a n =1+(n -1)×1=n.(Ⅱ)由(Ⅰ)知,a n =n ,从而b n +1-b n =2n ,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=2n -1.∵. b n •b n +2-b 21+n =(2n -1)(2n +2-1)-(2n+1-1)2= -2n <0, ∴ b n ·b n +2<b 21+n .对于第(Ⅱ)小题,我们也可以作如下的证明:∵ b 2=1,b n ·b n +2- b 21+n =(b n +1-2n )(b n +1+2n +1)- b 21+n =2n +1·b n +1-2n ·b n +1-2n ·2n +1=2n (b n +1-2n +1)=2n (b n +2n -2n +1)=2n (b n -2n )=…=2n (b 1-2)=-2n <0,∴ b n -b n +2<b 2n +1.例10 在数列{}n a 中,11a =,122n n n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列;(Ⅱ)求数列{}n a 的前n 项和n S .(全国Ⅰ卷第19题)略解:(Ⅰ)1n n b b +-=1122n n n n a a +--=122n n na a +-=22nn =1,则{}n b 为等差数列,11b =, n b n =,12n n a n -=.(Ⅱ)01211222(1)22n n n S n n --=+++-+g g L g g ,12121222(1)22n nn S n n -=+++-+g g L g g .两式相减,得01121222221n n n n n S n n -=----=-+g g L g =(1)21n n -+.对于例10第(Ⅰ)小题,基本的思路不外乎推出后项减前项差相等,即差是一个常数.可以用迭代法,但不可由b 2-b 1=1,b 3-b 2=1等有限个的验证归纳得到{}n b 为等差数列的结论,犯“以偏盖全”的错误.第(Ⅱ)小题的“等比差数列”,在高考数列考题中出现的频率很高,求和中运用的“错项相减”的方法,在教材中求等比数列前n 项和时给出,是“等比差数列”求和时最重要的方法.一般地,数学学习中最为重要的内容常常并不在结论本身,而在于获得这一结论的路径给予人们的有益启示.例9、例10是高考数学试卷中数列试题的一种常见的重要题型,类似的题目还有浙江卷第18题,江苏卷第19题,辽宁卷第20题等,其共同特征就是以等差数列或等比数列为依托构造新的数列.主要考查等差数列、等比数列等基本知识,考查转化与化归思想,考查推理与运算能力.考虑到文、理科考生在能力上的差异,与理科试卷侧重于理性思维,命题设计时以一般数列为主,以抽象思维和逻辑思维为主的特点不同;文科试卷则侧重于基础知识和基本方法的考查,以考查具体思维、演绎思维为主.例11 等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 11b =,且2264,b S =33960b S =.(Ⅰ)求n a 与n b ; (Ⅱ)求和:12111nS S S +++L .(江西卷第19题)略解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,依题意有22233(6)64,(93)960.S b d q S b d q =+=⎧⎨=+=⎩解之,得2,8;d q =⎧⎨=⎩或6,540.3d q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去,为什么?)故132(1)21,8n n na n nb -=+-=+=.(Ⅱ)35(21)(2)n S n n n =++++=+L ,∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+L L 111111(1232435=-+-+-+11)2n n +-+L 1111(1)2212n n =+--++32342(1)(2)n n n +=-++. “裂项相消”是一些特殊数列求和时常用的方法.使用解答题形式考查数列的试题,其内容还往往是一般数列的内容,其方法是研究数列通项及前n 项和的一般方法,并且往往不单一考查数列,而是与其他内容相综合,以体现出对解决综合问题的考查力度.数列综合题对能力有较高的要求,有一定的难度,对合理区分较高能力的考生起到重要的作用.例12 设数列{}n a 的前n 项和为22nn n S a =-,(Ⅰ)求14,a a ;(Ⅱ)证明: {}12n n a a +-是等比数列;(Ⅲ)求{}n a 的通项公式.(四川卷第21题)略解:(Ⅰ)∵1111,22a S a S ==+,所以112,2a S ==.由22n n n a S =+知,11122n n n a S +++=+112n n n a S ++=++得,112n n n a S ++=+ ①∴222122226,8a S S =+=+==,3332328216,24a S S =+=+==,443240a S =+=.(Ⅱ)由题设和①式知,()()11222n n n n n n a a S S ++-=+-+122n n +=-2n =,∴{}12n n a a +-是首项为2,公比为2的等比数列.(Ⅲ)()()()21112211222222n n n n n n n a a a a a a a a -----=-+-++-+L ()112n n -=+⋅此题重点考查数列的递推公式,利用递推公式求数列的特定项,通项公式等.推移脚标,两式相减是解决含有n S 的递推公式的重要手段,使其转化为不含n S 的递推公式,从而有针对性地解决问题.在由递推公式求通项公式时,首项是否可以被吸收是易错点.同时,还应注意到题目设问的层层深入,前一问常为解决后一问的关键环节,为求解下一问指明方向.例13 数列{}n a 满足,2,021==a a 222(1cos)4sin ,1,2,3,,22n n n n a a n ππ+=++=L (I )求43,a a ,并求数列{}n a 的通项公式;(II )设1321k k S a a a -=+++L ,242k k T a a a =+++L , 2(2kk kS W k T =∈+)N *,求使1k W >的所有k 的值,并说明理由.(湖南卷第20题)略解:(I )22311(1cos )4sin 44,22a a a ππ=++=+=22422(1cos )4sin 24,a a a ππ=++==一般地, 当21()n k k N *-∈=时,22212121(21)(21)[1cos]4sin 4,22k k k k k a a a ππ+----=++=+即2121 4.k k a a +--= 所以数列{}21k a -是首项为0、公差为4的等差数列,因此214(1).k a k -=-当2()n k k N *∈=时,22222222(1cos )4sin 2,22k k k k k a a a ππ+=++=所以数列{}2k a 是首项为2、公比为2的等比数列,因此22.kk a =故数列{}n a 的通项公式为22(1),21(),2,2().n n n n k k N a n k k N **⎧-=-∈⎪=⎨⎪=∈⎩(II )由(I )知,1321k k S a a a -=+++L =044(1)2(1),k k k +++-=-L 242k kT a a a =+++L 2122222,k k +++=-L 12(1).22k k k k S k k W T --==+ 于是,10,W =21,W =33,2W =43,2W =55,4W =61516W =. 下面证明:当6k ≥时, 1.k W <事实上, 当6k ≥时,11(1)(1)(3)0,222k k k k kk k k k k k W W +-+---=-=<即1.k k W W +<又61,W <所以当6k ≥时,1.k W <故满足1k W >的所有k 的值为3,4,5.数列知识点回顾第一部分:数列的基本概念 1.理解数列定义的四个要点⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列.2.数列的通项公式一个数列{ a n }的第n 项a n 与项数n 之间的函数关系,如果用一个公式a n =)(n f 来表示,就把这个公式叫做数列{ a n }的通项公式。

相关文档
最新文档