轴对称图形典型例题
小学三年级数学关于轴对称图形典型例题
小学三年级数学关于轴对称图形典型例题
例1.一个正方体的面上分别写着1、2、3、4、5、6,现在按下面三种位置摆放.
请你想一想,1的背面是几?2的背面是几?3的背面是几?
分析:我们从图(1)可以知道,1的背面不是3和6.再看图2,又知道1的背面不是2和5,所以得出1的背面不可以是3、6、2、5,只能是4.
从图(2)知道2的背面不是1和5,从图(3)知道2地方背面不是3和4,所以得出结论:2的背面不是1、5、3、4,只能是6.
我们通过观察和分析,可以知道,1的背面是4,2的背面是6,3的背面是5.
解:1的背面是4,2的背面是6,3的背面是5.
例2.下面图形哪些是轴对称图形?哪些不是轴对称图形?为什么?
分析:轴对称图形是沿一条直线对折后能够完全重合的图形,所以图中是轴对称图形的是:1、2、3、5、7、9、10、11、12.不是轴对称图形的是:4、6、8.因为这几个图形对折后不能完全重合.
解:轴对称图形有:1、2、3、5、7、9、10、11、12.
例3.给下面的轴对称图形画出对称轴,有几条画出几条.
分析:以上10个轴对称图形的对称轴的数量并不相同,有的只有一条,有的有多条,其中圆有无数条.
解:
例4.观察下面的数字和字母,找出其中的轴对称图形?
分析:这些数字和字母都是学生平时最常见的,但是他们从来没有从是否对称的角度观察过它们,能够激起学生的兴趣,同时,也能对这些最常用的字符加深记忆.
解:是对称图形的有0、3、8、A、B、C、D、E、H、O、U、T、M、W、Y.
例5.观察下面的图形,你知道下一个会是什么图形吗?
分析:此题目属于推理游戏,利用学习中常用的数字组合成轴对称图形,从中找到规律进行推理,有助于发展学生的发散思维.
解:。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形是一种数学概念,指的是如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
以下是一些轴对称图形的练习题及答案。
练习题1:判断下列图形是否为轴对称图形,并找出对称轴。
1. 圆形2. 等边三角形3. 矩形4. 等腰梯形5. 五角星答案1:1. 圆形是轴对称图形,有无数条对称轴。
2. 等边三角形是轴对称图形,有3条对称轴。
3. 矩形是轴对称图形,有2条对称轴。
4. 等腰梯形是轴对称图形,有1条对称轴。
5. 五角星是轴对称图形,有5条对称轴。
练习题2:如果一个图形沿着某条直线折叠后,直线两旁的部分能够完全重合,这条直线叫做这个图形的对称轴。
请找出下列图形的对称轴数量。
1. 正方形2. 菱形3. 正六边形4. 半圆形5. 等腰三角形答案2:1. 正方形有4条对称轴。
2. 菱形有2条对称轴。
3. 正六边形有6条对称轴。
4. 半圆形有1条对称轴。
5. 等腰三角形有1条对称轴。
练习题3:在下列图形中,找出不是轴对称图形的图形。
1. 长方形2. 等边四边形3. 等腰梯形4. 平行四边形5. 正五边形答案3:4. 平行四边形不是轴对称图形。
练习题4:如果一个轴对称图形的对称轴是直线x=1,那么这个图形关于这条直线对称。
根据这个定义,判断下列点是否在对称轴上。
1. 点A(2,3)2. 点B(0,0)3. 点C(1,1)4. 点D(-1,1)答案4:1. 点A不在对称轴上。
2. 点B不在对称轴上。
3. 点C在对称轴上。
4. 点D不在对称轴上。
练习题5:在一个坐标平面上,如果一个点P(x,y)关于直线x=1对称,那么它的对称点的坐标是什么?答案5:如果点P(x,y)关于直线x=1对称,那么它的对称点的坐标是(2-x, y)。
这些练习题和答案可以帮助学生更好地理解和掌握轴对称图形的概念和性质。
通过解决这些问题,学生可以加深对轴对称图形的认识,提高解决相关问题的能力。
2024年中考备考:初二数学上册:画轴对称图形经典例题(含答案)
2024年中考备考:初二数学上册:画轴对称图形经典例题(含答案)一、单选题1. 下列剪纸图案中,能通过轴对称变换得到的有( C )2. 下列说法错误的是(B )A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形3.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是(B )A.1 号袋 B.2 号袋 C.3 号袋 D.4 号袋4.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有( C )A.3种 B.4种 C.5种 D.6种解析:试题分析:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处故选C.考点:利用轴对称设计图案点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.在如上图由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,你有几种不同的方法( C )A.2种 B.3种 C.4种 D.5种6. 小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是(B )7. 如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1 ,l2上)。
小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1 ,再以l2为对称轴作P1关于l2的对称点P2 ,然后再以l1为对称轴作P2关于l1的对称点P3 ,以l2为对称轴作P3关于l2的对称点P4 ,……,如此继续,得到一系列点P1 ,P2 ,P3 ,…,。
轴对称和轴对称图形典型例题
典型例题例1 如图,已知:△ABC,直线MN,求作△A1B1C1,使△A1B1C1与△ABC关于MN对称.分析:按照轴对称的概念,只要分别过A、B、C向直线MN作垂线,并将垂线段延长一倍即可得到点A、B、C关于直线MN的对称点,连结所得到的这三个点.作法:(1)作AD⊥MN于D,延长AD至A1使A1D=AD,得点A的对称点A1(2)同法作点B、C关于MN的对称点B1、、C1(3)顺次连结A1、B1、C1∴△A1B1C1即为所求说明:首先做出关键的点关于直线的对称点.例2 如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,且AC=BD,若A到河岸CD的中点的距离为500cm.问:(1)牧童从A处牧牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?(2)最短路程是多少?分析:若A、B两点在直线的两侧,自然想到连结AB,交点即为所求的点,但本题的A、B在直线的同侧,如何转化为异侧呢?我们容易想到“翻折”即“轴对称”.若点A关于直线的对称点A1,则对于直线上的任意点到A和A1的距离总相等.解:问题可转化为已知直线CD和CD同侧两点A、B,在CD上作一点M,使AM+BM最小,先作点A关于CD的对称点A1,再连结A1B,交CD于点M,则点M为所求的点.证明:(1)在CD上任取一点M1,连结A1M1、AM1、BM1、AM∵直线CD是A、A1的对称轴,M、M1在CD上∴AM=A1M,AM1=A1M1∴AM+BM=AM1+BM=A1B在△A1 M1B中∵A1 M1+BM1>AM+BN即AM+BM最小(2)由(1)可得AM=AM1,A1C=AC=BD∴△A1CM≌△BDM∴A1M=BM,CM=DM即M为CD中点,且A1B=2AM∵AM=500m∴最简路程A1B=AM+BM=2AM=1000m说明:所求问题可转化为在CD上取一点M使其AM+BM为最小;在上述基础上,利用三角形性质.实际问题要善于转化为数学问题.例3 已知:如图,△ABC是等边三角形,延长BC至D,延长BA到E,使AE=BD,连结CE、DE求证:CE=DE分析:要证CE=DE,即证明E在CD的垂直平分线上即可,为此,我们构造出关于CD的垂直平分线的轴对称图形来证明.证明:延长BD至F,使DF=BC,连结EF∵AE=BD,△ABC为等边三角形∴BF=BE,∠B=∴△BEF为等边三角形∴△BEC≌△FED∴CE=DE说明:解题关键是作出正确的辅助线。
初二轴对称经典题目
初二轴对称经典题目一、等腰三角形的性质与判定相关题目1. 已知:在△ABC中,AB = AC,∠A = 36°,BD平分∠ABC交AC于点D。
- 求证:AD = BD = BC。
- 解析:- 因为AB = AC,∠A = 36°,根据等腰三角形两底角相等,可得∠ABC=∠C=(180° - 36°)÷2 = 72°。
- 又因为BD平分∠ABC,所以∠ABD = ∠DBC=72°÷2 = 36°。
- 在△ABD中,∠A = ∠ABD = 36°,根据等角对等边,可得AD = BD。
- 在△BDC中,∠BDC = 180° - ∠DBC - ∠C=180° - 36° - 72° = 72°,所以∠BDC = ∠C,根据等角对等边,可得BD = BC。
- 综上,AD = BD = BC。
2. 如图,在△ABC中,AD是高,点E在AD上,且BE = AC,求证:△BDE≌△ADC。
- 解析:- 因为AD是高,所以∠ADB = ∠ADC = 90°。
- 在Rt△BDE和Rt△ADC中,已知BE = AC,又因为∠BDE = ∠ADC = 90°,且∠BED和∠C都是∠EBD的余角,根据同角的余角相等,可得∠BED = ∠C。
- 根据AAS(两角及其中一角的对边对应相等),可证得△BDE≌△ADC。
二、线段垂直平分线相关题目1. 如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC = 15cm,△BCE的周长等于25cm。
- 求BC的长。
- 解析:- 因为MN是AB的垂直平分线,根据线段垂直平分线上的点到线段两端的距离相等,可得AE = BE。
- 因为△BCE的周长=BE + EC+BC = 25cm,又因为AE = BE,AC = AE+EC = 15cm。
典型的轴对称图形练习题(带答案)
典型的轴对称图形练习题一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个 B .2个 C .3个 D .4个 2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个 B .2个 C .3个 D .4个 3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是 ( ) A .含30°角的直角三角形; B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形.4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则 ∠APE 的度数是 ( ) A .45° B .55° C .60° D .75°5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小的底角是( )度. A .45° B .30° C .60° D .90° 6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QB D .不能确定7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O , 则 ( ) A .点O 是BC 的中点 B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 对称 D .以上都不对8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3C .2D .1 9.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5C .PQ <5D .PQ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm 二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.AO PAECB D13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .21.有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF 的长.OB22.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.23.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.参考答案第一章轴对称图形1.A 2.B 3.C 4.C5.A6.D7.C8.C9.B10.C 11.212.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。
八年级数学上册《轴对称图形》经典例题含解析
《第2章轴对称图形》一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或174.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P 1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3B.P4P5C.P7P8D.P8P910.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2二、填空题11.下面有五个图形,与其它图形众不同的是第______个.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是______.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=______°.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有______种.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为______.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G 为DF的中点,那么EG与DF垂直吗?26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.《第2章轴对称图形》参考答案与试题解析一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°【考点】等腰三角形的性质.【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5,∴S△BCE故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.6.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的三线合一得到BF=FC,根据直角三角形的性质判断A;根据直角三角形的性质判断B;根据三角形内角和定理和等腰三角形的性质判断C,根据直角三角形的性质判断D.【解答】解:∵AB=AC,AF⊥BC,∴BF=FC,∵BE⊥AC,∴EF=BC=BF,A不合题意;∵DE=AB,EF=BC,不能证明DE=EF,B符合题意;∵DE垂直平分AB,∴EA=EB,又BE⊥AC,∴∠BAC=45°,∴∠C=67.5°,又FE=FC,∴∠EFC=45°,C不合题意;∵FE=FB,∴∠BEF=∠CBE;故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以An为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以An为顶点的内角度数是()n﹣1×75°.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P 1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3B.P4P5C.P7P8D.P8P9【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质分别分析得出即可.【解答】解:由题意可得:当连接P2P3,P4P5,P7P8时,所形成的图形是轴对称图形,当连接P8P9时,所形成的图形不是轴对称图形.故选:D.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难,属于中考选择题中的压轴题.二、填空题11.下面有五个图形,与其它图形众不同的是第③个.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第①②④⑤个图形是轴对称图形,第③个不是.故答案为:③.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是 4 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,然后根据角平分线上的点到角的两边距离相等可得DE=CD,即可得解.【解答】解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,作出图形并熟记性质是解题的关键.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9 .【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= 70 °.【考点】轴对称的性质;平行线的判定与性质.【专题】常规题型.【分析】先证明四边形BDEC是菱形,然后求出∠ABD的度数,再利用三角形内角和等于180°求出∠BAD的度数,然后根据轴对称性可得∠BAC=∠BAD,然后求解即可.【解答】解:∵CD与BE互相垂直平分,∴四边形BDEC是菱形,∴DB=DE,∵∠BDE=70°,∴∠ABD==55°,∵AD⊥DB,∴∠BAD=90°﹣55°=35°,根据轴对称性,四边形ACBD关于直线AB成轴对称,∴∠BAC=∠BAD=35°,∴∠CAD=∠BAC+∠BAD=35°+35°=70°.故答案为:70.【点评】本题考查了轴对称的性质,三角形的内角和定理,判断出四边形BDEC是菱形并得到该图象关于直线AB成轴对称是解题的关键.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是40°.【考点】线段垂直平分线的性质.【分析】根据三角形内角和定理求出∠B+∠C的度数,根据线段的垂直平分线的性质得到PA=PB,QA=QC,得到∠PAB=∠B,∠QAC=∠C,结合图形计算即可.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAB+∠QAC=∠B+∠C=70°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=40°,故答案为:40°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有13 种.【考点】利用轴对称设计图案.【专题】压轴题.【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【解答】解:如图所示:故一共有13做法,故答案为:13.【点评】此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、G H…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为8 .【考点】等腰三角形的性质.【专题】应用题.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.(2)S四边形A1B1C1D1=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2 =12﹣1﹣1﹣﹣2=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.【考点】线段垂直平分线的性质.【专题】作图题.【分析】(1)作线段AB的垂直平分线即可;(2)到一个角的两边距离相等的点在这个角的平分线上.那么点P是∠B的平分线和线段AB的垂直平分线的交点.【解答】解:(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴.【点评】用到的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.到一个角的两边距离相等的点在这个角的平分线上.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】开放型.【分析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.【解答】解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点评】本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G 为DF的中点,那么EG与DF垂直吗?【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】连接DE,EF,易证△BDE≌△CFE,可得DE=EF,可证△DGE≌△FGE,可求得∠DGE=∠FGE=90°.【解答】解:连接DE,EF,∵AB=AC,∴∠B=∠C,在△BDE和△CFE中,,∴△BDE≌△CFE(SAS),∴DE=EF,在在△DGE和△FGE中,,∴△DGE≌△FGE(SSS),∴∠DGE=∠FGE,∵∠DGE+∠FGE=180°,∴∠DGE=∠FGE=90°,∴EG⊥DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证DE=EF是解题的关键.26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.【考点】全等三角形的判定与性质;等腰三角形的性质;轴对称的性质.【分析】(1)根据对称得出AD=AD′,根据SSS证△ABD≌△ACD′即可;(2)根据全等得出∠BAD=∠CAD′,求出∠BAC=∠DAD′,根据对称得出∠DAE=∠DAD′,代入求出即可.【解答】(1)证明:∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴AD=AD′,∵在△ABD和△ACD′中,∴△ABD≌△ACD′;(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∴∠BAC=∠DAD′=120°,∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴∠DAE=∠D′AE=∠DAD′=60°,即∠DAE=60°.【点评】本题考查了全等三角形的性质和判定、对称的性质的应用,主要考查学生的推理能力,题型较好,难度适中.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【考点】几何变换综合题;平行线的性质;全等三角形的判定与性质;等腰直角三角形;多边形内角与外角.【专题】几何综合题;压轴题.【分析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.【点评】本题考查了全等三角形的判定与性质、平行线的性质、等腰直角三角形的判定与性质、多边形的内角与外角等知识,渗透了变中有不变的辩证思想,是一道好题.。
八年级第十三章轴对称典型例题
八年级第十三章轴对称典型例题一、关于轴对称图形概念的例题。
例题1:下列图形中,是轴对称图形的是()A. 平行四边形。
B. 三角形。
C. 梯形。
D. 正方形。
解析:1. 首先分析平行四边形,沿任何一条直线对折后,直线两侧的部分都不能完全重合,所以平行四边形不是轴对称图形。
2. 三角形有多种类型,一般三角形不是轴对称图形,但等腰三角形和等边三角形是轴对称图形,这里说三角形太笼统,不能确定是轴对称图形。
3. 梯形中,一般梯形不是轴对称图形,等腰梯形是轴对称图形,这里说梯形不准确。
4. 正方形沿两条对角线所在直线以及两组对边中点连线对折,直线两侧的部分都能完全重合,所以正方形是轴对称图形。
答案为D。
例题2:正六边形的对称轴有()条。
A. 3.B. 6.C. 9.D. 12.解析:1. 正六边形可以分别沿三组对边中点连线以及三条对角线所在直线对折后完全重合。
2. 所以正六边形的对称轴有6条。
答案为B。
二、线段垂直平分线性质的例题。
例题3:如图,在△ABC中,AB = AC,DE是AB的垂直平分线,△BCE的周长为14,BC = 6,则AB的长为()A. 4.B. 6.C. 8.D. 10.解析:1. 因为DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE = BE。
2. 已知△BCE的周长为14,即BE + EC+BC = 14。
3. 又因为AE = BE,所以AC+BC=14。
4. 已知BC = 6,所以AC = 14 - 6=8。
5. 因为AB = AC,所以AB = 8。
答案为C。
例题4:已知点P在直线l外,点A、B在直线l上,且PA = PB,则直线l与线段AB的关系是()A. l垂直但不平分AB。
B. l平分但不垂直AB。
C. l垂直且平分AB。
D. l与AB相交但不一定垂直平分。
解析:1. 因为点P在直线l外,PA = PB,所以点P在线段AB的垂直平分线上。
2. 又因为两点确定一条直线,所以直线l是线段AB的垂直平分线。
轴对称典型题(最全)
轴对称填空选择一、填空题1..角是轴对称图形,其对称轴是.2..点M(-2,1 )关于x 轴对称点N 的坐标是.3..如图,在△ABC 中,AB=AC=14 cm,边AB 的中垂线交AC 于D,且△BCD 的周长为24cm,则BC= .4.下列数中,成轴对称图形的有个5..等腰△ABC 中,AB=AC=10 ,∠A=30 °,则腰AB 上的高等于.6 .一个等腰三角形的一个外角等于110 °,则这个三角形的三个内角分别是.7 .一辆汽车牌在水中的倒影为,则该车牌照号码为.8 .仔细观察下图的图案,并按规律在横线上画出合适的图形.9. (1 )等腰三角形的一个内角等于130 °,则其余两个角分别为;(2)等腰三角形的一个内角等于70 °,则其余两个角分别为.10. 如图14 -112 所示,△ABC 是等边三角形,∠ 1= ∠2= ∠3,则∠BEC 的度数为11 .如图所示,在△ABC 中,∠C=90 °,DE 垂直平分AB ,交AB 于E ,交BC 于D,∠1=B 1∠2,则∠B= 2E D A C12. 如图14-111 所示,在△ABC 中,AB=AC ,BD 是角平分线,若∠BDC=69 °,则∠A 等于13 、如图,在△ABC 中,∠C=90 °,AB 的垂直平分线交BC 于D,若∠B=20 °,则∠DAC=14 、等腰三角形的周长是25 cm, 一腰上的中线将周长分为3∶2 两部分,则此三角形的底边长为_.15 .点(2,5)关于直线x=1 的对称点的坐标为.16 .已知点A(x,-4 )与点B(3 ,y)关于y 轴对称,那么x+y 的值为.17. 如图14 -116 所示,∠A=15 °,AB=BC=CD=DE=EF ,则∠DEF= .18. 如图14 -117 所示,在△ABC 中,∠C=90 °,A D 平分∠BAC ,交BC 于点D ,CD=3 ,BD=5 ,则点D 到AB 的距离为.19. 如图14 -118 所示,在△ABC 中,AB=AC ,∠A=60 °,BE ⊥AC 于E ,延长BC 到D ,使CD=CE ,连接DE,若△ABC的周长是24 ,BE= a,则△BDE 的周长是.20 .已知:点P 为∠AOB 内一点,分别作出P 点关于OA、OB 的对称点P1,P2,连接P1P2 交OA 于M,交OB 于N,P1P2=15 ,则△PMN 的周长为.P1BMPO N AP221 .如图,Rt △ABC ,∠C =90 °,∠B=30 °,BC =8 ,D 为AB 中点,P 为BC 上一动点,连接AP 、DP, 则AP +DP 的最小值是22 .如图,点B、D、F 在AN 上,C 、E 在AM 上,且AB =BC =CD =ED =EF, ∠A =20 o,则∠FEB =度.二、选择题1. 等腰三角形的一边等于5,一边等于12 ,则它的周长为( )A.22B.29C.22 或29D.172. 如图14-110 所示,图中不是轴对称图形的是( )3. 已知点 A (-2 ,1)与点 B 关于直线x=1 成轴对称,则点 B 的坐标为()A.(4 ,1)B.(4 ,-1)C. (-4,1)D. (-4 ,-1)4 .如图所示,将一张正方形纸片经过两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是().5..下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.正方形C.等边三角形D.长方形6..已知点P(-2,1),那么点P 关于x 轴对称的点P 的坐标是()A.(-2 ,1) B .(-2,-1)C.(-1 ,2) D .(2 , 1 )7..桌面上有A 、B 两球,若要将 B 球射向桌面任意一边,使一次反弹后击中 A 球,则如图所示8 个点中,可以瞄准的点有()个.A. 1 B. 2C.4 D .6P8 、.下列几何图形中,是轴对称图形且对称轴的条数大于 1 的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线 .A. 3 个B. 4 个C. 5 个D. 6 个9 .下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的A轴对称图形 . 正确的说法有( )个A . 1 个B . 2 个C . 3 个D . 4 个EBCD10 .如图:等边三角形 ABC 中, BD = CE , AD 与 BE 相交于点 P ,则∠APE 的度数是 () A .45 °B . 55 °C . 60 °D . 75°11. 等腰梯形两底长为 4cm 和 10cm ,面积为 21cm 2 ,则 这个梯形较小的底角是( )度.A . 45°B . 30°C . 60°D . 90 °12 .下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有()A 、2 个B 、3 个C 、4 个D 、 5 个︰13 .小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A 、21: 10B 、10:21C 、10 : 51D 、 12: 0114 .如图所示,共有等腰三角形()A 、5 个B 、4 个C 、3 个D 、2 个A D 72E723636BC15 .先将正方形纸片对折 ,折痕为 MN ,再把 B 点折叠在折痕 MN 上,折痕为 AE ,点 B 在 MN 上的DMA对应点为 H ,沿 AH 和 DH 剪下 ,这样剪得的三角形中( )A.AH DH AD B .AH DH ADC.AH AD DH D .AH DH AD16 .平面内点A(-1,2) 和点B(-1,6) 的对称轴是()CA、x 轴B、y 轴C、直线y=4D、直线x=-1A A D E B17.如图,在△ABC 中,∠ACB= 100 °,AC=AE ,BC=BD ,则∠DCE 的度数为()A.20 ° B .25 °C.30 °D.40 °EDB C18.如图,△ABC 中,AB AC , A 30 ,DE 垂直平分AC ,则BCD 的度数为()CD A.80 B.75 C.65 D.45A E B19 、如图,△ABC 中,∠C = 90 °,AC = BC,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cm B.8cm C .6cm D .9cm20 、已知等腰三角形的两边a,b,满足2a 3b 5 +(2 a+3b-13) 2=0 ,则此等腰三角形的周长为( )A.7 或8B.6 或10C.6 或7D.7 或1021 、小宇同学在一次手工制作活动中,先把一张矩形纸片按图 1 的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图 2 的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是cm .22 .在下列说法中,正确的是()A、如果两个三角形全等,则它们必是关于直线成轴对称的图形B、如果两个三角形关于某直线成轴对称,那么它们是全等三角形C、等腰三角形是关于底边中线成轴对称的图形D、一条线段是关于经过该线段中点的直线成轴对称的图形23 .若一个图形上所有点的纵坐标不变,横坐标乘以- 1 ,则所得图形与原图形的关系为()A、关于x 轴成轴对称图形B、关于y 轴成轴对称图形C、关于原点成中心对称图形D、无法确定24 如图,已知线段AB 的端点 B 在直线l 上(AB 与l 不垂A直)请在直线l 上另找一点C,使△ABC 是等腰三角形,这l样的点能找( )BA 2 个B 3 个C 4 个D 5 个B25 .如图 B 、C 、D 在一直线上,ΔABC 、ΔADE 是等边三角形,若CE =15cm ,CPCD =6cm ,则AC =,∠ECD =.O AD26 .如图:已知∠AOP= ∠BOP=15 °,PC ∥OA ,PD ⊥OA ,若PC=4 ,PD= ()A .4 B.3 C.2 D.127 .∠AOB 的平分线上一点P 到OA 的距离为5 ,Q 是OB 上任一点,则()A .PQ >5B .PQ≥5C .PQ <5 D.PQ ≤528 .等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为()A .3cm 或5cm B.3cm 或7cm C .3cm D.5cm29 .如图,在Rt △ABC 中,∠ACB =90 °,∠BAC 的平分线交BC 于D. 过C 点作CG ⊥AB 于G ,交AD 于E. 过D 点作DF ⊥AB 于F. 下列结论:①∠CED =∠CDE ;②SAEC ︰SAEGAC ︰AG ;③∠ADF =2∠ECD ;④SCEDS DFB ;⑤CE =DF. 其中正确结论的序号是【】A.①③④B.①②⑤C.③④⑤D.①③⑤30 .如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ .以下六个结论:① AD =BE; ②PQ ∥AE; ③AP =BQ; ④DE =DP; ⑤∠AOB =60°;⑥CO 平分∠AOE. 其中不正确的有【】个A.0 B.1 C .2 D .3三、解答题1 、在网格中作出关于直线m 的相应对称图作出△PNM 关于直线n 的对称图形2 、如图,在所给网格图(每小格均为边长是 1 的正方形)中完成下列各题:(1 )画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B1C1;(2) 在DE 上画出点P,使PB1PC 最小;(3 )在DE 上画出点Q,使QA QC 最小。
典型例题:轴对称
《轴对称》典型例题例1指出下列图形中的轴对称图形例2 指出下列图形中的轴对称图形,并指出轴对称图形的对称轴.(1)正方形;(2)长方形;(3)圆;(4)平行四边形.例3画出下列图形的对称轴。
例4 指出下边哪组图形是轴对称的,并指出对称轴.(1)任意两个半径相等的圆;(2)正方形的一条对角线把一个正方形分成的两个三角形;(3)长方形的一条对角线把长方形分成的两个三角形;(4)两个全等的三角形.(1)(2)(3)(4)(5)(6)(7)(8)例5找出下面的轴对称图形,并说出它们各有几条对称轴.例6 下列图形中,不是轴对称图形的是()(A)有两个角相等的三角形(B)有一个内角是︒45的直角三角形(C)有一个内角是︒120的三角形30,另一个内角为︒(D)有一个角是︒30的直角三角形例7观察中(1)~(5),它们是不是轴对称图形有什么共同特点例8请分别画出下图中3个图形的对称轴.例9如图,(1)正三角形,(2)正四边形,(3)正五边形,(4)正六边形,(5)正八边形,(6)正九边形都是轴对称图形,数一数它们的对称轴的条数.观察后分析:正多边形对称轴的条数与边数"有什么关系根据你的分析结果回答,正十边形,正十六边形,正二十九边形分别有几条对称轴正五十边形呢正一百边形呢参考答案例1分析:正确理解轴对称图形概念.解:轴对称图形是(2)(3)(4)(6)(7)(8)例2 分析:判断一个图形是否是轴对称图形,关键是能否找到一条直线使该图的两部分沿这条直线对折后完全重合.解:(1)、(2)、(3)都是轴对称图形,(4)不是轴对称图形.正方形的对称轴是两条对边中点所在的直线和正方形对角线所在的直线;长方形的对称轴是两条对边中点所在的直线;圆的对称轴是任意一条直径所在的直线.说明:对称轴是一条直线,不是线段.例3分析:依据定义可以画出,但可能是多条.解:如图例4 分析:判断两个图形是否是轴对称,关键是能否找到一条直线使这两个图形沿这条直线对折后能够重合.解:(1)和(2)每组的两个图形都是轴对称的.(3)和(4)每组的两个图形不是轴对称的.(1)的对称轴是连结两个圆心的线段的垂直平分线;(2)的对称轴就是原正方形分成两三角形时的这条对角线所在的直线.说明:对称轴是直线而非线段.例5分析:本题主要考查识别轴对称图形的能力.根据轴对称图形的概念来认真识别.但要注意.图(9)(10)这两个图也有“对称”性,但它们没有对称轴.不能把它们误认为是轴对称图形.解:根据图形可知:(1)是轴对称图形,它有3条对称轴;(2)是轴对称图形,它有5条对称轴;(3)是轴对称图形.它有4条对称轴.(4)是轴对称图形.它有1条对称轴;(5)是轴对称图形,它有2条对称轴;(6)不是轴对称图形;(7)是轴对称图形,它有1条对称轴;(8)是轴对称图形,它有1条对称轴;(9)(10)虽然有“对称”性,但都不是轴对称图形.例6 分析:在(A)中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B)和(C)中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D)中三角形的三个内角各不相等,不是等腰三角形,所以(D)不是轴对称图形.解:选(D)说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.例7分析:本题主要考查两个图形成轴对称图形的理解.可以利用轴对称的概念加以判断,但不能把两个图形成轴对称与一个图形是轴对称图形的概念相混淆.解:它们都是轴对称图形,每一组中都有两个图形.可以沿某一条直线对折使两个图形能完全重合在一起,所以每幅图中的两个图形成轴对称.轴对称图形是一个图形.可以有一条或许多条对称轴.(1)~(5)两个图形成轴对称,一般来说只有一条对称轴.例8分析:找对称轴从不同角度观察,全面分析.解:(1)有6条对称轴;(2)有5条对称轴;(3)有6条对称轴.画图略.例9分析:正多边形并不都是轴对称图形.但是,是轴对称图形的正多边形的对称轴的条数与其边数有着密切的联系,请仔细找出它们之间的规律.解:正三角形有3条对称轴,正四边形有4条对称轴,正五边形有5条对称轴,正六边形就有6条对称轴,正八边形有8条对称轴,正九边形有9条对称轴.正多边形对称轴的条数与边数n之间的关系是:边数是n,对称轴的条数是n条.所以正十边形有10条对称轴,正十六边形有16条对称轴,正二十九边形就有29条对称轴,正五十边形就有50条对称轴,正一百边形就有100条对称轴.。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形练习题及答案图形是我们生活中不可或缺的一部分,而轴对称图形更是我们常常会遇到的一种特殊图形。
轴对称图形是指通过一个轴线将图形分成两个完全相同的部分,这个轴线称为对称轴。
今天,我们就来练习一些轴对称图形,并给出相应的答案。
练习题一:请你画出以下图形的对称轴,并判断图形是否有轴对称性。
1. 正方形2. 矩形3. 圆形4. 五角星5. 心形答案:1. 正方形:对称轴可以是任意一条连接正方形两个对角线中点的线段。
正方形具有轴对称性。
2. 矩形:对称轴可以是连接矩形两个对边中点的线段。
矩形具有轴对称性。
3. 圆形:对称轴可以是任意一条经过圆心的直径线。
圆形具有无限个轴对称。
4. 五角星:对称轴可以是连接五角星两个对边中点的线段。
五角星具有轴对称性。
5. 心形:对称轴可以是连接心形两个对称部分的线段。
心形具有轴对称性。
练习题二:请你找出以下图形的对称中心,并判断图形是否有轴对称性。
1. 三角形2. 椭圆3. 马蹄形4. 蝴蝶形5. 鱼形答案:1. 三角形:对称中心可以是三角形的重心,即三条中线的交点。
三角形具有轴对称性。
2. 椭圆:椭圆没有对称中心,因此没有轴对称性。
3. 马蹄形:对称中心可以是马蹄形的中心点。
马蹄形具有轴对称性。
4. 蝴蝶形:对称中心可以是蝴蝶形的中心点。
蝴蝶形具有轴对称性。
5. 鱼形:对称中心可以是鱼形的中心点。
鱼形具有轴对称性。
练习题三:请你找出以下图形的对称轴,并判断图形是否有轴对称性。
1. 梯形2. 菱形3. 五边形4. 月亮形5. 雪花形答案:1. 梯形:梯形没有对称轴,因此没有轴对称性。
2. 菱形:对称轴可以是连接菱形两个对角线中点的线段。
菱形具有轴对称性。
3. 五边形:五边形没有对称轴,因此没有轴对称性。
4. 月亮形:对称轴可以是连接月亮形两个对称部分的弧线。
月亮形具有轴对称性。
5. 雪花形:对称轴可以是连接雪花形两个对称部分的线段。
雪花形具有轴对称性。
轴对称图形典型例题
轴对称图形典型例题例1 如下图,已知,PB丄AB, PC丄AC,且PB = PC, D是AP上一点.证明:•••PB丄AB,PC丄AC,且PB= PC,••• / PAB = Z PAC (到角两边距离相等的点在这个角平分线上),/ APB + Z PAB= 90°,/ APC +Z PAC= 90°,/ APB = / APC,在厶PDB和厶PDC中,PB =PC,VAPB =NAPC,.、PD =PD•••△PDB ◎△ PDC (SAS),/ BDP = / CDP .(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.例2 已知如下图(1),在四边形ABCD中,BC > BA, AD = CD , BD平分/ ABC .求证:/A +/ C = 180°.证法一:过D作DE丄AB交BA的延长线于E, DF丄BC于F,BD 平分/ ABC ,• DE = DF ,在Rt△ EAD 和Rt△ FCD 中,;AD = DC,QE =DF.(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明. )Rt△ EAD也Rt△ FCD (HL ),•••/ C=Z EAD ,/ EAD +Z BAD = 180°,•/ A+Z C = 180°.证法二:如下图(2),在BC上截取BE= AB,连结DE,证明△ ABD◎△ EBD可得.(2)证法三:如下图(3),延长BA到E,使BE= BC,连结ED,以下同证法(3)注本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3 已知,如下图,AD ABC的中线,且DE平分Z BDA交AB于E, DF平分Z ADC 交AC于F .证法一:在DA截取DN = DB,连结NE、NF,贝U DN = DC,在△ BDE和厶NDE中,BD = ND,奁BDE =ZNDE ,DE = DE.(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)•••△BDE ◎△ NDE (SAS),• BE= NE (全等三角形对应边相等),同理可证:CF = NF,在厶EFN中,EN + FN > EF (三角形两边之和大于第三边),BE+ CF>EF .证法二:延长ED至M,使DM = ED,连结CM、MF , 在厶BDE和厶CDM中,BD 二CD ,.BDE CDM ,DE =DM .(从另一个角度作辅助线)•••△BDE ◎△ NDE (SAS),••• CM = BE (全等三角形对应边相等),又•••/ BDE= / ADE,/ ADF = Z CDF ,而/ BDE + / ADE + / ADF + / CDF = 180°,/ ADE+ / ADF = 90°,即/ EDF = 90°,/ FDM =/ EDF = 90°,在厶EDF和厶MDF中,ED 二MD ,EDF = MDF,DF 二DF.•△ EDF◎△ MDF (SAS),•EF = MF (全等三角形对应边相等),在厶CMF中,CF + CM >EF,BE+ CF >EF.注本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4 已知,如下图,P、Q是厶ABC边BC上的两点,且BP = PQ= QC = AP = AQ.求:/ BAC的度数.解:••• AP= PQ = AQ (已知),••• / APQ=Z AQP = Z FAQ = 60°(等边三角形三个角都是60°),••• AP= BP (已知),(注意观察图形和条件)•/ PBA =Z PAB (等边对等角),/ APQ=Z PBA +Z FAB = 60°(三角形的一个外角等于和它不相邻的两个内角和),•/ PBA =Z PAB= 30°,同理/ QAC = 30°,/ BAC = Z BAP +Z FAQ + Z QAC = 30° + 60°+ 30°= 120°.注本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各角之间的关系;(3)利用三角形内角和定理列方程.例5 已知,如下图,在△ ABC中,AB= AC, E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF = DE ,连结FC .求证:/ F = / A.证明:••• AB = AC,•/ B=Z ACB (等边对等角),EB= ED ,/ B=Z EDB ,•/ ACB = Z EDB (等量代换),•ED // AC (同位角相等,两直线平行),在厶BDE 和厶AED 中,BE = AE=ED ,连结AD 可得,/ EAD =/ EDA,/ EBD = / EDB ,/ EDA + Z EDB = 90 ° ,即卩AD 丄BC,/ EDA +Z EDB = 90°,即卩AD 丄BC,(用什么定理判定三角形全等的?)•D为BC的中点,•△ BDE◎△ CDF ,•/ BED = Z F,而/ BED = Z A,•/ F=Z A.例6 已知,如下图,△ ABC中,AB = AC, E在CA的延长线上,/ AEF = Z AFE . 求证:EF丄BC .证法一:作BC边上的高AD, D为垂足,EAB= AC, AD丄BC,/ BAD = Z CAD(等腰三角形三线合一),又•••/ BAC=Z E+Z AFE,/ AEF = Z AFE ,/ CAD = Z E,••• AD // EF ,AD 丄BC,EF 丄BC.证法二:过A作AG丄EF于G,Z AEF = Z AFE , AG = AG , Z AGE = Z AGF = 90•△AGE^A AGF (ASA ),AB= AC , • Z B =Z C ,又Z EAF = Z B+Z C,(请对比多种证法的优劣)•Z EAG+Z GAF = Z B +Z C ,Z EAG=Z C , • AG // BC , AG 丄EF , EF 丄BC.证法三:过E作EH // BC交BA的延长线于H ,AB= AC , • Z B =Z C ,•Z H = Z B=Z C=Z AEH ,Z AEF = Z AFE , Z H+Z AFE + Z FEH = 180° ,Z H + Z AEH + Z AEF + Z AFE = 180 ° ,•Z AEF + Z AEH = 90°,即Z FEH = 90° ,EF 丄EH ,又EH // BC,EF 丄BC.AB= AC, • Z B =Z C ,1Z B= 2 (180 °-Z BAC),Z AEF = Z AFE ,Z AFE = 2 (180 ° -Z EAF ),证明:连结BC , ••• AB = AC (已知), •Z ABC = Z ACB (等边对等角),又•••点A 、D 在线段BC 的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上) ,而两点确定一条直线,• AD 就是线段BC 的垂直平分线,• PB = PC (线段垂直平分线上的点到线段两个端点的距离相等),• Z PBC = Z PCB (等边对等角),(线段垂直平分线的性质) •Z ABC -Z PBC = Z ACB -Z PCB (等式性质),即Z ABP = Z ACP .注 本题若用三角形全等, 至少需要证两次,现用线段垂直平分线的判定和性质, 就显得比较简洁.例8 如下图,AB = AC , DE 垂直平分 AB 交AB 于D ,交AC 于丘,若厶ABC 的周长为28, BC = 8,求厶BCE 的周长./ BFK = Z AFE ,1/ BFK = 2 ( 180° -Z EAF ),1 1Z B +Z BFK = 2 (180。
轴对称图形典型例题
轴对称图形轴对称图形典型例题例1 如下图,已知,PB ⊥AB ,PC ⊥AC ,且PB =PC ,D 是AP 上一点.求证:∠BDP =∠CDP .证明:∵ PB ⊥AB ,PC ⊥AC ,且PB =PC ,∴ ∠PAB =∠PAC (到角两边距离相等的点在这个角平分线上),∵ ∠APB +∠PAB =90°,∠APC +∠PAC =90°,∴ ∠APB =∠APC ,在△PDB 和△PDC 中,⎪⎩⎪⎨⎧=∠=∠= PD PD APC APB PC PB .,,∴ △PDB ≌△PDC (SAS ),∴ ∠BDP =∠CDP .(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注 利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.例2 已知如下图(1),在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC .求证:∠A +∠C =180°.(1)证法一:过D 作DE ⊥AB 交BA 的延长线于E ,DF ⊥BC 于F ,∵ BD 平分∠ABC ,∴ DE =DF ,在Rt △EAD 和Rt △FCD 中,⎩⎨⎧==.DF DE DC AD ,(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.) ∴ Rt △EAD ≌Rt △FCD (HL ),∴ ∠C =∠EAD ,∵ ∠EAD +∠BAD =180°,∴ ∠A +∠C =180°.证法二:如下图(2),在BC 上截取BE =AB ,连结DE ,证明△ABD ≌△EBD 可得.(2)证法三:如下图(3),延长BA 到E ,使BE =BC ,连结ED ,以下同证法二.(3)注 本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3 已知,如下图,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .证法一:在DA 截取DN =DB ,连结NE 、NF ,则DN =DC ,在△BDE 和△NDE 中,⎪⎩⎪⎨⎧=∠=∠=.DE DE NDE BDE ND BD ,,(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)∴ △BDE ≌△NDE (SAS ),∴ BE =NE (全等三角形对应边相等),同理可证:CF =NF ,在△EFN 中,EN +FN >EF (三角形两边之和大于第三边),∴ BE +CF >EF .证法二:延长ED 至M ,使DM =ED ,连结CM 、MF ,在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=.DM DE CDM BDE CD BD ,,(从另一个角度作辅助线)∴ △BDE ≌△NDE (SAS ),∴ CM =BE (全等三角形对应边相等),又∵ ∠BDE =∠A DE ,∠ADF =∠CDF ,而∠BDE +∠ADE +∠ADF +∠CDF =180°,∴ ∠ADE +∠ADF =90°,即∠EDF =90°,∴ ∠FDM =∠EDF =90°,在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=.DF DF MDF EDF MD ED ,,∴ △EDF ≌△MDF (SAS ),∴ EF =MF (全等三角形对应边相等),在△CMF 中,CF +CM >EF ,∴ BE +CF >EF .注 本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4 已知,如下图,P 、Q 是△ABC 边BC 上的两点,且BP =PQ =QC =AP =AQ .求:∠BAC 的度数.解:∵ AP =PQ =AQ (已知),∴∠APQ=∠AQP=∠PAQ=60°(等边三角形三个角都是60°),∵AP=BP(已知),(注意观察图形和条件)∴∠PBA=∠PAB(等边对等角),∴∠APQ=∠PBA+∠PAB=60°(三角形的一个外角等于和它不相邻的两个内角和),∴∠PBA=∠PAB=30°,同理∠QAC=30°,∴∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°.注本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各角之间的关系;(3)利用三角形内角和定理列方程.例5 已知,如下图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.证明:∵AB=AC,∴∠B=∠ACB(等边对等角),∵EB=ED,∴∠B=∠EDB,∴∠ACB=∠EDB(等量代换),∴ED∥AC(同位角相等,两直线平行),在△BDE和△AED中,BE=AE=ED,连结AD可得,∠EAD=∠EDA,∠EBD=∠EDB,∠EDA+∠EDB=90°,即AD⊥BC,∴∠EDA+∠EDB=90°,即AD⊥BC,(用什么定理判定三角形全等的?)∴D为BC的中点,∴△BDE≌△CDF,∴∠BED=∠F,而∠BED=∠A,∴∠F=∠A.例6 已知,如下图,△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.求证:EF⊥BC.证法一:作BC边上的高AD,D为垂足,∴ ∠BAD =∠CAD(等腰三角形三线合一),又∵ ∠BAC =∠E +∠AFE ,∠AEF =∠AFE ,∴ ∠CAD =∠E ,∴ AD ∥EF ,∵ AD ⊥BC ,∴ EF ⊥BC .证法二:过A 作AG ⊥EF 于G ,∵ ∠AEF =∠AFE ,AG =AG ,∠AGE =∠AGF =90°,∴ △AGE ≌△AGF (ASA ),∵ AB =AC ,∴ ∠B =∠C ,又∠EAF =∠B +∠C ,(请对比多种证法的优劣)∴ ∠EAG +∠GAF =∠B +∠C ,∴ ∠EAG =∠C ,∴ AG ∥BC ,∵ AG ⊥EF ,∴ EF ⊥BC .证法三:过E 作EH ∥BC 交BA 的延长线于H ,∵ AB =AC ,∴ ∠B =∠C ,∴ ∠H =∠B =∠C =∠AEH ,∵ ∠AEF =∠AFE ,∠H +∠AFE +∠FEH =180°,∴ ∠H +∠AEH +∠AEF +∠AFE =180°,∴ ∠AEF +∠AEH =90°,即∠FEH =90°,∴ EF ⊥EH ,又EH ∥BC ,∴ EF ⊥BC .证法四:延长EF 交BC 于K ,∵ AB =AC ,∴ ∠B =∠C ,∴ ∠B =21(180°-∠BAC ),∵ ∠AEF =∠AFE ,∴ ∠AFE =21(180°-∠EAF ),∴ ∠BFK =21(180°-∠EAF ),∴ ∠B +∠BFK =21(180°-∠BAC )+21(180°-∠EAF )∵ =21[360°-(∠EAF +∠BAC )],∴ ∠EAF +∠BAC =180°,∴ ∠B +∠BFK =90°,即∠FKB =90°,∴ EF ⊥BC .注 本题考察等腰三角形性质的应用,解题的关键是通过添加辅助线,建立EF 与BC 的联系,仔细体会以上各种不同的添加辅助线的方法.例7 如下图,AB =AC ,DB =DC ,P 是AD 上一点.求证:∠ABP =∠ACP .证明:连结BC ,∵ AB =AC (已知),∴ ∠ABC =∠ACB (等边对等角),又∵ 点A 、D 在线段BC 的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上),而两点确定一条直线, ∴ AD 就是线段BC 的垂直平分线,∴ PB =PC (线段垂直平分线上的点到线段两个端点的距离相等),∴ ∠PBC =∠PCB (等边对等角),(线段垂直平分线的性质)∴ ∠ABC -∠PBC =∠ACB -∠PCB (等式性质),即∠ABP =∠ACP .注 本题若用三角形全等,至少需要证两次,现用线段垂直平分线的判定和性质,就显得比较简洁.例8 如下图,AB =AC ,DE 垂直平分AB 交AB 于D ,交AC 于E ,若△ABC 的周长为28,BC =8,求△BCE 的周长.解:∵ 等腰△ABC 的周长=28,BC =8,∴ 2AC +BC =28,∴ AC =10, (理由是什么?)∵ DE 垂直平分AB ,∴ AE =BE ,∴ △BCE 的周长=BE +EC +BC=AE +EC +BC=AC +BC =10+8=18.注 本题考察线段垂直平分线的性质定理的运用,关键是运用线段垂直平分线的性质得到线段的等量关系.例9 已知,如下图,△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,EF 交BC 于F ,交AB 于E ,求证:FC BF 21=.证法一:连结AF ,则AF =BF ,∴ ∠B =∠FAB (等边对等角),∵ AB =AC ,∴ ∠B =∠C (等边对等角),∵ ∠BAC =120°,∴ ∠B =∠C =302180=∠-BAC (三角形内角和定理),∴ ∠FAB =30°,∴ ∠FAC =∠BAC -∠FAB =120°-30°=90°,又∵ ∠C =30°,(线段的垂直平分线是常见的对称轴之一)∴ FC AF 21=(直角三角形中30°角所对的直角边等于斜边的一半),∴ FC BF 21=.证法二:连结AF,过A作AG∥EF交FC于G,∵EF为AB的垂直平分线,∴AF=BF,又∵∠B=30°,∴∠AFG=60°,∠BAG=90°,∴∠A G B=60°,△AFG为等边三角形,又∵∠C=30°,∴∠G AC=30°,∴AG=GC,(构造等边三角形是证明线段相等的一种好方法)∴BF=FG=GC=FC21.例10 已知,如下图,AB⊥BC,CD⊥BC,∠AMB=75°,∠DMC=45°,AM=MD.求证:AB =BC.思路分析从结论分析,要证AB=BC,可连结AC,使BC与AB能落在一个三角形内,再看∠BAC与∠BCA能否相等?证明:连结AC,交DM于H,∵∠AMB=75°,∠DMC=45°(已知),∴∠AMD=60°(平角定义)又∵AM=MD,∴△AMD为等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AM=AD(等边三角形三边相等),∵CD⊥BC,∴∠DCM=90°,∵∠DMC=45°,∴∠MDC=45°(三角形内角和定理),∴CD=CM(等角对等边),∴AC是DM的垂直平分线(和线段两端点等距离的点,在线段的垂直平分线上),∴∠MHC=90°,∴∠HCM=45°,∵∠B=90°,∴∠BAC=45°,∴AB=BC(等角对等边).【典型热点考题】例1 如图7—15,等腰△ABC的对称轴与底边BC相交于点D,请回答下列问题:(1)AD是哪个角的平分线;(2)AD是哪条线段的垂直平分线;(3)有哪几条相等的边;(4)有哪几对相等的角.点悟:本题主要考查等腰三角形的所有特征.所以应该根据等腰三角形是轴对称图形的性质来解答问题.解:等腰三角形是轴对称图形,直线AD是它的对称轴.(1)AD是顶角∠BAC的平分线.(2)AD是线段BC的垂直平分线.(3)AB=AC,BD=DC.(4)∠BAD=∠CAD,∠ABC=∠ACB,∠ADB=∠ADC.例2 如图7—16,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上一点.求证:∠BDP=∠CDP.点悟:利用三角形全等证明两个角相等最直观,但因为图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形全等同样可以,证明:∵ PB⊥AB,PC⊥AC,且PB=PC,∴∠PAB=∠PAC(到角两边距离相等的点在这个角的平分线上).∵∠APB+∠PAB=90°,∠APC+∠PAC=90°,∴∠APB=∠APC.在△PDB和△PDC中,⎪⎩⎪⎨⎧=∠=∠=PD PD APCAPB PC PB ∴ △PDB ≌△PDC(SAS)∴ ∠BDP =∠CDP .例3 如图7—17,先找出下列各图形中的轴对称图形,再画出它们的对称轴(有几条,画几条).点悟:先确定是否是轴对称图形,如果是轴对称图形,就将它们的对称轴全部画出来. 解:(1)是,它有3条对称轴.(2)是,它有2条对称轴.(3)是,它有2条对称轴.(4)是,它只有一条对称轴.(5)它不是轴对称图形,故没有对称轴.(6)它是轴对称图形,有一条对称轴.图均略.例4 如图7—18,△ABC 中,AB =AC ,D 在BC 上,且BD =AD ,DC =AC ,将图中的等腰三角形全部写出来,并求出∠B 的度数.点悟:图中共有三个等腰三角形,要将它们一一写出来,不能遗漏.在计算∠B 的度数时,要充分利用三角形的一个外角等于它的两个不相邻的两个内角的和.解:图中共有三个等腰三角形,它们分别是:△ABC ,△ABD ,△CAD .设∠B =x ,则∠C =x =∠BAD ,∠ADC =∠DAC =2x .∴ ∠B +∠C +∠BAC =∠B +∠C +∠BAD +∠DAC=x +x +x +2x =5x =180°∴ ︒=︒==∠365180x B .例5 如图7—19,在金水河的同一侧居住两个村庄A 、B .要从河边同一点修两条水渠到A 、B 两村浇灌蔬菜,问抽水站应修在金水河MN 何处两条水渠最短?点悟:先将具体问题抽象成数学模型.河流为直线MN ,在直线MN 的同一侧有A 、B 两点.在直线MN 上找一点P ,使P 点到A 、B 两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图7—19所示.作B 点关于直线MN 的对称点B ′,连结AB ′,与MN 相交于P ,则P 点即为所求.事实上,如果不是P 点而是P '点时,则连结B P 、P A ''和B P ''.由轴对称性知道,B P PB B P B P '=''=',,所以P '到A 、B 的距离之和,B P P A B P P A ''+'='+',而P 到A 、B 的距离之和B A B P AP PB AP '='+=+在'P B A '∆中,三角形两边之和大于第三边,B A B P P A '>''+'所以P 点即为所求的点.例6 如图7—20,已知,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .点悟:遇到角平分线就可以考虑利用轴对称的性质或全等三角形的性质来解决问题. 证法一:在DA 上截取DN =DB .连结NE 、NF .则DN =DC .在△BDE 和△NDE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE DE NDE BDE ND BD ∴ △BDE ≌△NDE .∴ BE =NE .同理可得,CF =NF .在△EFN 中,EN +FN >EF(三角形两边之和大于第三边).∴ BE +CF >EF .证法二:如图7—21,延长DE 至M ,使DM =ED ,连结CM 、MF .在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=,,,DM DE CDM BDE CD BD∴ △BDE ≌△CDM(SAS).∴ CM =BE(全等三角形对应边相等)又∵ ∠BDE =∠ADE ,∠ADF =∠CDF ,而∠BDE +∠ADE +∠ADF +∠CDF =180°∴ ∠ADE +∠ADF =90°,即∠EDF =90°.∴ ∠FDM =∠EDF =90°.在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=,,,DF DF MDF EDF MD ED ∴ △EDF ≌△MDF(SAS)∴ EF =MF(全等三角形对应边相等).在△CMF 中,CF +CM >MF ,∴ BE +CF >EF .点拨:本题综合考查角平分线,中线的意义,三角形全等及线段之间的等量关系,关键是要把题目中的已知条件集中巧妙应用.【易错例题分析】例 已知如图7—22,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC .求证:∠A+∠C=180°.证法一:如图7—22,过D作DE⊥AB交BA的延长线于E,DF⊥BC于F.∵ BD平分∠ABC,∴ DE=DF在Rt△EAD和Rt△FCD中,∵ AD=DC,DE=DF,∴ Rt△EAD≌Rt△FCD(HL)∴∠C=∠EAD,∵∠EAD+∠BAD=180°,∴∠A+∠C=180°.证法二:如图7—23,在BC上截BE=AB,连结DE,证明△ABD≌△EBD可得.证法三:延长BA到E,使BE=BC,连结ED,以下同证法二,如图7—24.警示:本题直接加以证明则不可能,需要巧妙的添加适当的辅助线,不会添加辅助线或添加不适当的辅助线则是最常见的误区.本题是用一个角的平分线上任意一点到角的两边距离相等的定理来证明线段相等,添加辅助线的方法有多种情况,应该很好感悟尽快掌握.。
生活中的轴对称(经典例题)
班级小组姓名成绩(满分120)一、轴对称现象(一)轴对称和轴对称图形(共4小题,每题3分,题组共计12分)例1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个例1.变式1.下列图形中对称轴最多是()A.圆B.正方形C.角D.线段例1.变式2.如图所示的图形是由棋子围成的正方形图案,图案的每条边有4个棋子,这个图案有条对称轴.例1.变式3.如图所示的方格纸中,请你把任意五个方格涂黑,使这五个方格构成一个轴对称图形(图形不能重复,至少设计三个)二、探索轴对称的性质(一)轴对称的性质(共4小题,每题3分,题组共计12分)例2.下列说法:①长方形的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③两点关于连接它们的线段的垂直平分线对称.其中正确的有()A.1个B.2个C.3个D.0个例2.变式1.如图,△ABC与△A'B'C'关于直线l对称,且∠A=78°,∠C'=48°,则∠B的度数为()A.48°B.54°C.74°D.78°例2.变式2.如图所示,AC垂直平分线段BD,若AB=3cm,CD=5cm,则四边形ABCD的周长是()A.11cmB.13cmC.16cmD.18cm例2.变式3.如图,把一张长方形纸ABCD折叠,使点C与点A重合,折痕为EF.如果∠DEF=123°,那么∠BAF=.(三)轴对称的性质及应用(共4小题,每题3分,题组共计12分)例3.轴对称图形对应点连线被,对应角、对应线段都.例3.变式1.如图,∠AOB内有一点P,分别画出P关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?例3.变式2.如图,将长方形纸片ABCD沿其对角线AC折叠,使点B落到点B'的位置,AB'与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.16B.19C.22D.25例3.变式3.如图,在△ABC中,∠ACB=90°,点D在边AB上,连接CD,将△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于点F,若∠B=α,则∠ADC的度数是(用含α的代数式表示).三、简单的轴对称图形(一)等腰三角形的性质(共4小题,每题3分,题组共计12分)例4.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.腰上的高所在的直线D.顶角平分线所在的直线例4.变式1.等边三角形对称轴的条数是()A.1B.2C.3D.4例4.变式2.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9例4.变式3.等腰三角形中有一个角是50°,那么这个等腰三角形的底角是.(二)等腰三角形的性质二(共4小题,每题3分,题组共计12分)例5.下列说法中正确的是()A.关于某条直线对称的两个三角形是全等三角形B.全等三角形一定是关于某条直线对称的C.两个图形关于某条直线对称,则这两个图形一定分别位于这条直线的两侧D.若A,B两点关于直线MN对称,则AB垂直平分MN例5.变式1.如图,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有个.例2.变式2.如图,在△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=.例5.变式3.有一个三角形的支架如图所示,AB=AC,小明过点A和BC边的中点D又架了一个细木条,经测量∠B=30°,你在不用任何测量工具的前提下,能得到∠BAD和∠ADC的度数吗?(三)线段和角的轴对称性(共4小题,每题3分,题组共计12分)例6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3B.4C.5D.6例6.变式1.如图所示,下列推理中正确的个数是()①因为OC平分∠AOB,点P,D,E分别在OC,OA,OB上,所以PD=PE;②因为P在OC上,PD⊥OA,PE⊥OB,所以PD=PE;③因为P在OC上,PD⊥OA,PE⊥OB,且OC平分∠AOB,所以PD=PE.A.0B.1C.3D.4例6.变式2.小明把一张长方形的纸对折了两次,如图所示,使A,B都落在DC上,折痕分别是DE,DF,则∠EDF的度数为.例6.变式3.如图,已知△ABC中,DE垂直平分AC,且交AC于点E,交BC于点D,△ABD的周长是20,AC=8,你能计算出△ABC的周长吗?(四)等腰(边)三角形的性质的综合应用(共4小题,每题3分,题组共计12分)例7.在△ABC中,若BC=AC,∠A=58°,则∠C=,∠B=.例7.变式1.等边三角形的两条中线相交所成的钝角度数是.例7.变式2.如图P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,则∠BAC=.例7.变式3.如图,已知△ABC中,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连接AD,若∠B=37°,求∠CAD的度数.(五)轴对称图形的综合运用(共4小题,每题3分,题组共计12分)例8.如图所示,△ABC中,∠B与∠C的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N,若AB=6cm,AC=9cm,BC=12cm,则△AMN的周长为.例8.变式1.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有个.例8.变式2.如图所示,在△ABC中,AB=AC,AD⊥BC于D,AB+AC+BC=50cm,AB+BD+AD=40cm,则AD=cm.例8.变式3.如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;照这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=.(六)轴对称图形的综合运用二(共4小题,每题3分,题组共计12分)例9.如图,D,E是△ABC的BC边上的两点,且BD=DE=EC=AD=AE,求∠BAC的度数.例9.变式1.如图,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE,BD交于点C,试说明AC=BC.例9.变式2.如图所示,△ABC是等边三角形,点D是AC的中点,DE∥AB,AE∥BC,DE与AE交于点E,点G是AE的中点,GF∥DE,EF∥AC,EF交GF于点F,若AB=4cm,则图形ABCDEFG的外围的周长是多少?例9.变式3.如图,△ABC中,AB=2AC,∠1=∠2,DA=DB,你能说明DC⊥AC吗?四、利用轴对称进行设计(共4小题,每题3分,题组共计12分)例10.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形例10.变式1.如左下图,将一张正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个大小相等的圆洞,最后将正方形纸片展开,得到的图案是右下图中的()例10.变式2.当你面对镜子的时候,右手拿笔向左挥动,对于镜子中的像来说是()A.右手拿笔,向右挥动B.左手拿笔,向左挥动C.右手拿笔,向左挥动D.左手拿笔,向右挥动例10.变式3.某一车牌在平面镜中的像是,则这辆车的实际号码是()。
八年级轴对称经典题型
八年级轴对称经典题型一、选择题(每题3分,共15分)1. 下列图形中,是轴对称图形的是()A. 平行四边形。
B. 三角形。
C. 圆。
D. 梯形。
解析:- 圆沿着任意一条直径所在的直线折叠,直线两旁的部分都能完全重合,所以圆是轴对称图形。
- 平行四边形无论沿哪条直线折叠,直线两旁的部分都不能完全重合,不是轴对称图形。
- 三角形不一定是轴对称图形,只有等腰三角形和等边三角形是轴对称图形。
- 梯形不一定是轴对称图形,只有等腰梯形是轴对称图形。
所以答案是C。
2. 点P(3, - 2)关于x轴对称的点的坐标是()A. (3,2)B. (-3, - 2)C. (-3,2)D. (2, - 3)- 关于x轴对称的点,横坐标相同,纵坐标互为相反数。
- 点P(3, - 2)关于x轴对称的点的坐标是(3,2)。
所以答案是A。
3. 等腰三角形的一个内角为50^∘,则这个等腰三角形的顶角为()A. 50^∘B. 80^∘C. 50^∘或80^∘D. 40^∘或65^∘解析:- 当50^∘的角为顶角时,答案就是50^∘。
- 当50^∘的角为底角时,因为等腰三角形两底角相等,根据三角形内角和为180^∘,则顶角为180^∘-50^∘×2 = 80^∘。
所以这个等腰三角形的顶角为50^∘或80^∘,答案是C。
4. 如图,在ABC中,AB = AC,∠ A = 30^∘,DE垂直平分AC,则∠ BCD的度数为()A. 80^∘B. 75^∘C. 65^∘D. 45^∘- 因为AB = AC,∠ A=30^∘,所以∠ B=∠ ACB=(1)/(2)(180^∘-∠A)=(1)/(2)(180^∘ - 30^∘) = 75^∘。
- 因为DE垂直平分AC,所以AD = CD,∠ A=∠ ACD = 30^∘。
- 则∠ BCD=∠ ACB-∠ ACD=75^∘-30^∘=45^∘。
所以答案是D。
5. 下列说法正确的是()A. 两个全等的三角形一定关于某条直线对称。
轴对称图形典型例题
轴对称图形典型例题例1、如下图,AB =AC ,DB =DC ,P 是AD 上一点.求证:∠ABP =∠ACP .证明:连结BC ,∵AB =AC (已知),∴∠ABC =∠ACB (等边对等角),又∵点A 、D 在线段BC 的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上,而两点确定一条直线)∴AD 就是线段BC 的垂直平分线,∴PB =PC (线段垂直平分线上的点到线段两个端点的距离相等),∴∠PBC =∠PCB (等边对等角),(线段垂直平分线的性质)∴∠ABC -∠PBC =∠ACB -∠PCB (等式性质),即∠ABP =∠ACP .注:本题若用三角形全等,至少需要证两次,现用线段垂直平分线的判定和性质,就显得比较简洁. 例2、如下图,AB =AC ,DE 垂直平分AB 交AB 于D ,交AC 于E ,若△ABC 的周长为28,BC =8,求△BCE 的周长.解:∵等腰△ABC 的周长=28,BC =8,∴2AC +BC =28,∴AC =10∵DE 垂直平分AB ,∴AE =BE ,∴△BCE 的周长=BE +EC +BC =AE +EC +BC =AC +BC =10+8=18.注:本题考察线段垂直平分线的性质定理的运用,关键是运用线段垂直平分线的性质得到线段的等量关系. 例3、已知,如下图,△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,EF 交BC 于F ,交AB 于E ,求证:FC BF 21=.连结AF ,则AF =BF ,∴∠B =∠FAB (等边对等角),∵AB =AC ,∴∠B =∠C (等边对等角),∵∠BAC =120°,∴∠B =∠C =302180=∠-BAC (三角形内角和定理),∴∠F AB =30°,∴∠F AC =∠BAC -∠F AB =120°-30°=90°,又∵∠C =30°,(线段的垂直平分线是常见的对称轴之一)∴FC AF 21=(直角三角形中30°角所对的直角边等于斜边的一半),∴FC BF 21=. 例4、如图7—18,△ABC 中,AB =AC ,D 在BC 上,且BD =AD ,DC =AC ,将图中的等腰三角形全部写出来,并求出∠B 的度数.解:图中共有三个等腰三角形,它们分别是:△ ABC ,△ ABD ,△ CAD .设∠ B =x ,则∠ C =x =∠ BAD ,∠ ADC =∠ DAC =2x .∴ ∠ B +∠ C +∠ BAC =∠ B +∠ C +∠ BAD +∠ DAC =x +x +x +2x =5x =180°∴ ︒=︒==∠365180x B .。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形练习题及答案在数学学科中,轴对称图形是一种非常重要的概念。
轴对称图形是指可以通过某条直线将图形分成两个完全相同的部分的图形。
轴对称图形不仅在几何学中有广泛的应用,也常常出现在生活中的各个方面。
下面,我们来看一些轴对称图形的练习题及答案。
练习题一:请画出下列图形的轴对称线,并判断图形是否具有轴对称性。
1. 正方形2. 长方形3. 五角星4. 圆形5. 三角形答案一:1. 正方形:具有四条轴对称线,分别是连接对角线的两条线和连接中点的两条线。
因此,正方形具有轴对称性。
2. 长方形:具有两条轴对称线,分别是连接对角线的线。
因此,长方形具有轴对称性。
3. 五角星:具有五条轴对称线,分别是连接对角线的线。
因此,五角星具有轴对称性。
4. 圆形:具有无数条轴对称线,因为圆形的任意直径都可以作为轴对称线。
因此,圆形具有轴对称性。
5. 三角形:具有零条或一条轴对称线。
如果三角形的三条边相等,则具有三条轴对称线,分别是连接各边中点的线。
如果三角形的三条边不相等,则没有轴对称线。
因此,三角形可能具有轴对称性,也可能不具有轴对称性。
练习题二:请找出下列图形的轴对称图形,并画出轴对称线。
1. 矩形2. 正五边形3. 椭圆4. 等腰梯形5. 菱形答案二:1. 矩形的轴对称图形是自身,因为矩形具有四条轴对称线,分别是连接对角线的两条线和连接中点的两条线。
2. 正五边形的轴对称图形是自身,因为正五边形具有五条轴对称线,分别是连接对角线的线。
3. 椭圆的轴对称图形是自身,因为椭圆具有无数条轴对称线,因为椭圆的任意直径都可以作为轴对称线。
4. 等腰梯形的轴对称图形是自身,因为等腰梯形具有一条轴对称线,即连接两个底边中点的线。
5. 菱形的轴对称图形是自身,因为菱形具有两条轴对称线,分别是连接对角线的两条线。
通过以上练习题,我们可以更好地理解和掌握轴对称图形的概念和性质。
轴对称图形在几何学中有着广泛的应用,例如在设计中常常使用轴对称图形来增加美感和平衡感。
人教版小学数学五年级轴对称和平移(经典例题含答案)
轴对称和平移经典例题答案班级小组姓名成绩(满分120)一、轴对称再认识(一)(一)轴对称图形的认识(共4小题,每题3分,共计12分)例1.找一找,哪些是轴对称图形?请在下面的()里面打“√”。
(√)()(√)(√)()(√)(√)(√)例1.变式1.下面是轴对称图形的一半,猜猜这些图形是什么?(蝴蝶)(上衣)(瓶子)(树)例1.变式2.填一填。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫(轴对称)图形,那条直线就是(对称轴)。
例1.变式3.画出下面图形的对称轴。
(二)对称轴(共4小题,每题3分,共计12分)例2.选择。
(1)下列图形中,对称轴最多的是(C )。
A.等边三角形B.正方形C.圆D.长方形(2)下面不是轴对称图形的是(B )。
A.长方形B.平行四边形C.圆D.半圆(3)要使大小两个圆有无数条对称轴,应采用第(B)种画法。
(4)下列选项中右边图形与左边图形成轴对称的是(B )。
AB C D例2.变式1.这些图形中哪些是轴对称图形?画出它们的对称轴。
例2.变式2.先画一画,再数一数各有几条对称轴?圆有无数条对称轴24无数136例2.变式3.用三个同样大小的正方形互相连接可以组成各种不同的轴对称图形,如图:(1)还可以怎样连接组成不同的轴对称图形?你可以试着画一画。
(2)如果用四个同样大小的小正方形怎样连接能成为轴对称图形?试着画一画。
(三)轴对称概念理解(共4小题,每题3分,共计12分)例3.在方格纸上按照图上给出的对称轴画出对称图形。
例3.变式1.在方格纸上画出轴对称图形。
例3.变式2.在方格纸上画出图形的另一半。
例3.变式3.在方格图里按给定的对称轴画出对称图形。
(四)画对称轴(共4小题,每题3分,共计12分)例4.在方格纸上画出轴对称图形。
例4.变式1.在点子图上画出轴对称图形。
例4.变式2.画出下面图形的另一半。
例4.变式3.在方格纸上画出轴对称图形。
(五)根据平移的方向和距离画平移后的图形(共4小题,每题3分,共计12分)例5.画一画。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称图形典型例题例1 如下图,已知,PB ⊥AB ,PC ⊥AC ,且PB =PC ,D 是AP 上一点.求证:∠BDP =∠CDP .证明:∵ PB ⊥AB ,PC ⊥AC ,且PB =PC ,∴ ∠PAB =∠PAC (到角两边距离相等的点在这个角平分线上),∵ ∠APB +∠PAB =90°,∠APC +∠PAC =90°,∴ ∠APB =∠APC ,在△PDB 和△PDC 中,⎪⎩⎪⎨⎧=∠=∠= PD PD APC APB PC PB .,, ∴ △PDB ≌△PDC (SAS ),∴ ∠BDP =∠CDP .(图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形的全等)注 利用角平分线定理的逆定理,可以通过距离相等直接得到角相等,而不用再证明两个三角形全等.例2 已知如下图(1),在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC .求证:∠A +∠C =180°.(1)证法一:过D 作DE ⊥AB 交BA 的延长线于E ,DF ⊥BC 于F ,∵ BD 平分∠ABC ,∴ DE =DF ,在Rt △EAD 和Rt △FCD 中, ⎩⎨⎧==.DF DE DC AD ,(角平分线是常见的对称轴,因此可以用轴对称的性质或全等三角形的性质来证明.) ∴ Rt △EAD ≌Rt △FCD (HL ),∴ ∠C =∠EAD ,∵ ∠EAD +∠BAD =180°,∴ ∠A +∠C =180°.证法二:如下图(2),在BC 上截取BE =AB ,连结DE ,证明△ABD ≌△EBD 可得.(2)证法三:如下图(3),延长BA 到E ,使BE =BC ,连结ED ,以下同证法二.(3)注 本题考察一个角平分线上的任意一点到角的两边距离相等的定理来证明线段相等,关键是掌握遇到角的平分线的辅助线的不同的添加方法.例3 已知,如下图,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .证法一:在DA 截取DN =DB ,连结NE 、NF ,则DN =DC ,在△BDE 和△NDE 中, ⎪⎩⎪⎨⎧=∠=∠=.DE DE NDE BDE ND BD ,,(遇到角平分线可以考虑利用轴对称的性质或全等三角形的性质来解题)∴ △BDE ≌△NDE (SAS ),∴ BE =NE (全等三角形对应边相等),同理可证:CF =NF ,在△EFN 中,EN +FN >EF (三角形两边之和大于第三边),∴ BE +CF >EF .证法二:延长ED 至M ,使DM =ED ,连结CM 、MF ,在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=.DM DE CDM BDE CD BD ,,(从另一个角度作辅助线)∴ △BDE ≌△NDE (SAS ),∴ CM =BE (全等三角形对应边相等),又∵ ∠BDE =∠A DE ,∠ADF =∠CDF ,而∠BDE +∠ADE +∠ADF +∠CDF =180°,∴ ∠ADE +∠ADF =90°,即∠EDF =90°,∴ ∠FDM =∠EDF =90°,在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=.DF DF MDF EDF MD ED ,,∴ △EDF ≌△MDF (SAS ),∴ EF =MF (全等三角形对应边相等),在△CMF 中,CF +CM >EF ,∴ BE +CF >EF .注 本题综合考察角平分线、中线的意义,关键是如何使题中的分散的条件集中.例4 已知,如下图,P 、Q 是△ABC 边BC 上的两点,且BP =PQ =QC =AP =AQ .求:∠BAC 的度数.解:∵ AP =PQ =AQ (已知),∴∠APQ=∠AQP=∠PAQ=60°(等边三角形三个角都是60°),∵AP=BP(已知),(注意观察图形和条件)∴∠PBA=∠PAB(等边对等角),∴∠APQ=∠PBA+∠PAB=60°(三角形的一个外角等于和它不相邻的两个内角和),∴∠PBA=∠PAB=30°,同理∠QAC=30°,∴∠BAC=∠BAP+∠PAQ+∠QAC=30°+60°+30°=120°.注本题考察等腰三角形、等边三角形的性质,关键是掌握求角的步骤:(1)利用等边对等角得到相等的角;(2)利用三角形的一个外角等于和它不相邻的两个内角和得各角之间的关系;(3)利用三角形内角和定理列方程.例5 已知,如下图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.求证:∠F=∠A.证明:∵AB=AC,∴∠B=∠ACB(等边对等角),∵EB=ED,∴∠B=∠EDB,∴∠ACB=∠EDB(等量代换),∴ED∥AC(同位角相等,两直线平行),在△BDE和△AED中,BE=AE=ED,连结AD可得,∠EAD=∠EDA,∠EBD=∠EDB,∠EDA+∠EDB=90°,即AD⊥BC,∴∠EDA+∠EDB=90°,即AD⊥BC,(用什么定理判定三角形全等的?)∴D为BC的中点,∴△BDE≌△CDF,∴∠BED=∠F,而∠BED=∠A,∴∠F=∠A.例6 已知,如下图,△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.求证:EF⊥BC.证法一:作BC边上的高AD,D为垂足,∵ AB =AC ,AD ⊥BC ,∴ ∠BAD =∠CAD(等腰三角形三线合一),又∵ ∠BAC =∠E +∠AFE ,∠AEF =∠AFE ,∴ ∠CAD =∠E ,∴ AD ∥EF ,∵ AD ⊥BC ,∴ EF ⊥BC .证法二:过A 作AG ⊥EF 于G ,∵ ∠AEF =∠AFE ,AG =AG ,∠AGE =∠AGF =90°,∴ △AGE ≌△AGF (ASA ),∵ AB =AC ,∴ ∠B =∠C ,又∠EAF =∠B +∠C ,(请对比多种证法的优劣)∴ ∠EAG +∠GAF =∠B +∠C ,∴ ∠EAG =∠C ,∴ AG ∥BC ,∵ AG ⊥EF ,∴ EF ⊥BC .证法三:过E 作EH ∥BC 交BA 的延长线于H ,∵ AB =AC ,∴ ∠B =∠C ,∴ ∠H =∠B =∠C =∠AEH ,∵ ∠AEF =∠AFE ,∠H +∠AFE +∠FEH =180°,∴ ∠H +∠AEH +∠AEF +∠AFE =180°,∴ ∠AEF +∠AEH =90°,即∠FEH =90°,∴ EF ⊥EH ,又EH ∥BC ,∴ EF ⊥BC .证法四:延长EF 交BC 于K ,∵ AB =AC ,∴ ∠B =∠C ,∴ ∠B =21(180°-∠BAC ),∵ ∠AEF =∠AFE ,∴ ∠AFE =21(180°-∠EAF ),∵ ∠BFK =∠AFE ,∴ ∠BFK =21(180°-∠EAF ),∴ ∠B +∠BFK =21(180°-∠BAC )+21(180°-∠EAF )∵ =21[360°-(∠EAF +∠BAC )],∴ ∠EAF +∠BAC =180°,∴ ∠B +∠BFK =90°,即∠FKB =90°,∴ EF ⊥BC .注 本题考察等腰三角形性质的应用,解题的关键是通过添加辅助线,建立EF 与BC 的联系,仔细体会以上各种不同的添加辅助线的方法.例7 如下图,AB =AC ,DB =DC ,P 是AD 上一点.求证:∠ABP =∠ACP .证明:连结BC ,∵ AB =AC (已知),∴ ∠ABC =∠ACB (等边对等角),又∵ 点A 、D 在线段BC 的垂直平分线上(与线段两个端点的距离相等的点在这条线段的垂直平分线上),而两点确定一条直线, ∴ AD 就是线段BC 的垂直平分线,∴ PB =PC (线段垂直平分线上的点到线段两个端点的距离相等),∴ ∠PBC =∠PCB (等边对等角),(线段垂直平分线的性质)∴ ∠ABC -∠PBC =∠ACB -∠PCB (等式性质),即∠ABP =∠ACP .注 本题若用三角形全等,至少需要证两次,现用线段垂直平分线的判定和性质,就显得比较简洁.例8 如下图,AB =AC ,DE 垂直平分AB 交AB 于D ,交AC 于E ,若△ABC 的周长为28,BC =8,求△BCE 的周长.解:∵ 等腰△ABC 的周长=28,BC =8,∴ 2AC +BC =28,∴ AC =10, (理由是什么?)∵ DE 垂直平分AB ,∴ AE =BE ,∴ △BCE 的周长=BE +EC +BC=AE +EC +BC=AC +BC =10+8=18.注 本题考察线段垂直平分线的性质定理的运用,关键是运用线段垂直平分线的性质得到线段的等量关系.例9 已知,如下图,△ABC 中,AB =AC ,∠BAC =120°,EF 为AB 的垂直平分线,EF 交BC 于F ,交AB 于E ,求证:FC BF 21=.证法一:连结AF ,则AF =BF ,∴ ∠B =∠FAB (等边对等角),∵ AB =AC ,∴ ∠B =∠C (等边对等角),∵ ∠BAC =120°, ∴ ∠B =∠C =302180=∠-BAC (三角形内角和定理),∴ ∠FAB =30°,∴ ∠FAC =∠BAC -∠FAB =120°-30°=90°,又∵ ∠C =30°,(线段的垂直平分线是常见的对称轴之一)∴ FC AF 21=(直角三角形中30°角所对的直角边等于斜边的一半),∴ FC BF 21=.证法二:连结AF,过A作AG∥EF交FC于G,∵EF为AB的垂直平分线,∴AF=BF,又∵∠B=30°,∴∠AFG=60°,∠BAG=90°,∴∠A G B=60°,△AFG为等边三角形,又∵∠C=30°,∴∠G AC=30°,∴AG=GC,(构造等边三角形是证明线段相等的一种好方法)∴BF=FG=GC=FC21.例10 已知,如下图,AB⊥BC,CD⊥BC,∠AMB=75°,∠DMC=45°,AM=MD.求证:AB=BC.思路分析从结论分析,要证AB=BC,可连结AC,使BC与AB能落在一个三角形内,再看∠BAC 与∠BCA能否相等?证明:连结AC,交DM于H,∵∠AMB=75°,∠DMC=45°(已知),∴∠AMD=60°(平角定义)又∵AM=MD,∴△AMD为等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AM=AD(等边三角形三边相等),∵CD⊥BC,∴∠DCM=90°,∵∠DMC=45°,∴∠MDC=45°(三角形内角和定理),∴CD=CM(等角对等边),∴AC是DM的垂直平分线(和线段两端点等距离的点,在线段的垂直平分线上),∴∠MHC=90°,∴∠HCM=45°,∵∠B=90°,∴∠BAC=45°,∴AB=BC(等角对等边).【典型热点考题】例1 如图7—15,等腰△ABC的对称轴与底边BC相交于点D,请回答下列问题:(1)AD是哪个角的平分线;(2)AD是哪条线段的垂直平分线;(3)有哪几条相等的边;(4)有哪几对相等的角.点悟:本题主要考查等腰三角形的所有特征.所以应该根据等腰三角形是轴对称图形的性质来解答问题.解:等腰三角形是轴对称图形,直线AD是它的对称轴.(1)AD是顶角∠BAC的平分线.(2)AD是线段BC的垂直平分线.(3)AB=AC,BD=DC.(4)∠BAD=∠CAD,∠ABC=∠ACB,∠ADB=∠ADC.例2 如图7—16,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上一点.求证:∠BDP =∠CDP.点悟:利用三角形全等证明两个角相等最直观,但因为图形具有明显的轴对称性,可以通过利用轴对称的性质而不用三角形全等同样可以,证明:∵ PB⊥AB,PC⊥AC,且PB=PC,∴ ∠PA B=∠PAC(到角两边距离相等的点在这个角的平分线上).∵ ∠APB+∠PAB=90°,∠APC+∠PAC=90°,∴ ∠APB=∠APC.在△PDB和△PDC中,⎪⎩⎪⎨⎧=∠=∠=PD PD APCAPB PC PB ∴ △PDB≌△PDC(SAS)∴ ∠BDP=∠CDP.例3 如图7—17,先找出下列各图形中的轴对称图形,再画出它们的对称轴(有几条,画几条).点悟:先确定是否是轴对称图形,如果是轴对称图形,就将它们的对称轴全部画出来. 解:(1)是,它有3条对称轴.(2)是,它有2条对称轴.(3)是,它有2条对称轴.(4)是,它只有一条对称轴.(5)它不是轴对称图形,故没有对称轴.(6)它是轴对称图形,有一条对称轴.图均略.例4 如图7—18,△ABC 中,AB =AC ,D 在BC 上,且BD =AD ,DC =AC ,将图中的等腰三角形全部写出来,并求出∠B 的度数.点悟:图中共有三个等腰三角形,要将它们一一写出来,不能遗漏.在计算∠B 的度数时,要充分利用三角形的一个外角等于它的两个不相邻的两个内角的和.解:图中共有三个等腰三角形,它们分别是:△ABC,△ABD,△CAD.设∠B=x ,则∠C=x =∠BAD,∠ADC=∠DAC=2x .∴ ∠B+∠C+∠BAC=∠B+∠C+∠BAD+∠DAC=x +x +x +2x =5x =180°∴ ︒=︒==∠365180x B .例5 如图7—19,在金水河的同一侧居住两个村庄A 、B .要从河边同一点修两条水渠到A 、B 两村浇灌蔬菜,问抽水站应修在金水河MN 何处两条水渠最短?点悟:先将具体问题抽象成数学模型.河流为直线MN ,在直线MN 的同一侧有A 、B 两点.在直线MN 上找一点P ,使P 点到A 、B 两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图7—19所示.作B 点关于直线MN 的对称点B′,连结AB′,与MN 相交于P ,则P 点即为所求.事实上,如果不是P 点而是P '点时,则连结B P 、P A ''和B P ''.由轴对称性知道,B P PB B P B P '=''=',,所以P '到A 、B 的距离之和,B P P A B P P A ''+'='+',而P 到A 、B 的距离之和B A B P AP PB AP '='+=+在'P B A '∆中,三角形两边之和大于第三边,B A B P P A '>''+'所以P 点即为所求的点.例6 如图7—20,已知,AD 为△ABC 的中线,且DE 平分∠BDA 交AB 于E ,DF 平分∠ADC 交AC 于F .求证:BE +CF >EF .点悟:遇到角平分线就可以考虑利用轴对称的性质或全等三角形的性质来解决问题. 证法一:在DA 上截取DN =DB .连结NE 、NF .则DN =DC .在△BDE 和△NDE 中, ⎪⎩⎪⎨⎧=∠=∠=,,,DE DE NDE BDE ND BD ∴ △BDE≌△NDE.∴ BE=NE .同理可得,CF =NF .在△EFN 中,EN +FN >EF(三角形两边之和大于第三边).∴ BE+CF >EF .证法二:如图7—21,延长DE 至M ,使DM =ED ,连结CM 、MF .在△BDE 和△CDM 中,⎪⎩⎪⎨⎧=∠=∠=,,,DM DE CDM BDE CD BD∴ △BDE≌△CDM(SAS).∴ CM=BE(全等三角形对应边相等)又∵ ∠BDE=∠ADE,∠ADF=∠CDF,而∠BDE+∠ADE+∠ADF+∠CDF=180°∴ ∠ADE+∠ADF=90°,即∠EDF=90°.∴ ∠FDM=∠EDF=90°.在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=,,,DF DF MDF EDF MD ED ∴ △EDF≌△MDF(SAS)∴ EF=MF(全等三角形对应边相等).在△CMF 中,CF +CM >MF ,∴ BE+CF >EF .点拨:本题综合考查角平分线,中线的意义,三角形全等及线段之间的等量关系,关键是要把题目中的已知条件集中巧妙应用.【易错例题分析】例 已知如图7—22,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分∠ABC.求证:∠A+∠C=180°.证法一:如图7—22,过D作DE⊥AB交BA的延长线于E,DF⊥BC于F.∵ BD平分∠ABC,∴ DE=DF在Rt△EAD和Rt△FCD中,∵ AD=DC,DE=DF,∴ Rt△EAD≌Rt△FCD(HL)∴ ∠C=∠EAD,∵ ∠EAD+∠BAD=180°,∴ ∠A+∠C=180°.证法二:如图7—23,在BC上截BE=AB,连结DE,证明△ABD≌△EBD可得.证法三:延长BA到E,使BE=BC,连结ED,以下同证法二,如图7—24.警示:本题直接加以证明则不可能,需要巧妙的添加适当的辅助线,不会添加辅助线或添加不适当的辅助线则是最常见的误区.本题是用一个角的平分线上任意一点到角的两边距离相等的定理来证明线段相等,添加辅助线的方法有多种情况,应该很好感悟尽快掌握.。