第六章--实数(知识点+知识点分类练习)

合集下载

期末复习第六章实数资料

期末复习第六章实数资料
一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有根,正数的平方根有个,并且互为数,0的平方根只有一个且为
9.一般来说,被开放数扩大(或缩小) 倍,算术平方根扩大(或缩小) 倍,例如 .
题型规律总结:
1、平方根是其本身的数是;算术平方根是其本身的数是和;立方根是其本身的数是和。
(5)应当要注意的是:带根号的数不一定是无理数,如: 等;无理数也不一定带根号,如:
(6)有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例4.(1)下列各数:①3.141、②0.33333……、③ 、④π、⑤ 、⑥ 、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。(填序号)
8. ________
10.使式子 有意义的条件是。
11.当 时, 有意义。
12.若 有意义,则 的取值范围是。
13.已知 ,则 的取值范围是。
14.当 时,

15.如果一个数的平方根为a+1和2a-7,这个数为________
16、— 的绝对值是;
17.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[ ]=1.现对72进行如下操作:
负分数____________________________
无理数____________________________
考点二:平方根、立方根、 的化简
1.判断下列说法是否正确
(1) 的算术平方根是-3;
(2) 的平方根是±15.

数学第六章 实数知识点及练习题含答案

数学第六章 实数知识点及练习题含答案
(4)请再写出一对符合条件的 “共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复).
二、填空题
11.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为 (其中k是使 为奇数的正整数),并且运算重复进行.例如:取n=26,则:
若 ,则第201次“F”运算的结果是.
12. 的立方根是___________.
13.写出一个3到4之间的无理数___.
14.若|x|=3,y2=4,且x>y,则x﹣y=_____.
A.1个B.2个C.3个D.4个
3.在0, 3.14159, , , , , 0.7, 中,无理数有几个()
A.2B.3C.4D.5
4.若a2=(-5)2,b3=(-5)3,则a+b的值是()
A.0或-10或10B.0或-10C.-10D.0
5.下列各式的值一定为正数的是()
A. B. C. D.
6.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )
10.有下列说法:
(1) 的算术平方根是4;
(2)绝对值等于它本身的数是非负数;
(3)某中学七年级有12个班,这里的12属于标号;
(4)实数和数轴上的点一一对应;
(5)一个有理数与一个无理数之积仍为无理数;
(6)如果 ≈5.34,那么5.335≤ <5.345,
其中说法正确的有()个
A.2B.3C.4D.5
请解答
(1) 的整数部分是______,小数部分是_______。

第六章 实数知识点及练习题及答案

第六章 实数知识点及练习题及答案

第六章 实数知识点及练习题及答案一、选择题1.已知4a ++(b ﹣3)2=0,则(a +b )2019等于( )A .1B .﹣1C .﹣2019D .20192.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( )A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()a a=④C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数. 3.下列结论正确的是( ) A .64的立方根是±4 B .﹣18没有立方根 C .立方根等于本身的数是0 D .327-=﹣3 4.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③过一点有且只有一条直线与这条直线平行;④邻补角是互补的角;⑤实数与数轴上的点一一对应. 其中正确的有( ) A .1个B .2个C .3个D .4个5.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会6.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( ) A .26B .65C .122D .1237.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个8.已知,x y 为实数且|1|10x y ++-=,则2012x y ⎛⎫⎪⎝⎭的值为( )A .0B .1C .-1D .20129.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个10.在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是2和﹣1,则点C 所对应的实数是( )A .12+B .22+C .221-D .221+二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______ 12.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.13.23(2)0y x --=,则y x -的平方根_________.14116的算术平方根为_______.15.比较大小:512-__________0.5.(填“>”“<”或“=”)16.规定用符号[]x表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____.17.已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++=_____.18.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O'点,那么O'点对应的数是______.你的理由是______.19.已知2(21)10a b++-=,则22004a b+=________.20.如图,数轴上的点A能与实数15,3,,22---对应的是_____________三、解答题21.观察下列三行数:(1)第①行的第n个数是_______(直接写出答案,n为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a,化简计算求值:(5a2-13a-1)-4(4-3a+54a2) 22.计算:(1)()()232018311216642⎛⎫-+-- ⎪⎝⎭(253532323.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a ba b a ba b a b->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小 ∵224-= << 则45<< ∴2240-=> ∴22>请根据上述方法解答以下问题:比较2-与3-的大小. 24.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a ﹣3的整数部分,b ﹣3的小数部分. (1)求a ,b 的值;(2)求(﹣a )3+(b +4)22=17.25.(1)计算:321|2(2)-++-;(2)若21x -的平方根为2±,21x y +-的立方根为2-,求2x y -的算术平方根.26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据非负数的性质,非负数的和为0,即每个数都为0,可求得a 、b 的值,代入所求式子即可. 【详解】根据题意得,a +4=0,b ﹣3=0,解得a =﹣4,b =3,∴(a +b )2019=(﹣4+3)2019=﹣1, 故选:B . 【点睛】本题考查了非负数的性质,以及-1的奇次方是-1,理解非负数的性质是解题关键.2.C解析:C 【解析】 【分析】根据定义依次计算判定即可. 【详解】解:A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、a ④=21111()a a a a a a a a a÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确; 故选:C . 【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.3.D解析:D 【分析】利用立方根的定义及求法分别判断后即可确定正确的选项. 【详解】解:A 、64的立方根是4,原说法错误,故这个选项不符合题意; B 、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意; C 、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D =﹣3,原说法正确,故这个选项符合题意; 故选:D . 【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.4.B解析:B【分析】利用无理数的概念,邻补角、平方根与立方根的定义、实数与数轴的关系,两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】①无理数是无限不循环小数,正确;②平方根与立方根相等的数只有0,故错误;③在同一平面内,过一点有且只有一条直线与这条直线平行,故错误;④邻补角是相等的角,故错误;⑤实数与数轴上的点一一对应,正确.所以,正确的命题有2个,故选B.【点睛】本题考查了命题与定理的知识,解题的关键是能够了解无理数、平方根与立方根的定义、两直线的位置关系等知识,难度不大.5.A解析:A【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的.【详解】翻转1次后,点B所对应的数为1,翻转2次后,点C所对应的数为2翻转3次后,点A所对应的数为3翻转4次后,点B所对应的数为4经过观察得出:每3次翻转为一个循环÷=∵20193673∴数2019对应的点跟3一样,为点A.故选:A.【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.B解析:B【分析】依照题意分别求出a l=26,n2=8,a2=65,n3=11,a3=122,n4=5,a4=26…然后依次循环,从而求出结果.【详解】解:∵n1=5,a l=52+1=26,n2=8,a2=82+1=65,n3=11,a3=112+1=122,n 4=5,…,a 4=52+1=26… ∵20183=6722÷∴20182=65=a a . 故选:B . 【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题.7.B解析:B 【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可. 【详解】 ①正确;②在两直线平行的条件下,内错角相等,②错误; ③正确;④反例:两个无理数π和-π,和是0,④错误; ⑤坐标平面内的点与有序数对是一一对应的,正确; 故选:B . 【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.8.B解析:B 【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可. 【详解】 由题意,得 x+1=0,y-1=0, 解得:x=-1,y=1,所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1,故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.9.D解析:D利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.10.D解析:D【分析】设点C所对应的实数是x,根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【详解】设点C所对应的实数是x.则有x﹣(﹣1),解得+1.故选D.【点睛】本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.二、填空题11..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.12.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.13.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】 解:,且, ∴y -3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.14.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可.. 【详解】 ∵,,∴的算术平方根为; 故答案为:. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可..14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.15.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5. 故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.16.-3先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】17.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.18.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.19.【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b−1=0,∴a=,b=1,∴,故答案为:.【点睛】本题考查了非负数解析:5 4【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。

七年级下册数学第六章 实数知识点

七年级下册数学第六章 实数知识点

第六章实数一、知识定义:1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2. 如果ax=2,则x叫做a的平方根,记作“±a”(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数(即和为0);0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

3,则x叫做a的立方根,记作“3a”(a称为被开方数)。

5. 如果ax=6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如5025==.,5250010.平方表与立方根:(自行完成)1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

20a≥0。

3、公式:⑴(a≥0a取任何数)。

4、区分(a≥0),与2a=a5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

6、判断无理数的三种形式:(1)开方开不尽的数(2)无限不循环小数,(3)含有 的数如有侵权请联系告知删除,感谢你们的配合!31949 7CCD 糍40432 9DF0 鷰38731 974B 靋r25420 634C 捌30332 767C 發38284 958C 閌36052 8CD4 賔36860 8FFC 迼21933 55AD 喭2221848 5558 啘39986 9C32 鰲。

七年级初一数学第六章 实数知识点及练习题及解析(1)

七年级初一数学第六章 实数知识点及练习题及解析(1)

七年级初一数学第六章 实数知识点及练习题及解析(1)一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a --B .201911a a --C .20181a a-D .20191a -2.3164的算术平方根是( ) A .12 B .14C .18D .12±3.下列结论正确的是( ) A .无限小数都是无理数 B .无理数都是无限小数 C .带根号的数都是无理数 D .实数包括正实数、负实数4.若一个正方形边长为a ,面积为3,即23a =,可知a 是无理数,它的大小在下列哪两个数之间( ) A .1.5 1.6a <<B .1.6 1.7a <<C .1.7 1.8a <<D .1.8 1.9a <<5.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C .42=±D .()515-=-6.在如图所示的数轴上,,AB AC A B =,两点对应的实数分别是3和1,-则点C 所对应的实数是( )A .13+B .23+C .231-D .231+7.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B8.在3.14,237,2-,327,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个9.若一个数的平方根与它的立方根完全相同.则这个数是()A .1B .1-C .0D .10±, 10.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( )A .4B .3C .2D .0二、填空题11.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.12.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.13.若()2320m n ++-=,则m n 的值为 ____.14.如果一个有理数a 的平方等于9,那么a 的立方等于_____.15.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 16.一个正数的平方根是21x -和2x -,则x 的值为_______.17.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.18.写出一个大于3且小于4的无理数:___________.19.将2π,933-272这三个数按从小到大的顺序用“<”连接________. 20.202044.9444≈⋯20214.21267≈⋯20.2(精确到0.01)≈__________.三、解答题21.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; …(1)你发现的规律是_________________.(用含n 的式子表示; (2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭22.(1)观察下列式子: ①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立;(2)求01220192222++++的个位数字.23.阅读下列解题过程:(12====;(2== 请回答下列问题:(1)观察上面解题过程,的结果为__________________.(2)利用上面所提供的解法,请化简: ......24.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:… (1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____; (3)请利用上述规律计算:20+21+22+23+…+2100. 25.观察下列解题过程: 计算231001555...5+++++ 解:设231001555...5S =+++++① 则23410155555....5S =+++++② 由-②①得101451S =-101514S -∴= 即10123100511555 (5)4-+++++= 用学到的方法计算:2320191222...2+++++26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】首先根据题意,设M=1+a+a 2+a 3+a 4+…+a 2014,求出aM 的值是多少,然后求出aM-M 的值,即可求出M 的值,据此求出1+a+a 2+a 3+a 4+…+a 2019的值是多少即可. 【详解】∵M=1+a+a 2+a 3+a 4+…+a 2018①, ∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②, ②-①,可得aM-M=a 2019-1, 即(a-1)M=a 2019-1,∴M=201911a a --. 故选:B. 【点睛】考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.2.A解析:A 【分析】【详解】14,12=. 故选:A . 【点睛】此题主要考查了立方根的性质、算术平方根的性质和应用,要熟练掌握,解答此题的关键. 3.B解析:B 【分析】利用无理数,实数的性质判断即可. 【详解】A 、无限小数不一定是无理数,错误;B 、无理数都是无限小数,正确;C 、带根号的数不一定是无理数,错误;D 、实数包括正实数,0,负实数,错误, 故选:B . 【点睛】考核知识点:实数.理解实数的分类是关键.4.C解析:C 【分析】分别计算出1.5、1.6、1.7、1.8、1.9的平方,然后与3进行比较,即可得出a 的范围. 【详解】解:∵222221.52.25,1.6 2.56,1.7 2.89,1.83.24,1.9 3.61===== 又2.89<3<3.24 ∴1.7 1.8a << 故选:C. 【点睛】此题主要考查了估算无理数的大小,利用平方法是解题关键.5.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.6.D解析:D【分析】根据线段中点的性质,可得答案.【详解】∵,A,∴C,故选:D.【点睛】此题考查实数与数轴,利用线段中点的性质得出AC的长是解题关键.7.B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B解析:B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】3.14,237,π中无理数有:,π,共计2个. 故选B.【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.C解析:C 【详解】任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0, 故选C .10.A解析:A 【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案. 【详解】∵一个正数的两个平方根互为相反数, ∴3a+1+a+11=0,a=-3, ∴3a+1=-8,a+11=8 ∴这个数为64,所以,这个数的立方根为:4. 故答案为:4. 【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.二、填空题11.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数. 故 解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数p . 故答案为:p . 【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.12.0 【分析】由数轴可知,,则,即可化简算术平方根求值. 【详解】解:由数轴可知,, 则, ,故答案为:0. 【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.解析:0 【分析】由数轴可知,0b c a <<<,则0,0a b b c +<-<,即可化简算术平方根求值. 【详解】解:由数轴可知,0b c a <<<, 则0,0a b b c +<-<,||()()0c a a b c b c a a b c b c =-+++-=--++-=,故答案为:0. 【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.13.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.14.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 15.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵11120.52222-=-=20-> , ∴202> , ∴10.52> ,故答案为>.16.-1 【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可. 【详解】解:∵一个正数的平方根是2x-1和2-x , ∴2x-1+2-x=0, 解得:x=-1. 故答案为:-解析:-1 【分析】根据“一个正数有两个平方根,这两个平方根互为相反数”列出方程求解即可. 【详解】解:∵一个正数的平方根是2x-1和2-x , ∴2x-1+2-x=0, 解得:x=-1. 故答案为:-1. 【点睛】本题主要考查的是平方根的性质以及解一元一次方程,熟练掌握平方根的性质是解题的关键.17.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案. 【详解】解:=8,=2,2的算术平方根是, 故答案为:. 【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.18.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.19.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解解析:3<2π 【分析】的值,再比较各数大小即可. 【详解】3=33=22=32-=32, ∵π>3>2,∴22<32<2π,即3<2π,<2π 【点睛】本题考查实数的大小比较,正确化简得出3的值是解题关键. 20.50【分析】根据算术平方根小数点移动的规律解答.【详解】 ∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.三、解答题21.(1)111111n n n n -⨯=-+++;(2)20172018- 【分析】 (1)由已知的等式得出第n 个式子为111111n n n n -⨯=-+++; (2)根据规律将原式中的积拆成和的形式,运算即可. 【详解】(1)∵第1个式子为111122-⨯=-+第2个式子为11112323-⨯=-+ 第3个式子为11113434-⨯=-+ ……∴第n 个式子为111111n n n n -⨯=-+++ 故答案为:111111n n n n -⨯=-+++ (2)由(1)知:原式1111111(1)()()()2233420172018=-++-++-++⋅⋅⋅+-+ 112018=-+20172018=- 【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.22.(1)11222n n n ---=,理由见解析;(2)01220192222++++的个位数字为5.【分析】(1)找规律,发现等式满足11222n n n ---=,证明,即可.(2)利用公式11222n n n ---=,分别表示每个项,利用相消法,计算结果,即可.【详解】(1)11222n n n ---=理由是:122n n -- 11122n n +--=-11222n n --=⨯-()1212n -=-⨯12n -=(2)原式=()()()()1021322020201922222222-+-+-++-2020022=-()505421=-505161=-因为6的任何整数次幂的个位数字为6.所以505161-的个位数字为5,即01220192222++++的个位数字为5.【点睛】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.23.(1-2)9【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【详解】==解:(1(2......==-1+10=9【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键.24.24-23=16-8=23 24﹣23=16﹣8=23 2n﹣2(n﹣1)═2(n﹣1)【解析】试题分析:(1)根据已知规律写出④即可.(2)根据已知规律写出n个等式,利用提公因式法即可证明规律的正确性.(3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;得出以下:④24-23=16-8=23,(2)①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;④24-23=16-8=23;得出第n个等式:2n-2(n-1)=2(n-1);证明:2n-2(n-1),=2(n-1)×(2-1),=2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.∴20+21+22+23+…+2100=2101-1.25.22020−1【分析】根据题目提供的求解方法进行计算即可得解.【详解】设S =2320191222...2+++++①则2S =2+22+23+…+22019+22020,②②−①得,S =(2+22+23+…+22019+22020)-(2320191222...2+++++)=22020−1 即2320191222...2+++++=22020−1.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,读懂题目信息,理解并掌握求解方法是解题的关键.26.(1)12;(2)-4;(3)2--或14-【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a 、b 的值,根据两点间的距离,可得答案;(2)根据A 和B 所对应的数,可得AB 中点所表示的数,即为点P 所表示的数; (3)根据题意可以得到c 的值,然后利用分类讨论的方法即可求得点P 对应的数.【详解】解:(1)∵2110|2|02ab a ⎛⎫++-= ⎪⎝⎭, ∴11002ab +=,20a -=, 解得:a=2,b=-10,∴A 、B 之间的距离为:2-(-10)=12;(2)∵P 到A 和B 的距离相等,∴此时点P 所对应的数为:()21042+-=-;(3)∵|ac|=-ac ,a=2>0,∴c <0,又|AC|=∴c=2-BC=12-∵2PB PC =,①P 在BC 之间时,点P 表示(2101223-+⨯-=--②P 在C 点右边时,点P 表示(1021214-+⨯-=-∴点P 表示的数为:2--或14-【点睛】本题主要考查数轴上的点与绝对值的关系和平方与绝对值的非负性,另外此题有一个易错点,第(3)题中,要注意距离与数轴上的点的区别.。

(完整版)第六章实数知识点总结

(完整版)第六章实数知识点总结

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。

3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a的算术平方根,记作“a”。

(2)a(a≥0)的平方根的符号表达为。

(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a a a它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型

七年级下册人教版数学第六章实数知识要点及经典题型
实数知识要点:
1. 整数与有理数的关系:整数包含了有理数的全部内容,即整数是有理数的一种特殊形式。

2. 无理数:不能表示为两个整数的比的数,无理数是一类不是有理数的实数。

3. 实数的分类:实数可以分为有理数和无理数两种。

4. 实数的四则运算法则:实数的加减、乘除运算满足相应的运算法则。

5. 整式的运算:根据四则运算法则,对整式进行加减乘除运算。

6. 实数的比较:对于任意两个实数a和b,有以下三种情况:
a>b,a=b,a<b。

7. 绝对值的定义:实数a的绝对值表示为|a|,定义为a的值和
0的距离,即|a|=a(a≥0),|a|=-a(a<0)。

经典题型:
例1:计算下列各式的值:a) -3+5; b) 4-(-7); c) -2×3.
解答:
a) -3+5 = 5-3 = 2
b) 4-(-7) = 4+7 = 11
c) -2×3 = -6
例2:比较大小:a) -5和-3;b) -3和4-7.
解答:
a) -5<-3
b) -3<4-7,即-3<-3,两个数比较大小结果相同。

例3:计算下列各式的绝对值:a) |5|; b) |-7|; c) |-3+4|.
解答:
a) |5| = 5
b) |-7| = 7
c) |-3+4| = |1| = 1。

部编人教版七年级数学下册第六章实数(知识点归纳+达标检测)

部编人教版七年级数学下册第六章实数(知识点归纳+达标检测)

第六章实数(知识点归纳+达标检测)6.1.1平方根【我会学】自学教材40页,回答问题:1. 一般地,如果一个___ 数x的平方等于a,即2x=a,那么这个______叫做a的_________.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:______的算术平方根是0. 记作0=2.由以上定义可知如果2x=a,那么x就叫a的算术平方根吗?判断下列语句是否正确?①5是25的算术平方根()②-6是36的算术平方根()③0.01是0.1的算术平方根()④-5是-25的算术平方根()3.3的算术平方根可表示为,4的算术平方根可表示为,你还能表示出那些数的算术平方根?写在下面,和同座交流一下4.试一试:你能根据等式:212=144说出144的算术平方根是多少吗?并用等式表示出来.(巩固学生自学的成果,加深学生对算术平方根的定义的理解,加强对表示方法的训练)【我们来交流】思考:-4有算术算术平方根吗?为什么?总结:1.正数有的算术平方根0的算术平方根是负数【检测】1.求下列各数的算术平方根:(1)100;(2) ;(3) 0.0001 ;⑷ 0;2.课本p41练习和习题6.1第1、2题3.配套练习册。

【小结与反思】1.算术平方根的定义、表示方法和性质。

2.求一个非负数的算术平方根。

3.a 的双重非负性.6.1.2平方根【我会学】1、算术平方根的意义及表示方法。

2、说出下列各数的算术平方根。

100 0049.0 25 42 25【我们来交流】某同学用一张正方形纸片折小船,但他手头上没有现成的正方形纸片,于是他撕下一张作业本上的纸,按照如图,沿AE 对折使点B 落在点F 的位置上,•再把多余部分FECD 剪下,如果他事先量得矩形ABCD 的面积为90cm 2,又测量剪下的多余的矩形纸片的面积为F E D CB A40cm2.•请根据上述条件算出剪出的正方形纸片的边长是多少厘米.(到底它为多少呢?它是一个小数吗?你有什么办法确定这个值呢?由这一系列问题进入这节课要讨论的问题.)【活动1】怎样用两个面积为1的正方形拼成一个面积为2的大正方形动手画一画,若确实不会,则学生间进行交流。

(完整版)第六章实数知识点总结

(完整版)第六章实数知识点总结

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类r正有理制j「有理数齐零卜有限'卜数和王限1ft环小数宴埶斗L-员有理锁」厂正形里數-1J无理針 y 卜无隔羽厨环4魁L煲无理数」2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如.7,32等;(2)有特定意义的数,如圆周率n或化简后含有n的数,如n +8等;3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60。

等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如°「16是有理数,而不是无理数。

3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即厂二,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果疋二农,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

如果二-;,那么x叫做a的立方根。

2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a的算术平方根,记作“.、可”。

(2)a(a>0)的平方根的符号表达为 'l,r: r ' ' o(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式a (石『=立(2。

) =\^ |=' 0—謹口=_並(注慧:遣说明三次根号内的员号可以移到根号外面讣4、开方规律小结(1)若a> 0,则a的平方根是、a, a的算术平方根' a;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;10的平方根和算术平方根都是0 ;23负数没有平方根。

第六章 实数知识点-+典型题含答案

第六章 实数知识点-+典型题含答案

第六章 实数知识点-+典型题含答案一、选择题1.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则7×6!的值为( )A .42!B .7!C .6!D .6×7!2.下列结论正确的是( )A .无限小数都是无理数B .无理数都是无限小数C .带根号的数都是无理数D .实数包括正实数、负实数3.将不大于实数a 的最大整数记为[]a ,则33⎡⎤-=⎣⎦( )A .3-B .2-C .1-D .04.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( )A .26B .65C .122D .1235.下列说法正确的是( )A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0 C .27的平方根是7 D .负数有一个平方根6.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上7.有下列说法:①在1和22,3一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②8.2a+b b-4=0,则a +b 的值为( ) A .﹣2 B .﹣1C .0D .2 9.若a 、b 为实数,且满足|a -2|2b -0,则b -a 的值为( )A .2B .0C .-2D .以上都不对10.7和6- )A .76-B .67-C .76+D .(76)-+二、填空题11.若()221210a b c -+++-=,则a b c ++=__________.12.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15*+=____13.一个数的立方等于它本身,这个数是__.14.已知72m =-,则m 的相反数是________.15.27的立方根为 . 16.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.17.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____.18.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.19.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________20.0.050.55507.071≈≈≈≈,按此规500_____________三、解答题21.观察下列各式﹣1×12=﹣1+12 ﹣1123⨯=﹣11+23﹣1134⨯=﹣11+34 (1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯). 22.2是无理数,而无理是无限不循环小数,因2212的小数部分,事2的整数部分是1,将这个数减去其整数部2的小数部分,又例如:∵232273<<,即273<<7的整数部分为2,小数部分为)72。

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析

七年级初一数学第六章 实数知识归纳总结附解析一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( )A .M N <B .M N >C .MND .M N ≥2.设记号*表示求,a b 算术平均数的运算,即*2a ba b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22aa b c b c +=+ A .①②③ B .①②④C .①③④D .②④3.2-是( ) A .负有理数B .正有理数C .自然数D .无理数 4.已知无理数7-2,估计它的值( ) A .小于1B .大于1C .等于1D .小于05.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 6.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直 A .0个B .1个C .2个D .3个7.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒8.在实数227,042中,是无理数的是( )A .227B .0C .﹣4D .29.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是±4,用式子表示是164=±.⑤若a ≥0,则2()a a =,其中错误的有( )A .1个B .2个C .3个D .4个 10.已知(﹣25)2的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10B .0或﹣10C .±10D .0二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号). 12.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 13.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 142(2)-的平方根是 _______ ;38a 的立方根是 __________. 15.已知72m =,则m 的相反数是________.16.49的平方根是________,算术平方根是______,-8的立方根是_____.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____.18.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 19.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.20.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.三、解答题21.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________. (2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果. 22.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3+=-a b a 的值.解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,是无理数,所以a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-ab .问题:设x 、y 都是有理数,且满足2210x y -+=+x+y 的值. 23.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; . 请选择其中一个立方根写出猜想、验证过程。

第六章--实数(知识点+知识点分类练习)

第六章--实数(知识点+知识点分类练习)

【知识要点】被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如.25 5, 2500 50.一、算数平方根算数平方根的定义:一般的,如果一个非负数x的平方等于a,即x2=a ,(a>0),那么这个非负数x叫做a的算术平方根。

a的算术平方根记为谄,读作“根号a”,a叫做被开方数。

求一个正数a的平方根的运算叫做开平方。

1.0的算术平方根是02. 被开方数越大,对应的算术平方根也越大(对所有正数都成立)。

3. 一个正数如果有平方根,那么必定有两个,它们互为相反数。

显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

4. 负数在实数系内不能开平方。

二、平方根平方根的定义:如果一个数x的平方等于a ,即x2=a,那么这个数x就叫做a的平方根,求一个数a的平方根的运算,叫做开平方。

平方根的性质:一个正数有2个平方根,它们互为相反数,其中正的平方根就是这个数的算数平方根;0只有1个平方根,它是0;负数没有平方根。

开平方:求一个数a的平方根的运算,叫做开平方。

三、立方根立方根的定义:如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根或三次方根,求一个数的立方根的运算叫做开立方,a的立方根记为鴛读作“三次根号a”,其中a是被开方数。

立方根的性质:每个数a都只有1个立方根。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

四、实数1. 无理数的定义:无限不循环小数叫做无理数。

2. 实数的定义:有理数和无理数统称实数。

3. 实数的分类:整数宀拓有理数八”有限小数或无限循环小数 实数 分数无理数无限不循环小数像有理数一样,无理数也有正负之分。

例如2 ,3 3 , 是正无理数, 2, 3 3, 是负无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:4. 实数与数轴上的点的对应关系:实数与数轴上的点是 -- 对应的。

5. 有关概念:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的意义相同。

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点
实数是数学中非常重要的一个概念,其涉及到数学中的各个领域。

在七年级下册的第六章中,我们主要学习了实数的相关知识。

1. 实数的概念
实数是指所有可以表示成有限小数、无限循环小数或无限不循环小数的数。

简单来说,实数包括整数、分数、小数、无理数等。

2. 实数的分类
根据实数的性质,可以将实数分为有理数和无理数两类。

有理数是可以表示成分数形式的实数,包括整数、分数和循环小数。

无理数是不能表示成分数形式的实数,例如根号2、π等。

3. 实数的运算
实数的运算包括加、减、乘、除四种基本运算。

对于任意两个实数a和b,它们的和、差、积、商分别为:
a+b,a-b,ab,a÷b(b≠0)
此外还有实数的乘方运算,即a的n次方(n为正整数),表示a 连乘n次的结果。

4. 实数的比较
实数之间可以进行大小比较。

对于任意两个实数a和b,若a>b,则a称为大于b,b称为小于a。

若a=b,则a与b相等。

若a<b,则a称为小于b,b称为大于a。

5. 实数的表示
实数可以用数轴上的点表示。

数轴是一条直线,上面的每个点都
与一个实数一一对应。

数轴上的原点表示0,向右表示正数,向左表示负数。

以上就是七年级下册第六章实数的相关知识点。

实数是数学中非常基础的概念,掌握好实数的相关知识对于后续的学习非常重要。

七年级初一数学 第六章 实数知识点-+典型题及解析

七年级初一数学 第六章 实数知识点-+典型题及解析
①a*2=2*a②(-2)*a=a*(-2)③(2*a)*3=2*(a*3)④0*a=a
A.①③B.①②③C.①②③④D.①②④
7.估计 的值在()
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
8.实数 的大小关系是( )
A. B.
C. D.
9.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )
15.a※b是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x的值是_____.
16.按下面的程序计算:
若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________.
④若a*b=b*a,则有3a-b=3b-a,
化简得a=b,
故④正确;
正确的有②④,
故选:B
【点睛】
本题考查了含有乘方的有理数的混合运算,熟练掌握计算法则是解题关键.
12.若 ,则mn的值为____.
13.观察下列算式:
① = + =16+4=20;
② = + =40+4=44;…
根据以上规律计算: =__________
14.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.
4.C

人教版七年级数学下册第6章 实数 知识点归纳及强化练习

人教版七年级数学下册第6章 实数 知识点归纳及强化练习

)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数实数知识点归纳及强化练习一,知识点归纳1.实数的分类(1)按实数的定义分类:(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.实数的运算(1)有理数的运算定律在实数范围内都适用,其中常用的运算定律有加法交换律、乘法交换律、加法结合律、乘法分配律、乘法结合律。

(2)在实数范围内进行运算的顺序:先算乘方、开方,再算乘除,最后算加减。

运算中有括号的,先算括号内的,同一级运算从左到右依次进行。

3、实数的大小比较常用方法:数轴表示法、作差法、平方法、估值法。

(1)在数轴上表示两个数的点,右边的点表示的数大,左边的点表示的数小。

(2)正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对值大的较小。

(3)设a ,b 是任意两实数,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b 。

二、数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。

(2)数轴的三要素为原点、正方向和单位长度。

数轴上的点与实数一一对应,所有的有理数都可以用数轴上的点表示,但数轴上的点所表示的不都是有理数。

三、相反数、倒数、绝对值1、只有符号不同的两个实数,其中一个叫做另一个的相反数。

零的相反数是零。

若实数a 、b 互为相反数,则a+b=0。

2、1除以一个非零实数的商叫这个实数的倒数。

第六章--实数知识点

第六章--实数知识点

第六章实数6.1平方根1.算术平方根如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

规定0的算术平方根是0.非负数a的算术平方根,记作“a”,读作根号a,被开方数a≥0注:算术平方根具有非负性;被开方数越大,对应的算术平方根也越大。

2.平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

正数的平方根有两个(正的平方根是它的算术平方根),它们互为相反数,0的平方根是0;负数没有平方根。

非负数a的平方根,记做“a”,读作正、负根号a。

其中a≥03.开平方:求一个数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(可用来检验开平方是否正确)6.2立方根1.立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

立方根具有唯一性。

a的立方根,用表示,其中a是被开方数(任意数),3是根指数,不可省略。

读作三次根号a.注意平方根与立方根的区别。

2.开立方:求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

谁的立方等于被开方数,就等于谁。

3.运算公式6.3实数1.无理数:无限不循环小数。

特点:①数位无限②不循环③小数④不能写成分数形式例如:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8等;3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)2.实数的分类有理数和无理数统称实数。

也可按正、负分,分为正实数和负实数。

3.实数与数轴的关系:实数与数轴的点是一一对应。

数轴上任何一个点都表示一个实数。

4.实数的性质及简单的实数运算有理数的一些概念,如倒数、相反数、绝对值等,在实数范围内仍然不变。

第六章实数练习题-(7套含答案)

第六章实数练习题-(7套含答案)

第六章实数1一选择题1.4的平方根是()A.B.C.D.2.下列命题中,正确的个数有()①;②的平方根是;③的平方根是.A. 个B. 个C. 个D. 个3.的平方根是()A.B.C.D.4.若是的算术平方根,则为()A.B.C.D.5.下列各数中,没有算术平方根的是()A.B.C.D.6.若,则的值是()A.B.C.D.7.化简得().A.B.C.D.8.若是的平方根,则等于()A.B.C. 或D. 或9.如果一个有理数的平方根和立方根相同,那么这个数是()A.B.C.D. 和10.下列说法不正确的是()A. 的平方根是B. 正数的两个平方根的积为负数C. 存在立方根和平方根相等的数D. 是的平方根,即二填空题11.,,.12.因为,所以的立方根是_______,记作____________.13.的立方根是.14.估算:(结果精确到).15.用计算器求的值为(结果精确到).16.若实数,满足,则.17.表示,表示,表示.18.的算术平方根为_______.三解答题19.已知,求的算术平方根.20.求下列各数的算术平方根:(1) 49;(2) 0.25;(3) ;(4) .21.解方程:.第六章实数1 参考答案与解析一、选择题1.B2.B3.A4.A5.B6.B7.B8.C9.B 10.A二、填空题11. 3 3 2 12.12123181213.-4 14.5.1 15.6.70 16.-117.7的算术平方根7的负的平方根7的平方根18.1 2三、解答题19.解:∵,∴x-8=0,y-17=0,∴x=8,y=17,∴x+y=8+17=25.∵25的算术平方根是5,∴x+y的算术平方根是5.20.解:(1) 49的算术平方根是7. (2) 0.25的算术平方根是0.5.(3) 的算术平方根是49. (4) =169,它的算术平方根是43.21.解:方程可化为x³=1258,由立方根的定义知,x=52.第六章实数2一选择题1.下列各式中,正确的是()A.B.C.D.2.的算术平方根是()A.B.C.D.3.的算数平方根是()A.B.C.D.4.一个正数的平方根为和,则这个正数为()A.B.C.D.5.有下列说法:①是的平方根;②是的算术平方根;③的平方根是;④的平方根是;⑤没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A. 个B. 个C. 个D. 个6.下列计算正确的是()A. 的平方根是B. 的平方根是C. 是的算术平方根D. 是的算术平方根7.的平方根是()A.B.C.D.8.已知≈7.35,则的算术平方根的近似值是()A.B.C.D.9.已知数轴上,对应的实数为,,化简代数式()A.B.C.D.10.若1a +(b-2)²=0,则ab的值等于()A.B.C.D.11.若,则的值为()A.B.C.D.12.下列四个数中的负数是()A.B.C.D.二填空题13.已知:一个正数的两个平方根分别是和,则的值是.14.如图,矩形内有两个面积分别是和的正方形,则图中阴影部分的面积是.15.若是的一个平方根,则的平方根是.16.一个自然数的算术平方根是,则相邻的下一个自然数的算术平方根是______.三解答题17.已知9的算术平方根是a,b的算术平方根它本身,求a-b的值.18.若,求的平方根及的值.19.若2a-1与-a+2都是正数的平方根,求的值和这个正数的值.第六章实数2 参考答案与解析一、选择题1.C2.B3.C4.B5.C6.B7.C8.C9.C 10.A 11.B 12.D二、填空题a13.2 14.2 15.±7 16.21三、解答题17.解:∵9的算术平方根是a,b的算术平方根它本身,∴a=3,b=1或0,∴a+b=3+1=4或3+0=3.18.解:∵,3a-b=0,b-1=0,c-3=0,∴a=2,b=1,c=3,∴a+b=2+1=3,则a+b的平方根是±3.19.解:∵2a-1与-a+2都是正数的平方根,∴分两种情况:①2a-1=-a+2,∴a=1,∴2a-1=2×1-1=1,则x=1²=1;②2a-1+(-a+2)=0,∴a=-1,∴2a-1=2×(-1)-1=-3,则x=(-3)²=9.第六章实数3一选择题1.64的立方根是( )A .4B .±4C .8D .±82.化简:38=( )A .±2B .-2C .2D .2 23.若一个数的立方根是-3,则该数为( )A .-33B .-27C .±33D .±274.3-8等于( )A .2B .2 3C .-12D .-2 5.下列结论正确的是( )A .64的立方根是±4B .-18没有立方根 C .立方根等于本身的数是0 D.3-216=-32166.下列计算正确的是( ) A.30.012 5=0.5 B.3-2764=34 C.3338=112 D .-3-8125=-257.下列说法正确的是( )A .如果一个数的立方根是这个数本身,那么这个数一定是0B .一个数的立方根不是正数就是负数C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0二 填空题8.-64的立方根是 ,-13是 的立方根. 9.若3a =-7,则a = . 10.-338的立方根是 . 11.若x -1是125的立方根,则x -7的立方根是 .三 解答题12.求下列各式的值:(1)3-1 000; (2)-3-64; (3)-3729+3512;(4)30.027-31-124125+3-0.001.13.比较下列各数的大小:与3; (2)与-3.4.14.求下列各式中的x :(1)64x 3+1=0;(2)(x +3)3+27=0.15.将一个体积为0.216 m ³的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.16.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?第六章 实数3 参考答案与解析一、选择题1.A2.C3.B4.D5.D6.C7.D二、填空题8.-4 127- 9.-343 10.32- 11.-1三、解答题12.解:(1)原式=-10. (2)原式=4.(3)原式=-9+8=-1. (4)原式=0.3-15-0.1=-0.2.13.解:(1.(2)∵()33.4=39.304<42<-3.4.14.解:(1)方程可化为x ³=164-,由立方根的定义知,x=14-. (2)方程可化为(x+3)³=-27,由立方根的定义知,x+3=-3,解得x=-6.15.,则小立方体铝块的棱长为12×0.6=0.3(m),则每个小立方体铝块的表面积为6×0.3×0.3=0.54(m ²).16.解:由题意知,V=43πr 3 =13.5,∴≈1.5. 答:这个球罐的半径r 为1.5米.第六章 实数4一 选择题1.16的平方根是( )A.4B.-4C.±4D.±22.立方根等于3的数是( )A.9B.9±C.27D.27±3.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个4.下列各式中,正确的是( ) A.2)2(2-=- B.332=- C.393-=- D. 39±=± 5.估计76 的大小应在( )A.7~8之间B.8.0~8.5之间C. 8.5~9.0之间D. 9.0~9.5之间6.下列计算中,正确的是( ) A.23+32=55 B.(3+7)·10=10·10=10C.(3+23)(3-23)=-3D.(b a +2)(b a +2)=2a +b二 填空题7.的相反数是 ;绝对值是 .8.下列各数:12,0.32,π,-7220.01020304…中是无理数的有_____________.9.11; 32.10.利用计算器计算:142.3≈ ;382≈ (结果保留4个有效数字).11.一个正数x 的平方根是2a -3与5-a ,则a 的值为____________.12.绝对值小于7的整数有____________.三 解答题13.求下列各式中未知数x 的值.(1)216250x -=; (2)()318x -=.14.用铁皮制成一个封闭的正方体,它的体积是1.331立方米,需要多大面积的铁皮才能制成?15.观察:========第六章实数4 参考答案与解析一、选择题1.C2.C3.B4.D5.C6.C二、填空题8.0.01020304…9.<>10.1.773 4.344 11.-2 12.0,±1,±2三、解答题13.解:(1)方程可化为x²=2516,由平方根的定义知,x=54±.(2)由立方根的定义知,x-1=2,解得x=3.14.米),则正方体的表面积为6×1.1×1.1=7.26(平方米).答:这个正方体需要面积为7.26平方米的铁皮才能制成.15.=====第六章实数5一选择题1.81的平方根等于()A.9B.±9C.3D.±32.下列说法正确是( )A.不存在最小的实数B.有理数是有限小数C.无限小数都是无理数D.带根号的数都是无理数3.下列计算正确的是( )A .16=±4B .32-22=1C .24÷6=4D .6+26=364.若m 是9的平方根,n=(3)2,则m ,n 的关系是( )A.m=nB.m=-nC.m=±nD.|m |≠|n |5.已知34.913=1.7,3a =0.17,则a 的值为( )A.0.4913B.0.04913C.0.004913D.0.0004913二 填空题6.请你任意写出三个无理数: ;7.满足32<<-x 的整数是 .8.化简449⨯得9.若031=-++y x ,则x=________,y=________.10.观察下列式子,根据你得到的规律回答:=3;= 33;=333;…….请你说出的值是 .三 解答题11.计算:122323+-+-.12.若xy=-2,x -y=52-1,求2xy-x+y-1的值.13.已知2a -1的平方根是±3,3a+b -1的平方根是±4,求a+2b 的平方根.14.(1)计算____32=,____7.02=,____)6(2=-,____)21(2=-,____)28.0(2=-,____02=; (2)根据(1)中的计算结果可知,2a 一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来;(3)利用上述规律计算:2)14.3(π-= .第六章 实数5 参考答案与解析一、选择题1.D2.B3.D4.C5.C二、填空题6.7.-1,0,1 8.48 9.-1,3 10.33…3(n位数)三、解答题11. 解:原式121-=.12.解:∵xy=-2,x-y=52-1,∴2xy-x+y-1=-22-(52-1)-1=-32.13.解:∵2a-1的平方根是±3,3a+b-1的平方根是±4,,∴2a-1=9,3a+b-1=16,∴a=5,b=2,则a+2b=5+2×2=9,其平方根为±3.14.解:(1)3 0.7 6 120.28 0(2)2a不一定等于a.规律:2a等于a的绝对值.(3)π-3.14第六章实数6一选择题1.下列数中:﹣8,2.7,0.66666…,0,2,9.181181118…是无理数的有()A.0个B.1个C.2个D.3个2.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句正确的是()A.9的平方根是﹣3B.﹣7是﹣49的平方根C.﹣15是225的平方根D.(﹣4)2的平方根是﹣44.的立方根是( )A.-1B.OC.1D. ±15.下列各数中,与数最接近的数是().A.4.99B.2.4C.2.5 D .2.36.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.的立方根是()A.2B. 2C.8D.-88.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.已知实数x,y满足,则x-y等于()A.3B.-3C.1D.-110.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上11.若,则估计的值所在的范围是()A. B. C. D.12.若5+++|2b+6|=0,则=()a bA.﹣1B.1C.D.二填空题625的平方根是.14.一个数的平方根和它的立方根相等,则这个数是.15.己知,则 1.004004=________.16.若某数的平方根为a+3和2a-15,则这个数是.17.已知|a+1|+=0,则a﹣b=.18.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.三解答题19.计算:(1);(2);(3)20.求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.21.实数a,b在数轴上的位置如图所示,请化简:.22.设a.b为实数,且=0,求a2﹣的值.23.3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,求2x+y﹣5z的值.24.设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.第六章实数6 参考答案与解析一、选择题1.B2.C3.C4.C5.D6.A7.A8.B9.A 10.A 11.A 12.A二、填空题13.5 14.0 15.1.002 16.49 17.-9 18.①②④三、解答题19.解:(1)原式=-1+4+2×3=9.(2)原式=9+(-4)-225=5-15=-10.(3)原式=3+(-5)+2-3=-3.20.解:(1)方程可化为(2y﹣3)2=64,由平方根的定义知,2y-3=8或2y-3=-8,解得y=5.5或y=-2.5.(2)方程可化为(x+1)³=2764,由立方根的定义知x+1=34,解得x=14.21.解:由数轴知,a<0<b,|a|<|b|,∴a-b<0,b+a>0,∴原式=b-a+a-(b+a)=-a.22.解:∵=0,∴2,b=2,∴原式2)²22+2+2²=2-2+2+4=6.23.解:∵3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,∴2x-1=9,y=2,x=±9,∴x=5. 当z=9时,2x+y-5z=2×5+2-5×9=-33.当z=-9时,2x+y-5z=2×5+2-5×(-9)=67.24.解:∵26<3,∴4<6<5.∵6的整数部分和小数部分分别是x,y,∴x=4,66-2.则x-1=4-1=33第六章实数7一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 3 C.π D.-3225( )A.5B.±5C.5D.±53.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.下列说法中,正确的个数是( )①-64的立方根是-4;②49的算术平方根是±7;③的立方根为;④的一个平方根.A.1个B.2个C.3个D.4个5.在-1.732,2,π,3.,2+3,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.下列无理数中,在-2与1之间的是( )A.-5B.-3C.3D.57.下列说法中正确的是()A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=y,则x yD.若a为实数,则a2≥08.若0<x<1,则x,x2,1x,x中,最小的数是( )A.xB.1 xC.xD.x29.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.已知:|a|=5,=7,且|a+b|=a+b,则a-b的值为( )A.2或12B.2或-12C.-2或12D.-2或-12二、填空题(每小题4分,共28分)11.按键顺序是“,1,9,6,=”,则计算器上显示的数是.12.若x的立方根是14,则x=.13.计算:-2+-|-2|=.14.如果互为相反数,那么x2+y=.15.比较大小:-23-0.02;3.16.若|x-3|=7,则x=.17.计算:|3-π|+的结果是.三、解答题(共62分)18.(8分)将下列各数填在相应的集合里.,π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0),0,,--,,.有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.19.计算:(1)|1-|+||+|-2|+|2-|;(2)(-2)3×.20.(8分)实数a,b在数轴上的位置如图所示,化简:|a-b|-.21.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.22.(10分)利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64; (2)(2x-1)3=-8.23.(10分)如图是一个体积为25 cm3的长方体工件,其中a,b,c分别表示的是它的长、宽、高,且a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到0.1 ).24.(10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.第六章实数7 参考答案与解析一、选择题1.B2.D3.A4.C5.D6.B7.D8.D9.C 10.D二、填空题11.4 12.164-13.1 14.7 15.<>37+3717.1三、解答题18. 有理数集合:{,3.141 592 6,-0.456,0,,…}.无理数集合:{π,-,,3.030 030 003…(每两个3之间依次多1个0)…}.正实数集合:{,π,3.141 592 6,3.030 030 003…(每两个3之间依次多1个0),,,…}.整数集合:{,0,…}.19. 解:(1)原式=2132235251-+-+-+-=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.20.解:由数轴知,b<0<a,∴a-b>0,∴原式=a-b-a=-b.21.解:根据题意得3a-b=0,a2-49=0且a+7>0,解得a=7,b=21.∵16<21<25,∴4<<5,∴的整数部分是4,小数部分是-4.22.解:(1)(x-3)2=649,则x-3=±83.∴x=±83+3,即x=173,或x=13.(2)2x-1=-2,∴x=-1 2 .23.解:由题意,设a=2x cm,b=x cm,c=3x cm.工件的体积为2x·x·3x=25,所以x3=,所以x=,所以工件的表面积为2ab+2ac+2bc=4x2+12x2+6x2=22x2=22×≈57.0(cm2).答:这个工件的表面积约为57.0 cm2.24.解:可以看出小张错在把“某个数的算术平方根”当成“这个数本身”.当m=4时,这个数的算术平方根为2m-6=2>0,则这个数为22=4,故(3)错误;当m=83时,这个数的算术平方根为2m-6=2×83-6=-23<0(舍去),故(5)错误;综上可得,这个数为4,故(6)错误.所以小张错在(3)(5)(6).。

新人教版七年级下册数学第六章实数知识点总结及阶梯练习

新人教版七年级下册数学第六章实数知识点总结及阶梯练习

第六章实数考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如…等;(4)某些三角函数,如sin60o等(这类在初三会出现)π判断一个数是否是无理数,不能只看形式,要看运算结果,如03、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a 的立方根。

2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a的算术平方根,记作“a”。

(2)a(a≥0)的平方根的符号表达为。

(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。

(3)正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数。

考点三、实数的性质有理数的一些概念,如倒数、相反数、绝对值等,在实数范围内仍然不变。

初中数学第六章 实数知识点-+典型题附解析

初中数学第六章 实数知识点-+典型题附解析

初中数学第六章实数知识点-+典型题附解析一、选择题1.在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1 B.2 C.3 D.42.下列数中π、227,﹣3,3343,3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是()A.1个B.2个C.3个D.4个3.下列各数是无理数的为()A.-5 B.πC.4.12112 D.0 4.若|x-2|+3y+=0,则xy的值为()A.8 B.2 C.-6 D.±2 5.下列各式正确的是( )A.164=±B.1116493=C.164-=-D.164=6.估算381-的值()A.在6和7之间B.在5和6之间C.在4和5之间D.在7和8之间7.下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A.4个B.3个C.2个D.1个8.如图,数轴上,A B两点表示的数分别为1,2--,点B关于点A的对称点为点C,则点C所表示的数是()A.12B21C.22D229.在实数227-911π38中,无理数的个数是()A.1个B.2个C.3个D.4个10.已知一个正数的两个平方根分别是3a+1和a+11,这个数的立方根为()A.4 B.3 C.2 D.0二、填空题11.如图,按照程序图计算,当输入正整数x时,输出的结果是161,则输入的x的值可能是__________.12.如果一个有理数a 的平方等于9,那么a 的立方等于_____.13.写出一个3到4之间的无理数____.14.观察下列各式: 123415⨯⨯⨯+=; 2345111⨯⨯⨯+=; 3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.15.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.17.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.18.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 19.34330035.12=30.3512x =-,则x =_____________.20.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式253a 2b 3a 3=+,求a ,b 的值. 解:因为253a 2b 3a 3-=+ 所以()253a 2b a 33=-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17--=-x y +的值.22.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1…… (1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.23.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:10=100=,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数.第二步:∵59319的个位数是9,39729=∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39.(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2=__________.24.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++25.是无理数,而无理是无限不循环小数,因1的小数部分,事的整数部分是1,将这个数减去其整数部的小数部分,又例如:∵23223<<,即23<<的整数部分为2,小数部分为)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如.25 5, 2500 50.一、算数平方根算数平方根的定义:一般的,如果一个非负数x的平方等于a,即x2=a ,(a>0),那么这个非负数x叫做a的算术平方根。

a的算术平方根记为谄,读作“根号a”,a叫做被开方数。

求一个正数a的平方根的运算叫做开平方。

1.0的算术平方根是02. 被开方数越大,对应的算术平方根也越大(对所有正数都成立)。

3. 一个正数如果有平方根,那么必定有两个,它们互为相反数。

显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

4. 负数在实数系内不能开平方。

二、平方根平方根的定义:如果一个数x的平方等于a ,即x2=a,那么这个数x就叫做a的平方根,求一个数a的平方根的运算,叫做开平方。

平方根的性质:一个正数有2个平方根,它们互为相反数,其中正的平方根就是这个数的算数平方根;0只有1个平方根,它是0;负数没有平方根。

开平方:求一个数a的平方根的运算,叫做开平方。

三、立方根立方根的定义:如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根或三次方根,求一个数的立方根的运算叫做开立方,a的立方根记为鴛读作“三次根号a”,其中a是被开方数。

立方根的性质:每个数a都只有1个立方根。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

四、实数1. 无理数的定义:无限不循环小数叫做无理数。

2. 实数的定义:有理数和无理数统称实数。

3. 实数的分类:整数宀拓有理数八”有限小数或无限循环小数 实数 分数无理数无限不循环小数像有理数一样,无理数也有正负之分。

例如2 ,3 3 , 是正无理数, 2, 3 3, 是负无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:4. 实数与数轴上的点的对应关系:实数与数轴上的点是 -- 对应的。

5. 有关概念:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的意义相同。

五、 实数的运算:1. 实数的加、减、乘、除、乘方运算和有理数一样,而且有理数的运算律对无理数仍然适用。

2. 两个非负数的算术平方根的积等于这两个数积的算术平方根, 算术平方根的商等于这两个数商的算术平方根,用式子表示为 六、 题型规律总结:1、 a 本身为非负数,有非负性,艮卩..a >0; 「a 有意义的条件是a >0。

2、 公式:⑴(ja )2=a (a >0);⑵ 旷孑=Va (a 取任何数)。

3、 区分((a > 0),与 JO 2 = a4、非负数的重要性质:若几个非负数之和等于 0,则每一个非负数都为 0(此性质应用很广,务必掌握)正实数实数 0负实数正有理数 正无理数负有理数负无理数考点1平方根、立方根的定义与性质1.下列语句中,正确的是(实数考点分析应用A•—个实数的平方根有两个,它们互为相反数 B. 负数没有立方根C. 一个实数的立方根不是正数就是负数D. 立方根是这个数本身的数共有三个2.下列说法正确的是(A.-2是(-2)2的算术平方根B.3 是-9的算术平方根C.16的平方根是土4D.27 的立方根是土33.下列说法中正确的是()A.9的平方根是3B. .16的算术平方根是土C. ,16的算术平方根是4D..16的平方根是土4.以下语句及写成式子正确的是(A.7是49的算术平方根,即-49B.7 是(7)2的平方根,即■ ( 7)2C. 7是49的平方根,即49 7D. 7是49的平方根,即495.下列语句中正确的是(A.-9的平方根是-3B.9 的平方根是C.9 的算术平方根是土3D.9 的算术平方根是6.下列语句不正确的是(A.0的平方根是0B. 正数的两个平方根互为相反数C. —22的平方根是土2D.a 是a2的一个平方根7.下列语句中正确的是(A.任意算术平方根是正数B. 只有正数才有算术平方根C. •/ 3的平方是9 ,••• 9的平方根是D. 1是1的平方根8.下列结论正确的是(A. 27的立方根是264 4 B. 丄没有立方根125C. 有理数一定有立方根D. (—1) 6的立方根是一19.下列结论正确的是(A.64的立方根是土41 1B. 2是6的立方根C.立方根等于本身的数只有D. 3 27 3,2710.下列说法中:①3都是27的立方根,②3 y3 y,③ 64的立方根是中正确的有()A.1 个B.2个C.3个D.4个11.下列说法:(1)3是9的平方根;(2)9的平方根是3;(3)3是9的平方根;其中正确的有()A.3 个B.2个C.1个D.4个12.9的算术平方根是()A.-3B.3C.± 3D.8 113.64的平方根是()A. ± 8B.± 4C.± 2D.± 214.4的平方的倒数的算术平方根是()A.4B.1C.-1D.184415.下列计算正确的是()A. ,4=± 2B.(9)281=9C. 366D.92916.下列结论正确的是()A. ( 6)2 6B.(■ 3)29C.(16)216D._21616252517.若m是9的平方根,n= ( .3 )2,则mn的关系是()A.m=nB.m=—nC.m=± n D.1 m|M|n 118.已知3 5.281.73 8,3 a 0.1738 , I则a的值为()A.0.528B.0.052 8C.0.00528D.0.00052819. 一个数的算术平方根是a,则比这个数大8数是()A.a + 8B.a —4C.a —8D.a2+ 8a的值是(4)920.已知一个正数的两个平方根分别是2a - 2和a - 4,则的平方根是3,21. 一个正数的两个平方根分别是a+2和a-4,贝U a=,x=22. 一个正数的平方根是2a 3与5 a,则a的值为23.若•、a2a,则a24.若..3x 7有意义,则x的取值范围是25.若4a 1有意义,则a能取的最小整数为26.当x时,x 3有意义。

27. 当x _______ 时,1 x有意义。

x 128. 当x _______ 时,式子x 2有意义。

29. 如果(a 3)2 =a-3,贝U a的取值范围是______________________30. ________________________________________________________ 如果(a 3)2 =3-a,则a的取值范围是_________________________________32. 若V x y y _________________ 0,则x与y的关系是33. 如果Va 44,那么(a —67)3的值是______34. 若3' 2x 1 Vix —,则x= _________35. 若m K 0,则m 3m3 _____ .36. 求下列各式的值(1) .81 ; (2) .16 ;37. 求2 -的平方根和算术平方根。

938. 求下列各式中未知数x的值(每小题4分,共8 分)31. 31 x 3x 1中的x的取值范围是.x 1中的x的取值范围是2(1) 16x -25=0 (2) (x-1 ) 3=8 2(3) 2x-1 ) -169=0 ;2 (4) 4 ( 3x+1) -1=0 ;3(5) x -27 =03(6) 2 (x+3) =512(4) 4)2考点2实数的分类与性质(1 )实数不是有理数就是无理数。

( ) (2)无限小数都是无理数。

( )(3 )无理数都是无限小数。

( )(4)根号的数都是无理数。

( )(5 ) 两个无理数之和一定是无理数。

( )(6)实数是由正实数和负实数组成。

( )(7 ) 0属于正实数。

( )(8)数轴上的点和实数是一-一对应的。

( )(9) 如果一个数的立方等于它本身,那么这个数是0或1 1. ( ) (10)若|X|•2则x•、2()1.判断下列说法是否正确。

(11)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

()2.下列说法正确是()A.不存在最小的实数B.有理数是有限小数3.下列说法错误的是()A.实数都可以表示在数轴上C.无限小数都是无理数 D.带根号的数都是无理数B.数轴上的点不全是有理数C.坐标系中的点的坐标都是实数对4.下列说法正确的是()A.无理数都是无限不循环小数C.有理数都是有限小数D. .2是近似值,无法在数轴上表示准确B.无限小数都是无理数D.带根号的数都是无理数5.如果一个数的立方根等于它本身,那么这个数是()A. ± 1B.0 和16. 下列说法正确的是()A.正实数和负实数统称实数B.C.带根号的数和分数统称实数D.7. 下列说法正确的是()A.数轴上任一点表示唯一的有理数B.C.两个无理数之和一定是无理数D.C.0 和一1 D.0 和土1正数、零和负数统称为有理数无理数和有理数统称为实数数轴上任一点表示唯一的无理数数轴上任意两点之间都有无数个点8.已知a、b是实数,下列命题结论正确的是()「—2 2 A.若a> b,贝U a >b2 2B.若a>| b I,贝U a >bC.2 23 3 2 2若I a |> b,贝U a > b D.若 a > b,贝U a > b9.把下列各数中,有理数为______________________________ ;无理数为___________________________39, , 5, .2, • 2°, . 36,3.14, 5, 38,0.030030003 .......2 V 310. 下列各数中:其中有理数有 ________________ 亠 _________ ;无理数有 _____________—1 ,.. 7 , 3.14159, —n,10, — 3 4 ,0,0.3, 3 8 , 16 ,2.121122111222 …4311. 把下列各数填入相应的集合:—1、 :.: 3、n 、 一 3.14、 p'9、 、.. 6 ;2、 2 、 0.7 • (1)有理数集合{ }; (2)无理数集合{} (3)正实数集合{ };(4)负实数集合{}12.估计,76的大小应在()A.7〜8之间B.8.0〜8.5之间C.8.5 〜9.0之间D.9〜10之间13. 大于 ,17而小于.11的所有整数为 _________________________________ 14. 大于-(2,小于0的整数有 ____________ 个。

相关文档
最新文档