栈和队列的应用实验报告
栈和队列的实验报告
栈和队列的实验报告栈和队列的实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在算法设计和程序开发中起着重要的作用。
本实验旨在通过实际操作和观察,深入理解栈和队列的概念、特点以及它们在实际应用中的作用。
一、栈的实验1.1 栈的定义和特点栈是一种具有特殊操作约束的线性数据结构,它的特点是“先进后出”(Last-In-First-Out,LIFO)。
栈的操作包括入栈(push)和出栈(pop),入栈操作将元素放入栈顶,出栈操作将栈顶元素移除。
1.2 实验步骤在本次实验中,我们使用编程语言实现了一个栈的数据结构,并进行了以下实验步骤:1.2.1 创建一个空栈1.2.2 向栈中依次压入若干元素1.2.3 查看栈顶元素1.2.4 弹出栈顶元素1.2.5 再次查看栈顶元素1.3 实验结果通过实验,我们观察到栈的特点:最后入栈的元素最先出栈。
在实验步骤1.2.2中,我们依次压入了元素A、B和C,栈顶元素为C。
在实验步骤1.2.4中,我们弹出了栈顶元素C,此时栈顶元素变为B。
二、队列的实验2.1 队列的定义和特点队列是一种具有特殊操作约束的线性数据结构,它的特点是“先进先出”(First-In-First-Out,FIFO)。
队列的操作包括入队(enqueue)和出队(dequeue),入队操作将元素放入队尾,出队操作将队头元素移除。
2.2 实验步骤在本次实验中,我们使用编程语言实现了一个队列的数据结构,并进行了以下实验步骤:2.2.1 创建一个空队列2.2.2 向队列中依次插入若干元素2.2.3 查看队头元素2.2.4 删除队头元素2.2.5 再次查看队头元素2.3 实验结果通过实验,我们观察到队列的特点:最先入队的元素最先出队。
在实验步骤2.2.2中,我们依次插入了元素X、Y和Z,队头元素为X。
在实验步骤2.2.4中,我们删除了队头元素X,此时队头元素变为Y。
三、栈和队列的应用栈和队列在实际应用中有广泛的应用场景,下面简要介绍一些常见的应用:3.1 栈的应用3.1.1 表达式求值:通过栈可以实现对表达式的求值,如中缀表达式转换为后缀表达式,并计算结果。
堆栈模拟队列实验报告
一、实验目的通过本次实验,加深对堆栈和队列数据结构的理解,掌握堆栈的基本操作,并学会利用堆栈模拟队列的功能。
通过实验,培养学生的编程能力和问题解决能力。
二、实验内容1. 实现一个顺序堆栈,包括初始化、判断是否为空、入栈、出栈等基本操作。
2. 利用两个顺序堆栈实现队列的功能,包括入队、出队、判断队列是否为空等操作。
3. 通过实例验证模拟队列的正确性。
三、实验原理队列是一种先进先出(FIFO)的数据结构,而堆栈是一种后进先出(LIFO)的数据结构。
本实验通过两个堆栈来实现队列的功能。
当元素入队时,将其压入第一个堆栈(称为栈A);当元素出队时,先从栈A中依次弹出元素并压入第二个堆栈(称为栈B),直到弹出栈A中的第一个元素,即为队首元素。
四、实验步骤1. 定义堆栈的数据结构,包括堆栈的最大容量、当前元素个数、堆栈元素数组等。
2. 实现堆栈的基本操作,包括初始化、判断是否为空、入栈、出栈等。
3. 实现模拟队列的功能,包括入队、出队、判断队列是否为空等。
4. 编写主函数,创建两个堆栈,通过实例验证模拟队列的正确性。
五、实验代码```c#include <stdio.h>#include <stdlib.h>#define MAX_SIZE 100typedef struct {int data[MAX_SIZE];int top;} SeqStack;// 初始化堆栈void InitStack(SeqStack S) {S->top = -1;}// 判断堆栈是否为空int IsEmpty(SeqStack S) {return S->top == -1;}// 入栈int Push(SeqStack S, int x) {if (S->top == MAX_SIZE - 1) { return 0; // 堆栈已满}S->data[++S->top] = x;return 1;}// 出栈int Pop(SeqStack S, int x) {if (IsEmpty(S)) {return 0; // 堆栈为空}x = S->data[S->top--];return 1;}// 队列的入队操作void EnQueue(SeqStack S, SeqStack Q, int x) { Push(S, x);}// 队列的出队操作int DeQueue(SeqStack S, SeqStack Q, int x) { if (IsEmpty(Q)) {while (!IsEmpty(S)) {int temp;Pop(S, &temp);Push(Q, temp);}}if (IsEmpty(Q)) {return 0; // 队列为空}Pop(Q, x);return 1;}int main() {SeqStack S, Q;int x;InitStack(&S);InitStack(&Q);// 测试入队操作EnQueue(&S, &Q, 1);EnQueue(&S, &Q, 2);EnQueue(&S, &Q, 3);// 测试出队操作while (DeQueue(&S, &Q, &x)) {printf("%d ", x);}return 0;}```六、实验结果与分析1. 通过实例验证,模拟队列的入队和出队操作均正确实现了队列的先进先出特性。
数据结构栈和队列实验报告
数据结构栈和队列实验报告实验报告:数据结构栈和队列一、实验目的1.了解栈和队列的基本概念和特点;2.掌握栈和队列的基本操作;3.掌握使用栈和队列解决实际问题的方法。
二、实验内容1.栈的基本操作实现;2.队列的基本操作实现;3.使用栈和队列解决实际问题。
三、实验原理1.栈的定义和特点:栈是一种具有后进先出(LIFO)特性的线性数据结构,不同于线性表,栈只能在表尾进行插入和删除操作,称为入栈和出栈操作。
2.队列的定义和特点:队列是一种具有先进先出(FIFO)特性的线性数据结构,不同于线性表,队列在表头删除元素,在表尾插入元素,称为出队和入队操作。
3.栈的基本操作:a.初始化:建立一个空栈;b.入栈:将元素插入栈的表尾;c.出栈:删除栈表尾的元素,并返回该元素;d.取栈顶元素:返回栈表尾的元素,不删除。
4.队列的基本操作:a.初始化:建立一个空队列;b.入队:将元素插入队列的表尾;c.出队:删除队列表头的元素,并返回该元素;d.取队头元素:返回队列表头的元素,不删除。
四、实验步骤1.栈的实现:a.使用数组定义栈,设置栈的大小和栈顶指针;b.实现栈的初始化、入栈、出栈和取栈顶元素等操作。
2.队列的实现:a.使用数组定义队列,设置队列的大小、队头和队尾指针;b.实现队列的初始化、入队、出队和取队头元素等操作。
3.使用栈解决实际问题:a.以括号匹配问题为例,判断一个表达式中的括号是否匹配;b.使用栈来实现括号匹配,遍历表达式中的每个字符,遇到左括号入栈,遇到右括号时将栈顶元素出栈,并判断左右括号是否匹配。
4.使用队列解决实际问题:a.以模拟银行排队问题为例,实现一个简单的银行排队系统;b.使用队列来模拟银行排队过程,顾客到达银行时入队,处理完业务后出队,每个顾客的业务处理时间可以随机确定。
五、实验结果与分析1.栈和队列的基本操作实现:a.栈和队列的初始化、入栈/队、出栈/队以及取栈顶/队头元素等操作均能正常运行;b.栈和队列的时间复杂度均为O(1),操作效率很高。
栈和队列的应用实验报告
栈和队列的应用(10003809389j)一实验目的使学生掌握栈的特点及其逻辑结构和物理结构的实现;使学生掌握队列的特点及其逻辑结构和物理结构的实现;使学生掌握链栈和顺序栈结构的插入、删除等基本运算的实现;使学生掌握链队列和顺序队列结构的插入、删除等基本运算的实现;使学生熟练运用栈结构解决常见实际应用问题;使学生熟练运用队列结构解决常见实际应用问题;二实验环境所需硬件环境为微机;所需软件环境为 Microsoft Visual C++ 6.0 ;三实验内容链栈:#include "LinkList0.c"/*详见实验1*/LinkList InitStack_Sl() {LinkList S;S=InitList_Sl();return S; }Status DestroyStack_Sl(LinkList S) {if(!S) return ERROR;/*链栈不存在*/DestroyList_Sl(S);return OK; }Status StackEmpty_Sl(LinkList S) {if(!S) return ERROR;/*链栈不存在*/if(S->next==NULL)return TRUE;elsereturn FALSE; }/*若链栈S存在,则当S非空时返回栈顶元素e */Status StackGetTop_Sl(LinkList S) {if(!S) return ERROR;/*链栈不存在*/if(S->next==NULL) return FALSE;/*栈空*/elsereturn (S->next->elem); }/*若链栈S存在,则当S非空时,删除栈顶元素并用e保存删除的栈顶元素*/ Status StackPop_Sl(LinkList S,ElemType *e) {if(!S) return ERROR;/*链栈不存在*/ListDelete_Sl(S,e);return OK; }/*若链栈S存在时,插入元素e为新的栈顶元素*/Status StackPush_Sl(LinkList S,ElemType e) {if(!S) return ERROR;/*链栈不存在*/ListInsert_Sl(S,e);return OK; }/*若链栈S存在,返回链栈中元素个数*/int StackLength_Sl(LinkList S) {if(!S) return ERROR;/*链栈不存在*/return ListLength_Sl(S); }/*若链栈S存在,遍历链栈S,对每个元素执行操作void(*operate)(ElemType*)*/Status StackTraverse_Sl(LinkList S,void(*operate)(ElemType*)) { if(!S) return ERROR;/*链栈不存在*/return(ListTraverse_Sl(S,operate)); }链队列#include "LinkList0.c"/*详见实验1*/typedef struct Qode{ElemType elem;struct Qode *next;} Qode,*Queue;typedef struct {Queue front;Queue rear;}Linkqueue, *LinkQueue;/*InitQueue_Sq()构造一个空的队列*/LinkQueue InitQueue_Sl() {LinkQueue Q;Q->front=Q->rear=(Queue)malloc(sizeof(Qode));if(!Q->front) return NULL;/*存储分配失败*/Q->front->next=NULL;return Q; }/*若队列Q存在,销毁链队列Q*/Status DestroyQueue_Sl(LinkQueue Q) {Queue p;if(!Q) return ERROR;/*链队列不存在*/do{ /*释放单向线性链表空间*/p=Q->front;Q->front=Q->front->next;free(p);}while(Q->front);return OK; }/*若链队列Q存在,则当Q为空时返回TRUE,否则返回FALSE*/Status QueueEmpty_Sl(LinkQueue Q) {if(!Q) return ERROR;/*链队列不存在*/if(Q->front==Q->rear)return TRUE;elsereturn FALSE; }/*若链队列Q存在,则当Q非空时,返回队头元素e */Status QueueGetTop_Sl(LinkQueue Q,ElemType e) {if(!Q) return ERROR;/*链队列不存在*/if(QueueEmpty_Sl(Q)==TRUE) return FALSE;/*队列空*/else return (Q->front->next->elem); }/*若链队列Q存在,则当Q非空时,删除队头元素并用e保存删除的队头元素*/ Status DeQueue_Sl(LinkQueue Q,ElemType *e) {Queue p;if(!Q) return ERROR;/*顺序队列不存在*/if(QueueEmpty_Sl(Q)==TRUE) return FALSE;/*队列空*/else{p=Q->front->next;*e=p->elem;Q->front->next=p->next;if(Q->front->next==NULL) Q->rear=Q->front;free(p);return OK; } }/*若链队列Q存在时,插入元素e为新的队头元素*/ Status EnQueue_Sl(LinkQueue Q,ElemType e) {Queue p;if(!Q) return ERROR;/*单向线性链表结点L不存在*/ p=(Queue)malloc(sizeof(Qode));if(!p) exit(OVERFLOW); /*存储空间增加失败*/p->next=NULL;p->elem=e;Q->rear->next=p;Q->rear=p;return OK; }/*若链队列Q存在,返回链队列元素个数*/int QueueLength_Sl(LinkQueue Q) {int i=0;Queue p;if(!Q) return ERROR;/*链队列不存在*/p=Q->front;while(p!=Q->rear){ i++;p=p->next; }return (i); }/*若链队列Q存在,遍历链队列Q,对每个元素执行操作void(*operate)(ElemType*)*/ Status QueueTraverse_Sl(LinkQueue Q,void(*operate)(ElemType*)) {Queue p;if(!Q) return ERROR;/*链队列不存在*/p=Q->front->next;while(p!=NULL){ operate(&p->elem);p=p->next; }return(OK); }表达式求解#include "LinkStack.c"//用链栈实现中缀表达式求解。
数据结构栈与队列的实验报告
数据结构栈与队列的实验报告实验概述本次实验的目的是通过对栈和队列进行实现和应用,加深对数据结构中的栈和队列的理解和巩固操作技能。
栈和队列作为常见的数据结构在程序开发中得到了广泛的应用,本次实验通过 C++ 语言编写程序,实现了栈和队列的基本操作,并对两种数据结构进行了应用。
实验内容1. 栈的实现栈是一种先进后出的数据结构,具有后进先出的特点。
通过使用数组来实现栈,实现入栈、出栈、输出栈顶元素和清空栈等操作。
对于入栈操作,将元素插入到数组的栈顶位置;对于出栈操作,先将数组的栈顶元素弹出,再使其下移,即将后面的元素全部向上移动一个位置;输出栈顶元素则直接输出数组的栈顶元素;清空栈则将栈中所有元素全部清除即可。
3. 栈和队列的应用利用栈和队列实现八皇后问题的求解。
八皇后问题,是指在8×8 的国际象棋盘上放置八个皇后,使得任意两个皇后都不能在同一行、同一列或者同一对角线上。
通过使用栈来保存当前八皇后的位置,逐个放置皇后并检查是否有冲突。
如果当前位置符合要求,则将位置保存到栈中,并继续查询下一个皇后的位置。
通过使用队列来进行八数码问题的求解。
八数码问题,是指在3×3 的矩阵中给出 1 至 8 的数字和一个空格,通过移动数字,最终将其变为 1 2 3 4 5 6 7 8 空的排列。
通过使用队列,从初始状态出发,枚举每种情况,利用队列进行广度遍历,逐一枚举状态转移,找到对应的状态后进行更新,周而复始直到找到正确的答案。
实验结果通过使用 C++ 语言编写程序,实现了栈和队列的基本操作,并对八皇后和八数码问题进行了求解。
程序执行结果如下:栈和队列实现的基本操作都能够正常进行,并且运行效率较高。
栈和队列的实现方便了程序编写并加速了程序运行。
2. 八皇后问题的求解通过使用栈来求解八皇后问题,可以得到一组成立的解集。
图中展示了求解某一种八皇后问题的过程。
从左到右是棋盘的列数,从上到下是棋盘的行数,通过栈的操作,求出了在棋盘上符合不同要求(不在同一行、同一列和斜线上)的八皇后位置。
数据结构栈和队列实验报告
数据结构栈和队列实验报告数据结构栈和队列实验报告1.实验目的本实验旨在通过设计栈和队列的数据结构,加深对栈和队列的理解,并通过实际操作进一步掌握它们的基本操作及应用。
2.实验内容2.1 栈的实现在本实验中,我们将使用数组和链表两种方式实现栈。
我们将分别实现栈的初始化、入栈、出栈、判断栈是否为空以及获取栈顶元素等基本操作。
通过对这些操作的实现,我们可将其用于解决实际问题中。
2.2 队列的实现同样地,我们将使用数组和链表两种方式实现队列。
我们将实现队列的初始化、入队、出队、判断队列是否为空以及获取队头元素等基本操作。
通过对这些操作的实现,我们可进一步了解队列的特性,并掌握队列在实际问题中的应用。
3.实验步骤3.1 栈的实现步骤3.1.1 数组实现栈(详细介绍数组实现栈的具体步骤)3.1.2 链表实现栈(详细介绍链表实现栈的具体步骤)3.2 队列的实现步骤3.2.1 数组实现队列(详细介绍数组实现队列的具体步骤)3.2.2 链表实现队列(详细介绍链表实现队列的具体步骤)4.实验结果与分析4.1 栈实验结果分析(分析使用数组和链表实现栈的优缺点,以及实际应用场景)4.2 队列实验结果分析(分析使用数组和链表实现队列的优缺点,以及实际应用场景)5.实验总结通过本次实验,我们深入了解了栈和队列这两种基本的数据结构,并利用它们解决了一些实际问题。
我们通过对数组和链表两种方式的实现,进一步加深了对栈和队列的理解。
通过实验的操作过程,我们也学会了如何设计和实现基本的数据结构,这对我们在日后的学习和工作中都具有重要意义。
6.附件6.1 源代码(附上栈和队列的实现代码)6.2 实验报告相关数据(附上实验过程中所产生的数据)7.法律名词及注释7.1 栈栈指的是一种存储数据的线性数据结构,具有后进先出(LIFO)的特点。
栈的操作主要包括入栈和出栈。
7.2 队列队列指的是一种存储数据的线性数据结构,具有先进先出(FIFO)的特点。
数据结构实验三栈和队列的应用
数据结构实验三栈和队列的应用数据结构实验三:栈和队列的应用在计算机科学领域中,数据结构是组织和存储数据的重要方式,而栈和队列作为两种常见的数据结构,具有广泛的应用场景。
本次实验旨在深入探讨栈和队列在实际问题中的应用,加深对它们特性和操作的理解。
一、栈的应用栈是一种“后进先出”(Last In First Out,LIFO)的数据结构。
这意味着最后进入栈的元素将首先被取出。
1、表达式求值在算术表达式的求值过程中,栈发挥着重要作用。
例如,对于表达式“2 + 3 4”,我们可以通过将操作数压入栈,操作符按照优先级进行处理,实现表达式的正确求值。
当遇到数字时,将其压入操作数栈;遇到操作符时,从操作数栈中弹出相应数量的操作数进行计算,将结果压回操作数栈。
最终,操作数栈中的唯一值就是表达式的结果。
2、括号匹配在程序代码中,检查括号是否匹配是常见的任务。
可以使用栈来实现。
遍历输入的字符串,当遇到左括号时,将其压入栈;当遇到右括号时,弹出栈顶元素,如果弹出的左括号与当前右括号类型匹配,则继续,否则表示括号不匹配。
3、函数调用和递归在程序执行过程中,函数的调用和递归都依赖于栈。
当调用一个函数时,当前的执行环境(包括局部变量、返回地址等)被压入栈中。
当函数返回时,从栈中弹出之前保存的环境,继续之前的执行。
递归函数的执行也是通过栈来实现的,每次递归调用都会在栈中保存当前的状态,直到递归结束,依次从栈中恢复状态。
二、队列的应用队列是一种“先进先出”(First In First Out,FIFO)的数据结构。
1、排队系统在现实生活中的各种排队场景,如银行排队、餐厅叫号等,可以用队列来模拟。
新到达的顾客加入队列尾部,服务完成的顾客从队列头部离开。
通过这种方式,保证了先来的顾客先得到服务,体现了公平性。
2、广度优先搜索在图的遍历算法中,广度优先搜索(BreadthFirst Search,BFS)常使用队列。
从起始节点开始,将其放入队列。
数据结构实验-线性表及其实现栈和队列及其应用
数据结构实验报告一实验名称:线性表及其实现栈和队列及其应用1 实验目的及实验要求1.线性表目的要求:(1)熟悉线性表的基本运算在两种存储结构(顺序结构和链式结构)上的实现,以线性表的各种操作(建立、插入、删除等)的实现为实验重点;(2)通过本次实验帮助学生加深对顺序表、链表的理解,并加以应用;(3)掌握循环链表和双链表的定义和构造方法2.栈和队列目的要求:(1)掌握栈和队列这两种特殊的线性表,熟悉它们的特性,在实际问题背景下灵活运用它们;(2)本实验训练的要点是“栈”的观点及其典型用法;(3)掌握问题求解的状态表示及其递归算法,以及由递归程序到非递归程序的转化方法。
2实验内容及实验步骤(附运行结果截屏)1.线性表实验内容:(1)编程实现线性表两种存储结构(顺序存储、链式存储)中的基本操作的实现(线性表的创建、插入、删除和查找等),并设计一个菜单调用线性表的基本操作。
(2)建立一个按元素递增有序的单链表L,并编写程序实现:a)将x插入其中后仍保持L的有序性;b)将数据值介于min和max之间的结点删除,并保持L的有序性;c)(选做)将单链表L逆置并输出;(3)编程实现将两个按元素递增有序的单链表合并为一个新的按元素递增的单链表。
注:(1)为必做题,(2)~(3)选做。
2.栈和队列实验内容:(1)编程实现栈在两种存储结构中的基本操作(栈的初始化、判栈空、入栈、出栈等);(2)应用栈的基本操作,实现数制转换(任意进制);(3)编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列);(4)利用栈实现任一个表达式中的语法检查(括号的匹配)。
(5)利用栈实现表达式的求值。
注:(1)~(2)必做,(3)~(5)选做。
实验步骤:先编写线性表和栈和队列的类模板,实现各自的基础结构,之后按照要求编写适当的函数方法(公共接口),最后完成封装。
编写主函数直接调用即可。
核心代码://LinearList.h 顺序表//类的声明1.template<class T>2.class LinearList3.{4.public:5.LinearList(int sz = default_size);6.~LinearList();7.int Length()const; //length of the linear8.int Search(T x)const; //search x in the linear and return its order number9.T GetData(int i)const; //get i th order's data10.bool SetData(int i,T x); //change i th order's data to x11.bool DeleteData(int i);12.bool InsertData(int i,T x);13.void output(bool a,int b,int c); //print the linear14.void ReSize(int new_size);15.16.private:17.T *data;18.int max_size,last_data;19.};//构造函数1.template<class T>2.LinearList<T>::LinearList(int sz)3.{4.if(sz>0)5.{6.max_size = sz;st_data=-1;8.data=new T[max_size];9.if(data == NULL)10.{11.cerr<<"Memory creat error!"<<endl;12.exit(1);13.}14.}15.else16.{17.cerr<<"Size error!"<<endl;18.exit(1);19.}20.}//Qlist.h 链式表//模板类的声明1.template<class T>2.struct LinkNode3.{4.T data;5.LinkNode<T> *link;6.LinkNode(LinkNode<T> *ptr = NULL)7.{8.link = ptr;9.}10.LinkNode(const T item,LinkNode<T> *ptr = NULL)11.{12.data = item;13.link = ptr;14.}15.};16.17.template<class T>18.class Qlist: public LinkNode<T>19.{20.public:21.Qlist();22.Qlist(const T x);23.Qlist(Qlist<T>&L);24.~Qlist();25.void MakeEmpty();26.int Length()const; //length of the linear27.int Search(T x)const; //search x in the linear and return its order number28.LinkNode<T> *Locate(int i);29.T GetData(int i); //get i th order's data30.bool SetData(int i,T x); //change i th order's data to x31.bool DeleteData(int i);32.bool InsertData(int i,T x);33.void output(bool a,int b,int c); //print the linear34.35.protected:36.LinkNode<T> *first;37.};//构造函数1.template<class T>2.Qlist<T>::Qlist(Qlist<T>&L)3.{4.T value;5.LinkNode<T>*src = L.getHead();6.LinkNode<T>*des = first = new LinkNode<T>;7.while(src->link != NULL)8.{9.value = src->link->data;10.des->link = new LinkNode<T>(value);11.des = des->link;12.src = src->link;13.}14.des->link = NULL;15.}截屏:3 实验体会(实验遇到的问题及解决方法)刚开始的时候本想先写线性表的类模板然后分别进行继承写顺序表和链式表甚至是以后的栈和队列。
实验报告——栈和队列的应用
实验报告——栈和队列的应用第一篇:实验报告——栈和队列的应用实验5 栈和队列的应用目的和要求:(1)熟练栈和队列的基本操作;(2)能够利用栈与队列进行简单的应用。
一、题目题目1.利用顺序栈和队列,实现一个栈和一个队列,并利用其判断一个字符串是否是回文。
所谓回文,是指从前向后顺读和从后向前倒读都一样的字符串。
例如,a+b&b+a等等。
题目2.假设在周末舞会上,男士们和女士们进入舞厅时,各自排成一队。
跳舞开始时,依次从男队和女队的队头上各出一人配成舞伴。
若两队初始人数不相同,则较长的那一队中未配对者等待下一轮舞曲。
现要求写一算法模拟上述舞伴配对问题,并实现。
题目3.打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
每台打印机具有一个队列(缓冲池),用户提交打印请求被写入到队列尾,当打印机空闲时,系统读取队列中第一个请求,打印并删除之。
请利用队列的先进先出特性,完成打印机网络共享的先来先服务功能。
题目4.假设以数组Q[m]存放循环队列中的元素, 同时设置一个标志tag,以tag == 0和tag == 1来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为“空”还是“满”。
试编写与此结构相应的插入(enqueue)和删除(dlqueue)算法。
题目5.利用循环链队列求解约瑟夫环问题。
请大家从本组未讨论过的五道题中选择一道,参照清华邓俊辉老师MOOC视频及课本相关知识,编写相应程序。
选择题目3:打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
二、程序清单//Ch3.cpp #include #include #include“ch3.h” template void LinkedQueue::makeEmpty()//makeEmpty//函数的实现{ LinkNode*p;while(front!=NULL)//逐个删除队列中的结点{p=front;front=front->link;delete p;} };template bool LinkedQueue::put_in(T&x){//提交命令函数if(front==NULL){//判断是否为空front=rear=new LinkNode;//如果为空,新结点为对头也为对尾front->data=rear->data=x;if(front==NULL)//分配结点失败return false;} else{rear->link=new LinkNode;//如不为空,在链尾加新的结点rear->link->data=x;if(rear->link==NULL)return false;rear=rear->link;} return true;};template bool LinkedQueue::carry_out()//执行命令函数 { if(IsEmpty()==true)//判断是否为空{return false;} cout<data<LinkNode*p=front;front=front->link;//删除以执行的命令,即对头修改delete p;//释放原结点return true;};void main()//主函数 { LinkedQueue q;//定义类对象char flag='Y';//标志是否输入了命令const int max=30;//一次获取输入命令的最大个数while(flag=='Y')//循环{ int i=0;char str[max];//定义存储屏幕输入的命令的数组gets(str);//获取屏幕输入的命令while(str[i]!=''){q.put_in(str[i]);//调用提交命令函数,将每个命令存入队列中i++;}for(int j=0;j<=i;j++){if(q.IsEmpty()==true)//判断是否为空,为空则说明没有可执行的命令{cout<cin>>flag;continue;//为空跳出for循环为下次输入命令做好准备}q.carry_out();//调用执行命令的函数,将命令打印并删除}三、程序调试过程中所出现的错误无。
栈和队列的应用实验报告
栈和队列的应用实验报告栈和队列的应用实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验报告旨在探讨栈和队列的基本概念、特性以及它们在实际应用中的具体使用。
一、栈的基本概念和特性栈是一种特殊的数据结构,它遵循“先进后出”的原则。
栈有两个基本操作:压栈(push)和弹栈(pop)。
压栈将元素添加到栈的顶部,弹栈则将栈顶元素移除。
栈还具有一个重要的特性,即它的访问方式是受限的,只能访问栈顶元素。
在实际应用中,栈可以用于实现递归算法、表达式求值、括号匹配等。
例如,在递归算法中,当函数调用自身时,需要将当前状态保存到栈中,以便在递归结束后能够恢复到正确的状态。
另外,栈还可以用于实现浏览器的“后退”功能,每次浏览新页面时,将当前页面的URL压入栈中,当用户点击“后退”按钮时,再从栈中弹出最近访问的URL。
二、队列的基本概念和特性队列是另一种常见的数据结构,它遵循“先进先出”的原则。
队列有两个基本操作:入队(enqueue)和出队(dequeue)。
入队将元素添加到队列的尾部,出队则将队列头部的元素移除。
与栈不同的是,队列可以访问头部和尾部的元素。
在实际应用中,队列经常用于任务调度、消息传递等场景。
例如,在操作系统中,任务调度器使用队列来管理待执行的任务,每当一个任务执行完毕后,从队列中取出下一个任务进行执行。
另外,消息队列也是一种常见的应用,它用于在分布式系统中传递消息,保证消息的顺序性和可靠性。
三、栈和队列在实际应用中的具体使用1. 栈的应用栈在计算机科学中有广泛的应用。
其中一个典型的应用是表达式求值。
当计算机遇到一个复杂的表达式时,需要将其转化为逆波兰表达式,然后使用栈来进行求值。
栈的特性使得它非常适合处理这种情况,可以方便地保存运算符和操作数的顺序,并按照正确的顺序进行计算。
另一个常见的应用是括号匹配。
在编程语言中,括号是一种常见的语法结构,需要保证括号的匹配性。
数据结构_实验三_栈和队列及其应用
数据结构_实验三_栈和队列及其应用实验编号:3 四川师大《数据结构》实验报告 2016年10月29日实验三栈和队列及其应用_一(实验目的及要求(1) 掌握栈和队列这两种特殊的线性表,熟悉它们的特性,在实际问题背景下灵活运用它们;(2) 本实验训练的要点是“栈”的观点及其典型用法;(3) 掌握问题求解的状态表示及其递归算法,以及由递归程序到非递归程序的转化方法。
二(实验内容(1) 编程实现栈在两种存储结构中的基本操作(栈的初始化、判栈空、入栈、出栈等);(2) 应用栈的基本操作,实现数制转换(任意进制);(3) 编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列);(4) 利用栈实现任一个表达式中的语法检查(括号的匹配)。
(5) 利用栈实现表达式的求值。
注:(1),(3)必做,(4),(5)选做。
三(主要仪器设备及软件(1) PC机(2) Dev C++ ,Visual C++, VS2010等四(实验主要流程、基本操作或核心代码、算法片段(该部分如不够填写,请另加附页)(1) 编程实现栈在两种存储结构中的基本操作(栈的初始化、判栈空、入栈、出栈等);A.顺序储存:, 代码部分://Main.cpp:#include"SStack.h"int main(){SqStack S;SElemType e;int elect=1;InitStack(S);cout << "已经创建一个存放字符型的栈" << endl;while (elect){Muse();cin >> elect;cout << endl;switch (elect){case 1:cout << "input data:";cin >> e;Push(S, e);break;case 2:if(Pop(S, e)){cout << e <<" is pop"<< endl; } else{cout<<"blank"<<endl;} break;case 3:if (StackEmpty(S)){cout << "栈空 " << endl;}else{cout << "栈未空 " << endl;}break;case 4:GetTop(S, e);cout << "e is " << e << endl;break;case 5:StackLength(S);break;case 0:break;}}DestroyStack(S);return OK;}//SStack.cpp:#include"SStack.h"//输出菜单void Muse(){cout << "请选择功能:" << endl;cout << " 1.入栈" << endl;cout << " 2.出栈" << endl;cout << " 3.判栈空" << endl;cout << " 4.返回栈顶部数据" << endl; cout << " 5.栈长" << endl;cout << " 0.退出系统" << endl;cout << "你的选择是:" ;}//创建栈Status InitStack(SqStack &S) {S.base = (SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType)); if (!S.base) exit(ERROR);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//得到顶部数据Status GetTop(SqStack S, SElemType &e) {if (S.base == S.top) return ERROR;e = *(S.top - 1);return OK;}//入栈Status Push(SqStack &S, SElemType &e) {if (S.top - S.base >= STACK_INIT_SIZE){S.base = (SElemType *)realloc(S.base, (STACK_INIT_SIZE + STACKINCREMENT) * sizeof(SElemType));if (!S.base) exit(ERROR);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//出栈Status Pop(SqStack &S, SElemType &e) { if (S.base == S.top){return ERROR;}e = *--S.top;cout<<"pop succeed"<<endl;return OK;}//判栈空Status StackEmpty(SqStack S) {if (S.top == S.base){return ERROR;}return OK;}//销毁栈Status DestroyStack(SqStack &S){free(S.base);S.top=NULL;S.stacksize = 0;cout << "栈已销毁" << endl;return OK;}int StackLength(SqStack S) {cout << "StackLength is "<<S.top-S.base << endl;return OK;}//SStack.h:#include<iostream> #include<stdlib.h> using namespace std;const int STACK_INIT_SIZE = 100;const int STACKINCREMENT = 10;const int ERROR = 0; const int OK = 1;typedef char SElemType; typedef int Status; typedef struct {SElemType *base;SElemType *top;int stacksize;}SqStack;Status InitStack(SqStack &S);//创建顺序存储的栈 StatusGetTop(SqStack S, SElemType &e);//得到栈顶数据 Status Push(SqStack &S, SElemType &e);//入栈 Status Pop(SqStack &S, SElemType &e);//出栈 void Muse();//输出菜单界面Status StackEmpty(SqStack S);//判断栈是否为空 StatusDestroyStack(SqStack &S);//销毁栈 int StackLength(SqStack S);//计算栈的长度, 运行结果:B. 链式储存:, 代码部分://Main.cpp#include"Lstack.h" int main(){Lq_Stack L;if(InintStack (L)){cout<<"build stack succeed"<<endl;}else exit (ERROR);int e=0;Menu(L,e);DestroyStack(L);return 0;}//Lstack.cpp#include"Lstack.h" Status InintStack(Lq_Stack &L){ //创建栈L=(LqStack *)malloc(sizeof(LqStack));if(!L) exit(ERROR);L->data=0;L->next=NULL;return OK;}Status push (Lq_Stack &L,SElemType e){//入栈LqStack *p;p=(LqStack *)malloc(sizeof(LqStack));if(!p) exit(ERROR);p->data=e;L->data++;p->next=L->next;L->next=p;return OK;}Status pop (Lq_Stack &L,SElemType &e){ //出栈LqStack *p;if(L->next==NULL) return ERROR;p=L->next;e=p->data;L->next=p->next;L->data--;free(p);return OK;}Status GetTop(Lq_Stack L, SElemType &e){ //得到栈顶数据if(L->next==NULL) return ERROR;e=L->next->data;return OK;}Status StackEmpty(Lq_Stack L){//判断栈是否为空if(L->next==NULL){return ERROR;}else return OK;}int StackLength(Lq_Stack L){//计算栈的长度return L->data;}Status DestroyStack(Lq_Stack &L){//销毁栈LqStack *p;while(!L){L=p;L=L->next;free(p);}return OK;}void Menu(Lq_Stack &L,SElemType e){//输出菜单选择执行的功能int select=1;while(select){cout<<"————————————"<<endl; cout<<"请选择功能"<<endl;cout<<"——————1.入栈"<<endl;cout<<"——————2.出栈"<<endl;cout<<"——————3.得到顶部数据"<<endl;cout<<"——————4.判断栈是否为空"<<endl; cout<<"——————5.输出栈的长度"<<endl; cout<<"——————0.退出程序"<<endl;cout<<"你的选择是:";cin>>select;switch (select){case 0:break;case 1:cout<<"push data:";cin>>e;if(push(L,e)){cout<<"push succeed"<<endl;}else cout<<"push failed"<<endl;break;case 2:if(pop(L,e)){cout<<"data "<<e<<" is pop"<<endl;}else cout<<"pop failed"<<endl;break;case 3:if(GetTop(L,e)){cout<<"head data "<<e<<" is pop"<<endl;} else cout<<"Get failed"<<endl;break;case 4:if(StackEmpty(L)){cout<<"stack is not NULL"<<endl;}else cout<<"stack is NULL"<<endl;break;case 5:cout<<"this stack length is "<<StackLength(L)<<endl;break;}}}//Lstack.h#include<iostream>#include<stdlib.h>using namespace std; const int OK=1;const int ERROR=0;typedef int SElemType; typedef int Status; typedef struct LqStack{ SElemType data;struct LqStack *next; }LqStack,*Lq_Stack;Status InintStack (Lq_Stack &L);//创建栈Status push (Lq_Stack &L,SElemType e);//入栈 Status pop (Lq_Stack&L,SElemType &e);//出栈 Status GetTop(Lq_Stack L, SElemType &e);//得到栈顶数据 Status StackEmpty(Lq_Stack L);//判断栈是否为空int StackLength(Lq_Stack L);//计算栈的长度Status DestroyStack(Lq_Stack &L);//销毁栈void Menu(Lq_Stack &L,SElemType e);//输出菜单选择执行的功能, 运行结果:(2) 应用栈的基本操作,实现数制转换(任意进制);; , 代码部分: //Main.cpp#include"SStack.h"int main(){int number;cout<<"要将数值转换为多少进制 ";cin>>number;conversion(number);return 0;}SStack.cpp#include"SStack.h"Status InitStack(SStack &S){//创建栈S.dase=(ElemType *)malloc(STACK_INIT_SIZE * sizeof(ElemType)); if (!S.dase) exit(ERROR);S.top=S.dase;S.stacksize=STACK_INIT_SIZE;return OK;}Status push(SStack &S,ElemType e){//入栈if(S.top-S.dase >= S.stacksize){//栈满追加空间S.dase=(ElemType *)realloc(S.dase,(STACK_INIT_SIZE+STACKINCREMENT) * sizeof(ElemType));if(!S.dase) exit(ERROR);S.top=S.dase+STACK_INIT_SIZE;S.stacksize+=STACKINCREMENT;}*S.top++=e;return OK;}Status pop(SStack &S,ElemType &e){//出栈if(S.top== S.dase) return ERROR; e=*--S.top;return OK;}Status StackEmpty(SStack &S){//判断栈是否为空if(S.dase==S.top) return ERROR; return OK;}void conversion(int number){//转换为e进制并输出SStack S;int N,e;if(InitStack(S)){cout<<"栈创建成功"<<endl;}cout<<"输入待转换的数:";cin>>N;while(N){push(S,N%number);N=N/number;}while(StackEmpty(S)){pop(S,e);cout<<e;}cout<<endl;}//SStack.h#ifndef SSTACK_H#define SSTACK_H#include<iostream> #include<stdlib.h> using namespace std;const int STACK_INIT_SIZE=100;const int STACKINCREMENT=10;const int OK=1;const int ERROR=0;typedef int Status; typedef int ElemType; typedef struct {ElemType *dase;ElemType *top;int stacksize;}SStack;Status InitStack(SStack &S);//创建栈Status push(SStack &S,ElemType e);//入栈 Status push(SStack&S,ElemType &e);//出栈 Status StackEmpty(SStack &S);//判断栈是否为空void conversion(int number);//转换为number进制并输出#endif, 运行结果:(3) 编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列)。
数据结构栈和队列实验报告
数据结构栈和队列实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中的栈和队列的基本概念、操作原理以及实际应用。
通过编程实现栈和队列的相关操作,加深对其特性的认识,并能够运用栈和队列解决实际问题。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理(一)栈栈(Stack)是一种特殊的线性表,其操作遵循“后进先出”(Last In First Out,LIFO)的原则。
可以将栈想象成一个只有一端开口的容器,元素只能从开口端进出。
入栈操作(Push)将元素添加到栈顶,出栈操作(Pop)则从栈顶移除元素。
(二)队列队列(Queue)也是一种线性表,但其操作遵循“先进先出”(FirstIn First Out,FIFO)的原则。
队列就像是排队买票的队伍,先到的人先接受服务。
入队操作(Enqueue)将元素添加到队列的末尾,出队操作(Dequeue)则从队列的头部移除元素。
四、实验内容(一)栈的实现与操作1、定义一个栈的数据结构,包含栈顶指针、存储元素的数组以及栈的最大容量等成员变量。
2、实现入栈(Push)操作,当栈未满时,将元素添加到栈顶,并更新栈顶指针。
3、实现出栈(Pop)操作,当栈不为空时,取出栈顶元素,并更新栈顶指针。
4、实现获取栈顶元素(Top)操作,返回栈顶元素但不进行出栈操作。
5、实现判断栈是否为空(IsEmpty)和判断栈是否已满(IsFull)的操作。
(二)队列的实现与操作1、定义一个队列的数据结构,包含队头指针、队尾指针、存储元素的数组以及队列的最大容量等成员变量。
2、实现入队(Enqueue)操作,当队列未满时,将元素添加到队尾,并更新队尾指针。
3、实现出队(Dequeue)操作,当队列不为空时,取出队头元素,并更新队头指针。
4、实现获取队头元素(Front)操作,返回队头元素但不进行出队操作。
5、实现判断队列是否为空(IsEmpty)和判断队列是否已满(IsFull)的操作。
栈和队列实验报告
栈和队列实验报告引言:计算机科学中的数据结构是解决问题的关键。
栈和队列这两种常用的数据结构,无疑在许多实际应用中起着重要的作用。
本篇报告旨在探讨栈和队列的实验结果,并展示它们的实际应用。
一、栈的实验结果及应用1. 栈的实验结果在实验中,我们设计了一个基于栈的简单计算器,用于实现基本的四则运算。
通过栈的先进后出(Last In First Out)特性,我们成功实现了表达式的逆波兰表示法,并进行了正确的计算。
实验结果表明,栈作为一个非常有效的数据结构,可以很好地处理栈内数据的存储和检索。
2. 栈的应用栈在计算机科学中有许多实际应用。
其中之一是程序调用的存储方式。
在程序调用过程中,每个函数的返回地址都可以通过栈来保存和恢复。
另一个应用是浏览器的历史记录。
浏览器中每个访问网页的URL都可以通过栈来存储,以便用户能够追溯他们之前访问的网页。
二、队列的实验结果及应用1. 队列的实验结果在实验中,我们模拟了一个简单的出租车调度系统,利用队列的先进先出(First In First Out)特性实现乘客的排队和叫车。
实验结果表明,队列作为一个具有高效性和可靠性的数据结构,能够很好地处理排队问题。
2. 队列的应用队列在许多方面都有应用。
一个常见的应用是消息队列。
在网络通信中,消息队列可以用于存储和传递信息,确保按照特定的顺序进行处理。
另一个应用是操作系统的进程调度。
操作系统使用队列来管理各个进程的执行顺序,以实现公平和高效的资源分配。
三、栈和队列的比较及选择1. 效率比较栈和队列在实际应用中的效率取决于具体问题的需求。
栈的操作更简单,仅涉及栈顶元素的插入和删除,因此具有更高的执行速度。
而队列涉及到队头和队尾元素的操作,稍复杂一些。
但是,队列在某些问题中的应用更为广泛,例如调度问题和消息传递问题。
2. 如何选择在选择栈和队列时,需要根据实际问题的性质和需求进行综合考虑。
如果问题需要追溯历史记录或按照特定顺序进行处理,则应选择栈作为数据结构。
栈队列及其应用实验报告
一、实验目的1. 理解栈和队列的基本概念、特点及逻辑结构。
2. 掌握栈和队列的存储结构,包括顺序存储结构和链式存储结构。
3. 熟练掌握栈和队列的基本操作,如入栈、出栈、入队、出队等。
4. 分析栈和队列在实际问题中的应用,提高解决实际问题的能力。
二、实验内容1. 栈和队列的定义及特点2. 栈和队列的存储结构3. 栈和队列的基本操作4. 栈和队列的实际应用案例分析三、实验过程1. 栈和队列的定义及特点栈(Stack)是一种后进先出(Last In First Out,LIFO)的数据结构,它只允许在一端进行插入和删除操作。
栈的典型应用场景有函数调用、递归算法等。
队列(Queue)是一种先进先出(First In First Out,FIFO)的数据结构,它允许在两端进行插入和删除操作。
队列的典型应用场景有打印队列、任务队列等。
2. 栈和队列的存储结构(1)顺序存储结构栈和队列的顺序存储结构使用数组来实现。
对于栈,通常使用数组的一端作为栈顶,入栈操作在栈顶进行,出栈操作也在栈顶进行。
对于队列,通常使用数组的一端作为队首,入队操作在队尾进行,出队操作在队首进行。
(2)链式存储结构栈和队列的链式存储结构使用链表来实现。
对于栈,每个元素节点包含数据和指向下一个节点的指针。
入栈操作在链表头部进行,出栈操作在链表头部进行。
对于队列,每个元素节点包含数据和指向下一个节点的指针。
入队操作在链表尾部进行,出队操作在链表头部进行。
3. 栈和队列的基本操作(1)栈的基本操作- 入栈(push):将元素添加到栈顶。
- 出栈(pop):从栈顶删除元素。
- 获取栈顶元素(peek):获取栈顶元素,但不删除它。
- 判断栈空(isEmpty):判断栈是否为空。
(2)队列的基本操作- 入队(enqueue):将元素添加到队列尾部。
- 出队(dequeue):从队列头部删除元素。
- 获取队首元素(peek):获取队首元素,但不删除它。
栈和队列的应用实验报告
栈和队列的应用实验报告
《栈和队列的应用实验报告》
一、实验目的
本实验旨在通过实际操作,掌握栈和队列的基本概念、操作及应用,加深对数
据结构的理解和应用能力。
二、实验内容
1. 栈的基本操作:包括入栈、出栈、获取栈顶元素等。
2. 队列的基本操作:包括入队、出队、获取队首元素等。
3. 栈和队列的应用:通过实际案例,探讨栈和队列在实际生活中的应用场景。
三、实验步骤
1. 学习栈和队列的基本概念和操作。
2. 编写栈和队列的基本操作代码,并进行调试验证。
3. 分析并实现栈和队列在实际应用中的案例,如表达式求值、迷宫问题等。
4. 进行实际应用案例的测试和验证。
四、实验结果
1. 成功实现了栈和队列的基本操作,并通过实际案例验证了其正确性和可靠性。
2. 通过栈和队列在实际应用中的案例,加深了对数据结构的理解和应用能力。
五、实验总结
通过本次实验,我深刻理解了栈和队列的基本概念和操作,并掌握了它们在实
际应用中的重要性和作用。
栈和队列作为数据结构中的重要内容,对于解决实
际问题具有重要意义,希望通过不断的实践和学习,能够更加熟练地运用栈和
队列解决实际问题,提高自己的编程能力和应用能力。
六、感想与展望
本次实验让我对栈和队列有了更深入的了解,也让我对数据结构有了更加深刻的认识。
我将继续学习和探索更多的数据结构知识,提高自己的编程能力和解决问题的能力,为将来的学习和工作打下坚实的基础。
同时,我也希望能够将所学知识应用到实际工程中,为社会做出更大的贡献。
实验三栈和队列
实验三栈和队列第一篇:实验三栈和队列实验报告三栈和队列班级:姓名:学号:专业:一、实验目的:(1)掌握栈的基本操作的实现方法。
(2)利用栈先进后出的特点,解决一些实际问题。
(3)掌握链式队列及循环队列的基本操作算法。
(4)应用队列先进先出的特点,解决一些实际问题。
二、实验内容:1、使用一个栈,将一个十进制转换成二进制。
粘贴源程序:package Word1;public class Node {} T data;Node next;public Node(T a){ } public Node(T a,Node n){} this.data=a;this.next=n;this(a,null);-----package Word1;public class Stack {} public Node Top;public Stack(){ } public void push(T a){ } public T Out(){}T a=this.Top.data;this.T op=this.Top.next;return a;this.Top=new Node(a,this.T op);this.T op=null;--package Word1;import java.util.*;public class Test {} static Scanner scan=new Scanner(System.in);static int temp=0;static int a=0;static Stack s=new Stack();public static void main(String[] args){} temp=scan.nextInt();while(true){} while(s.Top!=null){}System.out.printf(“%d”,s.Out());a=temp%2;s.push(a);temp=te mp/2;if(temp==0)break;粘贴测试数据及运行结果:2、回文是指正读反读均相同的字符序列,如“acdca”、“dceecd”均是回文,但“book”不是回文。
数据结构栈和队列实验报告简版
数据结构栈和队列实验报告数据结构栈和队列实验报告1. 实验目的本实验的主要目的是通过实践的方式理解并掌握数据结构中栈和队列的概念、特点和基本操作。
通过实验,我们可以加深对栈和队列的理解,掌握栈和队列的应用方法,并能够设计和实现基于栈和队列的算法。
2. 实验内容本实验分为两个部分:栈的应用和队列的应用。
2.1 栈的应用栈是一种具有特定限制的线性表,它只允许在表的一端进行插入和删除操作,该端被称为栈顶。
栈的特点是“后进先出”(Last In First Out, LIFO),即最后进栈的元素最先出栈。
在本实验中,我们将实现一个简单的栈类,并应用栈来解决一个问题。
假设有一个字符串,其中包含了括号(圆括号、方括号和花括号),我们需要判断该字符串中的括号是否匹配。
为了达到这个目的,我们可以使用栈来辅助实现。
在实现过程中,我们可以定义一个栈来存储左括号,然后依次遍历字符串的每个字符。
当遇到左括号时,将其入栈;当遇到右括号时,判断栈顶是否是对应的左括号,如果是,则将栈顶元素出栈,否则说明括号不匹配。
最后,当栈为空时,表明所有的括号都匹配,否则说明括号不匹配。
2.2 队列的应用队列是一种具有特定限制的线性表,它只允许在表的一端进行插入操作(队尾),在表的另一端进行删除操作(队头)。
队列的特点是“先进先出”(First In First Out, FIFO),即最早进队列的元素最先出队列。
在本实验中,我们将实现一个简单的队列类,并应用队列来解决一个问题。
假设有一群人在排队等候,我们需要按照一定规则进行排队并输出结果。
为了达到这个目的,我们可以使用队列来进行模拟。
在实现过程中,我们可以定义一个队列来存储等候的人,然后依次将人入队列。
当需要输出结果时,我们可以通过队列的出队列操作,按照先后顺序依次输出到达队头的人。
通过使用队列,我们可以模拟人们排队等候的实际情况,并能够按照一定规则输出结果。
3. 实验过程本实验的实验过程如下:1. 首先,我们需要实现一个栈类。
数据结构栈和队列实验报告
数据结构栈和队列实验报告数据结构栈和队列实验报告引言:数据结构是计算机科学中非常重要的一个概念,它用于组织和存储数据,以便于程序的运行和管理。
栈和队列是数据结构中最基本的两种形式之一,它们在实际应用中有着广泛的应用。
本实验旨在通过实际操作和观察,深入理解栈和队列的特性和应用。
一、实验目的:1. 了解栈和队列的基本概念和特性;2. 掌握栈和队列的基本操作;3. 理解栈和队列在实际应用中的作用。
二、实验过程:本次实验我们使用Python语言来实现栈和队列的操作。
首先,我们定义了栈和队列的类,并编写了相应的操作方法。
1. 栈的实现:栈是一种后进先出(LIFO)的数据结构,类似于我们日常生活中的弹簧簿记本。
我们首先定义了一个栈类,其中包括了栈的初始化、入栈、出栈、获取栈顶元素等方法。
通过这些方法,我们可以对栈进行各种操作。
2. 队列的实现:队列是一种先进先出(FIFO)的数据结构,类似于我们日常生活中的排队。
我们同样定义了一个队列类,其中包括了队列的初始化、入队、出队、获取队首元素等方法。
通过这些方法,我们可以对队列进行各种操作。
三、实验结果:我们通过实验,成功实现了栈和队列的基本操作。
在测试过程中,我们发现栈和队列在实际应用中有着广泛的用途。
1. 栈的应用:栈在计算机系统中有着重要的作用,例如在函数调用中,每次函数调用时都会将返回地址和局部变量等信息存储在栈中,以便于函数执行完毕后能够正确返回。
此外,栈还可以用于表达式求值、括号匹配等场景。
2. 队列的应用:队列在操作系统中常用于进程调度,通过维护一个就绪队列,操作系统可以按照一定的策略选择下一个要执行的进程。
此外,队列还可以用于消息传递、缓冲区管理等场景。
四、实验总结:通过本次实验,我们深入了解了栈和队列的特性和应用。
栈和队列作为数据结构中最基本的两种形式,它们在计算机科学中有着广泛的应用。
在实际编程中,我们可以根据具体的需求选择合适的数据结构,以提高程序的效率和可读性。
栈和队列实验报告
栈和队列实验报告栈和队列实验报告引言:栈和队列是计算机科学中常用的数据结构,它们可以用于解决各种实际问题。
在本次实验中,我们通过编写代码和运行实验,深入了解了栈和队列的特性和应用。
本报告将详细介绍我们的实验过程、结果和分析。
实验目的:1. 理解栈和队列的基本概念和操作。
2. 掌握栈和队列的实现方式和应用场景。
3. 探究栈和队列在不同问题中的效率和优劣。
实验方法:1. 实验环境:我们使用C++语言编写代码,并在Visual Studio 2019开发环境中进行编译和运行。
2. 实验内容:我们分别实现了栈和队列的基本操作,包括入栈、出栈、入队、出队等。
然后,我们通过编写测试用例,验证这些操作的正确性和效率。
实验结果:1. 栈的实现:我们采用数组和链表两种方式实现了栈。
通过测试用例,我们发现数组实现的栈在空间利用率上更高,而链表实现的栈在插入和删除操作上更高效。
2. 队列的实现:我们同样采用数组和链表两种方式实现了队列。
通过测试用例,我们发现数组实现的队列在出队操作上更高效,而链表实现的队列在入队操作上更高效。
实验分析:1. 栈的应用:栈常被用于实现函数调用、表达式求值和括号匹配等场景。
它的后进先出(LIFO)特性使得它在这些场景中非常方便和高效。
2. 队列的应用:队列常被用于实现任务调度、缓冲区管理和广度优先搜索等场景。
它的先进先出(FIFO)特性使得它在这些场景中非常适用。
实验总结:通过本次实验,我们深入了解了栈和队列的特性和应用。
我们掌握了它们的基本操作,并通过实验验证了它们的效率和优劣。
栈和队列在计算机科学中有着广泛的应用,对于我们编写高效的代码和解决实际问题非常重要。
未来展望:在以后的学习和工作中,我们将继续深入学习和应用栈和队列。
我们将进一步研究它们的高级应用,如栈的逆波兰表达式求值和队列的循环队列实现。
我们也将探索其他数据结构和算法,以提高我们的编程能力和解决问题的能力。
结语:通过本次实验,我们对栈和队列有了更深入的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、选做题:
1、火车车厢调度问题
[问题描述] 假设停在铁路调试站入口处车厢序列的编号依次为:1,2,3,…,n。设计一个程序,求出所有可能由此输出的长度为n的车厢序列。
姓名
学号
专业年级
单元
第3章
内容
栈和队列的应用
日期
实验题目
实验目的
本次实习的目的在于深入了解栈和队列的特征,以便在实际问题背景下灵活运用它们;同时还将巩固这两种结构的构造方法,接触较复杂问题的递归算法设计。
实验内容
一、必做题(选做两题):
1、称正读和反读都相同的字符序列为“回文”,例如,abcddcba、qwerewq是回文,ashgash不是回文。试写一个算法,判断读入的一个以“@”为结束符的字符序列是否为回文。
四、写出算法设计、编程和调试运行的体会。
数据结构实验报告
一、抄写自己所选择的题目。
二、写出算法设计思路。
三、编写代码,调试运行,实现题目要求(提示:考虑到插入和删除的位置是否超出范围等可能出现的异常问题)。
四、写出算法设计、编程和调试运行的体会。
[基本要求] 程序对栈的任何存取(即更改,读取和状态判别等操作)必须借助于基本运算进行。
[测试数据] 分别取n=1,2,3和4。
实验要求及讨论
(本次实验的要求是否达到,有何问题,是怎么解决的)
一、抄写自己所选择的题目。
二、写出算法设计思路。
三、编写代码,调试运行,实现题目要求(提示:考虑到插入和删除的位置是否超出范围等可能出现的异常问题)。
2、假设以数组se[m]存放循环队列的元素,同时设变量rear和front分别作为队首、队尾指针,且队首指针指向队首节点前一个位置,写出这样设计的循环队列的入队、出队的算法。
3、假设以数组se[m]存放循环队列的元素,同时设变量rear和num分别作为队首指针和队中元素个数记录,试给出判别此循环队列队满的条件,并写出相应的入队、出队的算法。