求函数值域(最值)的方法大全
函数值域的常见求法8大题型(解析版)
函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。
求函数最值的12种方法
求函数值域的12种方法一、常用函数的值域,这是求其他复杂函数值域的基础。
1.函数),0(R x k b kx y ∈≠+=的值域为R;2.二次函数),0(2R x a c bx ax y ∈≠++=当0>a 时值域是[ab ac 442-,+)∞,当0<a 时值域是(,-∞ab ac 442-];3.反比例函数)0,0(≠≠=x k xky的值域为}0|{≠y y ;4.指数函数),1,0(R x a a a y x ∈≠>=且的值域为+R ;5.对数函数x y a log =)0,1,0(>≠>x a a 且的值域为R;6.函数)( cos ,sin R x x y x y ∈==的值域为[-1,1];函数 ),2k (x tan Z k x y ∈+≠=ππ,cot xy =),(Z k k x ∈≠π的值域为R;7.对勾函数)0,0(≠>+=x a xa x y 的值域为),2[]2,(+∞⋃--∞a a ;8.形如)0,0(≠>-=x a xa x y 的值域为}0|{≠y y ;渐近线为y=x二、求值域的方法1.直接法(观察法)通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1求函数3422+-=x x y (x ∈[30,])的最值解:∵1)1(22+-=x y ,∴当3x =时,max y 1x 9==,时,min y =1.例2求函数323y x =+-的值域。
解:由算术平方根的性质,知23x -≥0,故323y x =+-≥3.∴函数的值域为)∞+,3[.2.反函数法求值域对于形如)0(≠++=a bax dcx y 的值域,用函数和它的反函数定义域和值域关系,通过求反函数的定义域从而得到原函数的值域。
例3求函数12x y x +=+的值域。
解:显然函数12x y x +=+的反函数为:121y x y -=-,其定义域为y≠1的实数,故函数y 的值域为{y ∣y≠1,y∈R}。
函数值域求法十一种
函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。
例如,求函数 $y=\frac{1}{x}$ 的值域。
解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。
2.配方法配方法是求二次函数值域最基本的方法之一。
例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。
解:将函数配方得:$y=(x+1)^2+2$。
由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。
故函数的值域是:$[2,4]$。
3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。
解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。
1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。
2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。
4.反函数法例如,求函数 $y=3x+4$ 的值域。
解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。
例13.求函数y sinx cosx的值域。
解:由三角函数的性质可知。
1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。
求值域的10种方法
求值域的10种方法值域是一个函数在定义域内所有可能的输出值的集合。
找到函数的值域通常是为了确定函数可能的取值范围,并且在数学和计算中都是非常重要的。
以下是求值域的10种方法:1.列举法列举法是最简单直接的方法。
通过观察函数的定义,给出一组有序的输出值,并将这些值组成一个集合。
这些值将构成函数的值域。
例如,对于函数f(x)=x^2,我们可以通过进行一系列的替换运算,然后给出输出值的集合{0,1,4,9,16,...}。
2.图像法在图像法中,我们首先绘制函数的图像,然后找到图像上所有纵坐标的值。
这些纵坐标的集合构成了函数的值域。
例如,对于函数f(x)=x^2,我们可以绘制一个抛物线形状的图像,然后观察所有纵坐标的值。
3.解析法解析法是通过使用代数表达式或方程来确定函数的值域。
例如,对于函数f(x)=x^2,我们可以使用代数方法将方程f(x)=y转化为x^2=y。
然后通过解这个方程,我们可以得到y可能的取值范围,即函数的值域。
4.图像逼近法在图像逼近法中,我们通过绘制函数的图像,并观察图像在最高和最低点之间所有可能的纵坐标值。
这些纵坐标的集合构成函数的值域。
5.猜测法猜测法是一种直觉方法,凭借对函数的直觉和理解猜测出其可能的取值范围。
这种方法通常需要一定的数学背景和经验,并且在实践中被广泛应用。
6.极值法在极值法中,我们通过找到函数的极大值和极小值来确定函数的值域。
极大值是函数图像的局部最高点,极小值是函数图像的局部最低点。
函数的值域就是极值点之间的所有可能的函数值。
7.夹逼法夹逼法是通过使用两个已知函数(夹逼函数)来夹住待求函数,然后确定待求函数的值域。
待求函数的值域将位于夹逼函数的值域之间。
8.对数法对数法是通过取函数的对数来确定函数的值域。
求函数的对数在一些问题中很有用,因为它可以将具有无穷大或无穷小解的问题转化为具有有限解的问题。
9.差集法差集法是通过找到函数定义域的补集,然后从全体实数集中去除差集的元素,得到函数的值域。
求函数的值域、最值的13种方法
⑦单调性法:先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种求解方
法在高考中是必考的,且多在解答题的某一问中出现.
⑧导数法:设函数 f(x)在区间[a,b]上连续,在区间(a,b)内可导,则 f(x)在[a,b]上的最
大值和最小值应为 f(x)在(a,b)内的各极值与 f(a),f(b)中的最大值和最小值.利用这种
方法二:(判别式法)由
1 y=x+ +1,得
x2+(1-y)x+1=0.
x
∵方程有实根,∴Δ=(1-y)2-4≥0.即(y-1)2≥4,∴y-1≤-2 或y-1≥2.得y≤-1 或y≥3.
1 (x+1)(x-1)
方法三:(导数法)令 y′=1- =
<0,得-1<x<0 或 0<x<1.
x2
x2
∴函数在(0,1)上递减,在(1,+∞)上递增,此时y≥3;函数在(-1,0)上递减,在(-∞,-1)上递增,
此时 y≤-1.∴y≤-1 或 y≥3.即函数值域为(-∞,-1]∪[3,+∞).
(4)方法一:(单调性法)定义域为{x|x≥-1},函数y=2x,y= 1+x均在[-1,+∞)上递增,
故 y≥2×(-1)+ 1+(-1)=-2.
方法二:(换元法)令 1+x=t,则 t≥0,且 x=t2-1.
∴y=2t2+t-2=2(t+1)2-17≥-2(t≥0).∴函数值域为[-2,+∞). 48
cx+d
2x+1 sinx+2
③反解法:适用于分子、分母只含有一次项的函数(即有理分式一次型),也可用于易反解出
自变量的函数类型.
④配方法:二次函数y=ax2+bx+c(a≠0)及二次型函数 y=a[f(x)]2+b[f(x)]+c(a≠0) ⑤换元法:换元法有两类,即代数换元和三角换元.如可用三角代换解决形如 a2+b2=1 及部
求函数值域的12种方法
求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
求函数最值的12种方法
求函数值域的方法大全函数的值域是指函数在定义域内所有可能的输出值的集合。
找到函数的值域可以帮助我们了解函数的整体走势和性质。
下面是一些常见的方法帮助我们求函数值域。
1.用图形法求值域:使用图形来观察函数的形状和趋势,根据图形的有界性和单调性来确定函数值域的范围。
例如,如果函数是上凸的,那么它的值域可能是从函数的最小值开始一直到正无穷大。
如果函数是下凸的,那么它的值域可能是从负无穷大到函数的最大值。
2.用定义法求值域:通过函数的定义式,将自变量的范围带入函数,计算函数的输出值,从而找到函数的可能取值。
例如,对于函数f(x)=x^2,我们可以把不同的x值代入函数中,并记录下函数的输出值,得到一个可能的值域的集合。
3.用反函数法求值域:如果函数具有反函数,可以通过求反函数的定义域来求原函数的值域。
例如,对于函数f(x)=x^2,它的反函数是f^(-1)(x)=√x,定义域为非负实数,因此原函数的值域也是非负实数。
4.用导数法求值域:对于给定范围内的函数,利用导数求得函数的驻点和拐点,结合函数的单调性和图像的形状来求值域。
例如,当函数的导数为零时,这些点可能是函数的最大值或最小值,通过比较这些点的对应函数值,可以确定函数的值域的上下界。
5.用极限法求值域:当函数的定义域是无界的时候,可以利用函数的极限来求值域。
通过求函数在正无穷大和负无穷大时的极限,可以确定函数的值域的上下界。
6.用解析法求值域:对于一些特定形式的函数,可以通过解析方法求值域。
例如,对于一次函数f(x)=ax+b,其中a和b为常数,如果a>0,则函数的值域是从负无穷大到正无穷大的实数集合。
7.用二次函数求值域:对于二次函数f(x)=ax^2+bx+c,其中a>0,可以通过将二次函数转化为顶点形式来求值域。
首先通过求导数找到二次函数的极值点(即顶点),然后结合函数的开口方向和顶点的y坐标,可以确定二次函数的值域。
8.用指数和对数函数求值域:对于指数函数f(x)=a^x和对数函数f(x)=log_a(x),其中a>0且a≠1,可以利用指数和对数函数的性质来求值域。
函数求值域15种方法
函数求值域15种方法方法一:对于已知函数,可以通过求函数的表达式来确定函数的值域。
例如对于f(x)=x^2+1需要求值域,可以将其表示为y=x^2+1,然后观察x和y的关系,可以得到y的值域为[1,+∞)。
方法二:对于一些简单的函数,可以使用数学知识来确定其值域。
例如对于 f(x) = sin(x),由于正弦函数的值域为[-1, 1],因此 f(x) 的值域也是[-1, 1]。
方法三:对于复合函数,可以通过将内部函数的值域代入外部函数中来确定整个函数的值域。
例如对于f(x)=√(x^2+1),内部函数g(x)=x^2+1的值域为[1,+∞),将值域代入外部函数,可以得到f(x)的值域也是[1,+∞)。
方法四:对于分段函数,可以分别求解不同区间上函数的值域,然后将这些值域合并得到整个函数的值域。
例如对于f(x)={x,x<0;x^2,x≥0},可以分别求解x<0和x≥0的情况,得到f(x)的值域为(-∞,0]∪[0,+∞)。
方法五:利用函数的奇偶性来确定函数的值域。
如果函数是奇函数,即f(-x)=-f(x),那么函数的值域关于原点对称;如果函数是偶函数,即f(-x)=f(x),那么函数的值域关于y轴对称。
根据函数的奇偶性可以推断出函数的值域。
方法六:利用函数的周期性来确定函数的值域。
如果函数有周期T,那么函数的值域在一个周期内是相同的。
可以通过观察函数的图像或者函数的性质来确定函数的周期,并进一步确定函数的值域。
方法七:利用函数的极限来确定函数的值域。
可以求函数在正无穷和负无穷的极限,根据极限的性质来确定函数的值域。
如果函数在正无穷的极限是一个确定的值,那么函数的值域是有界的;如果函数在正无穷的极限趋近于正无穷,那么函数的值域是无界的。
方法八:利用函数的导数来确定函数的值域。
可以求函数的导数,然后分析导函数的正负性和极值点,从而确定函数的值域。
如果导函数在一些区间内始终大于零,那么函数在该区间上是单调递增的,可以确定函数的值域;如果导函数在一些区间内始终小于零,那么函数在该区间上是单调递减的,可以确定函数的值域。
高中数学求函数值域解题方法大全
高中数学求函数值域解题方法大全高中数学求函数值域解题方法大全一、观察法:从自变量x的范围出发,推出y=f(x)的取值范围。
例1:求函数y=x+1的值域。
解析:由于x≥-1,所以x+1≥0,因此函数y=x+1的值域为[1,+∞)。
例2:求函数y=1/x的值域。
解析:显然函数的定义域为(-∞,0)∪(0,+∞),当x>0时,y>0;当x<0时,y<0.因此函数的值域是:例3:已知函数y=(x-1)-1,x∈{-1,1,2},求函数的值域。
解析:因为x∈{-1,1,2},而f(-1)=f(3)=3,f(2)=-1,f(1)=-∞,所以:y∈{-1,3}。
注意:求函数的值域时,不能忽视定义域,如果该题的定义域为x∈R,则函数的值域为{y|y≥-1}。
二、配方法:配方法式求“二次函数类”值域的基本方法。
形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法。
例1:求函数y=x2-2x+5,x∈[-1,2]的值域。
解析:将函数配方得:y=(x-1)2+4,当x=1∈[-1,2]时,y取得最小值4,当x=-1或x=2时,y取得最大值8,因此函数的值域是:[4,8]。
变式:已知f(x)=ax2+bx+c,其中a>0,且在区间[-1,1]内的最小值为1,求函数在[-2,2]上的最值。
解析:由已知,可得a>0,且f(x)在x=0处取得最小值1,即b=0.又因为在区间[-1,1]内的最小值为1,所以a≤4.将f(x)配方得:f(x)=a(x-1)2+1,当x=-2或x=2时,f(x)取得最大值5a+1;当x=1时,f(x)取得最小值1.因此,当a=4时,函数在[-2,2]上的最值分别为9和17.当a<4时,函数在[-2,2]上的最值分别为1和5a+1.三、其他方法:对于一些特殊的函数,可以采用其他方法求解。
例:已知函数f(x)=sinx+cosx,求函数的值域。
高一数学《函数的值域》的求法
高一数学《函数的值域》的求法函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点。
本文介绍高一数学中求函数值域的几种常见方法:1.直接法:从自变量$x$的范围出发,推出$y$的取值范围;2.二次函数法:利用换元法,将函数转化为二次函数求值域(或最值);3.反函数法:将求函数的值域转化为求它反函数的定义域;4.判别式法:使用方程思想,依据二次方程有实根,求出$y$的取值范围;5.单调性法:利用函数的单调性求值域;6.图象法:当一个函数图象可作时,通过图象可求其值域(或最值)。
例如,对于函数$y=x^2-2x-3$,我们可以通过以下几种方法求其值域:1.直接法:当$x=-1$时,$y=0$;当$x=0$时,$y=-3$;当$x=1$时,$y=-4$。
因此,所求值域为$\{0,-3,-4\}$。
2.二次函数法:将函数转化为$y=(x-1)^2-4$,然后求出最值。
当$y=-3$时,$y_{\max}=12$;当$x=1$时,$y_{\min}=-4$。
因此,所求值域为$[-4,12]$。
3.反函数法:将函数转化为$y=(x-1)^2-4\geq -4$。
因此,所求值域为$[-4,+\infty)$。
4.判别式法:将函数转化为$y=-x^2+2x+3$,然后求出判别式的取值范围。
由于判别式为$4-4\times (-1)\times 3=16>0$,因此$y$的取值范围为$(-\infty,-4]\cup [1,+\infty)$。
5.单调性法:当$x1$时,函数单调递增。
因此,所求值域为$[-4,+\infty)$。
6.图象法:函数$y=x^2-2x-3$的图象是一个开口向上的抛物线,顶点坐标为$(1,-4)$。
因此,所求值域为$[-4,+\infty)$。
除了以上这些方法,我们还可以通过改变$x$的范围来求函数的值域。
例如,将$x\in R$改为$x\in [-3,2]$或$x\in [-3,+\infty)$等。
求函数最值与值域的常用方法
ʏ甄新锋求函数的最值与值域是高中数学的重要内容㊂函数的值域就是全体函数值的集合,是由其定义域㊁对应法则共同决定的㊂求函数的最值与值域在解法上是相通的㊂下面举例分析,供同学们学习与参考㊂方法一:函数的单调性法例1 已知函数f (x )=a x +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),则g (a )的最大值为㊂函数f (x )=a -1a()x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,所以g (a )=f (0)=1a;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,所以g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1㊂由上可得函数g (a )=a ,0<a <1,1a,a ȡ1,{所以g (a )在(0,1)上为增函数,在[1,+ɕ)上为减函数㊂因为当a =1时,a =1a=1,所以当a =1时,g (a )取最大值为1㊂评注:利用单调性法求最值,先确定函数的单调性,再由单调性求最值㊂方法二:判别式法例2 设非零实数a ,b 满足a 2+b 2=4,若函数y =a x +bx 2+1存在最大值M 和最小值m ,则M -m =㊂由y =a x +bx 2+1,可得y x 2-a x +y -b =0,由题意知此方程有实根,所以Δ=a 2-4y (y -b )ȡ0,即4y 2-4yb -a 2ɤ0㊂因为a 2+b 2=4,所以4y 2-4y b +b 2-4ɤ0,即[2y -(b +2)][2y -(b -2)]ɤ0,解得b -22ɤy ɤb +22,所以m =b -22,M =b +22,可得M -m =2㊂评注:形如分子㊁分母的最高次数为二次的分式函数,可利用判别式法求函数的最值㊂方法三:二次函数的性质法例3 已知函数f (x )=4x 2-m x +1在(-ɕ,-2)上单调递减,在[-2,+ɕ)上单调递增,则f (x )在[1,2]上的值域为㊂因为f (x )在(-ɕ,-2)上单调递减,在[-2,+ɕ)上单调递增,所以函数f (x )=4x 2-m x +1的对称轴方程为x =m8=-2,可得m =-16㊂又[1,2]⊆[-2,+ɕ),且f (x )在[-2,+ɕ)上单调递增,所以f (x )在[1,2]上单调递增㊂所以当x =1时,f (x )取得最小值f (1)=4-m +1=21;当x =2时,f (x )取得最大值f (2)=16-2m +1=49㊂故f (x )在[1,2]上的值域为[21,49]㊂评注:二次函数y =a x 2+b x +c (a ʂ0),当a >0时,顶点为图像的最低点,即当x =-b2a 时,y 的值最小;当a <0时,顶点为图像的最高点,即当x =-b 2a时,y 的值最大㊂方法四:基本不等式法例4 已知幂函数f (x )的图像过点2,14(),则函数g (x )=f(x )+x 24的最小值为㊂设幂函数f (x )=xα,因为f (x )的图像过点2,14(),所以2α=14,解得α=-2,所以幂函数f (x )=x -2,其中x ʂ0㊂因为函数g (x )=f (x )+x24=1 数学部分㊃知识结构与拓展 高一使用 2022年1月Copyright ©博看网. All Rights Reserved.1x 2+x 24ȡ21x2㊃x 24=1,当且仅当x =ʃ2时 = 成立,所以函数g (x )取得最小值为1㊂评注:利用基本不等式求最值时,必须满足的三个条件:一正㊁二定㊁三相等㊂ 一正 就是各项必须为正数; 二定 就是要求和的最小值,必须把构成和的二项之积转化成定值,要求积的最大值,必须把构成积的因式的和转化成定值; 三相等 就是检验等号成立的条件,判断等号能否取到,只有等号能成立,才能利用基本不等式求最值㊂方法五:分离常数法例5 当-3ɤx ɤ-1时,函数y =5x -14x +2的最小值为㊂由函数y =5x -14x +2,可得y =54-74(2x +1)㊂因为-3ɤx ɤ-1,所以720ɤ-74(2x +1)ɤ74,所以85ɤy ɤ3㊂故所求函数的最小值为85㊂评注:求形如y =c x +d a x +b (a c ʂ0)的函数的值域或最值,常用分离常数法求解㊂方法六:反解法例6 函数y =1-|x |1+|x |的值域为㊂由函数y =1-|x |1+|x |,可得|x |=1-y 1+y ㊂因为|x |ȡ0,所以1-y 1+y ȡ0,所以-1<y ɤ1㊂故所求函数的值域(-1,1]㊂评注:反解法求函数的值域,先由已知函数式解出x ,再根据x 的取值范围列不等式求出值域㊂方法七:换元法例7 函数y =x +1-x 2的值域是㊂由1-x 2ȡ0得-1ɤx ɤ1㊂设x =c o s α,αɪ[0,π],则原函数等价于函数f (α)=c o s α+s i n α=2㊃s i n α+π4(),且α+π4ɪπ4,5π4[],所以s i n α+π4()ɪ-22,1éëêêùûúú㊂故所求函数的值域为[-1,2]㊂评注:求形如y =a x +b +(c x +d )(a c ʂ0)或y =a x +b ʃc 2-x 2(c ʂ0)的函数值域或最值,常用代数换元法或三角换元法,再结合函数的相关性质求解㊂方法八:绝对值不等式法例8 函数y =|x +1|+|x -3|的值域为㊂因为y =|x +1|+|x -3|ȡ|x +1+3-x |=4,所以此函数的值域为[4,+ɕ)㊂评注:含有绝对值的不等式的性质:|a |-|b |ɤ|a ʃb |ɤ|a |+|b |㊂方法九:数形结合法例9 函数f (x )=|x -1|+x 2的值域为㊂把函数f (x )化为分段函数求值域㊂函数f (x )=|x -1|+x 2=x 2+x -1,x ȡ1,x 2-x +1,x <1{=x +12()2-54,x ȡ1,x -12()2+34,x <1㊂ìîíïïïï作出分段函数f (x )的图像(图略)㊂由图知函数f (x )=|x -1|+x 2的值域为34,+ɕ[)㊂评注:数形结合法包含 以形助数 和 以数辅形 两个方面,其应用大致可以分为两种情形:一是借助于形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,如利用函数的图像来直观地说明函数的性质;二是借助于数的精确性和严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质㊂作者单位:浙江省绍兴市新昌县新昌技师学院大市聚校区(责任编辑 郭正华)11数学部分㊃知识结构与拓展高一使用 2022年1月Copyright ©博看网. All Rights Reserved.。
求函数值域的8种方法带例题
求函数值域的8种方法带例题嘿,伙计们!今天我们来聊聊一个很有趣的话题——求函数值域的8种方法。
你们知道吗,学习数学的时候,我们经常会遇到一些让我们头疼的问题,比如求一个函数的值域。
别着急,我今天就来教你们8种简单易懂的方法,让你轻松搞定这个难题。
我们来看第一种方法:观察法。
这种方法很简单,就是直接观察函数在哪些区间内取值。
比如,我们来看一个例子:求函数f(x) = x^2在区间[-1, 2]内的值域。
我们可以看到,当x = 0时,f(x) = 0;当x = 1时,f(x) = 1;当x = 2时,f(x) = 4。
所以,这个函数在这个区间内的值域是[0, 4]。
接下来,我们来看第二种方法:图像法。
这种方法需要用到一些图形工具,比如Excel或者Python的matplotlib库。
我们可以通过绘制函数的图像来直观地看到函数在哪些区间内取值。
比如,我们还是以f(x) = x^2为例。
我们可以在Excel中输入x和f(x)的值,然后通过“插入”->“散点图”功能绘制出函数图像。
从图像中,我们可以看出函数在[-1, 0]和[2, +\infty)内都单调递增,所以这两个区间都是函数的值域。
而在[0, 2]内,函数是先单调递减再单调递增的,所以这个区间也是函数的值域。
因此,这个函数的值域是[0, 4]。
第三种方法:分段法。
这种方法适用于那些在某个区间内单调递增或单调递减的函数。
比如,我们还是以f(x) = x^2为例。
我们可以发现,当x在[-1, 0]和[2, +\infty)内时,函数都是单调递增的;而当x在[0, 2]内时,函数是先单调递减再单调递增的。
所以,我们可以将这个问题分成两个子问题:求f(x)在区间[-1, 0]和[2, +\infty)内的值域;以及求f(x)在区间[0, 2]内的值域。
通过分段法,我们可以分别求出这两个子问题的解,然后将它们合并起来得到原问题的解。
因此,这个函数的值域是[0, 4]。
函数定义域值域求法(全十一种)
函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。
解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。
解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。
将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。
二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。
一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。
解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。
例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。
令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。
因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。
2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。
解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。
例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。
因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。
常见求值域的方法
常见求值域的方法在数学分析中,求值域是一项基础且重要的工作。
值域是指函数在一定定义域内所有可能输出值的集合。
掌握常见的求值域方法,对于深入理解和应用函数概念至关重要。
一、直接法直接法是求值域最直观的方法,适用于简单函数。
通过观察函数的图像或表达式,直接确定其值域。
例如,对于函数f(x) = x,由于其图像为开口向上的抛物线,故值域为[0, +∞)。
二、换元法换元法适用于复合函数求值域。
通过设变量t,将复合函数转化为关于t的一元函数,进而求出t的取值范围,最后得到原函数的值域。
例如,对于函数f(x) = sin(x),设t = sin(x),则t的取值范围为[-1, 1],因此f(x)的值域也为[-1, 1]。
三、单调性法单调性法适用于单调函数。
首先判断函数的单调性,然后根据单调性确定值域。
对于单调增函数,其值域为函数在定义域内的最小值与最大值;对于单调减函数,其值域为函数在定义域内的最大值与最小值。
四、不等式法不等式法适用于具有不等式表达式的函数。
通过构建不等式,求解不等式的解集,进而得到函数的值域。
例如,对于函数f(x) = (x + 1)/(x - 1),通过构建不等式(x + 1) ≤ (x - 1),解得x ≤ 0 或x ≥ 2,从而得到值域为(-∞, -1]∪ [1, +∞)。
五、导数法导数法适用于可导函数。
通过求导数,分析函数的极值和拐点,进而确定值域。
例如,对于函数f(x) = x - 3x,求导得到f"(x) = 3x - 3,令f"(x) = 0,解得x = ±1。
通过分析得知,当x = -1时,f(x)取得最大值2;当x = 1时,f(x)取得最小值-2。
因此,值域为[-2, 2]。
六、分段讨论法分段讨论法适用于分段函数。
对于不同定义域内的函数表达式,分别求值域,然后取并集得到最终的值域。
总结:掌握以上六种常见的求值域方法,可以帮助我们更好地理解和应用函数,为解决实际问题提供有力支持。
函数值域求法十五种
函数值域求法十五种在函数中,定义域和值域都起着重要的决定作用。
值域是由定义域和对应法则共同确定的。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位。
本文就函数值域求法归纳如下,供参考。
基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.常见的函数值域求解思路包括:⑴划归为几类常见函数,利用这些函数的图象和性质求解。
⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。
特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷可以用函数的单调性求值域。
⑸其他方法。
1.直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,可以求得函数的值域。
例1.求函数的值域。
解:显然函数的值域是:2.配方法配方法是求二次函数值域最基本的方法之一。
例2.求函数解:将函数配方得:当x=-1时。
的值域。
由二次函数的性质可知:当x=1时。
故函数的值域是:[4,8]3.判别式法例3.求函数解:两边平方整理得:解得:但此时的函数的定义域由由,仅保证关于x的方程:在实数集R有实根,而不能确定此函数的值域的范围。
可以采取如下方法进一步确定原函数的值域。
代入方程(1)解得:原函数的值域为:即当时,注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4.反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4.求函数值域。
解:由原函数式可得:则其反函数为。
其定义域为:故所求函数的值域为:函数有界性法:当求函数的值域困难时,可以利用已知的函数有界性来确定函数的值域。
常见函数的值域或最值的经典求法
ʏ陈升强函数的值域是函数的三要素之一,求函数的值域,关键是依据解析式的结构特征,选择合理的思维方法,常用的经典求法有:单调性法,配方法,分离常数法,基本不等式法和判别式法㊂下面归纳提炼之㊂方法1:配方法例1 定义在R 上的函数f (x )=(x +1)(x +2)(x +3)(x +4)的值域是㊂f (x )=(x +1)(x +2)(x +3)(x +4)=(x +1)(x +4)(x+2)(x +3)=(x 2+5x +4)(x 2+5x +6)=(x 2+5x )2+10(x 2+5x )+24=(x 2+5x +5)2-1㊂因为x 2+5x +5=x +522-54ȡ-54,所以(x 2+5x +5)2ȡ0,所以(x 2+5x +5)2-1ȡ-1,即函数f (x )的值域是[-1,+ɕ)㊂提炼:先利用变量之间的关系,将函数配方成关于整体变量的二次函数,注意整体变量的取值范围,再结合二次函数在区间上的图像与性质求出函数的值域㊂方法2:基本不等式法例2 (1)函数f (x )=xx 2+1的值域为( )㊂A.(-ɕ,-2]ɣ[2,+ɕ)B .(-ɕ,-1]ɣ[1,+ɕ)C .-ɕ,-12 ɣ12,+ɕD .-12,12(2)函数y =x 2+2x +2x +1的值域是㊂先合理分类,变形凑定值,再借助不等式求值域㊂(1)当x =0时,f (0)=0;当x >0时,0<f (x )=1x +1x ɤ12x ㊃1x =12,当且仅当x =1时等号成立,这时0<f (x )ɤ12;当x <0时,f (x )=xx 2+1<0,且f (x )=-1(-x )+1-xȡ-12(-x )㊃1-x=-12,当且仅当x =-1时等号成立,这时-12ɤf (x )<0㊂综上所述,此函数的值域为-12,12㊂应选D ㊂(2)函数y =x 2+2x +2x +1=(x +1)2+1x +1=(x +1)+1x +1㊂当x +1>0,即x >-1时,y =(x +1)+1x +1ȡ2,当且仅当x +1=1x +1,即x =0时等号成立;当x +1<0,即x <-1时,y =(x +1)+1x +1ɤ-2,当且仅当x +1=1x +1,即x =-2时等号成立㊂综上所述,此函数的值域为(-ɕ,-2]ɣ[2,+ɕ)㊂提炼:形如y =e x +fa x 2+b x +c或y =a x 2+b x +c e x +f的函数,先配凑成y =a x +bx 的形式,再利用基本不等式求最值,进而得到函数的值域㊂方法3:分离常数法,求分式类函数的值域例3 (1)函数y =1-x22+x2的值域是㊂(2)函数y =4x -2x +1的值域为㊂93经典题突破方法高一数学 2023年10月Copyright ©博看网. All Rights Reserved.(1)函数y=-(x2+2)+32+x2=-1+32+x2㊂因为2+x2ȡ2,所以0<32+x2ɤ32,所以-1<-1+32+x2ɤ12,所以函数y=1-x22+x2的值域是-1,12㊂(2)函数y=4x-2x+1=4x+4-4-2x+1=4x+4x+1-4+2x+1=4-4+2x+1㊂因为u=1x的值域为(-ɕ,0)ɣ(0,+ɕ),所以v=1x+1的值域为(-ɕ,0)ɣ(0,+ɕ),所以t=4+2x+1的值域为(-ɕ,0)ɣ(0,+ɕ),所以y=4x-2x+1的值域为(-ɕ,4)ɣ(4,+ɕ)㊂提炼:形如y=c x+da x+b的分式类函数,由c x+da x+b=ca(a x+b)+d-b c aa x+b=ca+d-b c aa x+b,结合x的取值范围,确定d-b c aa x+b的取值范围,从而确定原函数的值域㊂方法4:换元法例4函数f(x)=x2-1的定义域为[0,4],则函数y=f(x2)+[f(x)]2的值域为()㊂A.-12,992B.-12,24C.-12,4D.-12,4-22函数f(x)=x2-1的定义域为[0,4],在y=f(x2)+[f(x)]2中,由0ɤx2ɤ4,0ɤxɤ4,解得0ɤxɤ2,即y=f(x2)+[f(x)]2的定义域为[0,2]㊂令t=x2,则tɪ[0,4],所以y=f(x2)+[f(x)]2=x4-1+(x2-1)2=2x4-2x2,即y=2t2-2t=2t-122-12,tɪ[0,4]㊂当t=12时,y m i n=-12;当t=4时,y m a x=24㊂所以函数y=f(x2)+[f(x)]2的值域为-12,24㊂应选B㊂提炼:观察解析式的结构形式,当变量较多且相互关联时,选准一个整体变量为新元,得到一个新函数,求出新函数的值域即为原函数的值域㊂方法5:判别式法例5若函数f(x)=3x2+x+3x2+1的最大值为a,且最小值为b,则a+b=()㊂A.4B.6C.7D.8设函数y=3x2+x+3x2+1,则y x2+y=3x2+x+3,即方程(y-3)x2-x+y-3=0有实数根㊂当x=0时,y=3,满足有实数根;当yʂ3时,因为xɪR,所以(y-3)x2-x+y-3=0有实数根,所以Δ=1-4(y-3)2ȡ0,解得52ɤyɤ72,所以52ɤyɤ72且yʂ3㊂故此函数的最大值为72,最小值为52,其和为6㊂应选B㊂提炼:利用判别式法求函数的值域,常用于一些分式函数㊁无理函数等,使用此法要特别注意自变量的取值范围㊂函数y=2x+1-3x的值域是㊂提示:设t=1-3x(tȡ0),则x=1-t23,所以y=2(1-t2)3+t=-23t2-32t-1=-23t-342-2516㊂因为tȡ0,所以当t=34时,y取最大值2524,即yɤ2524,所以yɪ-ɕ,2524㊂作者单位:山东省垦利第一中学(责任编辑郭正华) 04经典题突破方法高一数学2023年10月Copyright©博看网. All Rights Reserved.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,ac b ⎡⎫-+∞⎢,当0a <时的值1. 例1、 例2、 故函数的值域是:[ -∞,2 ] 2 、配方法适用类型:二次函数或可化为二次函数的复合函数的题型。
配方法是求二次函数值域最基本的方法之一。
对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2x+5,x ∈[-1,2]的值域。
解:将函数配方得:y=(x-1)2+4, x ∈[-1,2], 由二次函数的性质可知:当x = 1时,y m in = 4 当x = - 1,时m ax y = 8 故函数的值域是:[ 4 ,8 ] 例 A 例解:21x x ++222x x x x -=++当2y -=当20y -≠时,x R ∈时,方程根.()()221420y y ∴=+-⨯-≥15y ∴≤≤且2y ≠.∴原函数的值域为[]1,5.例6、求函数y=x+)2(x x -的值域。
解:两边平方整理得:22x -2(y+1)x+y 2=0 (1)x ∈R ,∴△=4(y+1)2-8y≥0解得:1-2≤y≤1+2但此时的函数的定义域由x (2-x )≥0,得:0≤x≤2。
由△≥0,仅保证关于x 的方程:22x -2(y+1)x+y 2=0在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为[1,3]。
可以采取如下方法进一步确定原函数的值域。
4例y 5 、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
适用类型:一般用于三角函数型,即利用]1,1[cos ],1,1[sin -∈-∈x x 等。
例8、求函数y = 11+-x x e e 的值域。
解:由原函数式可得:xe =11-+y y xe >0,∴11-+y y >0 解得:- 1<y <1。
故所求函数的值域为( - 1 , 1 ) . 例即∵ 6 例例 解:令y 1=25-x ,2y =log31-x ,则 y 1, 2y 在[ 2, 10 ]上都是增函数。
所以y=y 1+2y 在[ 2 ,10 ]上是增函数。
当x = 2 时,y m in = 32-+log312-=81,当x = 10 时,m ax y =52+log39=33。
故所求函数的值域为:[81,33]。
例12、求函数y=1+x -1-x 的值域。
解:原函数可化为:y=112-++x x2 7 例 例 解:因1-2)1(+x ≥0 ,即2)1(+x ≤1 故可令x+1=cosβ,β∈[ 0 ,∏] 。
∴y=cosβ+1+B 2cos 1-=sinβ+cosβ+1 =2sin (β+∏/ 4 )+1 ∵0≤β≤∏,0 ≤β+∏/4≤5∏/4∴-22≤sin (β+∏/4)≤1 ∴0 ≤2sin (β+∏/4)+1≤1+2。
故所求函数的值域为[0,1+2]。
例15、求函数y=12243++-x x xx 的值域例 ∴当t=2时,m ax y =23+2,当t=22时,y=43+22故所求函数的值域为[43+22 ,23+2] 。
例17、求函数y=x+4+25x -的值域 解:由5-x≥0 ,可得∣x ∣≤5 故可令x =5cosβ,β∈[0,∏]y=5cosβ+4+5sinβ=10sin (β+∏/4)+ 4 ∵ 0 ≤β≤∏,∴∏/4≤β+∏/4≤5∏/4当β=∏/4时,m ax y =4+10,当β=∏时,y m in =4-5。
故所求函数的值域为:[4-5,4+10]。
8数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
适用类型:函数本身可和其几何意义相联系的函数类型. 例18、求函数y=)2(2-x +)8(2+x 的值域。
解:原函数可化简得:y=∣x-2∣+∣x+8∣上式可以看成数轴上点P (x )到定点A (2 ),B (- 8 )间的距离之和。
由上图可知:当点P 在线段AB 上时, y=∣x-2∣+∣x+8∣=∣AB ∣=10 当点P 在线段AB 的延长线或反向延长线上时, y=∣x-2∣+∣x+8∣>∣AB ∣=10 故所求函数的值域为:[10,+∞) 例19、求函数y=1362+-x x+542++x x的值域解:原函数可变形为:y=)20()3(22--+x +)10()2(22+++x上式可看成x 轴上的点P (x ,0)到两定点A (3,2),B (-2 ,-1 )的距离之和, 由图可知当点P为线段与x轴的交点时,y m in =∣AB ∣=)12()23(22+++=43,故所求函数的值域为[43,+∞)。
例20、求函数y=1362+-x x-542++x x的值域解:将函数变形为:y=)20()3(22--+x -)10()2(22-++x上式可看成定点A (3,2)到点P (x ,0 )的距离与定点B (-2,1)到点P (x ,0)的距离之差。
即:y=∣AP ∣-∣BP ∣由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点P1,则构成△ABP1,根据三角形两边之差小于第三边, 有∣∣AP1∣-∣BP1∣∣<∣AB ∣=)12()23(22-++=26即:-26<y <26(2)当点P 恰好为直线AB 与x 轴的交点时,有∣∣AP ∣-∣BP ∣∣= ∣AB ∣=26。
综上所述,可知函数的值域为:(-26,-26]。
注:由例17,18可知,求两距离之和时,要将函数式变形,使A ,B 两点在x 轴的两侧,而求两距离之差时,则要使两点A ,B 在x 轴的同侧。
如:例17的A ,B 两点坐标分别为:(3 ,2 ),(- 2 ,- 1 ),在x 轴的同侧; 例18的A ,B 两点坐标分别为:(3 ,2 ),(2 ,- 1 ),在x 轴的同侧。
例21、求函数xxy cos 2sin 3--=的值域.分析与解:看到该函数的形式,我们可联想到直线中已知两点求直线的斜率的公式1212x x y y k --=,将原函数视为定点(2,3)到动点)sin ,(cos x x 的斜率,又知动点)sin ,(cos x x 满足单位圆的方程,从而问题就转化为求点(2,3)到单位圆连线的斜率问题,作出图形观察易得的最值在直线和圆上点的连线和圆相切时取得,从而解得:]3326,3326[+-∈y 9例 例≤8(x sin2+x sin 2+2-x sin 2)=8[(x sin2+x sin 2+2-x sin 2)/3]3=2764当且当x sin2=2-2x sin 2,即当x sin 2=时,等号成立。
xB由y2≤2764,可得:-938≤y≤938 故原函数的值域为:[-938,938)。
例24、当0>x 时,求函数248)(xx x f +=的最值,并指出)(x f 取最值时x 的值。
分析与解:因为2244448)(x x x x f ++=+=可利用不等式33abc c b a ≥++即:f 例x a 10在(要求三次及三次以上的函数的最值,以及利用其他方法很难求的函数似的最值,通常都用该方法。
导数法往往就是最简便的方法,应该引起足够重视。
例26、求函数()32362f x x x x =-+-,[]1,1x ∈-的最大值和最小值。
解:()2'366f x x x =-+,令()'0f x =,方程无解.()2'366f x x x =-+()23130x =-+>∴函数()f x 在[]1,1x ∈-上是增函数.故当1x =-时,()()min 112f x f =-=-,当1x =时,()()max 12f x f == 例27、求函数221)(2++=x x x f 的最值. 解析:函数)(x f 是定义在一个开区间()∞+∞-,上的可导函数,令0)22(22)('2=+++-=x x x x ff 11、多种方法综合运用 例28、求函数y=32++x x 的值域 解:令t=2+x (t≥0),则x+3=2t +1(1)当t >0时,y=12+t t=t t /11+≤21,当且仅当t=1,即x=-1时取等号 所以0<y≤21。
(2)当t=0时,y=0。
综上所述,函数的值域为:[0,21]。
注:先换元,后用不等式法。
例x 43221++-+=-学生巩固练习1函数y =x 2+x1(x ≤-21)的值域是()A(-∞,-47] B [-47,+∞) C [2233,+∞) D(-∞,-3223]2函数y =x +x 21-的值域是() A(-∞,1]B(-∞,-1] C RD [1,+∞)3一批货物随17列货车从A 市以V 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于(20V )2千米,那么这批物资全部运到B 市,最快需要_________小时(不计货车的车身长)4设x 1、x 2为方程4x 2-4mx +m +2=0的两个实根,当m =_________时,x 12+x 22有最小值_________5某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R (x )=5x -21x 2(万元)(0≤x ≤5),其中x 是产品售出的数量(单位百台)(1)把利润表示为年产量的函数; (2)年产量多少时,企业所得的利润最大? (3)年产量多少时,企业才不亏本? 6已知函数f (x )=lg [(a 2-1)x 2+(a +1)x +1](1)若f (x )的定义域为(-∞,+∞),求实数a 的取值范围; (2)若f (x )的值域为(-∞,+∞),求实数a 的取值范围7某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台已知生产家电产品每台所需工时和每台产值如下表家电名称 空调器彩电冰箱工时产值(千元)432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)8在Rt △ABC 中,∠C =90°,以斜边AB 所在直线为轴将△ABC 旋转一周生成两个圆锥,设这两个圆锥的侧面积之积为S 1,△ABC 的内切圆面积为S 2,记ABCABC =x (1)求函数f (x )=21S S 的解析式并求f (x )的定义域 (2)求函数f (x )的最小值 参考答案1解析∵m 1=x 2在(-∞,-21)上是减函数,m 2=x 1在(-∞,-21)上是减函数,∴y =x 2+x1在x ∈(-∞,-21)上为减函数, ∴y =x 2+x1(x ≤-21)的值域为[-47,+∞)答案B2解析令x 21-=t (t ≥0),则x =212t -∵y =212t -+t =-21(t -1)2+1≤1∴值域为(-∞,1] 答案A 3解析t =V 400+16×(20V )2/V =V 400+40016V≥216=8 答案84解析由韦达定理知x 1+x 2=m ,x 1x 2=42+m , ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=m 2-22+m =(m -41)2-1617,又x 1,x 2为实根,∴Δ≥0∴m ≤-1或m ≥2,y =(m -41)2-1617在区间(-∞,1)上是减函数,在[2,+∞)上是增函数,又抛物线y 开口向上且以m =41为对称轴故m =1时,y min =21答案-1215解(1)利润y 是指生产数量x 的产品售出后的总收入R (x )与其总成本C (x )之差,由题意,当x ≤5时,产品能全部售出,当x >5时,只能销售500台,所以y =⎪⎩⎪⎨⎧>-≤≤--=⎪⎪⎩⎪⎪⎨⎧>+-⨯-⨯≤≤+--)1( 25.012)50(5.02175.4)5)(25.05.0()52155()50)(25.05.0(215222x x x x x x x x x x x (2)在0≤x ≤5时,y =-21x 2+475x -05,当x =-ab2=475(百台)时,y max =1078125(万元),当x >5(百台)时,y <12-025×5=1075(万元),所以当生产475台时,利润最大(3)要使企业不亏本,即要求⎩⎨⎧≥->⎪⎩⎪⎨⎧≥-+≤≤025.012505.075.421502x x x x x 或解得5≥x ≥475-5625.21≈01(百台)或5<x <48(百台)时,即企业年产量在10台到4800台之间时,企业不亏本6解(1)依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎪⎩⎪⎨⎧-<>-<>⎪⎩⎪⎨⎧<--+=∆>-13511,0)1(4)1(01222a a a a a a a 或或即, ∴a <-1或a >35又a =-1时,f (x )=0满足题意,a =1时不合题意 故a ≤-1或a >为35所求 (2)依题意只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f (x )的值域为R ,故有⎩⎨⎧≥∆>-0012a ,解得1<a ≤35,又当a 2-1=0即a =1时,t =2x +1符合题意而a =-1时不合题意,∴1≤a ≤35为所求 7解设每周生产空调器、彩电、冰箱分别为x 台、y 台、z 台,由题意得 x +y +z =360①120413121=++z y x②x >0,y >0,z ≥60③假定每周总产值为S 千元,则S =4x +3y +2z ,在限制条件①②③之下,为求目标函数S 的最大值,由①②消去z ,得y =360-3x④将④代入①得x +(360-3x )+z =360,∴z =2x ⑤ ∵z ≥60,∴x ≥30⑥再将④⑤代入S 中,得S =4x +3(360-3x )+2·2x ,即S =-x +1080 由条件⑥及上式知,当x =30时,产值S 最大,最大值为 S =-30+1080=1050(千元)得x =30分别代入④和⑤得y =360-90=270,z =2×30=60∴每周应生产空调器30台,彩电270台,冰箱60台,才能使产值最大,最大产值为1050千元8解(1)如图所示设BC =a ,CA =b ,AB =c ,则斜边AB 上的高h =cab, ∴S 1=πah +πbh =,2(),(22c b a S b a cab-+=+ππ, ∴f (x )=221)()(4c b a c b a ab S S -++=①又⎪⎩⎪⎨⎧-==+⇒⎪⎩⎪⎨⎧=+=+)1(222222x c ab cxb ac b a x c b a 代入①消c ,得f (x )=1)(22-+x x x在Rt △ABC 中,有a =c sin A ,b =c cos A (0<A <2π),则 x =c b a +=sin A +cos A =2sin(A +4π)∴1<x ≤2 (2)f (x )=]12)1[(21)(22-+-=-+x x x x x +6,设t =x -1,则t ∈(0,2-1),y =2(t +t2)+6在(0,2-1]上是减函数,∴当x =(2-1)+1=2时,f (x )的最小值为62+8abCBcA。